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Abstract
Recently, the Gini distance correlation (GDC), ρg , was proposed to measure depen-
dence between numerical and categorical variables (Dang et al. 2021). This new
dependence measure can mutually characterize independence between the random
variables. That is, ρg = 0 if and only only the categorical variable and the numerical
variable are independent. Limiting distributions of the naive estimator of GDC have
been established in Dang et al. (2021). It has been shown that under independence,
the empirical GDC admits a degenerating limit which is an infinite weighted sum
of Chi-squared distributions. In this paper, we propose a modified estimator of the
GDC that is asymptotically normal under independence between the numerical and
the categorical variables. We also extend this method to the generalized GDC Zhang
et al. (2019) in reproducing kernel Hilbert space (RKHS). Both the modified GDC and
generalized GDC can be applied to test the K -sample problem. Simulations studies
are conducted to examine the finite sample performance of the new K -sample test
based on the modified estimators.

Keywords Asymptotic normality · K-sample test · Modified Gini distance
correlation · Reproducing kernel Hilbert space

Mathematics Subject Classification 62G35 · 62G20

1 Introduction

The Gini distance correlation in Dang et al. (2021) is proposed to measure dependence
between a numerical random variable, X in R

q and a categorical variable Y in R.
Suppose that the categorical variable Y takes values L1, ..., LK with its distribution
PY is P(Y = Lk) = pk > 0 for k = 1, 2, ..., K . X is from F and assume that the
conditional distribution of X given Y = Lk is Fk . Let (X, X ′) and (X(k), X (k)′) be
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independent pair variables from F and Fk , respectively, then the Gini covariance is
defined as

gCov(X,Y ) =
K∑

k=1

pkT (X(k), X), (1)

where T (X(k), X) = 2E‖X(k) − X‖ − E‖X (k) − X(k)′ ‖ − E‖X − X ′‖ is the energy
distance between Fk and F Székely and Rizzo (2013, 2017). The Gini distance covari-
ance is the weighted average of energy distance between Fk and F , which implies that
gCov(X,Y ) = 0 if and only if F1 = F2 = · · · = FK = F . That is, zero Gini dis-
tance covariance mutually implies independence between X and Y . The Gini distance
correlation standardizes the Gini distance covariance by

ρg(X,Y ) =
∑K

k=1 pkT (X(k), X)

E‖X − X ′‖ , (2)

which takes values in [0, 1]. The naive estimator for the Gini distance covariance in (1)
is a linear combination ofU -statistics or V -statistics. Under independence between X
and Y , the estimators are degenerate and hence converge to a infinite sum of quadratic
form of centered Gaussian random variables (Dang et al. 2021). This cannot be easily
applied to test the equality of K distributions because it is an infinite sum, and finding
the weights in the degenerating limit is also a difficult problem. In high dimension,
as q diverges, this degenerate estimator admit a normal limit (Sang and Dang 2023).
In this paper, we aim to establish a normal limit under the regular setting where q is
fixed.

Ahmad (1993) provided a method to testing goodness-of-fit by adding weights to
the Cramér-von Mises statistic. Then the modified estimator is asymptotically nor-
mal under the null of the goodness-of-fit problem. The Cramér-von Mises statistic is
an estimator of the L2 distance between a completely specified distribution and the
underlying distribution. The Gini distance covariance and the correlation are Gini dis-
tance based dependence measures. In order to achieve asymptotic normality under the
null of independence between X and Y , we make an appropriate modification of the
aforementioned V -estimator by adopting the approach proposed in Ahmad (1993).

Zhang et al. (2019) extended the Gini distance covariance and GDC to the RKHS
by a Mercer kernel induced distance. The generalized covariance and correlation also
characterize independence between X and Y . Same as GDC, the empirical parts of
the generalized measures are degenerate under independence between X and Y . We
provide modified estimators for the generalized Gini distance covariance and GDC
in RKHS which admit normal limits under the null of independence. Makigusa and
Naito (2020) constructed a consistent estimator of the maximum mean discrepancy
in the Hilbert space to make it yield a normal limit when the the maximum mean
discrepancy is zero. And their result has been generalized to solve K -sample problem
in Balogoun et al. (2021). Manfoumbi Djonguet et al. (2024) has also adopted this
method for independence testing between two functional variables.

Throughout this paper, ‖ · ‖ represents the Euclidean norm, that is, ‖a‖ =√
a21 + a22 + · · · + a2q for aq-vector, a = (a1, a2, · · · , aq)T , inRq . For two sequences,
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an, bn , of real numbers, an = o(bn) means limn→∞ an/bn = 0, and an = O(bn)
means L ≤ an/bn ≤ U for some finite constants L and U . For random variable
sequences, similar notations op(n) and Op(n) are used to stand for the relationships
holding in probability.

