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Abstract
Ordinal responses often arise from surveyswhich require respondents to rate items on a
Likert scale. Since most surveys contain more than one question, the data collected are
multivariate in nature, and the associations between different survey items are usually
of considerable interest. In this paper, we focus on a mixture distribution, called the
combination of uniform and binomial (CUB), under which each response is assumed
to originate from either the respondent’s uncertainty or the actual feeling towards the
survey item. We extend the CUB model to the bivariate case for modelling two corre-
lated ordinal data without using copula-based approaches. The proposed model allows
the associations between the unobserved uncertainty and feeling components of the
variables to be estimated, a distinctive feature compared to previous attempts. This
article describes the underlying logic and deals with both theoretical and practical
aspects of the proposed model. In particular, we will show that the model is identifi-
able under a wide range of conditions. Practical inferential aspects such as parameter
estimation, standard error calculations and hypothesis tests will be discussed through
simulations and a real case study.

Keywords CUB · Finite mixture · Identifiability · Likert scale · Survey responses ·
Uncertainty

1 Introduction

Ordinal data are frequently encountered in various disciplines. Asmentioned inAnder-
son (1984), ordinal data often arise in two situations: (1) thresholding an underlying

R. H. L. Ip and K. Y. K. Wu have contributed equally to this work.

B Ryan H. L. Ip
ryan.ip@aut.ac.nz

1 Department of Mathematical Sciences, Auckland University of Technology, Auckland 1010,
New Zealand

2 School of Computing, Mathematics and Engineering, Charles Sturt University, Boorooma Street,
Wagga Wagga, NSW 2650, Australia

3 The School of Business, Singapore University of Social Sciences, Clementi Road, Singapore 599494,
Singapore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00362-024-01560-2&domain=pdf
http://orcid.org/0000-0001-8636-1891


R. H. L. Ip, K. Y. K. Wu

continuous variable, and (2) ranking provided by an assessor after processing unspec-
ified amount of available information. An example of the first type could be the
abundance of species based on percentage cover on the ground, which can be defined
as 0 (absence), 1 (>0–5% cover), 2 (>5–12% cover), and so on (Guisan and Harrell
2000). When it is reasonable to assume the existence of a latent continuous variable,
logit- or probit-type regression models are commonly employed to analyse the data
(McCullagh 1980; Agresti 2010), see also a recent review for a detailed account of
various ordinal regression models (Tutz 2022).

The second type of ordinal data is usually recorded in terms of a Likert scale, which
has become a widely used tool in researches that involve surveys and questionnaires
(Joshi et al. 2015). For example, in visual grading experiments for medical images,
assessors are often requested to classify an image using one of several possible options
such as “Definitely it is not clearly visible”, “Probably it is not clearly visible”, and
so on (Al-Humairi et al. 2022). Since this type of data is usually collected from
human respondents, there exists response biases which may make the data not truly
reflecting the respondent’s actual opinion towards the survey item (Baumgartner and
Steenkamp 2006). For example, in answering a survey question, some people may
choose a satisficing option rather than investing their time to give the optimal answer
(Krosnick 1999). Van Vaerenbergh and Thomas (2013) have also reported different
response styles where respondents tend to choose an answer regardless of the content.
Thus, any serious attempt to analyse survey data should take into account the potential
response biases inherent in the data. As argued by Iannario and Piccolo (2016), one
of the simplest ways to model these kinds of data is to use a two-component model,
which explicitly assumes that the data are generated from two processes as described
below.

To this end, this paper focuses on the use of finite mixture models to analyse
ordinal data arising from surveys. An advantage of using finite mixture models is
that the data can be considered as generated from different underlying processes or
heterogeneous populations, allowing for a greater flexibility (McLachlan et al. 2019).
A popular mixture model that has gained attention recently is the combination of
uniform and binomial (CUB) model. Since introduced by Piccolo (2003) and D’Elia
and Piccolo (2005), CUBmodels and their variants have beenwidely applied in various
disciplines to model ordinal data, especially those arising from surveys which require
respondents to choose a response from a Likert scale. For example, CUB models
have been applied in modelling survival probabilities (Iannario and Piccolo 2010b),
customer preferences on food quality (Piccolo and D’Elia 2008), and job satisfaction
(Gambacorta and Iannario 2013), just to name a few.

Under the settings of CUB models, the uniform component represents the indeci-
siveness or uncertainty of the respondent towards the survey item. In such a case, the
respondent is assumed to pick an answer completely at random. The binomial com-
ponent, on the other hand, is related to the feeling or actual opinion of the respondent
towards the survey item. The stronger the feeling, the higher the rating. However,
the analyst will not be able to distinguish whether the response is a completely ran-
dom selection or a reflection of the actual feeling of the respondent. Nonetheless, the
estimated parameters could inform the measure of uncertainty and preference for typ-
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ical respondents. More details regarding the foundations and developments of CUB
models can be found in a recent review (Piccolo and Simone 2019).

Most of the CUB models developed so far are univariate in nature. In other words,
they focus onmerely one survey itemorquestion. Sincemost surveys containmore than
one question, the data collected are multivariate in nature. To capture the dependency
structure between the responses from several survey items, multivariate models are
required. Some notable attempts to introduce multivariate CUB distributions include
Corduas (2011, 2015), Andreis and Ferrari (2013), Colombi and Giordano (2016) and
Colombi et al. (2019). Except the last one, all these works use copula-based methods
to combine univariate CUB random variables. In particular, Colombi and Giordano
(2016) employed the Sarmanov distribution while the others used the Plackett distri-
bution. On a related note, Barbiero (2021) demonstrates how a joint distribution of two
CUB margins can be constructed using copulas to match a desired correlation. While
copula-based methods are flexible, there are limitations that cannot be overlooked.
Firstly, copulas are usually applied to continuous random variables. The dangers and
restrictions of applying the same practices to discrete distributions have been outlined
by several authors, see Genest and Nešlehová (2007) and Geenens (2020) for example.
Specifically, since copulas cannot be uniquely defined for discrete variables (Nelsen
2006), there are identifiability issues, which may cause inconsistency in parameter
estimation (Genest and Nešlehová 2007). Secondly, parameter(s) in copula models is
(are) usually related to either the rank or Pearson correlation between the two uni-
variate random variables. However, since CUB random variables are a combination
of two processes, the copula parameter(s) (assuming consistent) would relate to the
overall correlation between the mixtures only, rather than the correlation between the
individual uniform or binomial components. This may make the interpretation of the
estimated copula parameters difficult.

To avoid the above concerns, this paper aims to construct a joint distribution for
(R1, R2), which represents a pair of ratings arising from a survey, using bivariate uni-
form and bivariate binomial distributions. Some important features of the proposed
model include (1) both R1 and R2 follow a CUB distribution marginally, (2) the joint
distribution is not derived through copula-based routines, and (3) the dependency
between the uniform and binomial components can be estimated separately, allowing
better interpretation of model parameters. Our proposed model is similar to the hierar-
chical marginal models with latent uncertainty (HMMLU) proposed by Colombi et al.
(2019), which will be described more formally in Sect. 3. Briefly, in their work, the
uncertainty components can take a more flexible shape while the feeling components
and the corresponding associations are modelled directly using marginal logits and
log odds ratios, in the spirit of marginal models (Molenberghs and Lesaffre 1994; Bar-
tolucci et al. 2007). One drawback of HMMLU is that the uncertainty components are
assumed to be independent. Our proposedmodel overcomes this by having a parameter
that directly measures the correlation between the uncertainty components. Another
drawback of HMMLU lies in the large number of parameters, which characterise the
marginal logits and log odds ratios, especially in the absence of covariates. In our pro-
posed model, the feelings are modelled using a bivariate binomial distribution which
contains only three parameters, making it more parsimonious.
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The rest of the paper is organised as follows. Section2 provides a brief account of the
CUB, bivariate uniform and bivariate binomial distributions. Section3 demonstrates
how these distributions can be combined to form a new class of bivariate CUBmodels.
A comparison between the proposedmodel andHMMLU is provided aswell. Section4
deals with various inferential issues including identifiability, parameter estimation,
calculation of standard errors and hypothesis tests. Simulation and application results
are reported in Sects. 5 and 6, respectively. Finally, Sect. 7 provides a conclusion and
discussions.

2 Preliminaries

Formally, a random variable R is said to follow the CUB distribution with parameters
π and ξ , denoted by R ∼ CUB(π,ξ), if the probability mass function (pmf) is a
mixture of the discrete uniform distribution and a binomial distribution. Suppose R
takes one of the (m + 1) values from {0, 1, 2, . . . ,m}, the pmf admits the form

P(R = r) = 1 − π

1 + m
+ πCm

r (1 − ξ)rξm−r .

Here, the mixing weight (1 − π) measures the degree of uncertainty while (1 − ξ)

measures the degree of feeling. As (1 − ξ) increases, there is a higher chance of
observing a higher rating.

In the literature, CUB random variables are assumed to range from 1 to m instead
of starting from zero, represented by a shifted binomial distribution (Iannario and
Piccolo 2010a). However, in this paper, we use the ordinary binomial distribution
for several reasons. Firstly, real survey choice sets are often textual and arbitrary in
numbering, making numerical interpretation less meaningful. Secondly, we treat the
binomial component as a sum of independent Bernoulli variables, which naturally
starts from zero. Lastly, ordinary binomial distribution results are more accessible and
less confusing for readers unfamiliar with the history of CUB models.

To construct a bivariate model for R1 and R2 (whichmay represent rating responses
from two survey questions), we first provide some details on a bivariate discrete uni-
form distribution and a bivariate binomial distribution which we have chosen to work
on. A main feature of these distributions is that the marginal distributions belong to
the same class.

2.1 Bivariate discrete uniform distribution

Let U1 and U2 be two random variables where the pmf for U1 admits the form

P(U1 = u1) = 1

m + 1
, u1 = 0, 1, 2, . . . ,m. (1)

123



A Mixture Distribution for Modelling Bivariate…

We further assume the following form for the conditional distribution ofU2 givenU1:

P(U2 = u2|U1 = u1) =
{

1+αU
m+1 , if u2 = u1;
m−αU
m(m+1) , otherwise.

(2)

In other words, the conditional distribution of U2|U1 is not uniform but a categori-
cal distribution. The parameter αU characterises the dependence between U1 and U2.
Depending on the value ofαU , the probability of choosing the same answer inQuestion
2, given the response in Question 1, can be higher, lower, or unchanged. The admis-
sible range of αU is [−1,m], with αU = 0 representing the case of independence.
Marginally, U2 follows the discrete uniform distribution, since

P(U2 = u2) =
m∑

u1=0

P(U2|U1)P(U1)

= 1

m + 1

(
1 + αU

1 + m

)
+ m

1

m + 1

(
m − αU

m(m + 1)

)
= 1

m + 1
.

The joint distribution of U1 and U2 can be written as

P(U1 = u1,U2 = u2) = m + mαU1u2=u1 − αU1u2 �=u1

m(m + 1)2
≡ U12(u1, u2, αU ),

where 1A is the indicator variable which takes a value of 1 if condition A is satisfied;
and 0 otherwise. Notice that U1 and U2 are independent only if αU = 0.

