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Abstract
We address the semiparametric challenge of identifying and estimating generalized
additive partial linear models with nonignorable missingness in the response. Identifi-
ability is ensured under instrumental variable assumption that there is an instrumental
covariate related to the prospensity but unrelated to the response variable, or the
assumption that the conditional score function is linear in the response variable. We
propose a new estimating equation for the prospensity by taking expectation of the
unobservable part on a linear combination of all covariates rather than the covariates
themselves. This estimating equation does not suffer from the typical curse of dimen-
sionality. Then the unknown nonparametric function is approximated by polynomial
spline basis functions and we construct estimating equations for mean of response
based on the inverse probability weighting. Under some regular conditions, we estab-
lish asymptotic normality of the proposed estimators for parametric components and
consistency of the estimators of nonparametric functions. Simulation studies demon-
strate that the proposed inference procedure performs well in many settings. The
proposed method is applied to analyze the household income dataset from the Chi-
nese Household Income Project Survey 2013.

Keywords Generalized additive partial linear models · Nonignorable missingness ·
Identifiability · Instrumental variable · Asymptotic normality

Mathematics Subject Classification 62D10 · 62G08

B Xia Cui
cuixia@gzhu.edu.cn

Jierui Du
dujierui@gzhu.edu.cn

1 School of Economics and Statistics, Guangzhou University, Guangzhou 510006, Guangdong,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00362-023-01522-0&domain=pdf
http://orcid.org/0000-0002-0782-6281


3236 J. Du, X. Cui

1 Introduction

Missing data is a prevalent issue in research areas like biomedicine, social sciences,
and survey sampling. Underlying any missing data problem is the statistical model for
the data if none of the data were missing (Tsiatis 2006). The missingness mechanism
plays a crucial role in distinguishing different types of missingness problems. The
missingness is named ignorable if it depends on the observed data only; otherwise, it
is named nonignorable (Little and Rubin 2019; Zhao and Ma 2022). In practice, gen-
eralized additive partial linear models, combining interpretability and flexibility, are
widely used for modeling different response types. Nonignorable models are under-
used due to the complexity of the identification and estimation procedures needed to
recover parameters of interest as functions of observed data (Nabi and Bhattacharya
2022).

Identification is generally not accessible under nonignorable missingness with-
out additional assumptions. One approach is to employ the shadow variable strategy
(Wang et al. 2014; Zhao and Shao 2015; Miao and Tchetgen Tchetgen 2016). Another
similar method involves using instrumental variables (Tchetgen Tchetgen and Wirth
2017; Sun et al. 2018). Recently, Zhao and Ma (2022) and Li et al. (2022) combined
these two approaches, establishing clear identifiability for the model. However, select-
ing suitable instrumental variables or shadow variables can be difficult, especially
when dealing with numerous covariates (Cameron and Trivedi 2005). An alternative
approach to address identifiability without using instrumental variables or shadow
variables relies on stronger assumptions regarding the distribution of the response or
the response mechanism. Stronger assumptions about the response mechanism allow
for the derivation of identifiability based on the distribution of the observed data,
as demonstrated by Morikawa and Kim (2021) and Beppu et al. (2022). Miao et al.
(2016), Cui et al. (2017), and Du et al. (2023) made assumptions that the response
in the full data follows a specific distribution, such as exponential families. However,
when these stronger assumptions on the response distribution and mechanism may
lead to misspecification, utilizing instrumental variables or shadow variables remains
a reasonable approach.

Further advancements are needed to develop estimationmethodswhen the observed
likelihood is identifiable. Extensive research has been conducted in this area, with
various approaches proposed. For example,Wang et al. (2014), Shao andWang (2016),
and Wang et al. (2021) employed the generalized estimating equations approach.
The empirical likelihood approach was utilized by Tang et al. (2014) and Cui et al.
(2022). Calibration was employed by Kott and Chang (2010) and Hamori et al. (2019),
while the pseudo likelihood approach was applied by Fang and Shao (2016) and Chen
et al. (2021). These studies contribute to the existing literature by providing different
estimation methods for addressing this issue.

Limited attention has been given in the existing literature to situations where regres-
sion models involve nonparametric functions of interest and the response is affected
by nonignorable missingness, despite its prevalence in practical applied research. Du
et al. (2023) tackle the challenge of identifying and estimating generalized additive
partial linear models by assuming that the response in the full data follows expo-
nential family. On the other hand, Shao and Wang (2022) propose estimators for
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regression models with a single nonparametric function when the data distribution
is unknown, but their focus does not specifically address model identifiability. In
this paper, generalized additive partial linear models are identified through the impo-
sition of three types of monotone missing data mechanisms: logistic model, probit
model, and complementary log-log model. The logistic and probit models are popular
missing data mechanisms (Wang et al. 2014). The complementary log-log model has
an important application in the area of survival analysis and hazard modeling (An
and Brown 2008). These three models are likely to be most familiar to the target
audience. Polynomial spline basis functions are used to approximate the unknown
nonparametric function, and estimating equations for the mean response are formu-
lated based on inverse probability weighting. Our contributions focus on three main
aspects.

(1) Our proposed approach identifies generalized additive partial linear models
through the imposition of three types of monotone missing data mechanisms:
logistic model, probit model, and complementary log-log model. Identifiability is
achieved by either assuming instrumental variable dependence without additional
assumptions or assuming a linear relationship between the score function and the
response variable, without the use of instrumental variables. The mild sufficient
conditions for identifiability stem from leveraging the analytical properties of the
propensity function.

(2) The missing model parameter estimators are obtained using the conditional score
function. To address the curse of dimensionality, we employ dimension reduction
techniques to achieve easily attainable univariate kernel estimation. The parameter
and nonparametric function estimators in the regression model are obtained using
inverse probability weighting. The unknown smooth functions are approximated
by a linear combination of regression splines and incorporated into the covariate
vector for statistical inference using generalized estimation equations.