The remainder of the paper is organized as follows. In Sect. 2, we provide the
modified estimator for the Gini distance covariance and the asymptotic distribution.
Section3 is devoted to the modified estimator for the generalized Gini distance covari-
ance in RKHS. In Sect. 4, we conduct simulation studies to evaluate the performance of
the proposed modified test statistics. We conclude and discuss future works in Sect. 5.
All technical proofs are provided in Appendix.

2 Modified Gini distance covariance estimator

There is an alternative representation for the Gini distance covariance and correlation
using multivariate Gini mean differences (GMD) defined as below

� = E‖X − X ′‖, �k = E‖X(k) − X (k)′ ‖, k = 1, 2, ..., K ,

�kl = E‖X(k) − X(l)‖, k �= l, k, l = 1, 2, ..., K .

where � and �k are GMDs for F and Fk , respectively. Gini mean difference was
introduced as an alternativemeasure of variability to the standard deviation (Gini 1914;
Yitzhaki and Schechtman 2013). The Gini covariation between X and Y defined in
(1) can be represented in the GMD,

gCov(X,Y ) = � −
K∑

k=1

pk�k, (3)

and the Gini correlation is

ρg(X,Y ) = � − ∑K
k=1 pk�k

�
. (4)

This representation not only shows a nice interpretation of the new dependence mea-
surement (Dang et al. 2021) but also makes the analytical calculation feasible. In the
proof of Theorem 1 in Dang et al. (2021), it has been shown that

gCov(X,Y ) = 2
∑

1≤k<l≤K

pk pl�kl −
K∑

k=1

pk(1 − pk)�k . (5)

All the three representations (1), (3) and (5) are equivalent (Dang et al. 2021). We will
use the equation (5) to develop new estimators as it has the distance between different
groups where we will add the weights.

Suppose a sample D = {(X1,Y1), (X2,Y2), ...., (Xn,Yn)} is drawn from the
joint distribution of X and Y . We can write D = D1 ∪ D2... ∪ DK , where
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Dk =
{
X(k)
1 , X (k)

2 , ..., X (k)
nk

}
is the sample with Yi = Lk and nk is the number of

sample points in the kth class. Then the Gini distance covariance in (5) can be esti-
mated by

Tn =
∑

1≤k �=l≤K

p̂k p̂l
1

nknl

nk∑

i=1

nl∑

j=1

‖X(k)
i − X(l)

j ‖

−
K∑

k=1

p̂k(1 − p̂k)

(
nk
2

)−1 ∑

1≤i< j≤nk

‖X(k)
i − X(k)

j ‖, (6)

where p̂k = nk
n
. Under independence of X and Y , Tn is a degenerate statistic and

hence converges to a infinite sum of weighted Chi-squared random variables (Dang
et al. 2021).

In order to overcome the degeneracy of the naive estimator, Tn , under independence,
we propose a modified estimator as

Tn,γ =
∑

1≤k �=l≤K

p̂k p̂l
1

nknl

nk∑

i=1

nl∑

j=1

ωi,nk (γ )‖X(k)
i − X(l)

j ‖

−
K∑

k=1

p̂k(1 − p̂k)
1(nk
2

)
∑

1≤i< j≤nk

‖X (k)
i − X(k)

j ‖,

(7)

where theweights {ωi,s(γ )}si=1 are triangular array of positive real numbers depending
on a parameter γ (0 < γ ≤ 1) and satisfy the following conditionsMakigusa andNaito
(2020):

C1. There exists a real number κ(> 0) and a positive integer s0 such that

s|1
s

s∑

i=1

ωi,s(γ ) − 1| ≤ κ

for all s > s0;
C2. There exists ck such that max1≤i≤s ωi,s(γ ) < ck for all s and 0 < γ ≤ 1;

C3. For all 0 < γ < 1, lims→∞
1

s

∑s
i=1

(
ωi,s(γ ) − 1

)2 = η(γ ) > 0.

Then the corresponding modified estimator for GDC is

ρ̂g,γ = Tn,γ

�̂
, (8)

where �̂ = (n
2

)−1 ∑
1≤i< j≤n ‖X i − X j‖.
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A typical choice of the weights {ωi,s(γ )}si=1 suggested by Ahmad (1993) is
ωi,s(γ ) = 1 + (−1)iγ , and this has been adopted to develop the modified max-
imum mean discrepancy estimators in Balogoun et al. (2021) and Makigusa and
Naito (2020). Manfoumbi Djonguet et al. (2024) also provided some other exam-
ples of ωi,s(γ ) satisfying the above conditions C1-C3: ωi,s(γ ) = 1 + sin(iπγ ) and
ωi,s(γ ) = 1 + cos(iπγ ). The first choice of weights yields η(γ ) = γ 2 and the latter
two weights generate η(γ ) = 1/2.

Applying the weights satisfying the conditions C1-C3 to Tn,γ in (7), we provide
the asymptotic normality of this modified estimator in the following theorem.