Studies on psychological aspects of survey responses have revealed the tendency for
respondents to select the same category regardless of the question, thus we expect αU

to be positive in practice. For example, three of the common response styles reported
by Baumgartner and Steenkamp (2001) and Van Vaerenbergh and Thomas (2013) are
acquiescence response style, extreme response style and midpoint responding. These
response styles refer to the tendency to agree with the item regardless of content, to
select the most extreme category regardless of content, and to choose the middle scale
category regardless of content. All these tendencies would make the probability of
having two identical responses higher than expected under the independence assump-
tion. The first two moments ofU1 andU2 are summarised below. The derivations can
be found in Appendix A.

E(Ui ) = m

2
,

Var(Ui ) = m(m + 2)

12
,

Cov(U1,U2) = αU (m + 2)

12
,

rU = Corr(U1,U2) = αU

m
.
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2.2 Bivariate binomial distribution

We will make use of the bivariate binomial distribution introduced in Biswas and
Hwang (2002), where further details can be found. Let T1 and T2 be two random
variables. Following Biswas and Hwang (2002), we consider T1 as a sum of m inde-

pendent Bernoulli variables, i.e., T1 = ∑m
i=1 T1i where T1i

i.i.d.∼ Ber(1 − ξ1). Given
T1i , another Bernoulli variable T2i is generated such that

P(T2i = 1|T1i ) = 1 − ξ2 + αB(ξ1 − ξ2) + αBT1i
1 + αB

, (3)

where αB measures the dependency between T1i and T2i , with the admissible ranges

αB ∈

⎧⎪⎪⎨
⎪⎪⎩

(
max

{
− ξ2

1−ξ1+ξ2
,

ξ2−1
1+ξ1−ξ2

}
,

1−ξ2
ξ2−ξ1

)
, 1 − ξ1 > 1 − ξ2;(

max
{
− ξ2

1−ξ1+ξ2
,

ξ2−1
1+ξ1−ξ2

}
,

ξ2
ξ1−ξ2

)
, 1 − ξ2 > 1 − ξ1;

(max {−ξ,−(1 − ξ)} ,∞), 1 − ξ2 = 1 − ξ1 = 1 − ξ.

(4)

Remark 1 The admissible ranges given in (4) ensure P(T2i = 0|T1i ) and P(T2i =
1|T1i ) are between 0 and 1. The above ranges correct the ones provided in Biswas and
Hwang (2002).

When αB = 0, T1i and T2i are independent. Furthermore, T1i and T2 j are assumed
to be independent for all i �= j . Marginally, it can be checked that T2i ∼ Ber(1− ξ2)

since

P(T2i = 1) = (1 − ξ1)

(
1 − ξ2 + αB(ξ1 − ξ2) + αB

1 + αB

)
+ ξ1

(
1 − ξ2 + αB(ξ1 − ξ2)

1 + αB

)
= 1 − ξ2.

We further define T2 = ∑m
i=1 T2i . In other words, both T1 and T2 follow the binomial

distribution with parameters (m, 1−ξ1) and (m, 1−ξ2), respectively. The conditional
distribution of T2 given T1 is given as

P(T2 = t2|T1 = t1) = (1 + αB)−m ×
t1∑
j=0

Ct1
j C

m−t1
t2− j w

j
1w

t1− j
2 w

t2− j
3 w

m−t1−t2+ j
4 ,

where

w1 = 1 − ξ2 + αB(ξ1 − ξ2) + αB,

w2 = ξ2 − αB(ξ1 − ξ2),

w3 = 1 − ξ2 + αB(ξ1 − ξ2), and

w4 = ξ2 − αB(ξ1 − ξ2) + αB .
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Hence, the joint distribution of T1 and T2 can be written as

P(T1 = t1, T2 = t2) = B1(t1) × (1 + αB)−m

×
t1∑
j=0

Ct1
j C

m−t1
t2− j w

j
1w

t1− j
2 w

t2− j
3 w

m−t1−t2+ j
4

≡ B12(t1, t2; ξ1, ξ2, αB),

where B1(t1) = Cm
t1 (1 − ξ1)

t1ξ
m−t1
1 . The covariance and correlation of T1 and T2

are given below [see also Biswas and Hwang (2002) for a more general class of the
bivariate binomial distribution]:

Cov(T1, T2) = mαB

1 + αB
ξ1(1 − ξ1),

rT = Corr(T1, T2) = αB

1 + αB

√
ξ1(1 − ξ1)

ξ2(1 − ξ2)
. (5)

Mathematical derivations are provided in Appendix A. When two survey questions
inquire about similar aspects, it is reasonable to expect a positive correlation in the
responses (αB > 0). In the opposite, if the two questions are probing for conflicting
aspects (for example, satisfaction of salary and tendency to leave the company), one
may anticipate a negative αB . Studies of survey response have also revealed that prior
questions often influence later responses (Krosnick and Alwin 1987; Tourangeau et al.
2000), thus it is important to capture the correlation between T1 and T2.

3 A new class of bivariate CUB distributions

Suppose R1 and R2 represent the ordinal responses from two survey questions
answered by the same respondent. Although there is no requirement for R1 and R2 to
be the responses from two consecutive questions, it may be easier to understand the
process considering that way. We assume the following generating process.

The respondent first decides if s/he is uncertain or certain about his/her feeling
towards Question 1. If s/he is uncertain, the rating is given randomly according to
a discrete uniform distribution. If s/he is certain, the rating is given by a binomial
distribution reflecting her/his feeling. Hence, R1 resembles the generating process of
a univariate CUB variable. The same process is repeated Question 2. However, this
time the rating may depend on the rating provided in the previous question.

Since the decision process is repeated two times, there are four scenarios: (uncertain,
uncertain), (uncertain, certain), (certain, uncertain) and (certain, certain), with respec-
tive probabilities (1−π1)(1−π2), (1−π1)π2, π1(1−π2) and π1π2. Symbolically, let
D1 and D2 be two independent Bernoulli variables with P(Di = 1) = πi . The four
scenarios can bewritten as (D1 = 0, D2 = 0), (D1 = 0, D2 = 1), (D1 = 1, D2 = 0),
and (D1 = 1, D2 = 1). We also assume that if the ‘regime’ goes from uncertain to
certain (or vice versa), the ratings given in the two questions are independent. Such
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Fig. 1 Schematic flowchart showing the generating process of (R1, R2)

a process is represented schematically in Fig. 1. Note that all the stages except the
outcome are unobservable and therefore unobserved. The above described process
would result in the following joint distribution:

P(R1 = r1, R2 = r2)

= (1 − π1)(1 − π2)U12(r1, r2, αU ) + (1 − π1)π2B2(r2)

m + 1
+ π1(1 − π2)B1(r1)

m + 1
+π1π2B12(r1, r2; ξ1, ξ2, αB) (6)

From the joint distribution, it can be checked that,marginally, both R1 and R2 follow
a univariateCUBdistributionwith parameters (π1, ξ1) and (π2, ξ2), respectively.Also,
R1 and R2 are independent if and only if αB = αU = 0. In that case,

P(R1 = r1, R2 = r2) =
[
1 − π1

m + 1
+ π1B1(r1)

] [
1 − π2

m + 1
+ π2B2(r2)

]
.

The first two moments of the proposed bivariate CUB distribution are given by

E(Ri ) = (1 − πi )
m

2
+ πim(1 − ξi ), i = 1, 2;

Var(Ri ) = (1 − πi )m

[
2m + 1

6
− (1 − πi )m

4

]
+πim(1 − ξi )ξi [1 − m(1 − πi )], i = 1, 2;

Cov(R1, R2) = (1 − π1)(1 − π2)
αU (m + 2)

12
+ π1π2

mαB

1 + αB
ξ1(1 − ξ1). (7)
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Fig. 2 Contour plots and 3D histograms of some bivariate CUBmodels under three sets of parameters with
m = 9

Derivation details are provided inAppendixA. The correlation, rR , can then be derived
from the covariance and the variances. Figure2 shows the contour plots and 3D his-
tograms for the joint probability mass functions under three sets of parameters. From
top to bottom panels, the figure demonstrates the cases where R1 and R2 are positively
correlated, independent, and negatively correlated, respectively.

From (7), it can be deduced that the correlation between R1 and R2 is zero if
αB = αU = 0, or when

αU = −12π1π2

(1 − π1)(1 − π2)

mξ1(1 − ξ1)

m + 2

αB

1 + αB
,
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as long as the right-hand-side (RHS) of the above equation is within the admissible
range provided in (4). In other words, the dependency within the uniform components
may sometimes cancel out that due to the binomial components.

The correlation rR between the two responses are governed by not only αU and
αB , but also all other parameters. For this reason, rR may sometimes be misleading,
or at least undermining the dependency between the respondent’s feelings towards
the two items. For instance, if π1 = π2 = 0.5, then approximately half of the pairs
(R1, R2) will be generated independently, which may shrink the overall correlation
rR , even when rU and rT are reasonably large. Yet, in practice, rU and rT may be
of higher interest. The former represents the tendency of choosing the same category
when the respondent was uncertain towards both questions, while the latter represents
the correlation between the liking of the two survey items. Once the model parameters
were estimated, rT and rU can be found correspondingly. The separation of the overall
dependency into different components cannot be accomplished in any previously pro-
posed copula-based methods, as these methods tend to estimate the overall correlation
between the two margins.

3.1 Comparison with HMMLU

A model that is similar to the bivariate CUB model proposed is the aforementioned
HMMLU (Colombi et al. 2019). Similar to our approach, the data generating process
of HMMLU assumes the existence of latent states that represent if the respondent’s
answer was based on feeling or uncertainty. In the bivariate case, the four scenarios
(D1 = 0, D2 = 0), (D1 = 0, D2 = 1), (D1 = 1, D2 = 0), and (D1 = 1, D2 = 1)
would still apply. The major difference between HMMLU and our proposal lies in the
distributions of the responses under each of the four scenarios.

When an the answer is given with uncertainty (D = 0), HMMLU assumes a
distribution hi (ri ), i = 1, 2, which can take different shapes such as U-shape and bell
shape. The uniform distribution is one of the special cases. When both answers are
given with uncertainty, R1 and R2 are assumed to be independent under HMMLU.
In the opposite, when an answer is given with certainty (D = 1), HMMLU does not
impose any specific distribution for the responses. Rather, the marginal distributions
and the joint distribution are parameterised throughmarginal logits and log odds ratios,
respectively. Such an approach stems from the general framework of marginal models
for categorical data (Bergsma and Rudas 2002; Bartolucci et al. 2007). The joint
distribution of R1 and R2 under HMMLU can be written as

P(R1 = r1, R2 = r2) =
∑

i, j=0,1

πi j P(R1 = r1, R2 = r2|D1 = i, D2 = j)

= π00h1(r1)h2(r2) + π01h1(r1)P(R2 = r2|D2 = 1)

+π10h2(r2)P(R1 = r1|D1 = 1)

+π11P(R1 = r1, R2 = r2|D1 = D2 = 1) (8)

Comparing Eqs. (6) and (8), some differences between HMMLU and the proposed
bivariate CUBmodel are notable. Firstly, HMMLUdoes not allow correlation between
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uncertain responses. In the bivariateCUBmodel, such a correlation is captured through
αU inU12. Of course, when αU = 0, the uncertain responses under the bivariate CUB
model are generated in the same manner as HMMLU when both hi take the uniform
distribution. Secondly, the mixing weights (π ’s) are generated differently. Implicitly,
our approach assumes that D1 and D2 are independent while HMMLU allows them
to be dependent.