(3) Under certain regularity conditions, we establish the asymptotic normality of the
proposed estimators for the parametric components and the convergence rate of
the estimators for the nonparametric functions. Simulation studies demonstrate the
favorable performanceof theproposed inferenceprocedure across various settings.
We also apply the proposed method to a dataset from the Chinese Household
Income Project study conducted in 2013.

The paper is structured as follows. Section2 establishes the sufficient conditions
for the identifiability of the observed likelihood in the generalized additive partially
linear models under nonignorable missingness. In Sect. 3, we introduce the estimation
procedure and establish the consistency and asymptotic normality of the estimators.
The performance of the proposed method is evaluated through simulation studies in
Sect. 4. Section5 demonstrates the application of the new method using data from the
Chinese Household Income Project 2013. Concluding remarks are provided in Sect. 6.
The proofs of Theorem 1-4 can be found in the Supplementary Material.
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2 Model settings and identifiability

Let Y be the response variable,X andZ be the fully observed covariates, where Y ∈ R,
X ≡ (1, X1, . . . , Xd1−1)

� ∈ R
d1 and Z ≡ (Z1, . . . , Zd2)

� ∈ R
d2 . Define the binary

variable r to be the missingness indicator, if Y is observable, r takes 1, otherwise takes
0. We assume that the probability P(r = 1|Y = y,X = x,Z = z) depends on y,
x, and z and denote it by π(y, x, z;α, θ). We specify it using a logistic model, probit
model or complementary log-log model as follows

π(y, x, z;α, θ) = expit(ξ) or �(ξ) or 1 − exp{− exp(ξ)}, (1)

where ξ = αy+ θ�(x�, z�)�, expit(·) ≡ exp(·)/{1+ exp(·)}, �(·) is the cumulative
distribution function of the standard normal distribution. α ∈ R is the nonignorable
parameter and θ = (θ0, . . . , θd1+d2−1)

� is an unknown (d1 +d2)-dimensional param-
eters. In the model described by Eq. (1), the probability of missingness depends on the
potentially missing Y through the parameter α. When α = 0, the missing mechanism
is independent of the potential missing Y , indicating that it is missing at random.
Conversely, if α �= 0, it indicates nonignorable missingness.

Denoting p(y|x, z) as the conditional density function of y given x and z, the
conditional density functionof a single sample basedonobserveddata canbe expressed
as

{p(y, r = 1|x, z)}I (r=1){p(r = 0|x, z)}I (r=0)

= {p(r = 1|y, x, z)p(y|x, z)}I (r=1)[E{p(r = 0|Y ,X,Z)|X,Z}]I (r=0).

Suppose we have an independent random sample (Yi , ri ,Xi ,Zi ), i = 1, · · · , n. The
observed likelihood given Xi ,Zi can be written as

Ln =
n∏

i=1

{
π(Yi ,Xi ,Zi ;α, θ)p(Yi |Xi ,Zi )

}ri

×
[ ∫

{1 − π(y,Xi ,Zi ;α, θ)}p(y|Xi ,Zi )dy
]1−ri

. (2)

Nonignorable missingness in Y poses challenges to the identifiability of the observed
likelihood, as highlighted byWang et al. (2014). In Sect. 4, we demonstrate an uniden-
tifiable example and discuss the resulting fluctuations in the estimatorswhen themodel
lacks identifiability. Identifiability of the observed likelihood function (2) depends on
the unique determination of π(Yi ,Xi ,Zi ;α, θ) and p(Yi |Xi ,Zi ) givenXi ,Zi . If there
exist two sets of parameters (α, θ , p(y|x, z)) and (α∗, θ∗, p∗(y|x, z)) such that

π(y, x, z;α, θ)p(y|x, z) = π(y, x, z;α∗, θ∗)p∗(y|x, z),

holds for all (y, x, z) in an open set ofRd1+d2+1, taking logarithms on both sides gives

h(ξ) + log p(y|x, z) = h(ξ∗) + log p∗(y|x, z), (3)
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where ξ∗ = α∗y + θ∗�(x�, z�)�, h(ξ) can take three types of forms log{expit(ξ)},
log{�(ξ)}, log[1 − exp{− exp(ξ)}]. The observed likelihood is identifiable if (3)
implies that

α = α∗, θ = θ∗, p(y|x, z) = p∗(y|x, z).

To ensure identifiability, we can adopt the instrumental variable assumption, as
defined in Assumption 1, following a similar approach as proposed by Tchetgen Tch-
etgen and Wirth (2017) and Sun et al. (2018).

Assumption 1 The missing mechanism π(Y ,X,Z;α, θ) includes a variable that is
conditionally independent of Y given the other covariates.

The absence of a direct effect of the instrumental variable on the response echoes
an assumption commonly encountered in causal inference. Moreover, in the context of
this paper, the instrumental variable is integratedwithin themissingmechanismmodel.
Tchetgen Tchetgen andWirth (2017) introduced homogeneous additive selection bias,
making selection bias independent of the instrumental variable, which enables the
identifiability of mean functionals for observed covariates. Sun et al. (2018) restricted
the ratio p(y|x, z)/p∗(y|x, z) and establishes the identifiability of p(y, r |x, z). By
employing three distinct forms of monotonemissing data mechanisms: logistic model,
probit model, and complementary log-log model, we are able to leverage their analyt-
ical attributes to streamline the requirements for ensuring model identifiability.

Theorem 1 Under Assumption 1, if there is at least one continuous variable in the
nonlinear component, the observed likelihood (2) is identifiable.