Define h(x, x′) = ‖x − x′‖, h1(x) = E‖x − X1‖ and σ 2
g = Var(h1(X)) > 0.

Theorem 2.1 Under independence of X andY , and conditionsC1-C3, ifE‖X‖2 < ∞,
as min{n1, n2, ..., nk} → ∞, we have

√
nTn,γ

d−→ N (0, σ 2
γ ),

with σ 2
γ = ∑K

k=1 pk(1 − pk)2σ 2
1 (γ ) where σ 2

1 (γ ) = η(γ )σ 2
g .

Theorem 2.1 shows that the modified estimator, Tn,γ , for the Gini distance covari-
ance has a normal limit which can be applied to test independence between X and Y ,
and hence to test the equality of K -distributions.

Applying Slustky’s theorem, we have central limit theorem (CLT) for the modified
GDC estimator, ρ̂g,γ , defined in (8).

Corollary 2.1 Under independence of X andY , and conditionsC1-C3, ifE‖X‖2 < ∞,
as min{n1, n2, ..., nk} → ∞, we have

√
nρ̂g,γ

d−→ N (0, σ 2
ρg,γ

),

where σ 2
ρg,γ

= ∑K
k=1 pk(1 − pk)2σ 2

1 (γ )/�2.

In order to apply Theorem 2.1 to make inference, we provide a consistent estimator
for σ 2

γ . σ
2
g can be estimated by the empirical version,

ν̂ = 1

n − 1

n∑

i=1

⎧
⎨

⎩
1

n − 1

n∑

j=1

‖X j − X i‖ − 1

n

n∑

i=1

( 1

n − 1

n∑

j=1

‖X j − X i‖
)
⎫
⎬

⎭

2

= 1

n − 1

n∑

i=1

⎧
⎨

⎩
1

n − 1

n∑

j=1

‖X j − X i‖ − 1

n(n − 1)

n∑

i, j=1

‖X j − X i‖
⎫
⎬

⎭

2

.

Then a consistent estimator for σ 2
γ can be obtained by σ̂ 2

0 = η(γ )ν̂
∑K

k=1 p̂
2
k (1− p̂k).
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Corollary 2.2 Under independence of X and Y , and conditionsC1-C3, ifE‖X‖ < ∞,
as min{n1, n2, ..., nk} → ∞, we have

√
nTn,γ

σ̂0

d−→ N (0, 1).

These established CLTs can be applied to test the independence of X and Y . We
will use the CLT for the Gini distance covariance to do the test. The one based on the
Gini correlation is asymptotically equivalent. The independence test is stated as

H0 : gCov(X,Y ) = 0, vs H1 : gCov(X,Y ) > 0. (9)

Note that the null hypothesis of the test in (9) is equivalent to the null of the K -sample
test

H′
0 : F1 = F2 = ... = FK = F .

In the K sample test, we can view sample point (X i ,Yi ) in such way. Yi is the class
label of X i . Yi = Lk indicates that X i is drawn from Fk . The pooled sample D =
D1 ∪ D2... ∪ DK has the distribution F , which is the average distribution of Fk’s.

By Corollary 2.2, we can rejectH0 orH′
0 if

√
nTn,γ > Zασ̂0 at level α, where Zα

is the (1 − α)100% percentile of the standard normal distribution.

3 Modified Gini distance covariance estimator in RKHS

Distance based statistics can be generalized from a euclidean space to metric spaces.
With aMercer (1909), distributions can be mapped into a RKHSwith a kernel induced
distance. TheGini distance covariance has been generalized to a RKHS,HM , as Zhang
et al. (2019)

gCovH(M)(X,Y ) =2
∑

1≤k<l≤K

pk plEdM (X(k), X (l))

−
K∑

k=1

pk(1 − pk)EdM (X(k)
1 , X (k)

2 ), (10)

whereM : Rq×R
q → R is aMercer kernel with the distance function d : Rq×R

q →
R. d defines a distance inHM as

dM (x, x′) = √
M(x, x) + M(x′, x′) − 2M(x, x′).

As the regularGini distance covariance inRp , the generalizedGini distance covariance
can also characterize independence in RKHS, gCovH(M)(X,Y ) = 0 if and only if X
and Y are independent (Zhang et al. 2019).

123



Asymptotic normality of...

The generalized Gini distance covariance can be estimated by

Gn =
∑

1≤k �=l≤K

p̂k p̂l
1

nknl

nk∑

i=1

nl∑

j=1

dM (X(k)
i , X (l)

j )

−
K∑

k=1

p̂k(1 − p̂k)

(
nk
2

)−1 ∑

1≤i< j≤nk

dM (X(k)
i , X (k)

j ), (11)

which has been shown to be degenerate and converges to a mixture of infinite chi-
square distributions under independence of X and Y Zhang et al. (2019).

