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Abstract
From a continuous-time long memory stochastic process, a discrete-time randomly
sampled one is drawn using a renewal sampling process. We establish the existence
of the spectral density of the sampled process, and we give its expression in terms
of that of the initial process. We also investigate different aspects of the statistical
inference on the sampled process. In particular, we obtain asymptotic results for the
periodogram, the local Whittle estimator of the memory parameter and the long run
variance of partial sums. We mainly focus on Gaussian continuous-time process. The
challenge being that the randomly sampled process will no longer be jointly Gaussian.

Keywords Long memory · Sampled process · Whittle estimator · Periodogram ·
Spectral density · Limit theorems · Poisson process · Continuous-time Gaussian
processes

1 Introduction

Irregularly observed time series occur in many fields such as astronomy, finance, envi-
ronmental, and biomedical sciences. Discretization of a continuous time process can
produce unevenly time series. For example, physiological signals such as electromyo-
graphy (EMG), electrocardiogram (ECG), heartbeats [see e.g. Bardet and Bertrand
(2010)], as well as market prices [see e.g. Dacorogna (2001)] are measured at non
regularly spaced times. In these instances and many more, we do not control the way
data are observed, as they are recorded at irregular time points. A common approach
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consists in fitting a continuous time process to discrete-time data [see for instance
Jones (1985)].

Statistical tools available to handle unevenly time series are essentially developed
for short range dependence [see e.g. Li (2014) and references therein]. We can also
refer to numerous papers in astronomy, that focus on spectrum estimation [see e.g.
Thiebaut and Roques (2005)].

To the best of our knowledge, few results are available when the continuous-time
embedding process has a long memory. Actually, long memory statistical inference
for continuous-time models is generally built upon a deterministically sampled pro-
cess [see Tsai and Chan (2005a, b); Chambers (1996); Comte (1996)]. However, as
in the examples previously cited, in several applied contexts one has to deal with
random sampling from a continuous process. In time-domain, Philippe et al. (2021)
studied randomly-spaced observations, using a renewal process as a sampling tool.
They showed that the intensity of the long memory is preserved when the distribu-
tion of sampling intervals has a finite moment, but there are also situations where a
reduction of the longmemory is observed. Consequently, the continuous timememory
parameter cannot be estimated without a prior information on the sampling process.
Bardet and Bertrand (2010) studied spectral density estimation of continuous-time
Gaussian processes with stationary increments observed at random times.

Contrary to the paper mentioned above that focuses on the continuous process
itself, we are interested in the resulting discrete-time-indexed randomly sampled pro-
cess. More precisely, we study the spectral-domain properties and provide explicit
expressions for the spectral density of the sampled process. We mention that Philippe
and Viano (2010) addressed resampling from a discrete-time process and obtained
the existence of the spectral density. However, their spectral density expression is less
explicit since it is expressed as a non explicit limit of an integral and they do not
address resampling from a continuous process and their techniques do not extend to
our case.

Most of existing long memory inferential techniques assume that the process is a
subordinated Gaussian/linear one. Philippe et al. (2021) established a rather surprising
characteristic consisting in the loss of the joint-Gaussianity of the sampled process
when the original process was Gaussian. Therefore we cannot apply such results to
our sampled processes that are neither Gaussian nor linear. We study some aspects of
the inference via spectral approaches. In particular, to establish the consistency of long
memory parameter’s local Whittle estimator using Dalla et al. (2006)’s assumptions
for nonlinear long memory processes.

We now describe our sampling model. We start with X = (Xt )t∈R+ , a continu-
ous time process and a renewal process (Tn)n≥0. We study the discrete-time indexed
process Y = (Yn)n≥1 defined by

Yn = XTn n = 1, 2, . . . . (1)

We want to emphasise that the sampling process Tn is not observed. Throughout this
paper, we will assume that, and refer to

123



Inference for continuous-time long memory randomly sampled processes 3113

HX : X is second-order stationary continuous time process with auto-covariance
function σX and having a spectral density fX : for all t ∈ R

σX (t) =
∫ ∞

−∞
eiλt fX (λ)dλ. (2)

HT : (Tn)n≥0 independent of X and of i.i.d. increments Tj+1 − Tj = � j ≥ 0 non
degenerate with cumulative distribution function S and we let T0 = 0.

