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Abstract
This paper introduces a general semi-parametric method for estimating a vector of
parameters in multivariate copula models. The proposed approach uses the moments
of the multivariate probability integral random variable to generalize the inversion
of Kendall’s tau estimator. What makes the new methodology attractive is the fact
that it can be performed as soon as one can simulate from the assumed parametric
family of copulas. This feature is especially helpful when explicit expressions are not
available for the theoreticalmoments. The consistency and asymptotic normality of the
proposed estimators are established under mild conditions. An extensive simulation
study indicates that the price to pay for the estimation of themoments ismodest and that
the new estimators are almost as accurate as the pseudo-maximum likelihood (PML)
estimator. The usefulness of the proposed estimators is illustrated on the modelling of
multivariate data with copula models where the PML estimator is hardly computable.

Keywords Pairwise models · Probability integral transformation · Pseudo-maximum
likelihood estimator · Semi-parametric inference · Simulated moments · U-statistics.

1 Introduction

When the goal is to find an appropriate model for a random vector X ∈ R
d , a well-

established strategy is to model the marginal behaviours and the dependence structure
separately. This approach is possible thanks to a theorem of Sklar (1959), which states
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that there exists C : [0, 1]d → [0, 1] such that for all x = (x1, . . . , xd) ∈ R
d ,

P(X ≤ x) = C {P(X1 ≤ x1), . . . ,P(Xd ≤ xd)} .

Whenever the marginal distributions are continuous, the function C is unique and is
called the copula of X. See Nelsen (2007) and Joe (2015) for details on copulas. In
that context, it is customary to assume that C belongs to a parametric family C =
{Cθ ; θ ∈ Θ ⊆ R

p} and then estimate the unknown parameter from a sample of copies
X1, . . . ,XT of X.

A popular estimator of a copula parameter is the pseudo-maximum likelihood
(PML) estimator introduced by Oakes (1994) and later investigated by Genest et al.
(1995). In principle, this method is applicable regardless of the dimension of the vector
and of the number of parameters. However, the PML estimator requires an explicit
expression for the copula density,which is not always the case, notwithstanding the fact
that the density may be explicit but intractable. The PML estimator can also be numer-
ically unstable, especially when the family has several parameters. Some authors have
proposed approaches to address these shortcomings. For example, minimum-distance
estimators were considered by Biau and Wegkamp (2005) based on copula densities
and by Tsukahara (2005) and Weiß (2011) relying on goodness-of-fit metrics. When
there is only one parameter to estimate, a common strategy is the inversion ofKendall’s
tau. This estimator was considered by Genest et al. (2006) in the bivariate case and by
Genest et al. (2011) for d-dimensional copulas.

This paper extends the use of the inversion of Kendall’s tau to families comprising
multiple parameters. The proposed estimators are based on unbiased estimations of
the moments of the multivariate probability integral transformation (MPIT) random
variable, thereby avoiding the need to estimate the marginal distributions. The pro-
posed method is similar to Brahimi and Necir (2012), who suggested using higher
moments of the MPIT. However, their estimators are biased and their approach is
limited to cases where the vector of theoretical moments is explicitly invertible. In
order to circumvent the aforementioned constraint, an approach based on simulated
moments à la McFadden (1989) is adopted. Hence, the proposed estimators can be
performed as soon as it is possible to simulate from a given copula family.

The manuscript is organized as follows. A generic method-of-moments estimator
based on a vector of U-statistics is introduced in Sect. 2; its consistency and asymptotic
normality are established under mild conditions for both the standard and simulated
versions. Section 3 explains how to estimate the moments of the multivariate prob-
ability integral transformation without biases and describes the new estimators of
copula parameters suitably adapted to the parametric structure at hand. In Sect. 4, the
performance of the proposed estimators is investigated and compared to competing
procedures through an extensive simulations study. Section 5 illustrates the introduced
methodologies on the modelling of multivariate data with copula models that have a
complex parametric structure. Section 6 ends the paper with a brief discussion. The
mathematical proofs can be found in an appendix and the Matlab code is available at
www.uqtr.ca/MyMatlabWebpage.

123



Simulated method-of-moments estimators for copulas

2 A generic method-of-moments estimator of copula parameters

2.1 Statistical functionals

The estimators proposed in this paper are special cases of a generic method-
of-moments estimator based on a vector of U-statistics. Specifically, let X =
(X1, . . . , Xd) be a random vector from a d-variate distribution function F that
has continuous marginals F1, . . . , Fd and a unique copula C . Consider the vector
κ = (κ1, . . . , κ L), where for each � ∈ {1, . . . , L}, κ� := κ�(x1, . . . , xm) is a sym-
metric function in itsm arguments. Then, forX1, . . . ,Xm i.i.d. F , define the statistical
functional

Sκ (F) = E {κ(X1, . . . ,Xm)} .

In order to develop semi-parametric estimators of the parameters of a given family of
copulas, it is necessary that Sκ (F) be free of the marginal distributions. To this end,
κ must be such that Sκ (F) = Sκ (C), i.e.,

E {κ(X1, . . . ,Xm)} = E {κ(U1, . . . ,Um)} , (1)

where U1, . . . ,Um , with U j = (F1(X j1), . . . , Fd(X jd)), are i.i.d. C .
Assuming a random sample X1, . . . ,XT i.i.d. F , an unbiased estimator of the

vector of means μκ
C = E {κ(U1, . . . ,Um)} is given by the L-dimensional vector of

U -statistics

μκ
T =

(
T

m

)−1 ∑
1≤t1<...<tm≤T

κ
(
Xt1, . . . ,Xtm

)
, (2)

where in the above expression, the sum of vectors is taken component by component.
From Theorem 3, p. 122 of Lee (1990), μκ

T converges almost surely to μκ
C as long as

E{|κ(X1, . . . ,Xm)|} < ∞.
The next result states the asymptotic normality of

√
T (μκ

T − μκ
C ). The proof is a

direct application of Theorem 2, p. 76 of Lee (1990) and is therefore omitted. Here
and in the sequel, � means “converges in distribution to”.

Lemma 1 For each � ∈ {1, . . . , L}, let U1, . . . ,Um be i.i.d. C and define κ�
C =

(κ�
1, . . . , κ

�
L), where

κ�
�(u) = m

[
E {κ� (u,U2, . . . ,Um)} − μκ

C,�

]
.

Provided thatΣκ
C = E{κ�

C (U1)
�κ�

C (U1)} ∈ R
L×L is non-singular,

√
T (μκ

T −μκ
C ) �

N (0L ,Σκ
C ).
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2.2 A generalizedmethod-of-moments estimator

Suppose that the copula C of the population belongs to a copula family

C =
{
Cθ ; θ ∈ Θ ⊂ R

L
}

.

In that case, there exists θ0 ∈ Θ called the “true value”, so that C = Cθ0 . As is well
known, a method-of-moments estimator consists of estimating θ0 by selecting θ ∈ Θ

such that the sample moments match their theoretical counterparts. In the current
context, let μκ (θ) = μκ

Cθ
and assume that the map μκ : Θ → R

L is one-to-one on

an open set Θ ⊂ R
L . A method-of-moments estimator of θ0 is the unique solution of

μκ (θ) = μκ
T , namely

θκ
T = (μκ )−1(μκ

T ).

The consistency and asymptotic normality of θκ
T are stated next.

Proposition 1 Let X1, . . . ,XT be i.i.d. Cθ0 and assume that μ
κ : Θ → R

L is one-to-
one and continuously differentiable at θ0 ∈ Θ with nonsingular first order derivative
νκ
0 ∈ R

L×L at θ0. Let also A0 = (νκ
0 )

−1 and define Σκ
0 as the covariance matrix in

Lemma 1 when C = Cθ0 . Then θκ
T exists with a probability tending to one and

√
T
(
θκ
T − θ0

)
� N

(
0L , Aκ

0 Σκ
0 (Aκ

0 )
�) .

2.3 Simulated version of the generalizedmethod-of-moments estimator

It is difficult to compute the proposed method-of-moments estimator when μκ is not
explicitly invertible. This is even worse when there is no explicit expression for μκ .
In such cases, it is useful to express θκ

T as the minimum-distance estimator

θκ
T = argmin

θ∈Θ

{
μκ
T − μκ (θ)

}
MT

{
μκ
T − μκ (θ)

}�
,

where MT ∈ R
L×L is a weight matrix that converges in probability to a positive

definite matrix M0 ∈ R
L×L as T → ∞. Nevertheless, this expression does not solve

the problem of cases where μκ (θ) admits no explicit expression.
To avoid the above-mentioned drawbacks, a simulated version of the generic

method-of-moments estimator θκ
T is proposed. The idea is in the same spirit as that

investigated by Oh and Patton (2013) for copula-based time series models, which is
itself inspired by the simulated method-of-moments estimators studied by McFadden
(1989), Pakes and Pollard (1989) and Newey and McFadden (1994). To describe the
idea in the current context, consider a version of μκ (θ) based on a simulated sample
Uθ
1, . . . ,U

θ
S i.i.d. Cθ , namely
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μκ
S(θ) =

(
S

m

)−1 ∑
1≤s1<...<sm≤S

κ
(
Uθ
s1 , . . . ,U

θ
sm

)
.