We give a modified estimator as

Gn,γ =
∑

1≤k �=l≤K

p̂k p̂l
1

nknl

nk∑

i=1

nl∑

j=1

ωi,nk (γ )dM (X(k)
i , X (l)

j )

−
K∑

k=1

p̂k(1 − p̂k)

(
nk
2

)−1 ∑

1≤i< j≤nk

dM (X(k)
i , X (k)

j ), (12)

where the weights {ωi,s(γ )}si=1 are chosen as the same in Sect. 2.

Theorem 3.1 Assume M is aMercer kernel overRq×R
q → R that induces a distance

function dM (·, ·) with bounded range [0, 1). Under independence of X and Y , assume
conditions C1-C3, as min{n1, n2, ..., nk} → ∞, we have

√
nGn,γ

d−→ N (0, σ 2
M,γ ),

with σ 2
M,γ = ∑K

k=1 pk(1 − pk)2σ 2
2,M (γ ) where σ 2

2,M (γ ) is given in the proof.

A consistent estimator for σ 2
M,γ is σ̂ 2

M,0 = η(γ )ν̂M
∑K

k=1 p̂
2
k (1 − p̂k), where

ν̂M = 1

n − 1

n∑

i=1

⎧
⎨

⎩
1

n − 1

n∑

j=1

dM (X i , X j ) − 1

n

n∑

i=1

( 1

n − 1

n∑

j=1

dM (X i , X j )
)
⎫
⎬

⎭

2

= 1

n − 1

n∑

i=1

⎧
⎨

⎩
1

n − 1

n∑

j=1

dM (X i , X j ) − 1

n(n − 1)

n∑

i, j=1

dM (X i , X j )

⎫
⎬

⎭

2

.

Corollary 3.1 Assume M is aMercer kernel overRq×R
q → R that induces a distance

function dM (·, ·) with bounded range [0, 1). Under independence of X and Y , assume
conditions C1-C3, as min{n1, n2, ..., nk} → ∞, we have

√
nGn,γ

σ̂M,0

d−→ N (0, 1).
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The modified estimator of the generalized Gini distance covariance can also be
used to test the equality of K populations. By Corollary 3.1, we can reject H0 or H′

0
if

√
nGn,γ > Zασ̂M,0 at level α.

4 Simulation

In this section, we conduct simulation studies to verify the theoretical properties of the
modifiedGini covariance statistic and compare its performance in K -sample tests with
others. Also based on empirical results, we discuss how to select the weight function.

4.1 Limiting normality

We generate independent K samples from the same multivariate normal distributions
and compute the weighted Gini covariance statistic with weights ωi,n(γ ) = 1 +
(−1)iγ, i = 1, ..., n. The procedure is repeated 10000 times.

Example 1 K = 2 samples of size (n1, n2) = (200, 200) are generated fromN (0,�),
where � = (�i j ) ∈ R

q×q with �i j = 0.7|i− j |. We consider q = 3, 5 and γ =
0.1, 0.2, 0.5, 0.8, respectively.

For each dimension and each value of γ , the histogramof 10000 standardizedweighted
Gini covariance statistics is plotted in Fig. 1. The kernel density estimation (KDE) for
the weighted Gini covariance and the standard Gini covariance are added to the plots.
We also add the standard normal density curve to visualize the closeness between
empirical density and asymptotic density functions. Firstly, we can see that the KDEs
for the regular Gini covariance are always skewed to the right, which agrees well with
its limiting distribution of the mixture of χ2 distributions due to the degeneracy of the
regular Gini covariance statistics. Then we notice that the histograms at γ = 0.1 for
both dimensions are skewed to the right, and there is some discrepancy between KDE
of the weighted Gini covariance and the normal curve. However, as γ increases, the
discrepancy becomes less and diminishes. This suggests that larger γ values are pre-
ferred for this weight function.We use γ = 0.8 in the next subsection for performance
comparison inK-sample tests. The impacts of the choice of γ inωi,n(γ ) = 1+(−1)iγ
as well as in ωi,s(γ ) = 1 + sin(iπγ ) are explored in Subsection 4.3.