We impose this specific initialization T0 = 0 only to simplify our notations since it
implies that � j = Tj+1 − Tj for all j ∈ N. However, all the results remain true if we
take T0 = �0 and � j = Tj − Tj−1, for j ≥ 1.

The rest of the paper is organized as follows. Section2 presents results on the exis-
tence of a spectral density for the process Y when the spectrum of X is absolutely
continuous. We also provide an integral representation of such density. In Sect. 3,
we establish the asymptotic distribution of the normalized periodogram of the sam-
pled process. In Sect. 4, we show the consistency of Y -based local Whittle memory
estimator. We also study the estimation of the so-called long-run variance.

2 Spectral density function of sampled process

Under the assumptions HX and HT , Philippe et al. (2021) show that if X is stationary
then so is Y . Moreover, its covariance function is of the following form

σY ( j) = Cov(Y1,Y j+1) = E(σX (Tj )). (3)

Note that the independence of X and the renewal process imposed in HT , is required
to get (3). In the next proposition, we prove that the existence of the spectral density is
preserved by random sampling and we establish the link between the spectral densities
of processes X and Y .

Proposition 1 Assume that the continuous-time process X satisfies HX and that HT

holds. Then, the discrete-time process Y admits a spectral density and it is given by
the following formula

fY (x) = 1

2π

∫ ∞

−∞
p(x, �S(λ)) fX (λ)dλ, (4)

where�S is the characteristic functionof the cumulative distribution function S defined
in HT and

p(x, z) = 1 − |z|2
|1 − e−i x z|2 , |z| < 1

is the well known Poisson kernel.
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Proof According to the stationarity property and (3) proved in Philippe et al. (2021)
and the existence of the spectral density fX in (2), the covariance function of Y can
be computed via Fubini’s theorem as follows:

σY ( j) = E(σX (Tj )) = E

(∫ ∞

−∞
eiλTj fX (λ)dλ

)

=
∫ ∞

−∞

(
E

(
eiλTj

))
fX (λ)dλ =

∫ ∞

−∞
(�S(λ)) j fX (λ)dλ. (5)

To prove (4), it will suffice to show that for every j ≥ 0,

σY ( j) =
∫ π

−π

ei j x fY (x)dx, (6)

as fY defined by (4) is clearly an even function. For this, we will use the following
Poisson integral formula for the disk: if u is an analytic function on the disk |z| < 1
and continuous on |z| = 1 then its real and imaginary parts are harmonic and therefore
for |z| < 1, we have

u(z) = 1

2π

∫ π

−π

u(eix )p(x, z)dx .

Applying the above with u(z) = z j , where j is a fixed nonnegative integer, we get

z j = 1

2π

∫ π

−π

ei j x p(x, z)dx, for all |z| < 1, (7)

and since for Lebesgue a.e. λ, |�S(λ)| < 1 (S being non degenerated), then for a.e.
λ,

(�S(λ)) j = 1

2π

∫ π

−π

ei j x p(x, �S(λ))dx . (8)

Also taking j = 0 in (7), we get

1

2π

∫ π

−π

p(x, z)dx = 1 for all |z| < 1.

Hence, by Fubini’s theorem, we see that fY , as given in (4), is integrable on [−π, π ].
Applying Fubini’s theorem once again and substituting (8) in (5), we immediately get
(6). ��

The following corollary gives a precise expression of the spectral density of Y in the
most common case of Poisson renewal process.
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Corollary 1 Assume that the continuous-time process X satisfies HX and that (Tn) is
a Poisson renewal process with rate 1, independent of X. If λ2 fX (λ) is bounded and
continuous on the real line then

fY (x) = u(sin x, 1 − cos x)

2(1 − cos x)
, for a.e. x in the interval (−π, π), (9)

where u(x, y) is the harmonic functionon the upper half planewith boundary condition
u(x, 0) = x2 fX (x). In particular, both spectral densities are equivalent near zero,
i.e., fY (x) ∼ fX (x) as x → 0.