The proposed simulated method-of-moments estimator of θ0 ∈ Θ is then

θκ
T ,S = argmin

θ∈Θ

{μκ
T − μκ

S(θ)}MT {μκ
T − μκ

S(θ)}�. (3)

Proposition 2 states the consistency of θκ
T ,S as T , S → ∞, i.e., θκ

T ,S converges in
probability to the true value θ0 ∈ Θ . The conditions under which it happens are mild.
In particular, it is no longer required that μκ is one-to-one.

Proposition 2 Let X1, . . . ,XT be i.i.d. from a distribution with continuous marginals
and unique copula that belongs to a family {Cθ ; θ ∈ Θ ⊂ R

L}, where Θ is compact.
For θ0 ∈ Θ being the true value, assume that μκ (θ0) 
= μκ (θ) as soon as θ 
= θ0 and
that μκ is Lipschitz continuous on Θ . Then, as T , S → ∞, θκ

T ,S is consistent for θ0.

Remark 1 Unlike standard results on the consistency of simulatedmethod-of-moments
estimators (see Pakes and Pollard 1989; McFadden 1989, for instance), Proposition 2
allows S, T to go to infinity at different rates. In other words, it is assumed more
generally that T /S → ζ ∈ [0,∞) as T , S → ∞, so that the case when μ(θ) is
explicit is recovered at the limit when T /S → 0.

Lemma 2 A sufficient condition for the Lipschitz continuity of μκ is that the density
cθ of Cθ be uniformly Lipschitz, i.e., there exists K ∈ (0,∞) such that

sup
u∈[0,1]d

∣∣cθ1(u) − cθ2(u)
∣∣ ≤ K ‖θ1 − θ2‖ ,

where ‖ · ‖ is the euclidean norm.

The uniform Lipschitz property as stated in Lemma 2 holds for the Farlie–Gumbel–
Morgenstern family of bivariate copulas whose members have density cθ (u1, u2) =
1 + θ(1 − 2u1)(1 − 2u2) for θ ∈ [−1, 1], since one readily obtains

∣∣cθ1(u1, u2) − cθ2(u1, u2)
∣∣ ≤ |θ1 − θ2| .

However, this uniform Lipschitz condition is rather strong and not verified for many
commonly used copula families.

It is possible to show the almost sure convergence (strong consistency) of θκ
T ,S ,

but its weak consistency is enough to establish its asymptotic normality. This result is
precisely the subject of the next proposition.

Proposition 3 Let X1, . . . ,XT be i.i.d. from a distribution with continuous marginals
and unique copula that belongs to a family {Cθ ; θ ∈ Θ ⊂ R

L}. Assume that the true
value θ0 is an interior point of Θ and that gκ

0 (θ) = μκ (θ0) − μκ (θ) possesses a
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derivative Gκ
0 at θ0 such that Bκ

0 = Gκ
0 M0 (Gκ

0 )
� is nonsingular. Also, suppose that

for gκ
T ,S(θ) = μκ

T − μκ
S(θ),

gκ
T ,S(θ

κ
T ,S) MT gκ

T ,S(θ
κ
T ,S)

� − inf
θ∈Θ

gκ
T ,S(θ) MT gκ

T ,S(θ))� ≤ oP(T−1).

Then for Ωκ
0 = (Bκ

0 )−1 Gκ
0 M0 Σκ

0 M0 (Gκ
0 )

�(Bκ
0 )−1,

√
T S

T + S

(
θκ
T ,S − θ0

)
� N (

0L ,Ωκ
0

)
as T , S → ∞.

3 Moments of themultivariate probability integral transformation

3.1 Population versions

The estimators that will be developed in the sequel are based on the multivariate
probability integral transformation (MPIT). The MPIT was first introduced by Genest
and Rivest (1993) as a tool for testing the fit to bivariate copulas. Specifically, the
MPIT of a random vectorX = (X1, . . . , Xd) ∼ F is the random variableW = F(X).
When the marginals F1, . . . , Fd of F are continuous, one can invoke Sklar’s Theorem
and write

W = C {F1(X1), . . . , Fd(Xd)} = C(U),

where U = (F1(X1), . . . , Fd(Xd)) ∼ C . In other words, the stochastic behaviour of
W depends only on the unique copula C of F .

For certain parametric structures, it is advantageous to work with the pair-by-pair
probability integral transformations related to X. Specifically, let C j j ′ be the copula
of the pair (X j , X j ′) and consider Wj j ′ = C j j ′(Uj ,Uj ′), where Uj = Fj (X j ) and
Uj ′ = Fj ′(X j ′). Thefirstmoment ofWj j ′ is related toKendall’smeasure of association
of (Uj ,Uj ′) through the relationship

τ j j ′ = 4E(Wj j ′) − 1.

A similar claim can be made about a d-variate extension due to Kendall and Smith
(1940) defined as the mean of the pair-by-pair Kendall’s tau. Another extension of
Kendall’s tau proposed by Joe (1990) is related to the first moment of W . These two
d-variate Kendall measures are given respectively by

τd =
(
d

2

)−1 ∑
j< j ′

{
4E(Wj j ′) − 1

}
and τ̃d = 2d E(W ) − 1

2d−1 − 1
.
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3.2 Unbiased estimation of themoments of theMPIT

The next proposition provides an unbiased estimator of the moments of W based on
a sample X1, . . . ,XT i.i.d. from a d-variate distribution F with continuous marginals
F1, . . . , Fd and unique copula C .

Proposition 4 For a ∈ N, let μa = E(Wa), where W = C(U) and U ∼ C. Then an
unbiased estimator of μa is provided by the U-statistic μ̂a with symmetric kernel of
order a + 1 defined for x1, . . . , xa+1 ∈ R

d by

Ka(x1, . . . , xa+1) = 1

a + 1

a+1∑
j=1

I

{(
max

�∈{1,...,a+1},� 
= j
x�

)
< x j

}
.

This kernel satisfies (1), i.e., is marginal-free.

Note that when a = 1, K1(x1, x2) = {I(x1 < x2) + I(x2 < x1)}/2. This is, up to a
constant, the kernel of the empirical Kendall’s measure of association.

One is now in a position to establish the convergence in distribution of the vector
of U-statistics μ̂ = (μ̂1, . . . , μ̂L).

Proposition 5 Let X1, . . . ,XT be i.i.d. from a d-variate distribution with continuous
marginals and unique copula C. For μ̂ = (μ̂1, . . . , μ̂L) and μ = (μ1, . . . , μL),
then

√
T (μ̂ − μ) converges to the L-variate normal distribution with zero means

and variance-covariance matrix Σ ∈ R
L×L such that for each a, a′ ∈ {1, . . . , L},

Σaa′ = E{K�
a(U)K�

a′(U)}, U ∼ C, where

K�
a(u) = {C(u)}a + a E

{
I(U > u) (C(U))a−1

}
− (a + 1) μa .

3.3 Estimators of copula parameters

Let X1, . . . ,XT be a random sample of independent and identically distributed R
d -

valued vectors whose joint distribution F has continuous marginal distributions. It is
assumed that the unique copula C of F belongs to {Cθ ; θ ∈ Θ ⊆ R

L} and the goal is
to estimate the unknown parameter θ0 ∈ Θ ⊂ R

L .
One possibility to estimate θ0 is to use the first L moments of W = Cθ (U), i.e., let

μ(θ) = (E(W ), . . . ,E(WL)), where it is understood that the expectation is taken with
respect to Cθ . An empirical version of μ(θ) is the vector μT of the first L empirical
moments. The corresponding vector of kernels is then κ = (K1, . . . ,KL), where Ka

is defined in Proposition 4. The simulated method-of-moments estimator is thus of the
form given in (3), i.e.,

θ̂ = argmin
θ∈Θ

{μT − μS(θ)}MT {μT − μS(θ)}�, (4)

where μS(θ) estimates μ(θ) based on a sample of size S from Cθ .
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Many parametrization schemes have a pair-by-pair structure of the form θ =
(Σ, γ ), whereΣ ∈ R

d×d is a correlationmatrixwhose off-diagonal entryΣ j j ′ appears
only in the distribution of (X j , X j ′) for each j 
= j ′ ∈ {1, . . . , d}. This pattern occurs,
for example, for models derived from the multivariate Normal. If γ ∈ R

q is a param-
eter that appears in the distribution of every sub-vector of X, one can estimate Σ j j ′
and γ from the first q + 1 moments of Wj j ′ = CΣ j j ′ ,γ (Uj ,Uj ′), yielding Σ̂ j j ′ and
γ̂ j j ′ . The global parameter can then be estimated with

γ̂ =
(
d

2

)−1 ∑
j< j ′∈{1,...,d}

γ̂ j j ′ . (5)

Remark 2 It is worth mentioning the work by Brahimi and Necir (2012), who also
suggested using the first L moments of W . Their methodology is however limited to
cases where the vector of theoretical moments is explicitly invertible and is based on
a biased estimation of the moments using the empirical copula.