4.2 Size and power in K-sample tests

In this simulation, we compare three methods for K sample problem by computing
the type I errors and the powers.

mmd: generalized maximum mean discrepancy method developed in Balogoun et al.
(2021).

wrg: our proposed method using weighted Gini covariance statistic.
wkrg: our proposedmethod usingweightedGini covariance statistic in aRKHSwhere

the distance functiondM (x, x′) =
√
1 − e−‖x−x′‖2/σ 2 is inducedby aweighted

Gaussian kernel M(x, x′) = 0.5e−‖x−x′‖2/σ 2
Zhang et al. (2019).
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Fig. 1 Histograms of the proposedweighted Gini covariance under weight functionsωi,n(γ ) = 1+(−1)iγ
with different γ values of 0.1, 0.2, 0.5 and 0.8, respectively. The left plots are for dimension q = 3, and
the right ones are for dimension q = 5
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Table 1 Size and Power of Tests in Example 2

n method δ = (δ1, δ2)

(0.0, 0.0) (0.1, 0.2) (0.2, 0.4) (0.3, 0.6) (0.4, 0.8) (0.5, 1.0)

(40,40,40) mmd .0705 .1650 .4759 .8829 .9947 .9999

wrg .0701 .1697 .4946 .8948 .9959 1.000

wkrg .0739 .1715 .4870 .8884 .9948 .9999

(30,40,50) mmd .0723 .1416 .4592 .8577 .9903 .9998

wrg .0725 .1537 .4917 .8810 .9936 .9999

wkrg .0792 .1593 .4857 .8741 .9925 .9998

(12,36,72) mmd .0611 .1131 .3068 .6432 .9014 .9911

wrg .0714 .1545 .4075 .7782 .9674 .9985

wkrg .0758 .1584 .4058 .7693 .9633 .9982

(80,80,80) mmd .0220 .0983 .5453 .9734 1.000 1.000

wrg .0655 .1960 .6956 .9906 1.000 1.000

wkrg .0644 .1960 .6842 .9889 1.000 1.000

(60,80,100) mmd .0221 .0858 .5157 .9620 1.000 1.000

wrg .0646 .1779 .6872 .9874 1.000 1.000

wkrg .0660 .1813 .6787 .9852 1.000 1.000

(24,72,144) mmd .0201 .0568 .3046 .7709 .9837 .9999

wrg .0664 .1598 .5700 .9431 .9991 1.000

wkrg .0690 .1622 .5368 .9396 .9989 1.000

Both mmd and wkrg are kernel methods. The bandwidth of the Gaussian kernel in
both methods is chosen to be the median of pairwise distances, as used and suggested
in Chen et al. (2009). All three methods use the weight functionωi,n(γ ) = 1+(−1)iγ
with γ = 0.8.

We consider cases for K = 3 and q = 5 with p = (p1, p2, ...pK ) where
pk = P(Yi = Lk): (I) balanced, p = (1/3, 1/3, 1/3); (II) slightly unbalanced,
p = (3/12, 4/12, 5/12); (III) heavily unbalanced, p = (0.1, 0.3, 0.6). We conduct
10000 simulations for different sample sizes of n = 120 and n = 240, respectively.
The type I error and the power of each test are computed at significance level α = 0.05
for Example 2 and Example 3.

Example 2 Generate samples of X(k) = μk + ε, k = 1, 2, 3, where the mean vector
μ1 = (0, 0, ...., 0), μ2 = (δ1, δ1, ..., δ1), μ3 = (δ2, δ2, ..., δ2), and ε = (ε1, ε2, ...εq)

is a q-dimensional error term with ε j ’s are iid from N (0, 1). Here δ = (δ1, δ2) mea-
sures differences in means.

Results of Example 2 are reported in Table 1. The column δ = (0, 0) corresponds to
the size of tests. At n = 120, all tests have slight over-size problems with size is 1–2%
higher than the nominal level. And they all have higher powers for equal size case
than unbalanced cases. For unbalanced cases, our method wrg gains 1%-4% power
advantage over mmd at small values of δ, especially for heavily unbalanced cases.
As sample size increases, the type I errors of our wrg and wkrg are getting closer
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Table 2 Size and Power of Tests in Example 3

n method δ = (δ1, δ2)

(1.0, 1.0) (1.1, 1.5) (1.2, 2.0) (1.3, 2.5) (1.4, 3.0) (1.5, 3.5)

(40,40,40) mmd .0269 .0924 .2813 .4957 .6595 .7970

wrg .0645 .1822 .4131 .6118 .7403 .8264

wkrg .0868 .1983 .4334 .6472 .7836 .8836

(30,40,50) mmd .0225 .0719 .2246 .4617 .6537 .7845

wrg .0674 .1756 .4009 .6194 .7564 .8414

wkrg .0859 .2041 .4413 .6675 .8205 .9004

(12,36,72) mmd .0224 .0248 .0883 .2164 .3728 .5220

wrg .0665 .1662 .3784 .5887 .7362 .8246

wkrg .0887 .2209 .4551 .6718 .8134 .8975

(80,80,80) mmd .0089 .0768 .3461 .6572 .8661 .9443

wrg .0552 .2236 .5664 .7975 .9200 .9634

wkrg .0706 .2357 .5873 .8348 .9507 .9830

(60,80,100) mmd .0104 .0578 .3229 .6468 .8654 .9537

wrg .0556 .2289 .5734 .8144 .9294 .9687

wkrg .0686 .2466 .6176 .8591 .9611 .9887

(24,72,144) mmd .0096 .0166 .1111 .3559 .6404 .8206

wrg .0610 .1996 .5439 .7980 .9220 .9655

wkrg .0770 .2549 .6194 .8656 .9625 .9908

to the nominal level and powers get improved. However, mmd suffers from severe
under-size problems with very low powers for unbalanced case when the difference
in means is small.