Proof The exponential distribution has characteristic function (1 − iλ)−1 and hence
from Proposition 1, we can easily derive that

fY (x) = 1

2π

∫ ∞

−∞

(
λ2

(λ − sin x)2 + (1 − cos x)2

)
fX (λ)dλ (10)

= 1

2(1 − cos x)

1

π

∫ ∞

−∞

(
1 − cos x

(λ − sin x)2 + (1 − cos x)2

)
λ2 fX (λ)dλ. (11)

In the above we recognise the well known Poisson integral formula for the upper half
plane for the function: x 	→ x2 fX (x): if g is continuous and bounded on the real line
then the function defined by

u(x, y) := 1

π

∫ ∞

−∞

(
y

(x − λ)2 + y2

)
g(λ)dλ (12)

is harmonic on the upper half plane and satisfies u(x, 0) = g(x) [see for example the
result 7.3 on p. 147 of Axler et al. (2000)] and u(x,y)

g(x) → 1 uniformly in x as y → 0.
Combining (11) and (12) we get the stated result. ��
The next proposition precises the behaviour of the spectral density of sampled process
Y near zero, given in the previous corollary, under mild semi parametric conditions
on the spectral density of the original process X .

Proposition 2 Assume that Tn is a Poisson process independent of X with rate 1 and
that X satisfies HX with spectral density of the form

fX (λ) = |λ|−2dφ(λ), (13)

with 0 < d < 1/2, φ(0) 
= 0 and φ is continuous on [−1, 1] and differentiable on
(−1, 1). Then

fY (x) = |x |−2d f ∗
Y (x) (14)

with f ∗
Y is positive continuous on [−π, π ] and

f ∗
Y (x) = φ(0) + σX (0)

2π
|x |2d + o(|x |2d), as x → 0. (15)
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Proof Since fY is even, we will consider x ∈ (0, π ]. From (10), we have

fY (x) = 1

2π

∫ ∞

0

λ2

(λ − sin x)2 + (1 − cos x)2
fX (λ)dλ

+ 1

2π

∫ ∞

0

λ2

(λ + sin x)2 + (1 − cos x)2
fX (λ)dλ. (16)

We study both integrals in (16) near x = 0.

∫ ∞

0

λ2

(λ + sin x)2 + (1 − cos x)2
fX (λ)dλ

x→0→
∫ ∞

0
fX (λ)dλ = σX (0)

2
(17)

since for fixed λ, as x → 0, the integrand (in the left-hand side) clearly increases
towards fX (λ). Let us deal with the first integral in (16).

∫ ∞

0

λ2

(λ − sin x)2 + (1 − cos x)2
fX (λ)dλ

=
∫ sin x

0

λ2

(λ − sin x)2 + (1 − cos x)2
fX (λ)dλ

+
∫ 2 sin x

sin x

λ2

(λ − sin x)2 + (1 − cos x)2
fX (λ)dλ

+
∫ ∞

2 sin x

λ2

(λ − sin x)2 + (1 − cos x)2
fX (λ)dλ. (18)

Using the fact that fX (λ) = λ−2dφ(λ) and sin2(x/2) = (1 − cos x)/2 and putting
λ = t sin x , we obtain for the first integral in the right hand side above, with some
u(t) ∈ (0, 1) and v(t) ∈ (0, 1),

∫ sin x

0

λ2

(λ − sin x)2 + 4(sin(x/2))4
fX (λ)dλ

= (sin x)−2d
∫ 1

0

t2−2d sin x

(1 − t)2 + tan2(x/2)
φ(t sin x)dt

= (sin x)−2d
∫ 1

0

(1 − t)2−2d sin x

t2 + tan2(x/2)
φ((1 − t) sin x)dt

= (sin x)−2d
∫ 1

0

(
1 − (2 − 2d)(1 − u(t))1−2d t

)
sin x

t2 + tan2(x/2)
(φ(0) + φ′(v(t)) sin x(1 − t))dt

= (sin x)−2d
[ ∫ 1

0

φ(0) sin x

t2 + tan2(x/2)
dt

+O

(
sin x

∫ 1

0

t

t2 + tan2(x/2)
dt + sin x

∫ 1

0

sin x

t2 + tan2(x/2)
dt

)]
.
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Inference for continuous-time long memory randomly sampled processes 3117

Putting t = u tan(x/2) the right-hand-side of the last equation is equal to

(sin x)−2d
[
2φ(0) cos2(x/2)

∫ 1/ tan(x/2)

0

1

u2 + 1
du

+O

(
sin x

∫ 1

0

t

t2 + tan2(x/2)
dt + sin x

∫ 1

0

sin x

t2 + tan2(x/2)
dt

) ]