Lastly, the distributions of the certain responses under HMMLU need not be the
binomial distributions, and are hence more flexible. However, a consequence of which
is that HMMLU contains way more parameters. The situation is more obvious in the
absence of covariates. For example, withm+1 categories, HMMLUwould requirem
parameters for themarginal logits for each of R1 and R2, and (m−1)2 log odds ratios to
parameterise the joint distribution. As mentioned in Colombi et al. (2019, p. 599), the
large number of parameters will usually lead to identifiability issues, and constraints
are therefore required. In the opposite, the distributions of the certain responses under
the proposed bivariate CUB model can be characterised using three parameters ξ1, ξ2
and αB .

4 Inferential issues

Next, we discuss various issues related to the inferential processes. We start with the
identifiability since the estimation of the parameters is only meaningful if the model is
identifiable. Next, we discuss the strategy of estimating the parameters. Before closing
this section, we provide details for the standard error calculations and hypothesis tests
for some of the parameters.

4.1 Identifiability

The following theorem specifies the conditions under which the bivariate CUB model
is identifiable.

Theorem 1 Given that 0 < π1, π2, ξ1, ξ2 < 1, ξ1 �= ξ2, and m ≥ 3, the bivariate
CUB model given in (6) is identifiable.

Before we provide a proof for the theorem above, we first place a couple of remarks.
Firstly, the condition m ≥ 3 (i.e., the number of categories is at least 4) is equivalent
to the condition required in the univariate case (Iannario 2010). Similar to the identifi-
ability condition for HMMLU, restrictions on the number of categories are necessary
to make sure that the number of parameters is less than the number of free frequencies
(Colombi et al. 2019). The univariate CUBmodel is still identifiable when π = 1 (Ian-
nario 2010) because the discrete uniform distribution does not contain any parameters
(ξ can be identified even when π = 1). Thus, the identifiability is ensured for π > 0.
However, in the bivariate case, as specified in Theorem 1, while it is still required
that π1, π2 > 0, either π1 or π2 = 1 would make the model non-identifiable, since
there are infinite number of possible αU that would yield the same joint distribution
(6) under such case. Similarly, when ξ1 or ξ2 takes either values of 0 or 1, αB cannot
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be identified as well. The additional requirement of ξ1 �= ξ2 may seem restrictive. In
practice, however, since ξ1 and ξ2 correspond to the feeling of a respondent towards
two survey questions, the values rarely coincide, unless the two questions are probing
for exactly the same aspect (in that case, a single question would be sufficient).

Proof Let θ = (π1, π2, ξ1, ξ2, αU , αB)′ ∈ � = (0, 1)4 ×[−1,m]×AB whereAB is
the parameter space for αB governed by (4), with the exception that ξ1 cannot be equal
to ξ2. Further, denote by Pr1,r2(θ) = P(R1 = r1, R2 = r2; θ), P•r2 = ∑m

r1=0 Pr1,r2
and Pr1• = ∑m

r2=0 Pr1,r2 . The bivariate CUB model is identifiable if and only if, for
any parameter vector θ∗, the system of equations in θ :

Pr1,r2(θ) = Pr1,r2(θ
∗), r1, r2 = 0, 1, . . . ,m, (9)

admits only one solution in the parameter space (Manisera and Zuccolotto 2015).
With (m + 1) categories, there are altogether (m + 1)2 equations in (9). Fortunately,
results inManisera and Zuccolotto (2015) also demonstrate that it is possible to reduce
the number of equations in the system by constructing some equations that allow the
parameters to be specified sequentially.

For the bivariate CUB model on hand, we consider the following system of equa-
tions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pm•(θ)−P0•(θ)
P0•(θ)−1/(m+1) = Pm•(θ∗)−P0•(θ∗)

P0•(θ∗)−1/(m+1)

π1 = P0•(θ∗)−1/(m+1)
ξm1 −1/(m+1)

P•m (θ)−P•0(θ)
P•0(θ)−1/(m+1) = P•0(θ∗)−P•0(θ∗)

P•0(θ∗)−1/(m+1)

π2 = P•0(θ∗)−1/(m+1)
ξm2 −1/(m+1)

P01(θ)−P10(θ)

ξm−1
1 (ξ1−ξ2)

= P01(θ∗)−P10(θ∗)

ξm−1
1 (ξ1−ξ2)

αU =
(
P00(θ

∗) − (1−π1)π2B2(0)
m+1 − π1(1−π2)B1(0)

m+1 − π1π2B1(0)wm
4

(1+αB )m

)
(m+1)2

(1−π1)(1−π2)
− 1

(10)

The selection of the above system was merely due to the simplicity of algebra
involved, as shown below. In the first equation, both Pm• and P0• represent marginal
probabilities which are free of αU and αB . According to Iannario (2010), the first
two equations in (10) allow π1 and ξ1 to be uniquely specified. Similarly, the second
two allow π2 and ξ2 to be uniquely specified. If αB can be uniquely specified, the
last equation will only yield one αU (hence unique). Thus, it remains to prove the
uniqueness of αB . For this purpose, we consider in details the fifth equation in (10).
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Since

P01(θ) = (1 − π1)(1 − π2)
m − αU

m(m + 1)2
+ (1 − π1)π2B2(1)

m + 1
+ π1(1 − π2)B1(0)

m + 1

+π1π2B1(0)mw3w
m−1
4

(1 + αB)m
, and

P10(θ) = (1 − π1)(1 − π2)
m − αU

m(m + 1)2
+ (1 − π1)π2B2(0)

m + 1
+ π1(1 − π2)B1(1)

m + 1

+π1π2B1(1)w2w
m−1
4

(1 + αB)m
,

we have

P01(θ) − P10(θ)

ξm−1
1 (ξ1 − ξ2)

= (1 − π1)π2(B2(1) − B2(0))

(m + 1)ξm−1
1 (ξ1 − ξ2)

+ π1(1 − π2)(B1(0) − B1(1))

(m + 1)ξm−1
1 (ξ1 − ξ2)

+π1π2
mwm−1

4

(1 + αB)m−1 (11)

which is a function in αB , and free of αU , provided all other specified parameters
π1, π2, ξ1 and ξ2. Furthermore, this function is continuous in αU . To see this, we
simply need to show that αB > −1. With ξ1 �= ξ2, the lower bound of αB is always
greater than −1 since

− ξ2

1 − ξ1 + ξ2
− (−1) = 1 − ξ1

1 − ξ1 + ξ2
> 0, and

ξ2 − 1

1 + ξ1 − ξ2
− (−1) = ξ1

1 + ξ1 − ξ2
> 0.

Now, we will show that the above function is monotonically increasing in αB .
Differentiating (11) with respect to αB yields

π1π2m(m − 1)(1 − ξ1)[ξ2 − αB(ξ1 − ξ2) + αB]m−2

(1 + αB)m
.

Since αB > −1, the denominator is always positive. Now, consider ξ2 − αB(ξ1 −
ξ2) + αB . The lower bound of αB is given by

αB > max

{
− ξ2

1 − ξ1 + ξ2
,

ξ2 − 1

1 + ξ1 − ξ2

}
.

Since

ξ2 − 1

1 + ξ1 − ξ2
− −ξ2

1 − ξ1 + ξ2
= ξ1 + ξ2 − 1

1 − (ξ1 − ξ2)2
,
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we can deduce that

max

{
− ξ2

1 − ξ1 + ξ2
,

ξ2 − 1

1 + ξ1 − ξ2

}
=
{

ξ2−1
1+ξ1−ξ2

, if ξ1 + ξ2 − 1 ≥ 0;
− ξ2

1−ξ1+ξ2
, if ξ1 + ξ2 − 1 < 0.

If ξ1 + ξ2 − 1 ≥ 0,

ξ2 + αB(1 − ξ1 + ξ2) > ξ2 +
(

ξ2 − 1

1 + ξ1 − ξ2

)
(1 − ξ1 + ξ2)

= ξ1 + ξ2 − 1

1 − ξ1 + ξ2
≥ 0

In the opposite, if ξ1 + ξ2 − 1 < 0,

αB > − ξ2

1 − ξ1 + ξ2

αB(1 − ξ1 + ξ2) > −ξ2

ξ2 + αB(1 − ξ1 + ξ2) > 0.

Hence, ξ2 + αB(1 − ξ1 + ξ2) is always positive. Since Eq. (11) is continuous and
monotonically increasing, one and only one αB will be specified. This completes the
proof. 
�

4.2 Parameter estimation

The parameter estimation can be carried out using the EM algorithm (Dempster et al.
1977). Although the chief focus of Dempster et al. (1977) was on handling incom-
plete data, the EM algorithm has been proven to work well for mixture distributions,
including CUB models (Piccolo 2006). Further details on this topic can be found in
Everitt and Hand (1981), Redner and Walker (1984), McLachlan and Peel (2000) and
Arcidiacono and Jones (2003), among many others. The details of the algorithm for
the proposed bivariate CUB model are provided in Appendix B.

4.3 Standard errors

The variance-covariance matrix of the estimated parameters can be obtained by invert-
ing the observed information matrix:

Var(θ̂) = I (θ̂)−1 = [−�2 log L(θ)]−1|
θ=θ̂

.

The standard errors of the parameters are the square root of the diagonal elements
of Var(θ̂). The use of observed information matrix, instead of expected information
matrix, has been justified in Efron and Hinkley (1978). Explicit expressions of the
elements in Var(θ̂) are provided in Appendix C.
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4.4 Model selection

For a particular dataset on hand,when selecting between non-nestedmodels such as the
bivariate CUB andHMMLU, commonmeasures such asAkaike InformationCriterion
(AIC) and Bayesian Information Criterion (BIC) can be employed. In the context of
the proposed bivariate CUB model, when comparing between nested models, it can
be done via hypothesis tests by means of the likelihood ratio test (Hoel 1962). Here,
we list some of the tests can be done regarding the dependency parameters:

• H1
0 : αB = c1, αU = c2,

• H2
0 : αB = c, and

• H3
0 : αU = c,

for some constants c, c1 and c2, against the alternative hypothesis that H0 is not
true. In particular, testing if any or both of αU and αB is/ are zero would be of high
interest. Under H1

0 , if αB = αU = 0, R1 and R2 are completely independent. Under
H2
0 , if αB = 0, provided that the respondent chose to express his/ her opinions on

both questions, the feelings towards the two questions are independent. Under H3
0 , if

αU = 0, provided that the respondent was uncertain to both questions, his/ her choices
of the categories are independent (both completely random). The test statistic is

−2 log[L(rk; θ̂0)/L(rk; θ̂)],

where θ̂0 is the maximum likelihood estimator of θ evaluated under the restrictions
specified in H0. The test statistic follows a χ2 distribution approximately, with a
degrees of freedom of 2 for the H1

0 , and 1 for both H2
0 and H3

0 .