Example 3 We generate samples from X (k) = (Zk1, Zk2, ...Zkq)
T , k = 1, 2, 3. For

k = 1, j = 1, ..., q, Zkj ’s are i.i.d. from Exp(1); k = 2, j = 1, ..., q, Zkj ’s are i.i.d.
from Exp(δ1); k = 3, j = 1, ..., q, Zkj ’s are i.i.d. from Exp(δ2).

We present results for this example in Table 2. The mmd seems sensitive to the
asymmetry of distributions. It is undersized and its power is much lower than the
weight Gini covariance based ones. Our wrg performs best with well-controlled size
and higher powers.

4.3 Discussion on weights

Manfoumbi Djonguet et al. (2024) provided two weight schemes based on sine and
cosine functions, but they didn’t study the performance of those weights. In this simu-
lation, we would like to compare this weight ωi,s(γ ) = 1+ sin(iπγ ) (weight2) with
the previously used one ωi,s(γ ) = 1 + (−1)iγ (weight1). We compare the effects
of different γ values of 0.2, 0.4,0.6, 0.8 and 0.9 of each weight function on our wrg
method.With empirical results, we provide some suggestions on the choice ofweights.
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Fig. 2 Empirical size and power versus total sample size at different γ values in Example 2 with p =
(1/3, 1/3, 1/3). The left plots are for ω(i, n)(γ ) = 1 + (−1)iγ , and the right ones are for ω(i, n)(γ ) =
1 + sin(iπγ )

The balanced p = (1/3, 1/3, 1/3) and unbalanced p = (0.1, 0.3, 0.6) scenarios of
Example2 are considered.At different sample sizes ofn = 60, 90, 120, 150, 180, 210,
240, 270, 300, the type I errors and/or powers of the tests under different weighting
schemes are calculated based on M = 10000 repetitions and reported in plots.

Figure2 is for the balanced case with the top two plots on type I error and the
bottom two plots on power at (δ1, δ2) = (0.3, 0.6). The left panels are for weight1,
while the right ones are for weight2.

The nominal size is 0.05. From Fig. 2, we observe that the tests based on twoweight
functions have the over-size problem but this issue becomes less serious as sample
size increases. For weight1 with γ values 0.8 and 0.9, the type I errors decrease from
0.10 to 0.06 when the sample size increases from 60 to 150. But small γ values of
0.2 and 0.4, even at sample size 300, produce unacceptable type I errors of 0.16 and
0.10 respectively. For weight2 with a large range of gamma values from 0.2 to 0.8,
the type I errors decrease from 0.12 to 0.08 when the sample sizes increase from 60
to150. Further reduction type I error to 0.06 requires a sample size to be as large as
300. As sample size increases, γ value 0.9 yields a relatively large zig-zag oscillation
in type I errors, which is undesired.
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Fig. 3 Empirical size versus the sample size at different γ values when p = (0.1, 0.3, 0.6). The left plot is
for ω(i, n)(γ ) = 1 + (−1)iγ , and the right one is for ω(i, n)(γ ) = 1 + sin(iπγ )

The tests based on both weight schemes produce relatively high power. The power
of all tests is over 0.90 when the sample size is 150. For weight1, the power decreases
in γ . With consideration of controllable type I error and high power, γ = 0.8 is
recommended. This suggestion is also supported by the previous empirical results in
Subsections 4.1 and 4.2. weight2 performs very well in terms of power. Except for
0.9, all other γ values produce an almost same power at each sample size. It is quite
robust with the choice of γ in the balanced case. However, in the unbalanced case,
weight2 tests fail badly not only in terms of huge type I errors but also in terms of
sensitivity of γ choice.

The type I errors of tests under the unbalanced scenarios are reported in Fig. 3.
The left plot is for weight1, while the right one is for weight2. Both plots have a
same scale in order to provide a fair visual comparison. From Fig. 3, we see that for
weight2, all gamma values cause unacceptable type I errors when sample size is less
than 300. With γ = 0.2 and sample size less than 240, the test is meaningless with
type I error higher than 0.9. For γ = 0.4, the type I errors jump up and down in a wide
range, reaching 0.94 followed by 0.53, then up to 0.97 followed by 0.08, and then 0.43
followed by 0.64 when sample size changes from 60 to 210. Oscillation patterns in
large ranges of type I errors also present for larger γ values. However, when sample
size is as large as 300, all tests have a good size. We increase sample size up to 600
and find out weight2 maintains the nominal size well. For weight1 with sample size
less than 300, the type I errors also show zig-zag oscillations, but in much smaller
ranges. Except for γ = 0.2, all tests yield a reasonably good empirical size when the
sample size is 300 or larger.