= (sin x)−2d
[
2φ(0) cos2(x/2) arctan(1/ tan(x/2))

+O

(
x(log(1 + x2) − log x) + 2x arctan(2/x)

)]

Then

∫ sin x

0

λ2

(λ − sin x)2 + 4(sin(x/2))4
fX (λ)dλ

= x−2d (φ(0)π + O(x log x)) , as x → 0. (19)

Similarly, we have

∫ 2 sin x

sin x

λ2

(λ − sin x)2 + (sin x/2))4
fX (λ)dλ

= (sin x)−2d
∫ 2

1

t2−2d sin x

(1 − t)2 + tan2(x/2)
φ(t sin x)dt

= (sin x)−2d
∫ 1

0

(1 + t)2−2d sin x

t2 + tan2(x/2)
φ((1 + t) sin x)dt

= (sin x)−2d
∫ 1

0

(
1 + (2 − 2d)(1 + u(t))1−2d t

)
sin x

t2 + tan2(x/2)
(φ(0) + φ′(v(t)) sin x(1 + t))dt

= x−2d (φ(0)π + O(x log x)) . (20)

Then, we have as x → 0

∫ ∞

2 sin x

λ2

(λ − sin x)2 + tan2(x/2)
fX (λ)dλ →

∫ ∞

0
fX (λ)dλ = σX (0)

2
, (21)

since the integrand is bounded uniformly in x by 4 fX (λ) and converges (as x → 0)
to fX (λ) and hence we can apply Lebesgue’s theorem. Combining (17) and (21) as
well as (19) and (20), we obtain that

fY (x) = x−2d f ∗
Y (x), f ∗

Y (x) = φ(0) + σX (0)

2π
x2d + o

(
x2d

)
as x → 0.
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Moreover, f ∗
Y is continuous and positive on [−π, , π ]. Indeed, the continuity of f ∗

Y
follows from the fact that the 2nd integrand in the right hand side of (16) is continuous
and uniformly bounded in x by 4 fX (λ) which is integrable. As for the first integral in
the right hand side of (16), after splitting it into three terms as in (18) and multiplying
it by x2d , we see that Lebesgue’s dominated convergence theorem still applies. This
completes the proof of Proposition 2. ��

Wenowpresent a lemma that gives a quite precise expressionof the covariance function
of X from its spectral density. We will be imposing the following condition on fX .

Condition H f : fX (λ) = c|λ|−2d(1 − h(λ)), 0 < d < 1/2, where h is a nonde-
creasing function with h(0) = 0 and h(x) → 1 as x → ∞ and h is differentiable at 0.
We notice that condition H f is not one of the usual slowly varying type conditions for
Tauberian and Abelian theorems in the context of long range dependence [see Leo-
nenko and Olenko (2013)]. However, it guarantees a uniform control of the remainder
g(x) in (22) rather than at infinity only.

Remark 1 If the spectral density fX satisfies H f instead of (13), then Proposition 2
still holds with c := c(d) instead of φ(0). The proof is essentially the same and is
omitted.

Lemma 1 Assume that condition H f is satisfied. Then, there exist positive constants
C(d) and c(d) such that for all x > 0,

σX (x) = c(d)x2d−1 + g(x), (22)

with |g(x)| ≤ C(d)
|x | .

Proof Let x > 0 be fixed. Since fX is even we have,

σX (x) = 2
∫ ∞

0
cos(xλ) fX (λ)dλ.

Without loss of generality, we take 2c = 1 in H f and by the formula 3.761.9 of
Gradshteyn and Ryzhik (2015)

∫ ∞

0
cos(xλ)λ−2ddλ = �(1 − 2d) sin(πd)x2d−1 =: c(d)x2d−1.

Therefore, it remains to show that for some C(d) > 0,

∣∣∣∣
∫ ∞

0
cos(λx)λ−2dh(λ)dλ

∣∣∣∣ ≤ C(d)x−1.
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The rest of the proof relies on applying integration by parts for Stieltjes integrals.
Let dU (λ) = cos(λx)λ−2d . We have (by one integration by parts)

U (t) =
∫ t

0
cos(λx)λ−2ddλ

= 1

x

[
λ−2d sin(λx)

]λ=t

λ=0
+ 2d

x

∫ t

0
λ−2d−1 sin(λx)dλ

= 1

x

(
t−2d sin(t x) + 2d

∫ t

0
λ−2d−1 sin(λx)dλ

)
,

clearly U is bounded and

lim
t→∞U (t) = 2d

x

∫ ∞

0
λ−2d−1 sin(λx)dλ.