5 Simulation

Simulations were conducted to investigate the accuracy of the estimates based on
the procedure described in Sect. 4.2 under two cases: (1) large sample with many
categories, and (2) small sample with relatively fewer categories. As the number of
categories is typically between 2 and 11, with 5 to 10 categories being the easiest
to rate (Wakita et al. 2012), we have purposely chosen 5, 7 and 10 categories in the
simulation studies below.

5.1 Large sample with 10 categories

In this simulation study, we setm = 9 (which means a total of 10 categories) and used
two sets of parameters as given below.

• Set 1: (π1, π2, ξ1, ξ2, αU , αB)′ = (0.7, 0.5, 0.6, 0.4, 5.0, 1.5)′
• Set 2: (π1, π2, ξ1, ξ2, αU , αB)′ = (0.5, 0.6, 0.6, 0.4, 3.0,−0.3)′

For each set of parameters, we first simulated two Bernoulli variables D1 and D2 using
π1 and π2 as the respective parameters. If D1 = D2 = 0, R1 and R2 were simulated
using (1) and (2), respectively. If D1 = 0 and D2 = 1, R1 was simulated using (1) and
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Table 1 Mean and coefficient of variation (CV) of the estimated parameters under different simulation
scenarios for the large sample sizes with ten categories

Parameter π1 π2 ξ1 ξ2 αU αB
Set 1 True 0.7 0.5 0.6 0.4 5.0 1.5

n = 1000 Mean 0.7016 0.5018 0.5997 0.3999 5.1898 1.5141

CV 0.0385 0.0625 0.0124 0.0260 0.2264 0.2192

n = 2000 Mean 0.7010 0.5014 0.6001 0.3999 5.0646 1.5040

CV 0.0258 0.0442 0.0093 0.0180 0.1452 0.1682

n = 3000 Mean 0.7007 0.5006 0.5998 0.3996 5.0616 1.5058

CV 0.0218 0.0338 0.0079 0.0146 0.1231 0.1522

Set 2 True 0.5 0.6 0.6 0.4 3.0 −0.3

n = 1000 Mean 0.5013 0.6013 0.6000 0.4006 3.0782 −0.2918

CV 0.0644 0.0523 0.0183 0.0227 0.2411 −0.1823

n = 2000 Mean 0.5004 0.6001 0.5997 0.4000 3.0543 −0.2969

CV 0.0457 0.0353 0.0126 0.0161 0.1541 −0.1222

n = 3000 Mean 0.5001 0.6006 0.6000 0.4001 3.0330 −0.2992

CV 0.0369 0.0296 0.0103 0.0131 0.1333 −0.0957

R2 was simulated using a binomial distribution with parameter (1 − ξ2). If D1 = 1
and D2 = 0, R1 was simulated using a binomial distribution with parameter (1 − ξ1)

and R2 was simulated using (1). If D1 = D2 = 1, then m Bernoulli variables were
simulated using (1− ξ1) as the parameter. These m Bernoulli variables were summed
up to yield R1. Conditional on each value of these m Bernoulli variables, another m
Bernoulli variables were generated with a parameter specified in (3). The sum of the
latterm Bernoulli variables resulted in R2. Three sample sizes n = {1000, 2000, 3000}
were used. For each sample size, 1000 replicates were simulated. The convergence
threshold for the EM algorithm was set to be 1 × 10−5.

Under the parameters specified in Set 1, rU = 0.56, rT = 0.60, and R1 and R2 are
positively correlated, with a theoretical correlation of 0.24. Under those specified in
Set 2, rU = 0.33, rT = −0.43, and R1 and R2 are only weakly positively correlated,
with a theoretical correlation of 0.05. Table 1 summarises the estimation results across
all simulation replicates.

For both sets of parameters, the biases of all estimated parameters were very small,
with a generally decreasing trend with sample sizes. Meanwhile, the coefficients of
variation decrease with the sample size as well, as one would expect. Not surprisingly,
the variabilities of αU and αB were greater than the other parameters. This is probably
due to the fact that these parameters can only be estimated when D1 = D2 = 0 and
D1 = D2 = 1, respectively, hence requiring a larger sample size than the marginal
parameters in achieving a lower variability.Overall,we conclude that theEMalgorithm
proposed in Sect. 4.2 worked well and is therefore an appropriate method for fitting
the bivariate CUB model when both the sample size and the number of categories are
large.
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Table 2 Mean and CV of the estimated parameters for 1000 simulation replicates with n = 100, 200 and
300, and m = 4 and 6

Parameter π1 π2 ξ1 ξ2 αU αB
m = 4 TRUE 0.7 0.3 0.8 0.4 3.0 0.2

n = 100 Mean 0.7035 0.3408 0.8012 0.4000 3.1515 0.3919

CV 0.1199 0.3789 0.0401 0.3059 0.3053 2.4392

n = 200 Mean 0.7034 0.3148 0.8001 0.3995 3.1187 0.3005

CV 0.0831 0.3161 0.0281 0.1817 0.2589 1.8987

n = 300 Mean 0.7017 0.3169 0.8000 0.4015 3.1556 0.2864

CV 0.0700 0.2553 0.0231 0.1345 0.2276 1.7073

m = 6 TRUE 0.7 0.3 0.8 0.4 3.0 0.2

n = 100 Mean 0.7074 0.3281 0.7995 0.4053 3.5520 0.3433

CV 0.1116 0.3440 0.0304 0.2487 0.4753 2.3310

n = 200 Mean 0.7024 0.3151 0.8001 0.3985 3.4175 0.3040

CV 0.0815 0.2651 0.0220 0.1557 0.3907 1.7871

n = 300 Mean 0.7019 0.3071 0.8002 0.4012 3.2567 0.2853

CV 0.0656 0.2205 0.0183 0.1163 0.3294 1.6311

5.2 Small sample with 5 or 7 categories

Thedata generating processwas the sameas those reported inSect. 5.1, except the num-
ber of categories and sample sizes are smaller. Specifically, the cases wherem = 4 and
6 were considered. For each value of m, sample sizes of 100, 200 and 300 were used.
The parameters used were (π1, π2, ξ1, ξ2, αU , αB)′ = (0.7, 0.3, 0.8, 0.4, 3.0, 0.2)′.
Compared to the previous two sets of parameters used, this set of parameters would
make the data more sparse as ξ1 is closer to 1, meaning that the values for R1 are more
concentrated in the lower end. The simulation results are provided in Table 2. From
the results, as the sample size increases, a generally decreasing trend in the biases of
the estimates can be observed. The marginal parameters can be accurately estimated
even with the lower sample size considered, although larger biases can be observed
compared to the large sample cases reported in Table 1. Consistent with the large
sample case, the estimation of the dependency parameters αU and αB is less accurate
than the marginal parameters. The number of categories does not seem to have a huge
impact on the estimation of the parameters.

6 Application

The proposed bivariate CUB model was applied to the “relgoods” dataset, available
within the CUB package (Iannario et al. 2020) in R (R Core Team 2022). The dataset
contains results from a survey conducted in Naples, Italy, in 2014. Respondents of the
survey were asked to evaluate their scores for various relational goods (for example,
time dedicated to friends and family) and related issues such as safety of surroundings
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and their feeling of happiness. We focused on two of the questions related to the
following aspects:

• Environment: the level of comfort with the surrounding environment, and
• Safety: the level of safety in the streets.

In the original survey, for both questions, respondents provided a score on a 10-point
Likert scale, ranging from 1=“never, at all” to 10=“always, a lot”. For our purpose,
we have re-scaled the responses to 0 to 9 by subtracting 1 from each response (meaning
that m = 9). The dataset contains many other variables. Univariate analysis results on
some of the variables can be found in, for example, Iannario and Simone (2017) and
Capecchi et al. (2018). Further details regarding the dataset can be found on https://
rdrr.io/cran/CUB/man/relgoods.html. The R code used to obtain the results in this
section is available as Supplementary Information online.

As one can naturally expect some association between the level of comfort with the
surrounding environment and the level of safety in the surrounding areas, a bivariate
model would be appropriate. Originally, there were a total of 2,459 responses. Upon
removing 9 observations that contained missing values, the proposed bivariate CUB
model was fitted on the remaining 2,450 observations. Here we label “Environment”
as R1 and “Safety” as R2. The procedures described in Sects. 4.2 to 4.4 were employed
to gain insights from the dataset.

Table 3 depicts the estimated parameters based on the proposed bivariate CUB
model and separate univariate CUB models. The parameters under the univariate case
were obtained using the functionalities within the CUB package (Iannario et al. 2020).
Overall, the bivariate model resulted in a higher log-likelihood as well as a lower AIC
and BIC, indicating a better goodness-of-fit (GOF). The better performance can also
be checked visually by assessing the contour plots and 3D histograms provided in
Fig. 3. In particular, the separate model was not able to capture the positive correlation
between the two ratings.

Based on the estimated parameters in the bivariate model, we have r̂U =0.191 and
r̂T =0.316, while the empirical correlation between R1 and R2 was rR = 0.229.
Thus, the correlation between the feelings of the two questions was larger than that
suggested by rR . Results of hypothesis tests in Table 4 also show that both αU and αB

are significantly different from zero.
Suppose the respondent was uncertain towards both questions, the estimated value

of α̂U = 1.723 suggests that the estimated probability of choosing the same category,
given the first response, was 1.723/10 = 0.1723, a 72.3% increase compared to a
model assuming independence among the responses. Moreover, suppose the respon-
dent chose to express his/ her feeling towards the two questions, the model found a
moderate positive correlation (r̂T =0.316) among the two responses, indicating that
the two responses tended to go in the same direction. That is, respondents who are
satisfied with the level of comfort with the surrounding environment tended to be sat-
isfied with the level of safety in the streets as well. These kinds of insights regarding
the associations between the two survey items were not obtainable if the two variables
were fitted separately.