3.4 On the use of alternative probability integral random variables

Other moments of a copula could be used for the purpose of parameter estimation.
For instance, as pointed out by Quessy (2009), Spearman’s measure of association
and some of its multivariate extensions can be expressed as the expectation of a sym-
metric kernel of a U-statistic. Indeed, Spearman’s rho is an affine transformation of
the expectation of WSp = F1(X1) × · · · × Fd(Xd), where X = (X1, . . . , Xd) fol-
lows a distribution F with continuous marginals F1, . . . , Fd . One could then consider
E(Wa

Sp), but its estimation with a U-statistic involves a kernel of order a × (d + 1).
To see it, note that

E(Wa
Sp) = EX

[{
E I
(
YΠ ≤ X

)}a] = EX,YΠ
1 ,...,YΠ

a

⎧⎨
⎩

a∏
j=1

I

(
YΠ

j ≤ X
)⎫⎬
⎭ ,

where YΠ
1 , . . . ,YΠ

a are i.i.d. F1 × · · · × Fd and X ∼ F . The expression inside the
brackets involves a × (d + 1) independent random variables. This makes the use of
WSp less attractive than the use ofW , especially as the number of parameters increases.

4 Sampling properties of the estimators

4.1 Preliminaries

This section investigates the performance of the estimators defined in Eqs. (4) and (5).
Comparisons with competing estimators are also made. In the sequel, the accuracy of
an estimator θ̂ of a given parameter θ ∈ R is measured by its relative bias (RB) and
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relative root mean-squared error (RRMSE), namely

RBθ (θ̂ ) = 1

θ
E
(
θ̂ − θ

)
and RRMSEθ (θ̂ ) = 1

θ

√
E

{(
θ̂ − θ

)2}
.

As explained by Oh and Patton (2013) (see also Gouriéroux et al. 1996), it is cru-
cial that the random number generator seed involved in their computation be fixed
across the generation of the simulated datasets of size S. Otherwise, the evaluation of
the estimated function will be unstable and the optimization will not converge. The
minimization in Eq. (3) is performed using the MATLAB routine fminsearchbnd
written by John D’Errico. Unlike for example the Newton algorithm, the latter does
not require the existence of derivatives. The maximum number of iterations has been
set to 40. Many choices are possible for the weight matrix, including the inverse of the
efficient weight matrix. However, in line with a recommendation by Oh and Patton
(2013), one only considers MT = IL throughout in order to simplify the analyses.

4.2 Calibration of the simulated estimator

A popular estimator in the case of a one-parameter bivariate copula families
C = {Cθ ; θ ∈ Θ ⊆ R} is the inversion of Kendall’s tau (IKT). Specifically, if
(X11, X12), . . . , (XT 1, XT 2) are random pairs from a population with continuous
marginals and a copula C ∈ C, the IKT estimator is defined by

θ̂ τ = τ−1
C (τT ).

In that expression, τC is the population value of Kendall’s tau, i.e.,

τC (θ) = 4
∫ 1

0

∫ 1

0
Cθ (u1, u2)dCθ (u1, u2) − 1,

and τT is its empirical counterpart, i.e.,

τT = 4

T (T − 1)

∑
i< j

I
{
(Xi1 − X j1)(Xi2 − X j2) > 0

}− 1.

Whereas the simulated method-of-moments estimator is designed for cases where an
explicit expression for the vector of moments is unavailable, it can be performed in the
case of copula families with explicit expressions for their moments. This is the case
for the one-parameter Clayton, Gumbel, Normal and Frank bivariate copula families
described in Table 1.

An investigation on the accuracy of θ̂ τ and its estimated version θ̂ has been per-
formed in the light of their estimated RRMSE as estimated from 1000 replicates.
This study can provide not only information on the loss of accuracy due to the use
of the estimated version instead of the mathematical inversion, but also on the role of
the number of simulated samples S on the performance of θ̂ . To this end, the values
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Table 2 Estimation, based on 1000 replicates, of the relative root mean-squared error (RRMSE) of the
inversion of Kendall’s tau estimator θ̂ τ and of the simulated estimator θ̂ when S ∈ {100, 250, 500} for
sample sizes T ∈ {50, 100} under four one-parameter families of bivariate copulas

T = 50 T = 100
C τC θ̂ τ θ̂100 θ̂250 θ̂500 θ̂ τ θ̂100 θ̂250 θ̂500

Clayton 1/4 0.548 0.652 0.587 0.575 0.366 0.500 0.419 0.390

1/2 0.345 0.393 0.358 0.350 0.220 0.285 0.254 0.237

3/4 0.277 0.333 0.300 0.285 0.182 0.240 0.203 0.192

Gumbel 1/4 0.384 0.454 0.418 0.397 0.260 0.351 0.300 0.283

1/2 0.145 0.168 0.154 0.150 0.109 0.144 0.123 0.116

3/4 0.061 0.070 0.065 0.063 0.042 0.057 0.049 0.045

Normal 1/4 0.346 0.411 0.379 0.361 0.239 0.344 0.283 0.255

1/2 0.114 0.138 0.121 0.118 0.075 0.104 0.084 0.079

3/4 0.028 0.034 0.030 0.029 0.019 0.027 0.022 0.021

Frank 1/4 0.402 0.482 0.439 0.422 0.279 0.364 0.328 0.303

1/2 0.223 0.252 0.240 0.230 0.149 0.196 0.166 0.157

3/4 0.181 0.203 0.191 0.187 0.111 0.151 0.127 0.119

S ∈ {100, 250, 500} have been considered; the corresponding estimators are referred
respectively to θ̂100, θ̂250 and θ̂500. The results for sample sizes T ∈ {50, 100} for
a Kendall’s tau that belongs to {1/4, 1/2, 3/4} are found in Table 2. Note that the
expression of Kendall’s tau for Frank’s copula has been inverted numerically.

Looking at Table 2, one can see that the RRMSE are smaller when T = 100
compared to T = 50, as expected. It is also not a surprise that θ̂ τ is more accurate
than its simulated versions. However, the loss of efficiency for using μS(θ) instead
of μ(θ) is rather mild as soon as S = 250. In fact, when T = 100, the average
of the relative efficiency RRMSE(θ̂ τ )/RRMSE(θ̂) over the twelve models is 74,0%,
87,2% and 93,3%when S = 100, 250, 500, respectively. Note finally that the RRMSE
decreases as the level of dependence increases, i.e. as τC increases, for all the models.

4.3 On the use of higher moments of theMPIT

One could ask if considering higher moments of W can lead to better estimators.
To answer this question, at least in part, let θ̂{2} and θ̂{1,2} be the simulated method-
of-moments estimators based respectively on the second moment of W and on its
first two moments. The estimated relative bias and relative root mean-squared error
of these two estimators, as well as of θ̂ , are found in Table 3 for the one-parameter
families of Table 1. The sample size is T = 100 and the number of simulated samples
has been set to S = 100. It is reasonable to think that the use of higher values of
S would not influence much the relative efficiency of the estimators. The conclusion
from Table 3 is that using higher moments does not result in more efficient estimators.
Even though the RRMSE of θ̂{1,2} is slightly smaller than that of θ̂ in some cases, the
gain in accuracy is rather small. As a general rule, one can advocate the use of the

123



M. Belalia & J.-F. Quessy

Table 3 Estimation, based on 1000 replicates, of the relative bias (RB) and relative root mean-squared
error (RRMSE) of the simulated method-of-moments estimators based on the first, second, and first two
moments of W when T = 100 and S = 100 under four one-parameter families of bivariate copulas

RB RRMSE
C τC θ̂ θ̂{2} θ̂{1,2} θ̂ θ̂{2} θ̂{1,2}

Clayton 1/4 0.0247 0.0432 0.0048 0.5057 0.6192 0.4963

1/2 0.0166 0.0347 0.0303 0.2903 0.3437 0.3146

3/4 0.0188 0.0132 0.0097 0.2391 0.2715 0.2518

Gumbel 1/4 − 0.0350 − 0.0415 − 0.0502 0.3687 0.3692 0.3715

1/2 − 0.0152 − 0.0130 − 0.0178 0.1414 0.1443 0.1410

3/4 − 0.0119 − 0.0092 − 0.0091 0.0613 0.0615 0.0571

Normal 1/4 − 0.0308 − 0.0454 − 0.0362 0.3325 0.3519 0.3287

1/2 − 0.0146 − 0.0168 − 0.0135 0.1031 0.1129 0.1093

3/4 − 0.0033 − 0.0060 − 0.0038 0.0255 0.0303 0.0260

Frank 1/4 − 0.0267 − 0.0106 − 0.0248 0.3776 0.4311 0.3755

1/2 0.0127 0.0154 0.0151 0.2028 0.2161 0.2025

3/4 0.0052 0.0101 0.0114 0.1568 0.1821 0.1536

simulated method-of-moments estimator with the same number of moments of W as
the number of parameters to estimate.