Overall, for balanced case, both weights are acceptable depending on the choice
of γ . weight2 performs better than weight1 with a wide range of choices for γ .
For unbalanced cases, weight2 is not applicable unless the sample size is suf-
ficiently large (at least 300). weight1 with γ = 0.8 is recommended due to
its controllable type I errors and high powers for both balanced and unbalanced
cases.
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5 Conclusions and future work

We have proposed a modified estimator of the Gini distance correlation. By adding
weights to the distances between different groups, the modified estimator admits a
normal limit under independence of numerical and categorical variables. We have also
generalized the results intoRKHS,where normal limits also hold.All of the asymptotic
results have been applied to test the equality of K distributions. With a proper choice
of weight function, the modified Gini correlation estimator performs well. We have
studied two types of weights ωi,n(γ ) = 1+ (−1)iγ and ωi,s(γ ) = 1+ sin(iπγ ). The
second weight works well with a wide range of choices for γ for balanced K sample
problem. However, it is not applicable unless the sample size is sufficiently large for
unbalanced cases. The first weight with a large γ value like 0.8 is recommended. It
could control type I error close to nominal level for all cases including balanced and
unbalanced, and keep reasonable high power.

In the real application of K sample problem, most of the existing omnibus tests are
permutation procedures based. The permutation tests have some optimum properties
(Gebhard and Schmitz 1998a). However, they are computation-intensive (Gebhard and
Schmitz 1998b). By considering all permutations, exact tests such as in Neuhäuser
(2005) are only feasible for very small sample sizes. For larger sample sizes, a large
number of random permutation procedures are repeated in order to approximate the
p-value or to determine the critical value. The test based on the regular Gini distance
covariance (Dang et al. 2021) relies on such a computationally expensive procedure.
Our proposed weighted Gini covariance statistic admits a normal limit and can be
directly applied to real-world analysis for K -sample problem by avoiding permutation
procedures.

In this paper, we used the median of pairwise distances as a bandwidth in the
Gaussian kernel for the wkrg and mmd. Such a choice makes a half of pairwise
distances in the induced feature space greater than 0.8871 and 0.6065 for the wkrg
method andmmdmethod, respectively. This choice is simple and seems to be effective,
but is by no means “optimal". How to select an optimal bandwidth (in terms of some
criteria) is always a challenge for any kernelmethod. Forwkrg and alsommdmethods,
the task is particularly difficult because the bandwidth shall be selected optimally with
consideration of weight function. How to jointly select the optimal kernel parameter
and weight scheme in wkrg and mmd is worthy of further investigation.

6 Appendix

Proof of Theorem 2.1

Tn,γ = Tn,γ − Tn + Tn

=
∑

1≤k �=l≤K

p̂k p̂l
1

nknl

nk∑

i=1

nl∑

j=1

(
ωi,nk (γ ) − 1

)
‖X(k)

i − X(l)
j ‖ + Tn

:= Dn + Tn,
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where

Dn =
∑

1≤k �=l≤K

p̂k p̂l
1

nknl

nk∑

i=1

nl∑

j=1

(
ωi,nk (γ ) − 1

)
‖X (k)

i − X(l)
j ‖.

From Dang et al. (2021), Tn is degenerate under independence of X and Y with
Var(Tn) = Op(n−2). We will show that Dn dominates with a normal limit.

Define D̂k,l(γ ) = 1

nknl

∑nk
i=1

∑nl
j=1

(
ωi,nk (γ ) − 1

)
‖X (k)

i − X(l)
j ‖, then Dn =

∑
1≤k �=l≤K p̂k p̂l D̂k,l(γ ). Then we can decompose D̂k,l(γ ) as

D̂k,l(γ ) = 1

nknl

nk∑

i=1

nl∑

j=1

(
ωi,nk (γ ) − 1

)
�kl

+ 1

nk

nk∑

i=1

[(
h1

(
X (k)
i

) − �kl

)(
ωi,nk (γ ) − 1

)]

+ 1

nl

nl∑

j=1

(
h1

(
X(l)

j

) − �kl

)
1

nk

nk∑

i=1

(
ωi,nk (γ ) − 1

)

+ 1

nknl

nk∑

i=1

nl∑

j=1

[(
ωi,nk (γ ) − 1

)
φk,l(X

(k)
i , X (l)

j )

]
, (13)

where φk,l(X(k), X (l)) = h(X(k), X (l))−h1(X(k))−h1(X(l))+�kl is the degenerate

part with Var
(
φk,l(X(k), X (l))

) = O(
1

nknl
).

Wewill show that D̂k,l(γ ) is dominatedby
1

nk

∑nk
i=1(h1

(
X(k)
i )−�kl

)(
ωi,nk (γ )−1

)
.