The proof is provided in the SupplementaryMaterial. Theorem 1 establishes a suffi-
cient condition for the identifiability of the observed likelihood under the instrumental
variable assumption. However, determining a reasonable instrumental variable before-
hand is often impractical, and detecting its presence from observed data is challenging.
In cases where the instrumental variable assumption fails or reasonable instrumental
variables are difficult to choose, stronger assumptions on the response may be neces-
sary beyond what standard statistical methods typically require.

Assumption 2 Letμ(X,Z) = E(Y |X,Z), andυ(·) represents the nuisance parameter.
Defining Sμ{X,Z;μ, υ(·)} = ∂ log p(Y |X,Z;μ, υ(·))/∂μ, and we allow:

Sμ{X,Z;μ, υ(·)} = a{X,Z;μ, υ(·)}Y + b{X,Z;μ, υ(·)}. (4)

Wenow illustrate three cases demonstrating the validity ofAssumption 2 for various
common distributions.

Example 1 (Exponential family case): Assuming that the probability density function
p(Y |X,Z) belongs to the exponential family, then

Sμ(X,Z) = Y − μ

E[{Y − μ)}2|X,Z] ,
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anda{X,Z;μ, υ(·)} = 1/E{(Y−μ)2|X,Z} andb{X,Z;μ, υ(·)} = −μ(X,Z)/E{(Y−
μ)2|X,Z}. The exponential family encompasses various common distributions, such
as the normal distribution and gamma distribution for continuous responses, the
Bernoulli distribution for binary responses, and the Poisson distribution and geometric
distribution for discrete responses.

Example 2 (Quasi-likelihood case): For the quasi-Poisson model with nonignorable
nonresponse data,we can specify the structure of the probability density function based
on assumptions about the conditional mean and variance functions in the following
manner:

p(Y |X,Z;μ, υ(·)) = exp{(Y logμ − μ)/φ)}
E[exp{(Y logμ − μ)/φ)}|X,Z] ,

then

Sμ(X,Z) = Y − μ

φμ
,

and a{X,Z;μ, υ(·)} = 1/{φμ(X,Z)} and b{X,Z;μ, υ(·)} = −1/φ. This approach
can be generalized to other quasi-likelihood statistical models as well.

Example 3 (Truncated distribution case): We assume the probability density function
p(Y |X,Z;μ, ν(·)) takes the following form:

p(Y |X,Z;μ, ν(·)) =
1√
2πσ 2

exp(−(Y−μ)2

2σ 2 )

�(b − μ/σ) − �(a − μ/σ)
, a ≤ y ≤ b,

where � is the cumulative distribution function of the standard normal distribution.
Often the goal is to make inference back to the original population and not on the
truncated population that is sampled (Hattaway 2010). In this case, the inference is
focused on estimating μ, which represents the expectation of the original distribution.
Let

Sμ(X,Z) = Y − μ

σ 2 − ∂ log[�{(b − μ)/σ) − �((a − μ)/σ }]
∂μ

, a ≤ y ≤ b,

where a{X,Z;μ, υ(·)} = 1/σ 2 and b{X,Z;μ, υ(·)} = −μ(X,Z)/σ 2−∂ log[�{(b−
μ(X,Z))/σ ) − �((a − μ(X,Z))/σ }]/∂μ. We can extend this approach to truncated
distributions.

Letμ(X,Z) = λ(η), where λ(·) represents the inverse of the link function between
the response and regression parameter η that is modeled as an additive partial linear
function

η = β�X +
d2∑

k=1

gk(Zk). (5)

To ensure identifiability, we assume that the additive nonparametric functions in (5) are
centered, i.e., E[gk(Zk)] = 0 for k = 1, . . . , d2. The inclusion of a linear component
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β�X in model (5) makes it easier to interpret, while the inclusion of the nonparametric
component

∑d2
k=1 gk(Zk) enhances its flexibility.

Theorem 2 Under Assumption 2, if the inverse of the link function λ(·) is a known
one-to-one, first differential function and there is at least one continuous variable in
the nonlinear component, then

(i) When Y is a binary variable, log λ(x) is strictly concave and the sign of the first
derivative of the nonlinear component

∑d2
k=1 gk(zk) is known at point zero, the

observed likelihood (2) is identifiable;
(ii) When Y is a discrete variable with at least three values, the observed likelihood

(2) is identifiable if the sign of α is known;
(iii) When Y is a continuous variable and h(ξ) = log expit(ξ) is used, the observed

likelihood (2) is identifiable when the sign of at least one element of the parameter
vector (α, θ�)� is known;

(iv) When Y is a continuous variable, h(ξ) = log{�(ξ)} or log[1−exp{− exp(ξ)}],
the observed likelihood (2) is identifiable.

The proof is provided in the Supplementary Material. The three examples above
illustrate the wide applicability of Theorem 2. In contrast to Theorem 1 in Du et al.
(2023), Theorem 2 expands the identifiability of the models range to a more general
form and also facilitates the establishment of identifiable pseudo-likelihood functions,
all without requiring instrumental variable assumptions. The inverse of the link func-
tion λ(·) is a known one-to-one, first differential function commonly employed in
quasi-likelihood models (Wang et al. 2011). For binary variables, commonly used
propensity functions, like the logistic model, probit model, and complementary log-
log model, satisfy the condition that log λ(x) is strictly concave. Estimating g′

k(xk0)
involves using a local least squares algorithm, with xk0 chosen as a fixed point within
a neighborhood where missingness does not occur (of length O(n−1/5)) (Fan et al.
1996). Prior knowledge of the sign of the unknown parameters in the missing mech-
anism models is required for parameter identifiability in the case of discrete response
variables with at least three values and continuous response variables with a logistic
missing datamechanism.According toKrosnick et al. (2002), factors like respondents’
cognitive level, motivation, and social status influence nonresponse probability. Based
on this, we can speculate on the trend of nonresponse probability and infer the sign of
the parameters in the missing mechanism model. For instance, in a household income
survey, high-income individuals might be less likely to disclose their true income,
suggesting α < 0. The identifiability of the observed likelihood (2) is guaranteed
when the model (4) reduces to generalized additive models, as stated in Theorem 1
and Theorem 2.