Using the fact that h is nondecreasing, h(λ) → 1, as λ → ∞, and h(0) = 0, we
obtain (via integration by parts at some steps in the calculation below

∫ b

a
cos(λx)λ−2dh(λ)dλ =

∫ b

a
h(λ)dU (λ) = [U (λ)h(λ)]ba −

∫ b

a
U (λ)dh(λ),

(23)

with

[U (λ)h(λ)]ba
a→0−−−→
b→∞

2d

x

∫ ∞

0
λ−2d−1 sin(λx)dλ,

−
∫ b

a
U (λ)dh(λ) = −1

x

∫ b

a

(
λ−2d sin(λx) + 2d

∫ λ

0
u−2d−1 sin(ux)du

)
dh(λ)

= −1

x

∫ b

a
λ−2d sin(λx)dh(λ)

−2d

x

∫ b

a

(∫ λ

0
u−2d−1 sin(ux)du

)
dh(λ),

also

−2d

x

∫ b

a

(∫ λ

0
u−2d−1 sin(ux)du

)
dh(λ)

= −2d

x
h(b)

∫ b

0
λ−2d−1 sin(λx)dλ

+2d

x
h(a)

∫ a

0
λ−2d−1 sin(λx)dλ + 2d

x

∫ b

a
λ−2d−1 sin(λx)h(λ)dλ.
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Since

−2d

x
h(b)

∫ b

0
λ−2d−1 sin(λx)dλ

+2d

x
h(a)

∫ a

0
λ−2d−1 sin(λx)dλ

a→0−−−→
b→∞ −2d

x

∫ ∞

0
λ−2d−1 sin(λx)dλ,

∫ b
a U (λ)dh(λ) has the same limit as

−1

x

∫ b

a
λ−2d sin(λx)dh(λ) + 2d

x

∫ b

a
λ−2d−1 sin(λx)h(λ)dλ,

as a → 0 and b → ∞.

∣∣∣∣−1

x

∫ b

a
λ−2d sin(λx)dh(λ) + 2d

x

∫ b

a
λ−2d−1 sin(λx)h(λ)dλ

∣∣∣∣
≤ 1

x

∫ b

a
λ−2ddh(λ) + 2d

x

∫ b

a
λ−2d−1h(λ)dλ

= 1

x

(
h(b)b−2d − h(a)a−2d

)
+ 2d

x

∫ b

a
λ−2d−1h(λ)dλ + 2d

x

∫ b

a
λ−2d−1h(λ)dλ

= 1

x

(
h(b)b−2d − h(a)a−2d

)

+4d

x

∫ b

a
λ−2d−1h(λ)dλ

a→0−−−→
b→0

4d

x

∫ ∞

0
λ−2d−1h(λ)dλ := C(d)

x
.

Wenote that the integral above is indeed finite since h is a bounded function, h(0) = 0,
and is differentiable at zero.

The proof of Lemma 1 is now complete. ��
Corollary 2 If Tn is a Poisson process and fX satisfies condition H f then

Var (σX (Tr )) = O
(
r−α

)
, as r → ∞,

where α = min(2, 3 − 4d).

Proof We have from the previous lemma,

Var (σX (Tr )) = Var
(
c(d)T 2d−1

r + g(Tr )
)

= c2(d)Var
(
T 2d−1
r

)
+ Var (g(Tr )) + 2c(d)Cov

(
T 2d−1
r , g(Tr )

)

≤ c2(d)Var
(
T 2d−1
r

)
+ C2(d)E

(
T−2
r

)

+2c(d)C(d)
[
Var

(
T 2d−1
r

)]1/2 [
E

(
T−2
r

)]1/2
.
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Inference for continuous-time long memory randomly sampled processes 3121

For r ≥ 3, as Tr has Gamma distribution with parameters (r , 1), we have

E

(
T−2
r

)
=

∫ ∞

0

xr−2−1

�(r)
e−xdx = �(r − 2)

�(r)
= 1

(r − 1)(r − 2)
= O(r−2).