The same dataset was also analysed using HMMLU with hi (ri ) taking the form of
discrete uniform distribution. In total, 22 parameters were used: three for the mixing
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Table 4 Results of likelihood
ratio tests under
H1
0 : αB = αU = 0,

H2
0 : αB = 0 and H3

0 : αU = 0

log L(rk ; �̂0) χ2 df p-value

H1
0 −10764.06 130.11 2 <0.0001

H2
0 −10705.12 12.24 1 0.0004

H3
0 −10754.63 111.27 1 <0.0001

Fig. 3 Contour plots and 3Dhistograms for the observed data (left) andfittedmodels (middle: using bivariate
CUB model; right: using univariate CUB models fitted separately)

weights π00, π01 and π10 (π11 can be derived from these three), nine for the marginal
logits for each of R1 and R2 and one for the log odds ratio. In particular, local logits
in the form of η

j
r = log

[
P(R j = r + 1|Dj = 1)/P(R j = r |Dj = 1)

]
for j = 1, 2

and r = 0, 2, . . . , 8 were used, and a global odds ratio (Dale 1986)

ψ = P(R1 ≤ i, R2 ≤ j)P(R1 > i, R2 > j)

P(R1 > i, R2 ≤ j)P(R1 ≤ i, R2 > j)

that is identical for all i and j was used. The use of only one log odds ratio was to
ensure model identifiability (Colombi et al. 2019, p. 599). Table 5 shows the estimated
values of the parameters and the overall GOF of the model. Not surprisingly, HMMLU
provided a better fit in terms of all measures used since it contained substantially more
parameters. The relative advantage of the bivariate CUB model lies in parsimony and
interpretability.
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7 Discussions and conclusion

In this research work, we have proposed a novel bivariate CUB model for modelling
correlated ordinal variables, especially those arising from surveys that require people
to rate or express their opinions on a Likert scale. The joint distribution belongs to a
general class of mixture distributions while the marginal variables belong to the CUB
distribution. Combining the two CUB variables facilitates further insights, such as the
association between the two variables, to be drawn from the dataset. Identifiability and
other inferential issues around the proposedmodel have been discussed throughout the
paper. The estimation procedure has been found to work satisfactorily through sim-
ulation studies. Additional simulation studies under varied scenarios would enhance
comprehension of the model’s performance. Upon applying the proposed model to a
set of publicly available data, we have demonstrated the capability of the model in
analysing two variables jointly instead of separately, and how further insights on the
associations of the survey items could be discovered.

Since responses from surveys involve psychological behaviours of the respondents,
it is important to take into account the potential biases that may have been introduced.
Apart from indecision or uncertainty, the uncertainty component of the CUB model
can also be used to account for other elements such as difficulty in expressing an actual
feeling, limited knowledge, fatigue or willingness to satisfy the interviewer (Iannario
and Piccolo 2016; Iannario and Tarantola 2023). As shown by Colombi et al. (2019),
the ignorance of the uncertainty component during the modelling stage would lead to
substantial biases in the estimation results.

One distinctive feature of the proposed model is the ability to estimate the asso-
ciations within the uncertainty and feeling components separately. Previous attempts
to generalise CUB models to the multivariate setting typically rely on copula-based
methods, in particular the Plackett distribution (Corduas 2011; Andreis and Ferrari
2013; Corduas 2015). Another notable work by Colombi and Giordano (2016) used
Sarmanov distribution to bind the univariate margins. Both the Plackett and Sarmanov
distributions have a parameter that is related to either the rank or Pearson correlation
of the two marginal variables. However, it is not possible to tell whether the corre-
lation results from the uncertainty or the feeling component of the underlying CUB
variables. Our proposal, on the other hand, allows the decomposition of the overall
correlation into two separate elements. In particular, the estimated correlation between
the respondents’ feelings/preferences would be considered an important measure in
many applications. Although Colombi et al. (2019) do not use copula, it assumes
independence between the uncertain responses.

One of the reasons why CUB models have become popular is the ability to include
respondents’ covariates in the model, enabling analysts to explore the relationship
between the CUB parameters and the subjects’ covariates for better interpretation.
Under the proposed bivariate CUB model, we conjecture that it would be straight-
forward to include covariates for the uncertainty parameters π . However, it may be
challenging to include covariates for the feeling parameters ξ , as the admissible range
of αB [which is a function of ξ1 and ξ2 as provided in Eq. (4)] will then be affected by
the covariates. Re-parameterising αB could be a way to overcome this challenge, but it
is unclear at this stage how this would affect the likelihood function and themechanism
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of the EM algorithm introduced in this paper. Further studies are needed to devise a
solution. Nonetheless, we have purposely not considered models with covariates since
the identifiability has not been established. In fact, to the best of our knowledge, we are
not aware of any work that has fully tackled the identifiability issue even for univariate
CUB models with covariates.

Our proposed model can be extended in several ways. For example, inclusion of
“shelter”/ “refuge” (Iannario 2012) or “don’t know” category (Manisera and Zuc-
colotto 2014; Iannario et al. 2018) would be a direction for future research. Assuming
identifiability is not an issue, other bivariate binomial and discrete uniform distribu-
tions would replace those utilised in this work. In the univariate case, Gottard et al.
(2016) provide details of some other distributions that could be used to replace the
uniform distribution in the uncertainty part. Building a bivariate model using these
distributions would potentially lead tomodels that are more interpretable under certain
contexts.

In this work, we have focused on the bivariate case. The model developed will
serve as a building block for higher dimensional models. As the dependency structure
becomes more complicated, the number of parameters will inevitably increase as
well. Our proposed bivariate model would be useful if some pairwise dependence or
Markov assumptions are to be imposed. These assumptions are particularly suitable
for time series (Varin and Vidoni 2006) or spatial ordinal data (Feng et al. 2014; Ip
and Wu 2024). More parameters will also mean a higher complexity of the observed
information matrix. In that case, the empirical information matrix (Meilijson 1989;
McLachlan and Peel 2000; Scott 2002), which requires only the first derivatives, can
be used to ease the laborious burden in obtaining the second derivatives.

Appendix A: Moments of U, T and R

The covariance between U1 and U2 is given as

Cov(U1,U2) = E(U1U2) − E(U1)E(U2)

=
∑
u1,u2

u1u2P(U1 = u1,U2 = u2) −
(m
2

)2

= 1 + αu

(m + 1)2

m∑
u=0

u2 + m − αU

m(m + 1)2
∑
u1 �=u2

u1u2 −
(m
2

)2

= 1 + αu

(m + 1)2
m(m + 1)(2m + 1)

6

+ m − αU

m(m + 1)2

[
m2(m + 1)2

4
− m(m + 1)(2m + 1)

6

]
−
(m
2

)2
= αU (m + 2)

12
.
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Since

Var(U1) = Var(U2) = m(m + 2)

12
,

we have

Corr(U1,U2) = αU

m
.

The covariance and correlation between T1 and T2 provided below are special cases
of those presented in Biswas and Hwang (2002). To obtain the covariance between T1
and T2, observe that

E(T1i T2i ) = E [T1i E(T2i |T1i )] = E

[
T1i

(
1 − ξ2 + αB(ξ1 − ξ2) + αBT1i

1 + αB

)]

=
(
1 − ξ2 + αB(ξ1 − ξ2) + αB

1 + αB

)
(1 − ξ1),

meaning that

Cov(T1i , T2i ) =
(
1 − ξ2 + αB(ξ1 − ξ2) + αB

1 + αB

)
(1 − ξ1) − (1 − ξ1)(1 − ξ2)

= αB

1 + αB
ξ1(1 − ξ1).

Thus, the covariance between T1 and T2 is

Cov (T1, T2) = Cov

(
m∑
i=1

T1i ,
m∑
i=1

T2i

)
=

m∑
i=1

Cov(T1i , T2i )

= mαB

1 + αB
ξ1(1 − ξ1),

leading to a correlation of

Corr(T1, T2) = αB

1 + αB

√
ξ1(1 − ξ1)

ξ2(1 − ξ2)
.
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The mean and variance of Ri , i = 1, 2, can be derived as follows.

E(Ri ) =
m∑

r=0

r [(1 − πi )
1

m + 1
+ πCm

r (1 − ξi )
rξm−r

i ]

= (1 − πi )
m

2
+ πim(1 − ξi )

E(R2
i ) =

m∑
r=0

r2[(1 − πi )
1

m + 1
+ πiC

m
r (1 − ξi )

rξm−r
i ]

= (1 − πi )
m(2m + 1)

6
+ πim(1 − ξi )[m(1 − ξi ) + ξi ]

Var(Ri ) = (1 − πi )
m(2m + 1)

6
+ πi [m2(1 − ξi )

2 + m(1 − ξi )ξi ]

−
[
(1 − πi )

m

2
+ πim(1 − ξi )

]2
= (1 − πi )m

[
2m + 1

6
− (1 − πi )m

4

]
+ πim(1 − ξi )ξi [1 − m(1 − πi )]

The covariance between R1 and R2 can be derived as follows. Since

E(R1R2) = (1 − π1)(1 − π2)
αU (m + 2) + 3m2

12
+ (1 − π1)π2

(m
2

)
m(1 − ξ2)

+π1(1 − π2)
(m
2

)
m(1 − ξ1)

+π1π2

[
mαB

1 + αB
ξ1(1 − ξ1) + m2(1 − ξ1)(1 − ξ2)

]
,

we have

Cov(R1, R2) = (1 − π1)(1 − π2)
αU (m + 2) + 3m2

12
+ (1 − π1)π2

(m
2

)
m(1 − ξ2)

+π1(1 − π2)
(m
2

)
m(1 − ξ1)

+π1π2

[
mαB

1 + αB
ξ1(1 − ξ1) + m2(1 − ξ1)(1 − ξ2)

]

−
[
(1 − π1)

m

2
+ π1m(1 − ξ1)

] [
(1 − π2)

m

2
+ π2m(1 − ξ2)

]
= (1 − π1)(1 − π2)

αU (m + 2)

12
+ π1π2

mαB

1 + αB
ξ1(1 − ξ1).

Finally, the correlation between R1 and R2 can be found using

Corr(R1, R2) = (1 − π1)(1 − π2)
αU (m+2)

12 + π1π2
mαB
1+αB

ξ1(1 − ξ1)√
Var(R1)

√
Var(R2)

.
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Appendix B: EM algorithm

Assume n pairs of (r1k, r2k) are observed. For the sake of notational simplicity, let
θ = (π1, π2, ξ1, ξ2, αU , αB)′, rk = (r1k, r2k), k = 1, 2, . . . , n, q1 = 1 − π1, q2 =
1 − π2, g00(rk; θ) = U12(rk, αU ), g01(rk; θ) = B2(r2k)/(m + 1), g10(rk; θ) =
B1(r1k)/(m + 1), and g11(rk; θ) = B12(rk, ξ1, ξ2, αB). The aim is to maximise

L(rk; θ (0)) = q1q2g00(rk; θ (0)) + q1π2g01(rk; θ (0)) + π1q2g10(rk; θ (0))

+π1π2g11(rk; θ (0)),

which could be done using the iterative procedure described below.

1. Get initial values of π
(0)
1 , π

(0)
2 , ξ

(0)
1 , ξ

(0)
2 by considering the margins separately.

This step can be done using the CUB package in R (Iannario et al. 2020). Also,
set α(0)

U = α
(0)
B =0.

2. Get the posterior probabilities p̂(0)
i j (rk; θ (0)) = P(D1 = i, D2 = j |R1 =

r1k, R2 = r2k; θ (0)), i, j = 0, 1, k = 1, 2, . . . , n, based on each individual paired
observation rk :

p̂(0)
00 (rk; θ (0)) = (1 − π

(0)
1 )(1 − π

(0)
2 )g00(rk; θ (0))/L(rk; θ (0))

p̂(0)
01 (rk; θ (0)) = (1 − π

(0)
1 )π

(0)
2 g01(rk; θ (0))/L(rk; θ (0))

p̂(0)
10 (rk; θ (0)) = π

(0)
1 (1 − π

(0)
2 )g10(rk; θ (0))/L(rk; θ (0))

p̂(0)
11 (rk; θ (0)) = π

(0)
1 π

(0)
2 g11(rk; θ (0))/L(rk; θ (0)),

which give the overall estimates of

p̂(0)
i j = 1

n

n∑
k=1

p̂(0)
i j (rk; θ (0)), i, j = 0, 1.