3 Estimationmethod

Byconsidering a nonparametric formof p(y|x, z) and utilizing the observed likelihood
(2), The score function method proposed by Cui and Zhou (2017) for the parameters
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in the missing model can be derived as follows:

n∑

i=1

{
ri

π ′(Yi ,Xi ,Zi ; δ)

π(Yi ,Xi ,Zi ; δ)
− (1 − ri )

E[{π ′(Yi ,Xi ,Zi ; δ)}|Xi ,Zi ]
E[{1 − π(Yi ,Xi ,Zi ; δ))}|Xi ,Zi ]

}
, (6)

where δ = (α, θ�)�, π ′(·) denotes the partial derivative of π(·) with respect to δ. To
estimate the parameters in equation (6) using the kernel method, a multivariate kernel
is required. However, the standard nonparametric kernel regression estimators face
challenges due to the curse of dimensionality. In this paper, we propose an improved
formulation of equation (6) as:

V(δ) =
n∑

i=1

{
ri

π ′(Yi ,Xi ,Zi ; δ)

π(Yi ,Xi ,Zi ; δ)
+ (1 − ri )

ω′(Oi ; δ)

ω(Oi ; δ)

}
, (7)

where ω(O; δ) = E[{1 − π(Y ,X,Z; δ)}|O], O = θ�(X�,Z�)�, ω′(·) denotes the
partial derivative of ω(·) with respect to δ. The score function (7) is unbiased since

E{V(δ)} =
n∑

i=1

E
{
ri

π ′(Yi ,Xi ,Zi ; δ)

π(Yi ,Xi ,Zi ; δ)
+ (1 − ri )

ω′(Oi ; δ)

ω(Oi ; δ)

}

=
n∑

i=1

E[E{π ′(Yi ,Xi ,Zi ; δ) + ω′(Xi ,Zi ; δ)|Oi }]

= 0.

Given observational data, we have

ω(Oi ; δ) = E[ri {1 − π(Yi ,Xi ,Zi ; δ)}/π(Yi ,Xi ,Zi ; δ)|Oi ],
ω′(Oi ; δ) = −E[riπ ′(Yi ,Xi ,Zi ; δ)/π(Yi ,Xi ,Zi ; δ)|Oi ].

There are some existing methods of estimating ω(O; δ) and ω′(O; δ), for details see
Fan et al. (1996). The local constant estimators are given

ω̂(o; δ) =
∑n

i=1 kh(Oi − o)[ri {1 − π(Yi ,Xi ,Zi ; δ)}/π(Yi ,Xi ,Zi ; δ)]∑n
i=1 kh(Oi − o)

,

ω̂′(o; δ) = −
∑n

i=1 kh(Oi − o){riπ ′(Yi ,Xi ,Zi ; δ)/π(Yi ,Xi ,Zi ; δ)}∑n
i=1 kh(Oi − o)

,

where k(·) is a given kernel function, h represents the bandwidth, and kh(t) is defined
as k(t/h)/h.

Hence, we formulate the estimation equation for the parameter δ in the missing
model as follows:

V̂(δ) =
n∑

i=1

V̂i (δ) =
n∑

i=1

{
ri

π ′(Yi ,Xi ,Zi ; δ)

π(Yi ,Xi ,Zi ; δ)
+ (1 − ri )

ω̂′(Xi ,Zi ; δ)

ω̂(Xi ,Zi ; δ)

}
. (8)
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In estimating equation (8), we simplify the problem by projecting the propensity
function onto a linear combination of covariates, transforming it into a univariate
kernel estimation problem. While this approach may yield less efficient estimators,
it offers simplicity and ease of implementation. In practical calculations, the nleqslv
package in R can be used to solve equation (8) and obtain the estimator for δ.

The parameter δ in the missing model exhibits consistency and asymptotic normal-
ity, as described in Theorem 3. This is contingent upon the asymptotic properties of
the estimated function V̂(δ).

Theorem 3 Under identifiable observed likelihood (2) and the satisfaction of condi-
tions (A)-(E) in the Supplementary Material, if nh2/ log(1/h) → ∞ and nh4 → 0,
the following holds:

(i) δ̂ converges in probability to the true value δ0,

(ii)
√
n(δ̂ − δ0)

D−→ N (0,�(δ0)),

where �(δ) = A−1(δ)B(δ){A−1(δ)}�,

A(δ) = E{∂Vi (δ)/∂δ�}, B(δ) = E{Ri (δ)R�
i (δ)}, (9)

and

Ri (δ) = {1 − ri/π(Yi ,Xi ,Zi ; δ)}ω′(Xi ,Zi ; δ)

ω(Xi ,Zi ; δ)
.

The proof of Theorem 3 is provided in the Supplementary Material. Based on
Theorem 3, the asymptotic representation for V̂(δ) can be viewed as a special case
of generalized estimating equations as described in Wang et al. (2021). In practical
applications, the covariance matrix can be obtained using Â−1(δ̂)B̂(δ̂){ Â−1(δ̂)}�,
where

Â(δ̂) = n−1
n∑

i=1

∂V̂i (δ̂)/∂δ�, B̂(δ̂) = n−1
n∑

i=1

Ri (δ̂)R�
i (δ̂).