4.4 Comparison with competing procedures

In this section, the performance of θ̂ will be compared to two other semi-parametric
procedures, namely the pseudo-maximum likelihood (PML) estimator and the simu-
lated method-of-moments estimator of Oh and Patton (2013). Other possibilities exist,
for instance minimum distance (MD) estimators derived from goodness-of-fit criteria.
Based on an extensive simulation study, Weiß (2011) concluded that no MD estimator
stands out and are worse than the PML estimator in terms of bias and mean-squared
error. For that reason, noMDestimator will be considered in the upcoming simulations
study.

The PML estimator is the rank-based version of the maximum-likelihood estimator
and is sometimes referred to the canonical maximum likelihood (see Cherubini et al.
2004, for instance). If Cθ admits a density cθ , the PML estimator of θ as defined by
Shih and Louis (1995) and Genest et al. (1995) is

θ̂ML = argmax
θ∈Θ

T∑
t=1

ln cθ

(
Rt1

T + 1
, . . . ,

Rtd

T + 1

)
,

where for each j ∈ {1, . . . , d}, Rt j is the rank of Xt j among X1 j , . . . , XT j .
The estimator of Oh and Patton (2013) is based on the vector of statistics νT =
(ρ

Sp
T , λ.05

T , λ.10
T , λ.90

T , λ.95
T ), where ρ

Sp
T is Spearman’s rank correlation and
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λ
q
T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CT (q, q)

q
, when q ≤ 1/2;

1 − 2q + CT (q, q)

1 − q
, when q > 1/2,

where CT is the bivariate empirical copula. Recall that

CT (u1, u2) = 1

T

T∑
t=1

I

(
Rt1

T + 1
≤ u1,

Rt2

T + 1
≤ u2

)
.

Letting νS(θ) be a version of νT based on a sample of size S from Cθ , the estimator
of Oh and Patton (2013) is

θ̂OP = argmin
θ∈Θ

{νT − νS(θ)}MT {νT − νS(θ)}�.

As suggested by Oh and Patton (2013), the weight matrix is set to MT = I5.

4.4.1 One-parameter families

The performances of θ̂ML, θ̂OP and θ̂ have been compared under the four families
of Tables 1. The maximization of the pseudo-likelihood for the computation of θ̂ML
uses the MATLAB procedure fminsearchbnd. To increase the numerical stabil-
ity, the computation of Gumbel’s density uses the finite-difference approximation
cGuθ (u1, u2) ≈ CGu

θ (u1+ε, u2+ε)+CGu
θ (u1, u2)−CGu

θ (u1+ε, u2)−CGu
θ (u1, u2+ε),

where ε = 1 × 10−8. The four copula models are parametrized in term of Kendall’s
tau τC ∈ [0, 1] and the optimum is searched inside [.01, .99] with the initial value
x0 = 1/2. The results on the relative bias and relative root mean-squared error are
found in Table 4 when T = 100. The number of simulated samples has been set to
S = 500.

First note that the estimator θ̂OP ofOh and Patton (2013) is significantlymore biased
than θ̂ , except when τC = 1/4 for the Normal and Frank copulas. This difference
in accuracy is also reflected in their respective RRMSE. As expected, the pseudo-
maximum likelihood (PML) estimator performs generally better than the simulated
method-of-moments (SMM) estimator in terms of RRMSE. However, the average of
the relative efficiency over the twelve models is 87,8%, so the loss of efficiency for
using θ̂ instead of θ̂ML is small. Interestingly, the relative bias of the SMM estimator
is often smaller than that of the PML estimator when the level of dependence is small
or moderate, i.e., when τ ∈ {1/4, 1/2}. Overall, the SMM estimator can be safely
recommended when the use of the PML estimator is problematic, e.g., when the
density is not tractable and/or when there is a high number of parameters to estimate.

4.4.2 The two-parameters chi-square copula

As defined by Bárdossy (2006) and later investigated by Quessy et al. (2016), the d-
variate chi-square copula is the dependence structure of X = ((Z1 + γ1)

2, . . . , (Zd +
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Table 4 Estimation, based on 1000 replicates, of the relative bias (RB) and relative root mean-squared error
(RRMSE) of θ̂ML, θ̂OP and θ̂ when T = 100 and S = 500 under four one-parameter families of bivariate
copulas

RB RRMSE
C τC θ̂ML θ̂OP θ̂ θ̂ML θ̂OP θ̂

Clayton 1/4 0.0811 0.0057 − 0.0017 0.3481 0.4732 0.4077

1/2 0.0330 0.0913 0.0238 0.2029 0.5858 0.2331

3/4 − 0.0239 0.1146 0.0199 0.1574 0.6543 0.1938

Gumbel 1/4 0.0641 − 0.0311 0.0082 0.2628 0.3610 0.2827

1/2 0.0089 − 0.0237 − 0.0077 0.1014 0.1792 0.1139

3/4 − 0.0029 − 0.0152 − 0.0010 0.0385 0.1014 0.0436

Normal 1/4 0.0462 − 0.0199 − 0.0181 0.2305 0.3216 0.2590

1/2 0.0130 − 0.0204 − 0.0049 0.0744 0.1367 0.0867

3/4 − 0.0014 − 0.0172 − 0.0015 0.0164 0.0539 0.0198

Frank 1/4 0.0094 − 0.0058 − 0.0111 0.2775 0.4068 0.3004

1/2 0.0181 0.0755 0.0149 0.1429 0.3562 0.1557

3/4 − 0.0062 0.0659 0.0131 0.1086 0.4247 0.1238

γd)
2), where (Z1, . . . , Zd) is d-variate normal with zero means, unit variances and

correlation Σ , and γ1, . . . , γd ∈ [0,∞) are non-centrality parameters. One recovers
the Normal copula at the limit when γ1 = · · · = γd → ∞. Unlike the Normal, the
chi-square copula is radially asymmetric.

The results in Table 5 concern the estimation of the parameters of the bivariate chi-
square copula when γ1 = γ2 = γ , where one can find the estimated relative bias and
relative root mean-squared error of (γ̂ML, θ̂ML), (γ̂OP, θ̂OP) and (γ̂ , θ̂ ) when T = 100
and S = 100. In that case, the density is

cγ,θ (u1, u2) = φθ

{
hγ (u1) − γ, hγ (u2) − γ

}+ φθ

{
hγ (u1) + γ,−hγ (u2) + γ

}
Dγ (u1) Dγ (u2)

+ φθ

{
hγ (u1) − γ,−hγ (u2) − γ

}+ φθ

{
hγ (u1) + γ, hγ (u2) + γ

}
Dγ (u1) Dγ (u2)

,

where φθ is the density of the bivariate normal distribution with zero means, unit
variances and correlation θ ∈ [−1, 1], and forGγ (x) = Φ(

√
x−γ )+Φ(

√
x+γ )−1,

hγ (u) = {G−1
γ (u)}1/2 and Dγ (u) = φ{hγ (u) − γ } + φ{hγ (u) + γ }.