From the second iterations (t > 1) onward, the above estimates can be obtained
from

p̂(t+1)
i j (rk; θ (t)) = p̂(t)

i j gi j (rk; θ (t))/L(rk; θ (t)), and

p̂(t+1)
i j = 1

n

n∑
k=1

p̂(t+1)
i j (rk; θ (t)), t > 1.

3. Update π1 and π2 through

π
(1)
1 = p̂(0)

10 + p̂(0)
11 , (B1)

π
(1)
2 = p̂(0)

01 + p̂(0)
11 . (B2)
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It can be shown that Eqs. (B1) and (B2) provide the best estimate of π1 and π2,
respectively. The steps below largely follow those provided in Everitt and Hand
(1981), except that our mixing probabilities are constrained in a different manner.
Our objective is to maximise

	(θ) =
n∑

k=1

log[L(rk; θ)] − λ1(π1 + q1 − 1) − λ2(π2 + q2 − 1),

where λ1 and λ2 are Lagrange multipliers corresponding to the constraints q1 +
π1 = 1 and q2 +π2 = 1, respectively. Differentiating 	(θ) with respect to π1, and
setting the equation to 0 yields

∂

∂π1
	(θ) =

n∑
k=1

q2g10(rk; θ)

L(rk; θ)
+

n∑
k=1

π2g11(rk; θ)

L(rk; θ)
− λ1 = 0. (B3)

Similarly, we have

∂

∂q1
	(θ) =

n∑
k=1

q2g00(rk; θ)

L(rk; θ)
+

n∑
k=1

π2g01(rk; θ)

L(rk; θ)
− λ1 = 0. (B4)

Multiplying (B3) by π1 and (B4) by q1, and adding them up:

n∑
k=1

π1q2g10(rk; θ) + π1π2g11(rk; θ) + q1q2g00(rk; θ) + q1π2g01(rk; θ)

L(rk; θ)

−λ1(π1 + q1) = 0

λ̂1 = n.

Suppose one has θ (0), using λ̂1 = n and multiplying (B3) by π1 yields

n∑
k=1

π1q
(0)
2 g10(rk; θ (0)) + π1π

(0)
2 g11(rk; θ (0))

L(rk; θ (0))
− nπ1 = 0.

Thus,

π̂1 = 1

n

n∑
k=1

[
π

(0)
1 (1 − π

(0)
2 )g10(rk; θ (0))

L(rk; θ (0))
+ π

(0)
1 π

(0)
2 g11(rk; θ (0))

L(rk; θ (0))

]
,

where the RHS is equivalent to the posterior probability P(D1 = 1|R1 = r1, R2 =
r2; θ (0)). The derivation of π2 follows in a similar fashion.
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4. Update ξ1 and ξ2 using

ξ
(1)
1 = argmax

ξ1∈�1

n∑
k=1

[
p̂(0)
10 (rk; θ (0)) log g10(rk; θ (0))

+ p̂(0)
11 (rk; θ (0)) log g11(rk; θ (0))

]
,

ξ
(1)
2 = argmax

ξ2∈�2

n∑
k=1

[
p̂(0)
01 (rk; θ (0)) log g01(rk; θ (0))

+ p̂(0)
11 (rk; θ (0)) log g11(rk; θ (0))

]
,

where �1 and �2 are the ranges for ξ
(1)
1 and ξ

(1)
2 , respectively, to ensure w1, w2,

w3 andw4 are all positive, provided θ (0). Explicitly, the corresponding ranges are

�1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
max

{
0,

−ξ
(0)
2 −α

(0)
B ξ

(0)
2 −α

(0)
B

−α
(0)
B

}
,

min

{
ξ
(0)
2 ,

1−ξ
(0)
2 −α

(0)
B ξ

(0)
2

−α
(0)
B

,
(1+α

(0)
B )(ξ

(0)
2 −1)

α
(0)
B

})
, if ξ

(0)
1 < ξ

(0)
2 &α

(0)
B < 0;(

max

{
0,

1−ξ
(0)
2 −α

(0)
B ξ

(0)
2

−α
(0)
B

,
(1+α

(0)
B )(ξ

(0)
2 −1)

α
(0)
B

}
,

min

{
ξ
(0)
2 ,

−ξ
(0)
2 −α

(0)
B ξ

(0)
2 −α

(0)
B

−α
(0)
B

})
, if ξ

(0)
1 < ξ

(0)
2 &α

(0)
B > 0;(

max

{
−ξ

(0)
2 −α

(0)
B ξ

(0)
2 −α

(0)
B

−α
(0)
B

,
ξ
(0)
2 +α

(0)
B ξ

(0)
2

α
(0)
B

, ξ
(0)
2

}
,

min

{
(1+α

(0)
B )(ξ

(0)
2 −1)

α
(0)
B

, 1

})
, if ξ

(0)
1 > ξ

(0)
2 &α

(0)
B < 0;(

max

{
ξ
(0)
2 ,

(1+α
(0)
B )(ξ

(0)
2 −1)

α
(0)
B

}
,

min

{
−ξ

(0)
2 −α

(0)
B ξ

(0)
2 −α

(0)
B

−α
(0)
B

,
ξ
(0)
2 +α

(0)
B ξ

(0)
2

α
(0)
B

, 1

})
, if ξ

(0)
1 > ξ

(0)
2 &α

(0)
B > 0;

(0, 1) , if α
(0)
B = 0, and

�2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
max

{
−(1−ξ

(0)
1 )α

(0)
B

1+α
(0)
B

, ξ
(0)
1

}
,

min

{
1+ξ

(0)
1 α

(0)
B

1+α
(0)
B

,
1+α

(0)
B +α

(0)
B ξ

(0)
1

1+α
(0)
B

, 1

})
, if ξ

(0)
1 < ξ

(0)
2 &α

(0)
B �= 0;(

max

{
0,

−(1−ξ
(0)
1 )α

(0)
B

1+α
(0)
B

,
ξ
(0)
1 α

(0)
B

1+α
(0)
B

}
,

min

{
ξ
(0)
1 ,

1+α
(0)
B +α

(0)
B ξ

(0)
1

1+α
(0)
B

})
, if ξ

(0)
1 > ξ

(0)
2 &α

(0)
B �= 0;

(0, 1) , if α
(0)
B = 0.
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5. Update αB using

α
(1)
B = argmax

αB∈AB

n∑
k=1

p̂(0)
11 (rk; θ (0)) log g11(rk; θ (0)),

whereAB is the admissible range of αB based on ξ
(0)
1 and ξ

(0)
2 as provided in (4).

6. Update αU using

α
(1)
U = mS1 − S2

S1 + S2
, (B5)

where

S1 =
n∑

k=1

p̂(0)
00 (rk; θ (0))1r1k=r2k and S2 =

n∑
k=1

p̂(0)
00 (rk; θ (0))1r1k �=r2k .

To see that (B5) gives the best estimate for αU , notice that our aim is to find

α
(1)
U = argmax

αU∈[−1,m]

n∑
k=1

[
p̂(0)
00 (rk; θ (0)) log g00(rk; θ (0))

]
.

Expanding
∑n

k=1

[
p̂(0)
00 (rk; θ (0)) log g00(rk; θ (0))

]
gives

n∑
k=1,r1k=r2k

[
p̂(0)
00 (rk; θ (0)) log

(
m + mαU

m(m + 1)2

)]

+
n∑

k=1,r1k �=r2k

[
p̂(0)
00 (rk; θ (0)) log

(
m − αU

m(m + 1)2

)]
. (B6)

Upon differentiating (B6) with respect to αU , we have

S1
1 + αU

− S2
m − αU

= 0,

which gives (B5).
7. Calculate log L(rk; θ (1)). Repeat Steps 2 to 7 until L converges, that is,

log L(rk; θ (t+1)) − log L(rk; θ (t)) < ε for some threshold ε.

Appendix C: Detailed expressions for the informationmatrix

In this appendix, to simplify the notation, define f θ = ∂
∂θ

f and f θi θ j = ∂2

∂θi ∂θ j
f for

some expressions f . Whenever there is no chance of causing confusion, the depen-
dency of the functions on the parameters and/or data are often omitted. For instance,
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we write g00 instead of g00(θ , rk). In addition, the index j in
∑

j runs from 0 to r1,
and the index k in

∑
k runs from 1 to n. We first list some recurrent expressions.

Lk = L(θ , rk) = (1 − π1)(1 − π2)g00 + (1 − π1)π2g01

+π1(1 − π2)g10 + π1π2g11

Bi = Cm
ri (1 − ξi )

ri ξ
m−ri
i , i = 1, 2

Bξi
i = Bi

(
m − ri

ξi
− ri

1 − ξi

)

Bξi ξi
i = Bi

[
−(m − ri )

ξ2i
− ri

(1 − ξi )2
+
(
m − ri

ξi
− ri

1 − ξi

)2
]

Wj = w
j
1w

r1− j
2 w

r2− j
3 w

m−r1−r2+ j
4

W ξ1
j = Wj

[
jαB

w1
+ −(r1 − j)αB

w2
+ (r2 − j)αB

w3
+ −(m − r1 − r2 + j)αB

w4

]

W ξ2
j = Wj

[− j(1 + αB)

w1
+ (r1 − j)(1 + αB)

w2
+ −(r2 − j)(1 + αB)

w3

+ (m − r1 − r2 + j)(1 + αB)

w4

]

WαB
j = Wj

[
j(1 + ξ1 − ξ2)

w1
+ −(r1 − j)(ξ1 − ξ2)

w2
+ (r2 − j)(ξ1 − ξ2)

w3

+ (m − r1 − r2 + j)(1 − ξ1 + ξ2)

w4

]

W ξ1ξ1
j = Wj

[
− jα2

B

w2
1

+ −(r1 − j)α2
B

w2
2

+ −(r2 − j)α2
B

w2
3

+ −(m − r1 − r2 + j)α2
B

w2
4

]

+W ξ1
j W ξ1

j

W j

W ξ1ξ2
j = Wj

[
jαB(1 + αB)

w2
1

+ (r1 − j)αB(1 + αB)

w2
2

+ (r2 − j)αB(1 + αB)

w2
3

+ (m − r1 − r2 + j)αB(1 + αB)

w2
4

]