Now we will consider the estimators of unknown parameter vector β and unknown
functions gk(Zk) = 0, k = 1, . . . , d2. When the propensity score is known, one
approach to estimation is to plug the estimated δ̂ from (8) into π(y, x, z; δ) and
use inverse weighting of the complete cases. This method employs a generalized
estimating equation and estimates the nonparametric components using polyno-
mial splines. Recall that Z = (Z1, . . . , Zd2)

� represents a vector of covariates,
Zi = (Zi1, . . . , Zid2)

� is the vector of covariates for the i th observation, and ηi

for the i th observation can be expressed as ηi = β�Xi + ∑d2
k=1 gk(Zik). Assuming

that Zk is distributed on a compact interval [t lk, trk ], k = 1, . . . , d2, without loss of
generality, we can set all intervals to be [t lk, trk ] = [0, 1], k = 1, . . . , d2. According
to the approach proposed by Wang and Yang (2007), the smooth unknown functions
gk’s can be effectively approximated using a linear combination of polynomial spline
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functions. Let Sn be the space of polynomial splines on the interval [0, 1] of order
q ≥ 1. We define a knot sequence with J interior knots and denote it as

τ−q = · · · = τ−1 = τ0 = 0 < τ1 < . . . < τJ < 1 = τJ+1 = · · · = τJ+q+1,

where J ≡ Jn is chosen to increase as the sample size n increases, and the specific
order is provided in condition (I) in the Supplementary Material. Then Sn consists
of functions ω̃ that satisfy the following properties: (i) ω̃ is a polynomial of degree
q on each of the subintervals Is = [τs, τs+1), s = 0, . . . , Jn − 1, IJn = [τJn , 1]; (ii)
for q ≥ 1, ω̃ is a (q − 1) times continuously differentiable on [0, 1]. For the kth
covariate Zk , let {b̃ j,k(Zk), j = 1, . . . , Jn + q + 2, k = 1, . . . , d2} be the B-spline
basis functions of order q of the space of Sn . Let Nn = Jn + q + 1, we adopt the
normalized B-spline space S0

n introduced in Xue and Yang (2006) with the normalized
basis as follows, 1 ≤ j ≤ Nn, 1 ≤ k ≤ d2,

Bj,k(Zk) = √
Nn

{
b̃ j+1,k(Zk) − E(b̃ j+1,k)

E(b̃1,k)
b̃1,k(Zk)

}
. (10)

The normalizedB-spline approximation for gk(Zk) can then be expressed as following

gk(Zk) ≈ g̃k(Zk) =
Nn∑

j=1

γ j,k B j,k(Zk) − 1

n

n∑

i=1

Nn∑

j=1

γ j,k B j,k(Zik). (11)

Denoting γ = (γ1,1, . . . , γNn ,d2)
� as a vector of coefficients of dimension Nnd2,

Bi,k = (B1,k(Zik), . . . , BJn ,k(Zik))
� and Bi = (B�

i,1, . . . ,B
�
i,d2

)�, we can simplify

the notation by representing
∑Nn

j=1 γ j,k B j,k(Zk) as g̃k(Zk). Using the normalized

B-splines, we approximate ηi as η̃i = X�
i β + g̃(Zi ) = X�

i β + B�
i γ .

Suppose that the conditional variance function var(Y |X,Z) = φV (μ(X,Z)) for
φ > 0 and some known positive function V . Let the quasi-score function be defined
as

q(β, g) = Y − μ

V (μ)
× ∂μ

∂η
, (12)

By replacing the unknown smooth function with the approximation given in Equation
(11), we can obtain the following estimating equation:

n∑

i=1

Ui (δ̂,β, g̃) =

⎛

⎜⎜⎝

n∑
i=1

Uβ,i (δ̂,β, g̃)

n∑
i=1

Uγ ,i (δ̂,β, g̃)

⎞

⎟⎟⎠ = 0, (13)
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where

Uβ,i (δ̂,β, g̃) = riqi (β, g̃)

πi (δ̂)
Xi , Uγ ,i (δ̂,β, g̃) = riqi (β, g̃)

πi (δ̂)
Bi .

Then the estimators for β and γ can be obtained by solving for (13), and ĝ = B�γ̂ .
We will introduce some notation. Let

D(δ,β, g) = E{∂Uβ,i (δ,β, g)/∂β�} − G(δ,β, g)E{∂Uγ ,i (δ,β, g)/∂β�},

where

G(δ,β, g) = E{∂Uβ,i (δ,β, g)/∂γ �}[E{∂Uγ ,i (δ,β, g)/∂γ �}]−1.

And �(δ,β, g) = E{m(δ,β, g)m(δ,β, g)�}, where

mi (δ,β, g) = {D(δ,β, g)}−1 1√
n

n∑

i=1

[Uβ,i (δ,β, g) − G(δ,β, g)Uγ ,i (δ,β, g)]

−{D(δ,β, g)}−1[E{∂Uβ,i (δ,β, g)/∂δ�}
−G(δ,β, g)E{∂Uγ ,i (δ,β, g)/∂δ�}]A−1(δ)

1√
n
R(δ).

We use D0 and �0 to denote the values of D(δ,β, g) and �(δ,β, g) at δ0,β0, g0,
respectively. Theorem 4 describes the asymptotic properties of the proposed estima-
tors.