Also,

Var
(
T 2d−1
r

)
= E

(
T 4d−2
r

)
−

(
E

(
T 2d−1
r

))2

= �(r − 2 + 4d)

�(r)
−

(
�(r − 1 + 2d)

�(r)

)2

We know that as r → ∞,

�(r − a)

�(r)
= r−a

(
1 − a(−a + 1)

2r
+ O

(
1

r2

))
,

and therefore we obtain that

Var
(
T 2d−1
r

)
= (1 − 2d)2r−2(1−2d)−1 + o

(
r−2(1−2d)−1

)
= O

(
n−α

)
,

which completes the proof of the corollary. ��

3 Asymptotic theory of the periodogram

We consider in this section a stationary long memory zero-mean Gaussian process
X = (Xt )t∈R+ having a spectral density of the form (13). Let Y = (XTn )n∈N, where
(Tn)n∈N is a Poisson process with rate equal 1 (actually any rate will do). As shown
in Philippe et al. (2021) and in contrast with the original process X , while Y remains
marginally normally distributed, it is no longer jointly Gaussian and, as a result, Y is
not a linear process.

In this section, we extend some well-known facts about periodogram properties to
the randomly sampled processes Y . In particular, our main result will be to establish
that the normalized periodogram of Y will asymptotically converge to a weighted χ2

distribution.

Theorem 1 Assume that X is a stationary Gaussian process satisfying H f and let
Y = (XTn )n∈N where (Tn)n∈N is a Poisson process with rate equal 1. Let

In(λ j ) = 1

2πn

∣∣∣∣∣
n∑

k=1

Yke
ikλ j

∣∣∣∣∣
2

,

be the periodogram of Y1, . . . ,Yn at Fourier frequency λ j = 2π j/n for j ∈
{1, . . . , �n/2�}. Then, we have for any fixed number of Fourier frequencies ν ≥ 1,
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and any j1, . . . , jν ∈ {1, . . . , �n/2�} all distinct integers
(
In(λ j1)

fY (λ j1)
, · · · ,

In(λ jν )

fY (λ jν )

)

D→
(
L j1(d)[Z2

1( j1) + Z2
2( j1)], · · · , L jν (d)[Z2

1( jν) + Z2
2( jν)]

)
, (24)

where (Z1(1), Z2(1), . . . , Z1([n/2]), Z2([n/2]) is a zero-mean Gaussian vector, with
Z1( j), Z2(k) are independent for all j, k = 1, . . . , [n/2] and

Var(Z1( j)) = 1

2
− R j (d)

L j (d)
(25)

and

Var(Z2( j)) = 1

2
+ R j (d)

L j (d)
, (26)

and for j 
= k,

Cov(Z1( j), Z1(k)) = L j,k(d) − R j,k(d)√
L j (d)Lk(d)

(27)

Cov(Z2( j), Z2(k)) = L j,k(d) + R j,k(d)√
L j (d)Lk(d)

, (28)

with

L j (d) = 2

π

∫ ∞

−∞
sin2(λ/2)

(2π j − λ)2

∣∣∣∣ λ

2π j

∣∣∣∣
−2d

dλ, (29)

R j (d) = 1

π

∫ ∞

−∞
sin2(λ/2)

(2π j − λ)(2π j + λ)

∣∣∣∣ λ

2π j

∣∣∣∣
−2d

dλ, (30)

L j,k(d) = ( jk)d

π

∫ ∞

−∞
sin2(λ/2)

(2πk − λ)(2π j − λ)

∣∣∣∣ λ

2π

∣∣∣∣
−2d

dλ, (31)

and

R j,k(d) = ( jk)d

π

∫ ∞

−∞
sin2(λ/2)

(2πk + λ)(2π j − λ)

∣∣∣∣ λ

2π

∣∣∣∣
−2d

dλ. (32)
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Proof We will prove the broader result

Zn :=
(

1√
2πn fY (λ j1)

n∑
r=1

cos(rλ j1)XTr ,
1√

2πn fY (λ j1)

n∑
r=1

sin(rλ j1)XTr , · · · ,

1√
2πn fY (λ jν )

n∑
r=1

cos(rλ jν )XTr ,
1√

2πn fY (λ jν )

n∑
r=1

sin(rλ jν )XTr

)