For the estimation of the non-centrality parameter γ , one observes that the accuracy
of the three estimators, both in terms of RB and RRMSE, increase as γ increases. For
a given value of γ , their accuracy also increases as τC increases, except when γ = 2.
Looking at the relative performance of the three estimators, the PML estimator is
clearly the best. Overall, γ̂OP is systematically, although slightly, more accurate than
γ̂ . Turning to the estimation of the dependence parameter θ , one can say that θ̂ stands
out positively from its two competitors when γ ∈ {3/2, 2}. When γ ∈ {1/2, 1}, there
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Table 5 Estimation, based on 1000 replicates, of the relative bias (RB) and relative root mean-squared error
(RRMSE) of the estimators θ̂ML, θ̂OP and θ̂ of θ and the estimators γ̂ML, γ̂OP and γ̂ of the non-centrality
parameter γ under the two-parameter chi-square copula when T = 100 and S = 100

RB RRMSE
γ θ γ̂ML γ̂OP γ̂ γ̂ML γ̂OP γ̂

1/2 1/4 1.7125 2.9937 3.5184 2.6608 3.2004 3.6904

1/2 0.3959 2.5665 3.0818 1.5394 2.7305 3.2189

3/4 − 0.0401 2.0579 2.3270 0.9758 2.2267 2.4378

1 1/4 0.3113 0.9042 1.1449 0.9833 1.0491 1.2460

1/2 − 0.0568 0.7229 0.8575 0.6934 0.8308 0.9352

3/4 − 0.1678 0.5384 0.5762 0.5726 0.6917 0.7121

3/2 1/4 0.0524 0.2670 0.3949 0.5725 0.4199 0.4990

1/2 − 0.0229 0.1346 0.1900 0.4823 0.2811 0.2914

3/4 − 0.0360 0.0612 0.0370 0.3902 0.2992 0.3247

2 1/4 − 0.1330 − 0.0384 0.0414 0.4478 0.2417 0.2404

1/2 − 0.1176 − 0.1288 − 0.1136 0.3802 0.2148 0.2008

3/4 − 0.0672 − 0.1508 − 0.2460 0.3051 0.2605 0.3415

RB RRMSE
γ θ θ̂ML θ̂OP θ̂ θ̂ML θ̂OP θ̂

1/2 1/4 0.1788 0.1720 − 0.3090 0.6529 0.7123 0.5854

1/2 0.0246 − 0.1667 − 0.4033 0.2787 0.3288 0.4776

3/4 0.0039 − 0.2272 − 0.2569 0.1077 0.2700 0.2872

1 1/4 0.5125 0.3673 − 0.0716 0.7634 0.7437 0.5291

1/2 0.1566 − 0.0312 − 0.1574 0.2774 0.2375 0.2742

3/4 0.0515 − 0.1613 − 0.0912 0.1050 0.2178 0.1445

3/2 1/4 0.6101 0.4414 0.0671 0.7925 0.7545 0.5029

1/2 0.2059 0.0257 − 0.0221 0.2772 0.2140 0.2080

3/4 0.0613 − 0.1234 − 0.0156 0.0891 0.1910 0.1072

2 1/4 0.6764 0.4375 0.0955 0.8520 0.7324 0.5362

1/2 0.2603 0.0524 0.0109 0.3119 0.2139 0.2065

3/4 0.0831 − 0.1108 0.0027 0.1004 0.1873 0.1095

is no clear trend as to which estimator performs better overall. Generally speaking, θ̂
is the best when τC = 1/4, θ̂OP when τC = 1/2 and θ̂ML when τC = 3/4.

4.5 Multivariate models

4.5.1 The Archimedean family

A d-dimensional copula is a member of the Archimedean family if it can be expressed
in the form CΨ (u) = Ψ

{
Ψ −1(u1) + · · · + Ψ −1(ud)

}
, where Ψ : [0,∞) → [0, 1]

is called the generator and satisfies (−1) j Ψ [ j] ≥ 0 for each j ∈ {1, . . . , d}, where
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Ψ [ j](t) = ∂ j Ψ (t)/∂ j t . See McNeil and Nešlehová (2009) for more details. The
Clayton, Gumbel and Frank copulas whose bivariate versions are detailed in Table 1
are particular cases of this class, where the generators are respectively Ψ C�

θ (t) =
(θ t + 1)−1/θ , Ψ Gu

θ (t) = e−t1−θ
and

Ψ Fr
θ (t) = −1

θ
ln

(
e−θ t − 1

e−θ − 1

)
.

If it is assumed that the d-variate copula of a population belongs to a given parametric
Archimedean family with θ ∈ Θ ⊂ R

L , then θ0 can be estimated by the simulated
method-of-moments estimator in (4) based on the first L moments ofW . Alternatively,
since θ0 appears in the distribution of any possible pair of variables, another estimator
similar to the one in (5) is

θ̂
� =

(
d

2

)−1 ∑
j< j ′∈{1,...,d}

θ̂ j j ′ .

Table 6 reports the performance of θ̂ and θ̂ � in terms of relative bias and RRMSE
when T = 100 and S = 250 for the multivariate one-parameter Clayton, Gumbel and
Frank copulas in dimensions d ∈ {3, 4, 5}. First observe that the RRMSE decreases
as the dimension d increases. Note also the drastic decrease in RRMSE as Kendall’s
tau passes from 1/4 to 1/2, then a slightly smaller decrease for the passage from 1/2
to 3/4. Note also that in most cases, θ̂ is less biased than θ̂ �. However, the opposite is
true when looking at the RRMSEs, although the differences are minimal. In short, it
can be concluded that both estimation strategies work well.

4.5.2 Elliptical copulas and their squared versions

Elliptical distributions are parametrized in a pair-by-pair fashion. Specifically, as ini-
tially defined byCambanis et al. (1981), a vectorX ∈ R

d is said to follow an elliptically
contoured distribution if it admits the stochastic representation X = RAU , where
R > 0 is the radial random variable, Σ = A�A ∈ R

d×d is symmetric and positive
definite and U is uniformly distributed on the unit sphere in R

d . An elliptical copula
is simply the copula extracted from an elliptical distribution, as first investigated by
Fang et al. (2002). Elliptical copulas then inherit from the pairwise parametrization of
elliptical distributions.

Apart from the Normal copula, a popular elliptical model is Student’s copula with
γ ∈ (0,∞) degrees of freedom and parameter θ ∈ (−1, 1), which can be expressed

implicitly byCγ,θ (u1, u2) = Ωγ,θ

{
Ω−1

γ (u1),Ω−1
γ (u2)

}
, whereΩγ is the cumulative

distribution function of the univariate Student andΩγ,θ is the cdf of Student’s bivariate
distribution. Another model is the generalized Laplace copula (see Kozubowski et al.
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Table 6 Estimation, based on 1000 replicates, of the relative bias (upper panel) and root mean-squared
error (lower panel) of the simulated method-of-moments estimators θ̂ and θ̂ � when T = 100 and S = 250
under one-parameter multivariate Archimedean copulas

d = 3 d = 4 d = 5
C τC θ̂ θ̂ � θ̂ θ̂ � θ̂ θ̂ �

Clayton 1/4 0.0255 0.0196 0.0230 0.0212 0.0201 0.0239

1/2 0.0110 0.0232 0.0118 0.0200 0.0084 0.0206

3/4 0.0090 0.0185 0.0133 0.0190 0.0130 0.0231

Gumbel 1/4 0.0080 −0.0088 0.0181 −0.0041 0.0117 −0.0046

1/2 0.0010 −0.0065 −0.0017 −0.0041 −0.0029 −0.0080

3/4 −0.0015 −0.0022 −0.0040 −0.0048 −0.0013 −0.0025

Frank 1/4 0.0073 0.0002 0.0057 −0.0031 −0.0037 −0.0101

1/2 0.0103 0.0071 0.0100 0.0076 0.0057 0.0063

3/4 −0.0011 0.0004 0.0046 0.0079 0.0024 0.0073

Clayton 1/4 0.3002 0.2882 0.2662 0.2581 0.2382 0.2152

1/2 0.2099 0.2001 0.1903 0.1771 0.1714 0.1606

3/4 0.1723 0.1658 0.1671 0.1520 0.1563 0.1433

Gumbel 1/4 0.2333 0.2245 0.2048 0.1981 0.1880 0.1729

1/2 0.1009 0.0933 0.0948 0.0861 0.0880 0.0822

3/4 0.0416 0.0395 0.0388 0.0355 0.0348 0.0317

Frank 1/4 0.2330 0.2336 0.1942 0.1853 0.1730 0.1638

1/2 0.1277 0.1244 0.1139 0.1076 0.1064 0.0979

3/4 0.0936 0.0911 0.0894 0.0803 0.0816 0.0744

2013, for details) extracted from the multivariate distribution whose density is

fΣ,γ (x) = 2 |Σ |−1/2

(2π)d/2 Γ (γ )

⎛
⎝
√
xΣ−1x�

2

⎞
⎠

γ−d/2

Kγ−d/2

(√
2xΣ−1x�

)
,

with Kλ the modified Bessel function of index λ.
As is well known, Kendall’s tau of a bivariate elliptical copula is given by the simple

formula τC (θ) = (2/π) sin−1 θ , whatever the form of the radial random variable (see
Fang et al. 2002, for instance). Hence, E(W ) = {τC (θ) + 1}/4 does not depend on
R. As is stated in the next proposition, it is indeed the case for any moment of order
a ∈ N ofW . This theoretical result is illustrated in the two top panels of Fig. 1, where
one can find the estimated curves of E(W 2) as a function of θ ∈ (0, 1) for various
values of γ in the case of the Student and Laplace copulas.