Theorem 4 Under identifiable observed likelihood (2) and conditions (B)-(J), if
nh2/ log(1/h) → ∞ and nh4 → 0, we have

(i) ‖ĝk − g0k‖ = Op{(Nn/n)1/2}, 1 ≤ k ≤ d2,

(ii)
√
n(β̂ − β0)

D−→ N (0, D−1
0 �0D

−1
0

�
),

where ‖ĝk − g0k‖2 = E{ĝk(Zk) − g0k(Zk)}2.
The proof of Theorem 4 is provided in the Supplementary Material. In practical

applications, the covariance matrix can be estimated using D̂−1(δ̂, β̂, ĝ)�̂(δ̂, β̂, ĝ)
{D̂−1(δ̂, β̂, ĝ)}�, where

D̂(δ̂, β̂, ĝ) = n−1
n∑

i=1

{∂Uβ,i (δ̂, β̂, ĝ)/∂β� − Ĝ(δ̂, β̂, ĝ)∂Uγ ,i (δ̂, β̂, ĝ)/∂β�},

Ĝ(δ̂, β̂, ĝ) = n−1
n∑

i=1

∂Uβ,i (δ̂, β̂, ĝ)/∂γ �[ n∑

i=1

∂Uγ ,i (δ̂, β̂, ĝ)/∂γ �]−1
,

�̂(δ̂, β̂, ĝ) = n−1
n∑

i=1

{mi (δ̂, β̂, ĝ)m�
i (δ̂, β̂, ĝ)},
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mi (δ̂, β̂, ĝ) = {D̂(δ̂, β̂, ĝ)}−1 1√
n

n∑

i=1

[Uβ,i (δ̂, β̂, ĝ) − Ĝ(δ̂, β̂, ĝ)Uγ ,i (δ̂, β̂, ĝ)]

−{D̂(δ̂, β̂, ĝ)}
[1
n

n∑

i=1

∂Uβ,i (δ̂, β̂, ĝ)/∂δ�

−Ĝ(δ̂, β̂, ĝ)
1

n

n∑

i=1

∂Uγ ,i (δ̂, β̂, ĝ)/∂δ�] Â−1(δ̂)
1√
n
Û(δ̂).

4 Simulations

In this section, we present the simulation results of the proposed estimators introduced
in Sect. 3. We consider three types of response models: Logistic regression, quasi-
Poisson regression, and truncated normal regression. These models are subject to
different missing data mechanisms, namely logistic, probit, and complementary log-
log models.

The covariate vector (X�,Z�)� = (X1, X2, Z1, Z2)
�, and g(Z) = g1(Z1) +

g2(Z2) = sin(4π Z1) + 5(Z2 − 0.5)2 − 5/12, where Z1 and Z2 are independently
uniformly distributed on [0, 1]. We assume that T1 and T2 are normally distributed in
R
2 with

μ =
(
1
0

)
, � =

(
1 1
1 2

)
.

To account for the dependence betweenX andZ, we assume the following relationship:
X1 = T1 + 0.5(Z1 + Z2) and X2 = T2 + 0.5(Z1 + Z2).

The simulation models are designed as follows:

Binary case: The response variable Y follows a Bernoulli distribution

P(Y = 1|X,Z) = expit{β0 + β1X1 + β2X2 + g1(Z1) + g2(Z2)},

where (β0, β1, β2)
� = (−1, 1,−1)�. The missing data mechanism model is of a

logistic form

π(Y ,X,Z;α, θ) = expit(αY + θ0 + θ1X1 + θ2Z1),

with (α, θ0, θ1, θ2)
� = (0.2, 1.8, 0.2,−0.2)�, or a probit form

π(Y ,X,Z;α, θ) = �(αY + θ0 + θ1X1 + θ2Z1),

with (α, θ0, θ1, θ2)
� = (0.5, 1.3,−0.2, 0.2)�, or a complementary log-log form

π(Y ,X,Z;α, θ) = 1 − exp{− exp(αY + θ0 + θ1X1 + θ2Z1)},

123



Semiparametric estimation in generalized additive... 3247

with (α, θ0, θ1, θ2)
� = (0.3, 0.9,−0.2, 0.2)�. The first case leads to that the

percentage of complete data is about 90.1%, the second one is about 90.8% and
the third one is about 89.4%.

Quasi-Poisson case: Y follows quasi-Possion with conditional expectation

P(Y = 0|X,Z) = 1/exp{β0 + β1X1 + β2X2 + g1(Z1) + g2(Z2)},

where (β0, β1, β2)
� = (0.5,−0.5, 0.5)� and dispersion parameter φ = 1.5. The

missing data mechanism model is of a logistic form

π(Y ,X,Z;α, θ) = expit(αY + θ0 + θ1X1 + θ2Z1),

with (α, θ0, θ1, θ2)
� = (0.3, 1.5, 0.2, 0.2)�, or a probit form

π(Y ,X,Z;α, θ) = �(αY + θ0 + θ1X1 + θ2Z1),

with (α, θ0, θ1, θ2)
� = (0.15, 0.8, 0.2,−0.2)�, or a complementary log-log form

π(Y ,X,Z;α, θ) = 1 − exp{− exp(αY + θ0 + θ1X1 + θ2Z1)},

with (α, θ0, θ1, θ2)
� = (0.3, 0.8,−0.1,−0.1)�. The first case leads to that the

percentage of complete data is about 90.2%, the second one is about 88.7% and
the third one is about 88.9%.

Truncated normal case: Y is generated according to the following model:

Y ∼ T N (β0 + β1X1 + β2X2 + g1(Z1) + g2(Z2), σ
2, μ(X,Z) − c, μ(X,Z) + c),

where μ(X,Z) = β0 +β1X1 +β2X2 + g1(Z1)+ g2(Z2). The parameter vector is
set at (β0, β1, β2, σ

2, c)� = (1, 2, 2, 1, 2)�. The indicator variable r is generated
from Bernoulli distribution with probability function being specified as a logistic
form

π(Y ,X,Z;α, θ) = expit(αY + θ0 + θ1X1 + θ2Z1),

with (α, θ0, θ1, θ2)
� = (−0.5, 2, 1.5, 0.5)�, or a probit form

π(Y ,X,Z;α, θ) = �(αY + θ0 + θ1X1 + θ2Z1),

with (α, θ0, θ1, θ2)
� = (−0.2, 1, 1,−0.6)�, or a complementary log-log form

π(Y ,X,Z;α, θ) = 1 − exp{− exp(αY + θ0 + θ1X1 + θ2Z1)},

with (α, θ0, θ1, θ2)
� = (−0.2, 1, 0.7,−0.5)�. The first case leads to that the

percentage of complete data is about 82.6%, the second one is about 85.7% and
the third one is about 86.3%.
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The simulation study was conducted with different sample sizes: n = 2000 for the
Binary case, n = 1000 for the quasi-Poisson case, and n = 500 for the truncated
normal case. The reason for conducting simulations with three different sample sizes
is rooted in the fact that when the population distribution is highly imbalanced, such as
in a binary scenario, might need a substantial sample size for the central limit theorem
to kick in and produce sampling distributions that approximate a normal distribution.
Ideally, Binary and skewed multi-category discrete predictors demand larger sample
sizes compared to normally-distributed continuous predictors (Olvera Astivia et al.
2019).