D−→
(√

L j1(d)(Z1( j1), Z2( j1)), · · · ,

√
L jν (d)(Z1( jν), Z2( jν))

)
. (33)

Conditionally on T1, . . . , Tn , the vector (XT1 , . . . , XTn ) is Gaussian, and hence so is
Zn . Its covariance matrix �T = Var(Zn|T1, . . . , Tn) has (i, k) entry of the form

1

2πn
√

fY (λ ji ) fY (λ jk )

n∑
r=1

n∑
s=1

σX (Tr − Ts)hi,k(r , s)

where

hi,k(r , s) = cos(rλ ji ) cos(sλ jk ), or cos(rλ ji ) sin(sλ jk ), or sin(rλ ji ) sin(sλ jk ).

We prove (33) using the characteristic function: since X and T are independent, for
u ∈ R

2ν , and with u′ being the transpose of u,

E(eiu
′Zn ) = E

(
E

(
eiu

′Zn

∣∣∣T1, . . . , Tn
))

= E

(
exp

(
−1

2
u′�T u

))
.

As the characteristic function is bounded, it will suffice to show that

�T
P→ �, (34)

where � is the variance-covariance matrix of (
√
L1( j1)(Z1( j1), Z2( j1)), · · · ,√

Lν( jν)(Z1( jν), Z2( jν))).
When i and k are fixed, the form of hi,k(r , s) is the same for all r and s and hence

E (�T ) will have entries of the form

1

2πn
√

fY (λ ji ) fY (λ jk )

n∑
r=1

n∑
s=1

E(σX (Tr − Ts))hi,k(r , s)

= 1

2πn
√

fY (λ ji ) fY (λ jk )

n∑
r=1

n∑
s=1

σY (r − s)hi,k(r , s)

by (3), and therefore E(�T ) → � by virtue of Theorem 5 of Hurvich and Beltrão
(1993) (the only condition required is second order stationarity of the process Yi and
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the behaviour (14) of its spectral density). To complete the proof of (34), it will then
suffice to show that

Var (�T ) → 0, (35)

i.e. the variances of the entries of�T converge to zero. ByCauchy–Schwarz inequality,
it will be enough to focus on the diagonals. We will treat those diagonals with cosine,
as those with sine treat the same way. For some constant C (that may change from one
expression to another), we obtain

Var

(
1

2πn fY (λ j )

n∑
r=1

n∑
s=1

σX (Tr − Ts) cos(rλ j ) cos(sλ j )

)

∼ C

n2+4d

n∑
r ,s,r ′,s′=1

Cov
(
σX (Tr − Ts) cos(rλ j ) cos(sλ j ),

σX (Tr ′ − Ts′) cos(r
′λ j ) cos(s

′λ j )
)

≤ C

n2+4d

(
n∑

r=1

n∑
s=1

√
Var (σX (Tr − Ts))

)2

≤ C

n4d

(
n∑

h=1

√
Var (σX (Th))

)2

≤ C
n2d

n4d
→ 0, (36)

using Corollary 2. ��

4 Inference for the long-memory parameter

We still assume in this section that X = (Xt )t∈R+ is a stationary long mem-
ory zero-mean Gaussian process having a spectral density satisfying H f condition.
Periodogram-based approaches to estimate the long memory parameter d are very
popular. Often one requires that the underlying process is linear or at least is built on
martingale difference innovations. The reader is referred to Beran et al. (2013), Giraitis
et al. (2012) for reviews of some recent works on this issue, as well as the book edited
by Doukhan et al. (2003). The next lemma and its proof show that although it is not
a linear process with i.i.d. innovations, the sampled process still satisfies important
long memory 4th cumulant conditions. These 4th cumulant conditions will allow us
to show both the convergence of an estimator of the memory parameter d and the
estimation of the asymptotic variance, necessary for example in the inference about
the mean of the original continuous time process X .