+W ξ2
j W ξ1

j

W j

W ξ1αB
j = Wj

[
j(w1 − αB(1 + ξ1 − ξ2))

w2
1

+ −(r1 − j)(w2 + αB(ξ1 − ξ2))

w2
2

+ (r2 − j)(w3 − αB(ξ1 − ξ2))

w2
3

+ (m − r1 − r2 + j)(−w4 + αB(1 − ξ1 + ξ2))

w2
4

]
+ WαB

j W ξ1
j

W j
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W ξ2ξ2
j = Wj

[
− j(1 + αB)2

w2
1

+ −(r1 − j)(1 + αB)2

w2
2

+ −(r2 − j)(1 + αB)2

w2
3

+−(m − r1 − r2 + j)(1 + αB)2

w2
4

]
+ W ξ2

j W ξ2
j

W j

W ξ2αB
j = Wj

[
j(−w1 + (1 + αB)(1 + ξ1 − ξ2))

w2
1

+ (r1 − j)(w2 + (1 + αB)(ξ1 − ξ2))

w2
2

+ (r2 − j)(−w3 + (1 + αB)(ξ1 − ξ2))

w2
3

+ (m − r1 − r2 + j)(w4 − (1 + αB)(1 − ξ1 + ξ2))

w2
4

]

+WαB
j W ξ2

j

W j

WαBαB
j = Wj

[
− j(1 + ξ1 − ξ2)

2

w2
1

+ −(r1 − j)(ξ1 − ξ2)
2

w2
2

+ −(r2 − j)(ξ1 − ξ2)
2

w2
3

+

−(m − r1 − r2 + j)(1 − ξ1 + ξ2)
2

w2
4

]
+ WαB

j WαB
j

W j

gαU
00 = m1r1=r2 − 1r1 �=r2

m(m + 1)2

gξ1
10 = Bξ1

1

m + 1

gξ1ξ1
10 = Bξ1ξ1

1

m + 1

gξ2
01 = Bξ2

2

m + 1

gξ2ξ2
01 = Bξ2ξ2

2

m + 1

gξ1
11 = (1 + αB)−m

⎡
⎣Bξ1

1

∑
j

Cr1
j C

m−r1
r2− j W j + B1

∑
j

Cr1
j C

m−r1
r2− j W

ξ1
j

⎤
⎦

gξ2
11 = B1(1 + αB)−m

∑
j

Cr1
j C

m−r1
r2− j W

ξ2
j

gαB
11 = B1(1 + αB)−m−1

⎡
⎣−m

∑
j

Cr1
j C

m−r1
r2− j W j + (1 + αB)

∑
j

Cr1
j C

m−r1
r2− j W

αB
j

⎤
⎦

gξ1ξ1
11 = (1 + αB)−m

⎡
⎣B1

∑
j

Cr1
j C

m−r1
r2− j W

ξ1ξ1
j

+2Bξ1
1

∑
j

Cr1
j C

m−r1
r2− j W

ξ1
j + Bξ1ξ1

1

∑
j

Cr1
j C

m−r1
r2− j W j

⎤
⎦
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gξ1ξ2
11 = (1 + αB)−m

⎡
⎣Bξ1

1

∑
j

Cr1
j C

m−r1
r2− j W

ξ2
j + B1

∑
j

Cr1
j C

m−r1
r2− j W

ξ1ξ2
j

⎤
⎦

gξ1αB
11 = (1 + αB)−m

⎡
⎣Bξ1

1

∑
j

Cr1
j C

m−r1
r2− j W

αB
j + B1

∑
j

Cr1
j C

m−r1
r2− j W

ξ1αB
j

⎤
⎦

−m(1 + αB)−1gξ1
11

gξ2ξ2
11 = B1(1 + αB)−m

∑
j

Cr1
j C

m−r1
r2− j W

ξ2ξ2
j

gξ2αB
11 = B1(1 + αB)−m−1⎡

⎣−m
∑
j

Cr1
j C

m−r1
r2− j W

ξ2
j + (1 + αB)

∑
j

Cr1
j C

m−r1
r2− j W

ξ2αB
j

⎤
⎦

gαBαB
11 = B1(1 + αB)−m−2

⎡
⎣m(m + 1)

∑
j

Cr1
j C

m−r1
r2− j W j

−2m(1 + αB)
∑
j

Cr1
j C

m−r1
r2− j W

αB
j

+(1 + αB)2
∑
j

Cr1
j C

m−r1
r2− j W

αBαB
j

⎤
⎦

Lπ1
k = −(1 − π2)g00 − π2g01 + (1 − π2)g10 + π2g11

Lπ2
k = −(1 − π1)g00 + (1 − π1)g01 − π1g10 + π1g11

Lξ1
k = π1(1 − π2)g

ξ1
10 + π1π2g

ξ1
11

Lξ2
k = (1 − π1)π2g

ξ2
01 + π1π2g

ξ2
11

LαU
k = (1 − π1)(1 − π2)g

αU
00

LαB
k = π1π2g

αB
11

The elements of the negative informationmatrix, J (θ) = �2 log L(θ), is shownbelow,
where the order of the parameters follows: θ = (π1, π2, ξ1, ξ2, αU , αB)′.

{J }11 =
∑
k

−Lπ1
k Lπ1

k

Lk Lk

{J }12 =
∑
k

Lk(g00 − g01 − g10 + g11) − Lπ1
k Lπ2

k

Lk Lk

{J }13 =
∑
k

Lk((1 − π2)g
ξ1
10 + π2g

ξ1
11) − Lπ1

k Lξ1
k

Lk Lk

{J }14 =
∑
k

Lk(−π2g
ξ2
01 + π2g

ξ2
11) − Lπ1

k Lξ2
k

Lk Lk
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{J }15 =
∑
k

Lk(−(1 − π2)g
αU
00 ) − Lπ1

k LαU
k

Lk Lk

{J }16 =
∑
k

Lkπ2g
αB
11 − Lπ1

k LαB
k

Lk Lk

{J }22 =
∑
k

−Lπ2
k Lπ2

k

Lk Lk

{J }23 =
∑
k

Lk(−π1g
ξ1
10 + π1g

ξ1
11) − Lπ2

k Lξ1
k

Lk Lk

{J }24 =
∑
k

Lk((1 − π1)g
ξ2
01 + π1g

ξ2
11) − Lπ2

k Lξ2
k

Lk Lk

{J }25 =
∑
k

Lk(−(1 − π1)g
αU
00 ) − Lπ2

k LαU
k

Lk Lk

{J }26 =
∑
k

Lkπ1g
αB
11 − Lπ2

k LαB
k

Lk Lk

{J }33 =
∑
k

Lk(π1(1 − π2)g
ξ1ξ1
10 + π1π2g

ξ1ξ1
11 ) − Lξ1

k Lξ1
k

Lk Lk

{J }34 =
∑
k

Lkπ1π2g
ξ1ξ2
11 − Lξ1

k Lξ2
k

Lk Lk

{J }35 =
∑
k

−Lξ1
k LαU

k

Lk Lk

{J }36 =
∑
k

Lkπ1π2g
ξ1αB
11 − Lξ1

k LαB
k

Lk Lk

{J }44 =
∑
k

Lk((1 − π1)π2g
ξ2ξ2
01 + π1π2g

ξ2ξ2
11 ) − Lξ2

k Lξ2
k

Lk Lk

{J }45 =
∑
k

−Lξ2
k LαU

k

Lk Lk

{J }46 =
∑
k

Lkπ1π2g
ξ2αB
11 − Lξ2

k LαB
k

Lk Lk

{J }55 =
∑
k

−LαU
k LαU

k

Lk Lk

{J }56 =
∑
k

−LαU
k LαB

k

Lk Lk
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{J }66 =
∑
k

Lkπ1π2g
αBαB
11 − LαB

k LαB
k

Lk Lk

The lower triangular elements are the same as the upper triangular ones, and are thus
omitted.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-024-01560-2.

Author contributions All authors contributed to the study conception and design. The first draft was of the
manuscript was written by Ryan H. L. Ip and all authors commented on previous versions of the manuscript.
All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions No funds,
grants, or other support was received.

Data availability The dataset analysed during the current study are available within the CUB package in R
(Iannario et al. 2020).

Code availability The code used to produce part of the results in the Application section is available as
Supplementary Information.

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of this
article.

Ethical approval Ethics approval is not required for this work.

Consent to participate Not applicable.

Consent for publication Not applicable.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agresti A (2010) Analysis of ordinal categorical data. Wiley, Hoboken
Al-Humairi A, Ip RHL, Spuur K, Zheng X, Huang B (2022) Visual grading experiments and optimization in

CBCT dental implantology imaging: preliminary application of integrated visual grading regression.
Radiat Enviorn Biophys 61:133–145. https://doi.org/10.1007/s00411-021-00959-x

Anderson JA (1984) Regression and ordered categorical variables. J R Stat Soc B Met 46(1):1–22. https://
doi.org/10.1111/j.2517-6161.1984.tb01270.x

Andreis F, Ferrari PA (2013) On a copula model with CUB margins. Quad Stat 15:33–51
Arcidiacono P, Jones JB (2003) Finite mixture distributions, sequential likelihood and the EM algorithm.

Econometrica 71(3):933–946. https://doi.org/10.1111/1468-0262.00431

123

https://doi.org/10.1007/s00362-024-01560-2
https://doi.org/10.1007/s00362-024-01560-2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00411-021-00959-x
https://doi.org/10.1111/j.2517-6161.1984.tb01270.x
https://doi.org/10.1111/j.2517-6161.1984.tb01270.x
https://doi.org/10.1111/1468-0262.00431


A Mixture Distribution for Modelling Bivariate…

Barbiero A (2021) Inducing a desired value of correlation between two point-scale variables: a two-step
procedure using copulas. Adv Stat Anal 105:307–334. https://doi.org/10.1007/s10182-021-00405-9

Bartolucci F, Colombi R, Forcina A (2007) An extended class of marginal link functions for modelling
contingency tables by equality and inequality constraints. Stat Sinica 17(2):691–711

Baumgartner H, Steenkamp JEM (2001) Response styles in marketing research: a cross-national investiga-
tion. J Mark Res 38(2):143–156. https://doi.org/10.1509/jmkr.38.2.143.18840

Baumgartner H, Steenkamp JEM (2006) Response biases in marketing research. In: Grover R, Vriens M
(eds) The handbook of marketing research: uses, misuses, and future advances. SAGE, London

Bergsma WP, Rudas T (2002) Marginal models for categorical data. Ann Stat 30(1):140–159. https://doi.
org/10.1214/aos/1015362188

Biswas A, Hwang JS (2002) A new bivariate binomial distribution. Stat Probab Lett 60(2):231–240. https://
doi.org/10.1016/S0167-7152(02)00323-1

Capecchi S, IannarioM,SimoneR (2018)Well-being and relational goods: amodel-based approach to detect
significant relationships. Soc Indic Res 135:729–750. https://doi.org/10.1007/s11205-016-1519-7

Colombi R, Giordano S (2016) A class of mixture models for multidimensional ordinal data. Stat Model
16(4):322–340. https://doi.org/10.1177/1471082X16649730

Colombi R, Giordano S, GottardA, IannarioM (2019)Hierarchical marginalmodels with latent uncertainty.
Scand J Stat 46(2):595–620. https://doi.org/10.1111/sjos.12366

Corduas M (2011) Modelling correlated bivariate ordinal data with CUB margins. Quad Stat 13:109–119
Corduas M (2015) Analyzing bivariate ordinal data with CUB margins. Stat Model 15(5):411–432. https://

doi.org/10.1177/1471082X14558770
Dale JR (1986) Global cross-ratio mdoels for bivariate, discrete, ordered responses. Biometrics 42(4):909–

917. https://doi.org/10.2307/2530704
D’Elia A, Piccolo D (2005) Amixture model for preferences data analysis. Comput Stat Data Anal 49:917–

934. https://doi.org/10.1016/j.csda.2004.06.012
DempsterAP,LairdNM,RubinDB (1977)Maximum likelihood from incomplete data via theEMalgorithm.