The number of knots Nn was determined automatically using the R package
mgcv. The proposed estimators were implemented in R using the iteration algorithm
described in Sect. 3. The simulation results based on 1000 runs are summarized in
Tables 1, 2, and 3. These tables present the bias, standard deviation (SD), approximate
95%confidence intervals (CI), and coverage rate (CR) of the estimated parameters. The
confidence intervals were constructed using the formula “estimator± 1.96SE,” where

SE is the square root of the diagonal elements of the matrix Â−1(δ̂)B̂(δ̂) Â−1(δ̂)
�

and D̂−1(δ̂, β̂, ĝ)�̂(δ̂, β̂, ĝ)D̂−1(δ̂, β̂, ĝ)
�
. Figures1, 2, and 3 depict the mean of

the fitted nonparametric functions and the approximate 95% confidence bands (CB).
Overall, in the three examples with different missing data mechanism models, both
the parameter estimators and the nonparametric function estimators perform well. As
we might expect, the estimators in the same response model with different missing
data mechanisms show the similar bias and variance because of the similar missing
rate. While the estimators in the truncated normal case exhibit the highest bias and
variance due to the smallest sample size and highest missing rate, compared to the
binary and quasi-Poisson cases. For Brnary case under the missingness mechanism of
logistic form, the estimate θ2 has a slightly lower coverage rate.

In the study conducted by Du et al. (2023), the analysis involves utilizing data
with nonresponse alongside a parametric distribution p(y|x, z) that is a member of
the exponential family. The optimal estimator can be obtained by maximizing the
observed likelihood. In this paper, we consider nonparametric p(y|x, z) and constructs
estimating equations for mean of response based on the inverse probability weighting.
Thus, our method expands the scope of applicability for these models. And with large
samples, even if p(y|x, z) belongs to the exponential family, the difference between
the two methods almost disappears.

In order to assess the stability of the proposed inferencemethod,we consider scenar-
ios where the missingness type or the missingness mechanism model is misspecified.
We assume that the response variable Y is generated according to

Y ∼ N (β0 + β1X1 + β2X2 + g1(Z1) + g2(Z2), σ
2),

the parameter vector is set at (β0, β1, β2, σ
2)� = (1, 2, 2, 1)�. The indicator variable

r is generated from Bernoulli distribution with probability function being specified as
a logistic form

π(Y ,X,Z;α, θ) = expit(αY + θ0 + θ1X1 + θ2Z1),
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Fig. 1 The left graph is for Logistic, the middle graph is for Probit and the right graph is for Clog-log

with (α, θ0, θ1, θ2)
� = (−0.5, 2, 1.5, 0.5)�, and The percentage of complete data in

the dataset is approximately 82.4%. Here we mainly focus on that the missingness
type is mis-specified to be missing completely at random or missing at random, and
the missingness mechanism is mis-specified to be of the probit form. The sample
size is 500, and based on 1000 simulation runs, Table 4 presents the bias, standard
deviation (SD), approximately 95% confidence intervals (CI) of the parameters with
coverage rate (CR). Figure4 shows the mean of the fitted nonparametric functions
and the approximately 95% confidence band (CB). The performance of the proposed
method is not good when using complete data or missing at random mechanism. One
of them fails completely. However, when the missingness mechanism is misspecified
as a probit form, the estimators of both parameters and nonparametric functions are
less affected. The reason is that the performance with the probit and logistic model is
very similar, and in this case, misspecification of the response model is not a serious
problem (Morikawa and Kim 2021). Additionally, we observed that the probit and
logistic models yielded almost identical outcomes across the three types of response
models.

Estimation is not possiblewhen the parameter is non-identifiable. Despite providing
simulation results, the estimators are challenging to compute due to fluctuations.
Themissingmechanism is assumed to followa logistic form, that ish(αy+θ0+θ1z1) =
log{expit(αy+θ0+θ1z1)}, and p(y|x, z;β, g, φ) = exp[−y/{g1(z1)+β0}]/{g1(z1)+
β0}, and g1(z1) + β0 > 0. The condition given in (3) reduces to

log{expit(αy + θ0 + θ1z1)} − y/{g1(z1) + β0} − log{g1(z1) + β0}
= log{expit(α∗y + θ∗

0 + θ∗
1 z1)} − y/{g∗

1(z1) + β∗
0 } − log{g∗

1(z1) + β∗
0 }.

For example, we can take that

(α, θ0, θ1, β0, g1(z1))� = (1,−1,−1, 1 − e−1, e−1 − e−z1−1)�,

(α∗, θ∗
0 , θ∗

1 , β∗
0 , g∗

1(z1))
� = (−1, 1, 1, e − 1, ez1+1 − e)�,
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Fig. 2 The left graph is for Logistic, the middle graph is for Probit and the right graph is for Clog-log
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Fig. 3 The left graph is for Logistic, the middle graph is for Probit and the right graph is for Clog-log
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Fig. 4 The left graph is based on complete data, the middle graph on missing at random and the right graph
on the probit missing data mechanism
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Fig. 5 The estimators of β0, α, θ0 and θ1

which satisfies the above formula. Since

(α, θ0, θ1, β0, g1(z))� �= (α∗, θ∗
0 , θ∗

1 , β∗
0 , g∗

1(z))
� .