Proposition 6 The moment of order a ∈ N of an elliptical copula characterized by
some radial variable R does not depend on R.

In the light of Proposition 6, it is not possible to estimate (γ, θ) with the SMM esti-
mator based on the MPIT random variable. It is however possible to estimate the
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Fig. 1 Moment of order two of the probability integral random variable as a function of θ ∈ [0, 1] for the
bivariate Student, Laplace, Fisher and Squared–Laplace copulas

parameters of the so-called squared version of an elliptical copula. As defined by
Quessy and Durocher (2019), the squared copula associated to a d-variate copula C
is the distribution of (|1− 2U1|, . . . , |1− 2Ud |) when (U1, . . . ,Ud) ∼ C . When C is
an elliptical copula, the resulting squared construction has a pair-by-pair parametric
structure Σ ∈ R

d×d and a global parameter γ ∈ R
q . See the bottom panels of Fig. 1

forE(W 2) as a function of θ for the squared–Student (introduced by Favre et al. (2018)
as the Fisher copula) and squared–Laplace copulas.

As is explained in Sect. 3.3, the entries of Σ can be estimated using the first q + 1
moments of Wj j ′ for each j < j ′ ∈ {1, . . . , d}, and then estimate γ with the mean of
γ̂ j j ′ , j < j ′ ∈ {1, . . . , d}, i.e., with the estimator in (5). The results in Table 7 concern
the Fisher and squared–Laplace copulas in dimension d ∈ {3, 4, 5} when T = 100
and S = 100. To simplify the presentation of results, the correlation matrix Σ ∈
R
d×d has been taken equicorrelated in such a way that Σ j j ′ = sin(πτC/2) for each

j 
= j ′ ∈ {1, . . . , d}, where τC ∈ {1/4, 1/2, 3/4}. From experiences not presented
here, considering more general correlation matrices has a negligible influence on the
performance of the estimator.

Looking at the results in Table 7, it can be seen that the performance of γ̂ is, more
or less, equivalent for the three dimensions considered. For the Fisher copula, the
accuracy significantly increases as τC increases when γ ∈ {3, 6}; when γ = 10, the
estimator is the most accurate when τ = 1/2. Turning to the squared–Laplace copula,
the accuracy of the estimator in relation to the level of Kendall’s tau depends on γ .
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Table 7 Estimation, based on 1000 replicates, of the relative bias (RB) and relative root mean-squared error
(RRMSE) of the simulated estimator γ̂ when T = 100 and S = 100 under multivariate two-parameters
pairwise copulas

d = 3 d = 4 d = 5
Copula τC RB RRMSE RB RRMSE RB RRMSE

1/4 2.5443 2.5977 2.4679 2.4973 2.7798 2.7955

Fisher 1/2 1.6341 1.7970 1.5873 1.6788 2.1137 2.1452

γ = 3 3/4 1.0611 1.4622 1.0293 1.2318 1.2151 1.3112

1/4 1.0403 1.0708 1.0529 1.0689 1.0637 1.0735

Fisher 1/2 0.6407 0.7087 0.6384 0.6754 0.6417 0.6651

γ = 6 3/4 0.1372 0.4840 0.1522 0.3458 0.1291 0.2844

1/4 0.2854 0.3222 0.2728 0.2929 0.2699 0.2837

Fisher 1/2 0.0018 0.1702 0.0112 0.1208 0.0005 0.1028

γ = 10 3/4 −0.3341 0.4222 −0.3271 0.3798 −0.3295 0.3605

1/4 3.4904 3.6190 3.4298 3.5077 4.1996 4.2262

Sq.-Laplace 1/2 2.0727 2.4733 2.5566 2.6986 3.2914 3.3478

γ = 1 3/4 1.7074 2.2759 1.6146 1.9372 2.0355 2.1776

1/4 0.7452 0.7904 0.8818 0.9018 1.0008 1.0117

Sq.-Laplace 1/2 0.1156 0.4185 0.1771 0.3253 0.5867 0.6135

γ = 3 3/4 −0.1160 0.5461 −0.1399 0.3956 0.0506 0.2526

1/4 0.2341 0.2763 0.2359 0.2613 0.2398 0.2563

Sq.-Laplace 1/2 −0.0290 0.1852 −0.0258 0.1420 −0.0407 0.1133

γ = 5 3/4 −0.3540 0.4456 −0.3680 0.4194 −0.3683 0.3971

Hence, whereas the accuracy increases as τC increases when γ = 1, there is no clear
trend when γ ∈ {3, 5}.

5 Data analysis of hockey data

Ice hockey is a fast-paced team game that is played continuously and for which the
measure of a player’s quality with appropriate indicators is a real challenge. For the
illustration that follows, the T = 410 forwards that played at least 16,000s in the
2019–2020 season of the National Hockey League (NHL) have been considered. Five
variables, namely X1: Points, X2: Expected goals (xg) with a player on, X3: Playing
in attack, X4: Scoring chances and X5: Number of shots, have been selected to char-
acterize their offensive skills. Each variable have been rescaled to a block of 60min.
The pairwise scatterplots of the raw data and of the standardized ranks is found in
Fig. 2.

Looking at Fig. 2, a radially asymmetric dependence structure featuring more
weights in the upper tails seems to emerge. This is confirmed by the test of radial
symmetry of Bahraoui and Quessy (2017) based on the copula characteristic function
with the normal weight and smoothing parameter σ = 1. Indeed, the p-value of the
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Fig. 2 Five-dimensional Hockey data set: histograms (on the diagonal), pairwise scatterplots of the raw
data (above the diagonal) and of standardized ranks (below the diagonal)

test, as estimated from 10,000 multiplier bootstrap samples, is 4.61%. For this reason,
parameter estimation has been performed for the following seven radially asymmetric
copula families in order to capture this radially asymmetric behaviour:

(i) The one-parameter survival-Clayton and Gumbel Archimedean copulas;
(ii) The chi-square copula with non-centrality parameter γ ∈ [0,∞);
(iii) The squared versions of the Student, Laplace and Pearson type II copulas;
(iv) A special case of the skew–Student copula as defined by Demarta and McNeil

(2005), i.e., the dependence structure of X = Z/
√
Y + γ2 1d/Y , where Z is

standard normal with correlation Σ ∈ R
d×d , γ1 Y is chi-square with γ1 ≥ 1

degrees of freedom, γ2 ∈ R is an asymmetry parameter and 1d = (1, . . . , 1).

The results of the estimation based on the simulated method-of-moments estimator
performed with S = 250 are in Table 8. As a criterion for choosing an appropriate
model among the seven copula families, the ability of themodel to reproduceKendall’s
matrix has been considered. Specifically, a sample of size T = 2, 500 have been
simulated from each estimated model and the Frobenius matrix distance between the
sample Kendall matrix KT of the data and that of the simulated sample have been
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Table 8 Results of the parameter estimation for the five-dimensional Hockey data set

Copula Estimated Frobenius distance from
family parameters the empirical Kendall matrix

Survival Clayton θ̂ = 1.7310 0.4463

Gumbel θ̂ = 0.5384 0.5004

Chi-square γ̂ = 1.4139 0.1212

Fisher γ̂ = 6.4215 0.7377

Squared–Laplace γ̂ = 2.2789 0.7409

Squared–Pearson type II γ̂ = 3.2736 0.8567

Skew–Student γ̂1 = 10.6707, γ̂2 = 2.5951 0.2845

computed. For the Hockey data,

KT =

⎛
⎜⎜⎜⎜⎝

1 0.460 0.359 0.411 0.378
0.460 1 0.671 0.583 0.502
0.359 0.671 1 0.476 0.470
0.411 0.583 0.476 1 0.623
0.378 0.502 0.470 0.623 1

⎞
⎟⎟⎟⎟⎠ .