J R Stat Soc B Met 39(1):1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
Efron B, Hinkley DV (1978) Assessing the accuracy of the maximum likelihood estimator: observed versus

expected Fisher information. Biometrika 65(3):457–483. https://doi.org/10.1093/biomet/65.3.457
Everitt BS, Hand DJ (1981) Finite mixture distributions. Chapman and Hall, London
FengX,Zhu J, LinP, Steen-AdamsMM(2014)Composite likelihood estimation formodels of spatial ordinal

data and spatial proportional data with zero/one values. Environmetrics 25(8):571–583. https://doi.
org/10.1002/env.2306

Gambacorta R, Iannario M (2013) Measuring job satisfaction with CUB models. Labour 27(2):198–224.
https://doi.org/10.1111/labr.12008

Geenens G (2020) Copula modeling for discrete random vectors. Depend Model 8:417–440. https://doi.
org/10.1515/demo-2020-0022

Genest C, Nešlehová J (2007) A primer on copulas for count data. Astin Bull 37(2):475–515. https://doi.
org/10.2143/AST.37.2.2024077

Gottard A, Iannario M, Piccolo D (2016) Varying uncertainty in CUB models. Adv Data Anal Classif
10:225–244. https://doi.org/10.1007/s11634-016-0235-0

Guisan A, Harrell FE (2000) Ordinal response regression models in ecology. J Veg Sci 11(5):617–626.
https://doi.org/10.2307/3236568

Hoel PG (1962) Introduction to mathematical statistics. Wiley, New York
Iannario M (2010) On the identifiability of a mixture model for ordinal data. Metron 68(1):87–94. https://

doi.org/10.1007/BF03263526
Iannario M (2012) Modelling shelter choices in a class of mixture models for ordinal response. Stat Method

Appl 21:1–22. https://doi.org/10.1007/s10260-011-0176-x
Iannario M, Manisera M, Piccolo D, Zuccolotto P (2018) Ordinal data models for no-opinion responses in

attitude surveys. Sociol Method Res 49(1):250–276. https://doi.org/10.1177/0049124118769081
IannarioM, Piccolo D (2010) A new statistical model for the analysis of customer satisfaction. Qual Technol

Quant Manage 7(2):149–168. https://doi.org/10.1080/16843703.2010.11673225
Iannario M, Piccolo D (2010) Statistical modelling of subjective survival probabilities. Genus 66(2):17–42
Iannario M, Piccolo D (2016) A comprehensive framework of regression models for ordinal data. Metron

74:233–252. https://doi.org/10.1007/s40300-016-0091-x
IannarioM, Piccolo D, Simone R (2020) CUB: a class of mixturemodels for ordinal data. R package version

1.1.4. https://CRAN.R-project.org/package=CUB

123

https://doi.org/10.1007/s10182-021-00405-9
https://doi.org/10.1509/jmkr.38.2.143.18840
https://doi.org/10.1214/aos/1015362188
https://doi.org/10.1214/aos/1015362188
https://doi.org/10.1016/S0167-7152(02)00323-1
https://doi.org/10.1016/S0167-7152(02)00323-1
https://doi.org/10.1007/s11205-016-1519-7
https://doi.org/10.1177/1471082X16649730
https://doi.org/10.1111/sjos.12366
https://doi.org/10.1177/1471082X14558770
https://doi.org/10.1177/1471082X14558770
https://doi.org/10.2307/2530704
https://doi.org/10.1016/j.csda.2004.06.012
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1093/biomet/65.3.457
https://doi.org/10.1002/env.2306
https://doi.org/10.1002/env.2306
https://doi.org/10.1111/labr.12008
https://doi.org/10.1515/demo-2020-0022
https://doi.org/10.1515/demo-2020-0022
https://doi.org/10.2143/AST.37.2.2024077
https://doi.org/10.2143/AST.37.2.2024077
https://doi.org/10.1007/s11634-016-0235-0
https://doi.org/10.2307/3236568
https://doi.org/10.1007/BF03263526
https://doi.org/10.1007/BF03263526
https://doi.org/10.1007/s10260-011-0176-x
https://doi.org/10.1177/0049124118769081
https://doi.org/10.1080/16843703.2010.11673225
https://doi.org/10.1007/s40300-016-0091-x
https://CRAN.R-project.org/package=CUB


R. H. L. Ip, K. Y. K. Wu

Iannario M, Simone R (2017) Mixture models for rating data: the method of moments via Gröbner basis. J
Algebr Stat 8(2):1–28. https://doi.org/10.18409/JAS.V8I2.60

IannarioM, Tarantola C (2023) How to interpret the effect of covariates on the extreme categories in ordinal
data models. Sociol Method Res 52(1):231–267. https://doi.org/10.1177/0049124120986179

Ip RHL, Wu KYK (2024) A Markov random field model with cumulative logistic functions for spatially
dependent ordinal data. J Appl Stat 51(1):70–86. https://doi.org/10.1080/02664763.2022.2115985

Joshi A, Kale S, Chandel S, Pal DK (2015) Likert scale: explored and explained. Brit J Appl Sci Technol
7(4):157. https://doi.org/10.9734/BJAST/2015/14975

Krosnick JA (1999) Survey research. Annu Rev Psychol 50:537–567. https://doi.org/10.1146/annurev.
psych.50.1.537

Krosnick JA, Alwin DF (1987) An evaluation of a cognitive theory of response-order effects in survey
measurement. Public Opin Q 51(2):201–219. https://doi.org/10.1086/269029

Manisera M, Zuccolotto P (2014) Modeling “don’t know” responses in rating scales. Pattern Recogn Lett
45:226–234. https://doi.org/10.1016/j.patrec.2014.04.012

ManiseraM, Zuccolotto P (2015) Identifiability of a model for discrete frequency distributions with a multi-
dimensional parameter space. J Multivar Anal 140:302–316. https://doi.org/10.1016/j.jmva.2015.05.
011

McCullagh P (1980) Regression models for ordinal data. J R Stat Soc B Met 42:109–142. https://doi.org/
10.1111/j.2517-6161.1980.tb01109.x

McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York
McLachlan GJ, Lee SX, Rathnayake SI (2019) Finite mixture models. Annu Rev Stat Appl 6:355–378.

https://doi.org/10.1146/annurev-statistics-031017-100325
Meilijson I (1989) A fast improvement to the EM algorithm on its own terms. J R Stat Soc BMet 51(1):127–

138. https://doi.org/10.1111/j.2517-6161.1989.tb01754.x
MolenberghsG, Lesaffre E (1994)Marginalmodeling of correlated ordinal data using amultivariate Plackett

distribution. J Am Stat Assoc 89:633–644. https://doi.org/10.1080/01621459.1994.10476788
Nelsen RB (2006) An introduction to copulas. Springer, New York
Piccolo D (2003) On the moments of a mixture of uniform and shifted binomial random variables. Quad

Stat 5:85–104
Piccolo D (2006) Observed information matrix for MUB models. Quad Stat 8:33–78
Piccolo D, D’Elia A (2008) A new approach for modelling consumers’ preferences. Food Qual Prefer

19(3):247–259. https://doi.org/10.1016/j.foodqual.2007.07.002
Piccolo D, Simone R (2019) The class of CUB models: statistical foundations, inferential issues and

empirical evidence. Stat Method Appl 28:389–435. https://doi.org/10.1007/s10260-019-00461-1
R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna
Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev

26(2):195–239. https://doi.org/10.1137/1026034
Scott WA (2002) Maximum likelihood estimation using the empirical Fisher information matrix. J Stat

Comput Simul 72(8):599–611. https://doi.org/10.1080/00949650213744
Tourangeau R, Rips LJ, Rasinski K (2000) The psychology of survey response. CambridgeUniversity Press,

Cambridge
Tutz G (2022) Ordinal regression: a review and a taxonomy of models. WIRES Comput Stat 14(2):e1545.

https://doi.org/10.1002/wics.1545
Van Vaerenbergh Y, Thomas TD (2013) Response styles in survey research: a literature review of

antecedents, consequences, and remedies. Int J Public Opin Res 25(2):195–217. https://doi.org/10.
1093/ijpor/eds021

Varin C, Vidoni P (2006) Pariwise likelihood inference for ordinal categorical time series. Comput Stat
Data Anal 51(4):2365–2373. https://doi.org/10.1016/j.csda.2006.09.009

Wakita T, Ueshima N, Noguchi H (2012) Psychological distance between categories in the Likert scale:
comparing different number of options. Educ Psychol Meas 72(4):533–546. https://doi.org/10.1177/
0013164411431162

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.18409/JAS.V8I2.60
https://doi.org/10.1177/0049124120986179
https://doi.org/10.1080/02664763.2022.2115985
https://doi.org/10.9734/BJAST/2015/14975
https://doi.org/10.1146/annurev.psych.50.1.537
https://doi.org/10.1146/annurev.psych.50.1.537
https://doi.org/10.1086/269029
https://doi.org/10.1016/j.patrec.2014.04.012
https://doi.org/10.1016/j.jmva.2015.05.011
https://doi.org/10.1016/j.jmva.2015.05.011
https://doi.org/10.1111/j.2517-6161.1980.tb01109.x
https://doi.org/10.1111/j.2517-6161.1980.tb01109.x
https://doi.org/10.1146/annurev-statistics-031017-100325
https://doi.org/10.1111/j.2517-6161.1989.tb01754.x
https://doi.org/10.1080/01621459.1994.10476788
https://doi.org/10.1016/j.foodqual.2007.07.002
https://doi.org/10.1007/s10260-019-00461-1
https://doi.org/10.1137/1026034
https://doi.org/10.1080/00949650213744
https://doi.org/10.1002/wics.1545
https://doi.org/10.1093/ijpor/eds021
https://doi.org/10.1093/ijpor/eds021
https://doi.org/10.1016/j.csda.2006.09.009
https://doi.org/10.1177/0013164411431162
https://doi.org/10.1177/0013164411431162

	A mixture distribution for modelling bivariate ordinal data
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Bivariate discrete uniform distribution
	2.2 Bivariate binomial distribution

	3 A new class of bivariate CUB distributions
	3.1 Comparison with HMMLU

	4 Inferential issues
	4.1 Identifiability
	4.2 Parameter estimation
	4.3 Standard errors
	4.4 Model selection

	5 Simulation
	5.1 Large sample with 10 categories
	5.2 Small sample with 5 or 7 categories

	6 Application
	7 Discussions and conclusion
	Appendix A: Moments of U, T and R
	Appendix B: EM algorithm
	Appendix C: Detailed expressions for the information matrix
	References