Hence, this model is considered non-identifiable. We generated data from the non-
identifiable model with a sample size of 1000. Based on 100 simulation runs, Figs. 5
illustrates the estimators of β0, α, θ0, and θ1 varied between two sets of values.

5 Real data analysis

The CHIP survey (2013) aims to measure the distribution of personal income and
related economic factors in rural, migrant, and urban areas of China (Sicular et al.
2020). The survey includes data from cities and towns in fifteen provinces, which
are representative of different regions in the country. These provinces include Liaon-
ing, Shanxi, Jiangsu, Shandong, Guangdong, Anhui, Henan, Sichuan, Hunan, Hubei,
Gansu, Xinjiang, Yunnan, Beijing, and Chongqing. The selected provinces represent
the north, eastern coastal areas, interior regions, and western regions of China.

In this study, the analysis focuses onurbandata,which consists of a sample of 12,233
individuals. The percentage of missingness in the data is 22.4%. Instead of assuming a
linear relationship between work experience and the log of income, a smooth function
is used, similar to the Mincer earnings function. The model is specified as follows:

log E = β0 + β1S + g1(Exper) + ε, (14)

In this model, the logarithm of earnings log E is related to years of schooling S and
work experience (Exper), which is calculated as age−S−6. The relationship is subject
to an unobserved random error (ε) with variance φ. Without considering the cost of
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Table 5 Estimate and standard deviation (SD) for the parameters of (14) under the nonignorablemissingness
(NIM) and Missing at random (MAR)

Nonignorable missingness Missing at random

Variable Estimates SD t-value Estimates SD t-value

β0 9.3792 0.0325 288.717 9.1882 0.0347 264.740

β1 0.0830 0.0027 29.800 0.0967 0.0029 32.991

α −0.2410 0.0112 −21.586 – – –

θ0 2.7663 0.3058 9.045 1.9479 0.3087 6.311

θ1 1.5436 0.0752 20.532 1.1319 0.0764 13.853

θ2 −0.8684 0.0585 −14.835 −1.0882 0.0553 −18.5059
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Fig. 6 The left graph is obtained under the nonignorable missingness and the right graph is under missing
at random

education, the rates of return to schooling can be calculated as

∂ log E/∂S = β1.

The missing data mechanism is modeled using the following model:

P(r = 1| log E, log S, log Exper)

= expit(α log E + θ0 + θ1 log S + θ2 log Exper). (15)

To account for the large values andfluctuations in schooling and experience,we replace
S and Exper with log S and log Exper. log S represents the logarithm of 1+ years of
education because uneducated groups exist, and log Exper represents the logarithm of
work experience.

Table 5 presents parameter estimates for models (14) and (15) under the nonignor-
able missingness andmissing at random. The results show that under the nonignorable
missing mechanism, log-income has a significant negative effect on the probability of
missingness. Moreover, the rates of return to schooling in China is 8.30% under the
nonignorablemissingness assumption and 9.67%under the assumption ofmissingness
at random. These estimators are consistent with the existing literature (Gao and Smyth
2015; Kang and Peng 2012), which suggests that the returns to education in China
range from 8% to 10%. It is worth noting that the rates of return to schooling in China
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have stagnated or even declined after 2005 due to factors such as education expansion
and labor mobility (Cai and Wang 2010). The rates of return to schooling in China
under the nonignorable missingness is smaller than that under missing at random,
suggesting that it is required to model the missingness mechanism. Figure5 illustrates
the functional relationship between log-income and work experience, revealing an
inverted U-shaped pattern. This finding is consistent with the classic hypothesis of the
Mincerian earnings equation, which suggests that there is an optimal level of work
experience that maximizes income.

6 Conclusions

In this study, semiparametric estimators have been developed specifically for han-
dling nonignorable missing data. These estimators are designed to accommodate the
logistic model, probit model, and complementary log-log model, which are com-
monly used to characterize the missing data mechanism. The instrumental variable
assumption ensures identifiability without requiring additional assumptions, giving
it an advantage over the assumptions proposed by Tchetgen Tchetgen and Wirth
(2017) and Sun et al. (2018). If the score function Sμ{X,Z;μ, υ(·)} can be writ-
ten as a{X,Z;μ, υ(·)}Y + b{X,Z;μ, υ(·)}, such as in the case of samples following
exponential family, identifiability can be achieved without relying on instrumental
variables. By employing the kernel method and spline method, we extend the gener-
alized linear regression model to the generalized additive partial linear model when
the distribution of the response variable is unknown.

The approaches presented in Cui and Zhou (2017) and Morikawa et al. (2017)
for estimating the missing mechanism model, due to their lack of dimensionality
reduction, become invalid when dealing with numerous covariates. In this paper, we
utilize dimension reduction techniques to achieve readily achievable univariate kernel
estimation. While univariate kernel estimation may compromise estimator efficiency,
it significantly reduces computational complexity. To enhance estimation efficiency,
one can employ the estimation method based on the effective score introduced by
Morikawa and Kim (2021). Nevertheless, under the assumption that p(y|x, z) belongs
to the exponential family, the optimal estimator can be derived by maximizing the
observed likelihood (Morikawa and Kim 2021).

There are many directions worthy of further research. A possible extension in this
research area involves transforming the identifiability of the observation likelihood into
the identifiability of the parameters of interest, such asmean functionals (Li et al. 2021).
Indeed, the development of doubly robust estimation methods and efficient estimation
techniques for nonignorable missing data is a crucial research area. Furthermore,
incorporatingmore sophisticated structures in themissingmechanismmodel is another
promising research direction.
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