Looking at the results in the third column of Table 8, the Chi-square (χ2) and skew–
Student (Sk) copulas stand out among the seven models considered. In order to see
if these models are good to reproduce the observed data, artificial samples of size
T = 410 from both copula models have been simulated at the estimated values. The
corresponding estimations of Σ are

Σ̂χ2 =

⎛
⎜⎜⎜⎜⎝

1 .720 .536 .639 .575
.720 1 .838 .827 .762
.536 .838 1 .731 .735
.639 .827 .731 1 .864
.575 .761 .735 .864 1

⎞
⎟⎟⎟⎟⎠ , Σ̂Sk =

⎛
⎜⎜⎜⎜⎝

1 .015 .016 .022 .000
.015 1 .396 .334 .410
.016 .396 1 .225 .102
.022 .334 .225 1 .332
.000 .410 .102 .332 1

⎞
⎟⎟⎟⎟⎠ .

Note that Σ̂Sk results from a transformation due to Higham (2002) to make it positive
definite. The resulting samples have then been put on the same scales as the raw data by
taking the empirical percentiles. Their scatterplots (raw data and standardized ranks)
are found in Fig. 3 and Fig. 4, respectively. Whereas the chi-square copula is better at
reproducing Kendall’s matrix, the skew–Student copula seems better at reproducing
the upper tail behaviour of the dependence structure.

6 Conclusion

This paper developed a general parameter estimation procedure formultivariate copula
models. The proposed estimators are based on the moments of the multivariate prob-
ability integral transformation (MPIT). It then generalizes the inversion of Kendall’s
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Fig. 3 Simulated data of size T = 410 from the estimated Chi-square copula with marginal distributions
matching those of the Hockey data set

tau estimator. On one hand, moments of order greater than one are considered, mak-
ing possible the estimation in multi-parameters models. On the other hand, the use of
simulated moments make the methodology apply as soon as it is possible to simulate
from a given parametric model. Compared to Brahimi and Necir (2012), the pro-
posed estimators are not restricted to (the few) cases where the mapping induced by
the theoretical moments is explicitly invertible. Oh and Patton (2013) also developed
simulated method-of-moments estimators in copula models. What can be seen as an
advantage over their method: (i) it is no longer necessary to base the estimation on
pairwise dependence measures and (ii) the number of moments can match the number
of parameters of the assumed parametric copula model.

Knowing how to estimate for dimensions d > 2 and multi-parameter models is
important, especially in the context of big data, which is becoming more important.
However, the applicability of the pseudo-maximum likelihood estimator (i.e., any
dimension d, any number of parameters to estimate) is more theoretical than practical.
Indeed, even in cases when an explicit (and numerically tractable) copula density is
available, the PMLE can be computationally very intensive, especially when d is large.
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Fig. 4 Simulated data of size T = 410 from the estimated skew–Student copula with marginal distributions
matching those of the Hockey data set

The flexibility of themethod introduced in this work then appears to be of great interest
for multi-parameter complex dependence models. One can mention the skew–Student
copulas introduced by (Demarta andMcNeil 2005), the factor copulas investigated for
instance by Krupskii and Joe (2013), Krupskii and Joe (2015) and Mazo et al. (2016)
as well as the vines copulas (see Czado 2019).

A Proofs

A.1 Proof of Proposition 1

The proof uses standard arguments, such as those in the statement of Theorem 4.1,
p. 36, of van derVaart (1998).By the definition of θκ

T and afirst-orderTaylor expansion,
μκ
T = μκ (θκ

T ) = μκ (θ0)+(μκ )′(θ�)(θκ
T −θκ

0 ), where θ� lies between θκ
T and θ0. One

can then write (μκ )′(θ�)
√
T (θκ

T − θ0) = √
T (μκ

T − μκ (θ0)). The stated result holds
in view of Lemma 1 and since (μκ )′(θ�) converges in probability to (μκ )′(θ0) = νκ

0 .
�
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A.2 Proof of Proposition 2

The difference here compared to standard method-of-moments techniques is the fact
that the objective function is not continuous as a function of θ due to the estimated
functionμS(θ). Basically, onehas to appeal to the notionof stochastic equicontinuity in
order to have some sort of uniform convergence for the objective function. Specifically,
the proof consists in verifying the conditions of Theorem 2.1 of Newey andMcFadden
(1994) that ensure the consistency of minimum distance estimators of the form

θ̂ = argmin
θ∈Θ

Q̂(θ)

as long as Θ is compact and the objective function Q̂(θ) converges uniformly in
probability to a function Q0(θ) that is continuous and uniquely minimized at θ0.

In the case of the proposed simulated method-of-moments estimator, one has
Q̂ := gT ,S MT g�

T ,S , where gT ,S(θ) = μκ
T −μκ

S(θ). SinceE{|κ(X1, . . . ,Xm)|} < ∞,
gT ,S(θ) converges in probability to g0(θ) = μκ (θ0) − μκ (θ) as T , S → ∞ for
each θ ∈ Θ . Also, the assumption that μκ is continuous entails the continuity of
Q0 := g0 M0 g�

0 . Moreover, since μκ (θ0) 
= μκ (θ) as soon as θ 
= θ0, the function
Q0 is uniquely minimized at θ0. It then remains to establish the uniform convergence
in probability of Q̂ to Q0. To this end, it will first be shown that gT ,S is stochastically
equicontinuous. Becauseμκ

S(θ) converges in probability toμκ (θ) for any fixed θ ∈ Θ ,
one has for any θ1, θ2 ∈ Θ that

gT ,S(θ1) − gT ,S(θ2) = μκ
S(θ2) − μκ

S(θ1)

= μκ (θ2) − μκ (θ1) + RS(θ2) − RS(θ1),

where (RS(θ1), RS(θ2)) converges in probability to (0, 0). Hence,

∥∥gT ,S(θ2) − gT ,S(θ1)
∥∥ ≤ ∥∥μκ (θ2) − μκ (θ1)

∥∥+ ‖RS(θ2) − RS(θ1)‖.

Since μκ is Lipschitz continuous, there exists ζ > 0 such that ‖μκ (θ2) − μκ (θ1)‖ ≤
ζ‖θ2 − θ1‖, and then one can write

∥∥gT ,S(θ2) − gT ,S(θ1)
∥∥ ≤ ζ ‖θ2 − θ1‖ + ‖RS(θ2) − RS(θ1)‖ = ΛS ‖θ2 − θ1‖ ,

where ΛS = ζ + ‖RS(θ2) − RS(θ1)‖/‖θ2 − θ1‖. Because μκ
S is bounded, it follows

that one can find ξ > 0 such that

lim sup
S→∞

E

(
Λ

2+ξ
S

)
= lim sup

S→∞
E

(
ζ + |RS(θ2) − RS(θ1)|

‖θ2 − θ1‖
)2+ξ

< ∞.
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This means that gT ,S is asymptotically Lipschitz continuous. Hence, gT ,S is stochas-
tically equicontinuous, i.e., for all ε, η > 0, there exists δ > 0 such that

lim sup
T ,S→∞

P

{
sup

‖θ1−θ2‖

∥∥gT ,S(θ1) − gT ,S(θ2)
∥∥ > η

}
< ε.

Invoking Lemma 2.8 of Newey and McFadden (1994). the conditions are met in order
that as S, T → ∞,

sup
θ∈Θ

∥∥gT ,S(θ) − g0(θ)
∥∥ P−→ 0. (6)

Since g0(θ) is bounded, MT = Op(1) and MT converges in probability to M0, an
application of the triangular and Cauchy–Schwarz inequalities yield

sup
θ∈Θ

∣∣Q̂(θ) − Q0(θ)
∣∣ ≤

{∥∥gT ,S(θ) − g0(θ)
∥∥2

+ 2 ‖g0(θ)‖ ∥∥gT ,S(θ) − g0(θ)
∥∥} ‖MT ‖

+ ‖g0(θ)‖2 ‖MT − M0‖

≤
{(

sup
θ∈Θ

∥∥gT ,S(θ) − g0(θ)
∥∥)2

+ K sup
θ∈Θ

∥∥gT ,S(θ) − g0(θ)
∥∥} ζT + K 2κT ,

where K ∈ (0,∞), ζT = OP(1) and κT = oP(1). In view of (6), one can conclude
that Q̂ converges uniformly in probability to Q0. �

A.3 Proof of Lemma 2

Because
∏m

j=1 b j −∏m
j=1 a j =∑m

j=1(b j − a j )
∏

k< j ak
∏

k> j bk , one can write

∥∥μκ (θ1) − μκ (θ2)
∥∥ ≤

m∑
j=1

∫
[0,1]dm

‖κ(u1, . . . ,um)‖ ∣∣cθ1(u j ) − cθ2(u j )
∣∣

×
∏
k< j

cθ1(uk)
∏
k> j

cθ2(uk) du1 · · · dum

≤ K ‖θ1 − θ2‖
m∑
j=1

∫
[0,1]dm

‖κ(u1, . . . ,um)‖

×
∏
k< j

cθ1(uk)
∏
k> j

cθ2(uk) du1 · · · dum
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= K ‖θ1 − θ2‖
m∑
j=1

∫
[0,1]d

E {‖κ(u1,U2, . . . ,Um)‖} du1.