First of all, the first sum on the right of (13) is not random and is bounded. That is,

∣∣∣∣
1

nknl

nk∑

i=1

nl∑

j=1

(
ωi,nk (γ ) − 1

)
�kl

∣∣∣∣ = �kl

nk

∣∣∣∣
nk∑

i=1

(
ωi,nk (γ ) − 1

)∣∣∣∣

≤ κ

nk
�kl

→ 0

by condition C1.
Then the second and the third sums on the right side of (13) are the first-projection

parts. By Theorem 3 in O‘Neil, K.A. and Redner, R.A. (1993), we have

Var

(
1

nk

nk∑

i=1

[(
h1

(
X(k)
i

) − �kl

)(
ωi,nk (γ ) − 1

)])
= O(

1

n2k
)nk

nk∑

i=1

(
ωi,nk (γ ) − 1

)2
,
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Var

(
1

nl

nl∑

j=1

(
h1

(
X(l)

j

) − �kl

)
1

nk

nk∑

i=1

(
ωi,nk (γ ) − 1

))

= O(
1

n2l n
2
k

)nl

[ nk∑

i=1

(
ωi,nk (γ ) − 1

)]2
.

By conditions C1–C3, we have

nk∑

i=1

(
ωi,nk (γ ) − 1

)2 → ∞,

and

[ nk∑

j=1

(
ω j,nk (γ ) − 1

)]2
≤ κ2.

Therefore,
1

nk

∑nk
i=1 h1(X

(k)
i )

(
ωi,nk (γ ) − 1

)
dominates D̂k,l(γ ) and admits a normal

limit, and hence Dn has a normal limit.
Next we find the variance of Tn,γ . We have

Tn,γ =
∑

1≤k �=l≤K

p̂k p̂l

{
1

nk

nk∑

i=1

(
h1

(
X(k)
i

) − �kl

)(
ωi,nk (γ ) − 1

)
}

+ OP (n−1)

=
K∑

k=1

p̂k(1 − p̂k)

{
1

nk

nk∑

i=1

(
h1

(
X(k)
i

) − �kl

)(
ωi,nk (γ ) − 1

)
}

+ OP (n−1).

By Theorem A of Section 6.4, Serfling (1980), we have

√
nTn,γ → N

(
0,

K∑

k=1

pk(1 − pk)
2σ 2

1 (γ )

)
,

where σ 2
1 (γ ) = Var

(
h1(X)

)
η(γ ). ��

Proof of Theorem 3.1 Define

�M = EdM (X, X ′),

�M
k = EdM (X(k), X (k)′), k = 1, 2, ..., K ,

�M
kl = Ed(X(k), X (l)), k �= l, k, l = 1, 2, ..., K .

The proof of Theorem 3.1 is similar to the proof of Theorem 2.1 by replacing the the
euclidean distance ‖ · ‖ by the induced distance dM (·, ·). Here we provide a sketchy
proof.
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Gn,γ = Gn,γ − Gn + Gn

=
∑

1≤k �=l≤K

p̂k p̂l
1

nknl

nk∑

i=1

nl∑

j=1

(
ωi,nk (γ ) − 1

)
dM (X(k)

i , X (l)
j ) + Gn

:= �n + Gn .

By Theorem 11 of Zhang et al. (2019),Gn is degenerate under independence of X and
Y with Var(Gn) = Op(n−2). We will show that �n dominates with a normal limit.

Define �̂k,l(γ ) = 1

nknl

∑nk
i=1

∑nl
j=1

(
ωi,nk (γ ) − 1

)
dM (X(k)

i , X (l)
j ), then �n =

∑
1≤k �=l≤K p̂k p̂l �̂k,l(γ ). Let g(x, x′) = dM (x, x′), and g1(x) = EdM (x, X1).

Under conditions C1–C3, �̂k,l(γ ) is dominated by
1

nk

∑nk
i=1

(
g1

(
X(k)
i

) − �M
kl

)

(
ωi,nk (γ ) − 1

)
.

Therefore,

Gn,γ =
∑

1≤k �=l≤K

p̂k p̂l

{
1

nk

nk∑

i=1

(
g1

(
X(k)
i

) − �M
kl

)(
ωi,nk (γ ) − 1

)
}

+ OP (n−1)

=
K∑

k=1

p̂k(1 − p̂k)

{
1

nk

nk∑

i=1

(
g1

(
X(k)
i

) − �M
kl

)(
ωi,nk (γ ) − 1

)
}

+ OP (n−1).

Applying Theorem A of Section 6.4 of Serfling (1980) again, we have

√
nGn,γ → N

(
0,

K∑

k=1

pk(1 − pk)
2σ 2

2,M (γ )

)
,

where σ 2
2,M (γ ) = var

(
g1(X)

)
η(γ ).
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