Since E{‖κ(u1,U2, . . . ,Um)‖} < ∞, one can conclude that μκ is Lipschitz continu-
ous. �

A.4 Proof of Proposition 3

The proof consists in verifying the conditions of Theorem7.2 ofNewey andMcFadden
(1994) that ensures that asymptotic normality of minimum distance estimators of the
form

θ̂ = argmin
θ∈Θ

ĝ(θ) M̂ ĝ(θ).

Specifically,
√
T (̂θ − θ0) converges in distribution to the Normal law with mean zero

and variance-covariance matrix Ω0 as long as
(C1) M̂ converges in probability to a positive definite matrix M0 and θ̂ converges in
probability to an interior point θ0 of Θ;
(C2)

√
T ĝ(θ0) converges to themean zero normal lawwith variance-covariancematrix

Σ ;
(C3) ĝ(̂θ)�M̂ ĝ(̂θ) ≤ inf

θ∈Θ
ĝ(θ)�M̂ ĝ(θ)� + oP(T−1);

(C4) There exists a function g0 such that g0(θ0) = 0, g0(θ) is differentiable at θ0
whose derivative G0 is such that G0 M0 G�

0 is nonsingular, and for any δT → 0 as
T → ∞,

sup
‖θ−θ0‖≤δT

√
T ‖ĝ(θ) − ĝ(θ0) − g0(θ)‖

1 + √
T ‖θ − θ0‖

P−→ 0.

In the case of the proposed simulated method-of-moments estimator, one has M̂ :=
MT and ĝ(θ) := μκ

T − μκ
S(θ). First, (C1) holds by the assumption on MT and the

fact that θκ
T ,S converges in probability to θ0, as ensured by Proposition 2. To establish

(C2), define Z1T = √
T {μκ

T − μκ (θ0)} and Z2 S = √
S{μκ

S(θ0) − μκ (θ0)}, so that√
T gκ

T ,S(θ0) = Z1T − √
T /S Z2 S . From an application of Proposition 1, Z1T �

Z1 and Z2 S � Z2 for Z1, Z2 i.i.d N (0,Σ0), and then
√
T gκ

T ,S(θ0) converges in
distribution to N (0, (1 + ζ )Σ0), where ζ = limT ,S→∞ T /S ∈ [0,∞). Hence, (C2)
holds. Condition (C3) holds by assumption.

Now to establish (C4), it will shown that the function Υ κ
T ,S(θ) = √

T {gκ
T ,S(θ) −

gκ
0 (θ)}, where gκ

0 (θ) = μκ (θ0)−μκ (θ), is stochastically equicontinuous. As formal-
ized by Andrews (1994), a function νT is stochastically equicontinuous at τ0 if for all
ε, η > 0, there exists δ > 0 such that

lim sup
T→∞

P

{
sup

‖τ−τ0‖<δ

‖νT (τ ) − νT (τ0)‖ > η

}
< ε. (7)
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To establish the stochastic equicontinuity of Υ κ
T ,S , Assumptions A–B of Theorem 1

of Andrews (1994) will be shown to hold. Firstly, Assumption A holds true since
{gκ

T ,S(θ) : θ ∈ Θ} is a type II class of functions and satisfies Pollard’s entropy
condition with envelope

max

{
1, sup

θ∈Θ

∥∥gκ
T ,S(θ)

∥∥ ,ΛS

}
,

where referring to (6),ΛS = ζ +‖RS(θ2)−RS(θ1)‖/‖θ2−θ1‖ for (RS(θ1), RS(θ2))

that converges to (0, 0) in probability. Assumption B holds as well because gκ
T ,S is

bounded and there exists ξ > 0 such that

lim sup
S→∞

E

(
Λ

2+ξ
S

)
< ∞.

As a consequence, Υ κ
T ,S satisfies (7) at τ0 = θ0. Then, since

√
T
∥∥∥gκ

T ,S(θ) − gκ
T ,S(θ0) − gκ

0 (θ)

∥∥∥
1 + √

T ‖θ − θ0‖
≤ √

T
∥∥gκ

T ,S(θ) − gκ
T ,S(θ0) − gκ

0 (θ)
∥∥ ,

one can conclude that for any ε > 0,

P

⎧⎨
⎩

√
T
∥∥∥gκ

T ,S(θ) − gκ
T ,S(θ0) − gκ

0 (θ)

∥∥∥
1 + √

T ‖θ − θ0‖
> η

⎫⎬
⎭

≤ P

{
sup

‖θ−θ0‖<δ

√
T
∥∥gκ

T ,S(θ) − gκ
T ,S(θ0) − gκ

0 (θ0)
∥∥ > η

}
< ε.

This establishes (C4) and concludes the proof. �

A.5 Proof of Proposition 4

Letting F(x) = P(X ≤ x),
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E {Ka(X1, . . . ,Xa+1)} = 1

a + 1

a+1∑
j=1

P

{(
max

�∈{1,...,a+1},� 
= j
X�

)
< X j

}

= P {Xa+1 > max (X1, . . . ,Xa)}
= P (X1 < Xa+1, . . . ,Xa < Xa+1)

= EXa+1

⎧⎨
⎩

a∏
j=1

P(X j < Xa+1)

⎫⎬
⎭

= EXa+1

⎧⎨
⎩

a∏
j=1

F(Xa+1)

⎫⎬
⎭

= EX
{
(F(X))a

}
.

Since by definition, W = F(X), where X ∼ F , it follows readily that

E {Ka(X1, . . . ,Xa+1)} = E(Wa) = μa .

Hence, theU-statisticwith kernelKa is an unbiased forμa . To conclude the proof, sim-
ply observe that because W = F(X) = C(U), where U = (F1(X1), . . . , Fd(Xd)) ∼
C , it is clear that E {Ka(X1, . . . ,Xa+1)} = E(Wa) = E {Ka(U1, . . . ,Ua+1)}, which
establishes that Ka is marginal-free. �

A.6 Proof of Proposition 5

The result is a special case of Lemma 1 and mainly consists in deriving an expression
for K�

a(u) = (a + 1)[E{Ka(u,U2, . . . ,Ua+1)} − μa]. Upon recalling that

Ka(x1, . . . , xa+1) = 1

a + 1

a+1∑
j=1

I

{(
max

�∈{1,...,a+1},� 
= j
x�

)
< x j

}
,

one computes

K�
a(u) = (a + 1)

[
E {Ka(u,U2, . . . ,Ua+1)} − μa

]

= E

{
I

(
u > max

2≤�≤a+1
U�

)}

+a E {I (U1 > max(u,U2, . . . ,Ua))} − (a + 1) μa

= P(U2 < u, . . . ,Ua+1 < u)

+a P (U1 > u,U1 > U2, . . . ,U1 > Ua) − (a + 1) μa

=
a+1∏
�=2

P(U� ≤ u)
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+a EU1

{
I(U1 > u)

a∏
�=2

P(U� < U1)

}
− (a + 1) μa

= {C(u)}a + a E
{
I(U > u) (C(U))a−1

}
− (a + 1) μa .

From an application of Theorem 2, p. 76 of Lee (1990),
√
T (μ̂−μ) is asymptotically

L-variate Normal with vector ofmeans (E{K1(U)}, . . . ,E{KL(U)}) = (0, . . . , 0) and
variance-covariance matrix Σ ∈ R

L×L such that for any a, a′ ∈ {1, . . . , L},

Σaa′ = Cov
{K�

a(U),K�
a′(U)

} = E
{K�

a(U)K�
a′(U)

}
,

which completes the proof. �

A.7 Proof of Proposition 6

First note that E(Wa) = P (X� − X1 > 0, . . . ,X� − Xa > 0), whereX�,X1, . . . ,Xa

are i.i.d. from the elliptical distribution characterized by the radial variable R. For
each j ∈ {1, . . . , a}, the distribution of Y j = X� − X j is elliptically contoured, so
that it admits the stochastic representation Y j = G j Z j for some positive random
variable G j and where Z j is d-variate normal with some covariance matrix Σ . As
a consequence, one has the stochastic representation (X� − X1, . . . ,X� − Xa) =
(G1 Z1, . . . ,Ga Za), where Z1, . . . , Zd are dependent normal vectors. One can then
write E(Wa) = P(G1 Z1 > 0, . . . ,Ga Za > 0) = P(Z1 > 0, . . . , Za > 0), which
ends the proof. �
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