Lemma 2 Assume that X is a zero mean stationary Gaussian process satisfying H f

and let Y = (XTn )n∈N, where (Tn)n∈N is a Poisson process. Then for all d ∈ (0, 1/2),
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we have

sup
h∈N

n∑
r ,s=0

|cum(Y0,Yh,Yr ,Ys)| = O
(
n2d

)
. (37)

and

n∑
h,r ,s=0

|cum(Y0,Yh,Yr ,Ys)| = O
(
n4d log(n)

)
. (38)

Proof The proof is postponed in Appendix. Note that the term log(n) in the right hand
side of (38) is needed only in the particular case d = 1/4, known to be borderline
between weak long memory and strong long memory, as will be seen in the proof. ��

4.1 Consistency of localWhittle estimator

We consider local Whittle estimator of the memory parameter d defined by

d̂n = argmin
β∈[−1/2,1/2]

Un(β)

where the contrast function Un is defined by

Un(β) = log

⎛
⎝ 1

mn

mn∑
j=1

λ
2β
j In(λ j )

⎞
⎠ − 2β

mn

mn∑
j=1

log λ j ,

and the bandwidth parameter m = mn satisfies mn → ∞ and mn = o(n).

Theorem 2 Suppose X is a stationary Gaussian process satisfying condition H f and
that Yn = XTn , where Tn is a Poisson process with rate 1. Then,

d̂n
P−−−→

n→∞ d. (39)

In addition, for mn = na, 0 < a < 1, we have

d̂n − d = oP

(
1

log n

)
. (40)

Remark 2 Equation (40) provides a lower boundon the convergence rate of d̂ uniformly
in d. As can be seen from the proof, the non uniform rate (for each d) is much better.
But this slow rate will be enough to plug d̂ in the long run variance estimate below
(see Proposition 3).
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Proof According to our result (15) and Dalla et al. (2006) (Corollary 1), we have

d̂ − d = OP

(
m−1/2 logm +

(m
n

)2d + rn

)
,

for some remainder rn , which we will be controlling as in what follows, depending on
the convergence rate ofm/n to zero. To prove (39) it will suffice to show that rn → 0.

Case 1
√
n(log n)4/(1−2d) = O(m). From part (iv) of Corollary 1 of Dalla et al.

(2006), the remainder rn can be written as

rn =
(
D∗∗
n

n

)1/2 ( n

m

)1−2d
log3 n → 0,

where

D∗∗
n = sup

h,r∈N

n∑
s=1

|cum(Y0,Yh,Yr ,Ys)|.

We have

D∗∗
n ≤ sup

h∈N

n∑
r ,s=0

|cum(Y0,Yh,Yr ,Ys)|,

so that by (37) we get D∗∗
n = O(n2d) and hence rn = O(1/ log n).

Case 2 m = O(
√
n(log n)4/(1−2d)). We use (iii) of Corollary 1 of Dalla et al.

(2006),

rn =
(
D∗
n

n

)1/2 (m
n

)2d
log2 n → 0,

where

D∗
n =

n∑
h,r ,s=0

|cum(Y0,Yh,Yr ,Ys)|.

According to (38), D∗
n = O(n4d log n), and therefore

rn = O
(
nd−1/2 (log n)2(1+2d)/(1−2d)

)
→ 0.

This concludes proof of (39).
To prove (40), we show that rn = o(1/ log n). This is immediate in case (2) above.

Since m = na , 0 < a < 1, we will be in case (1) if a > 1/2 and then
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rn = O
(
n1/2−d−a(1−2d)

)
/ log n = o(1/ log n).

��

4.2 Long run variance

The 4th cumulant condition (37) is needed to estimate the long run variance of the
sampled process. Such estimation plays a crucial role in many aspects of statistical
inference. For example, when it comes to estimating themeanμ of the original process
X , as we have from Philippe et al. (2021)

(
Var

(
n1/2−d Ȳn

))−1/2
n1/2−d(Ȳn − μ)

D→ N (0, 1)

and hence, it is important to obtain a consistent estimator of the variance above.
Also such estimator is important in testing for short memory versus long memory or
for stationarity versus unit root as such tests involve V/S type statistics and require
estimating the long run variance [see Giraitis et al. (2006) and references therein for
details]. Let us write the spectral density of Yi under the form f (λ) ∼ c|λ|−2d as
λ → 0. Let

σ̂ (h) = 1

n

n−h∑
j=1

(
Y j − Ȳ

)(
Y j+h − Ȳ

)

be the sample covariance function of Yi . Let the asymptotic variance of the normalized
sum be

S2(d) = lim
n→∞

(
Var

(
n1/2−d Ȳ

)) = 4c
∫ ∞

−∞

(
sin(λ/2)

λ

)2

|λ|−2ddλ.

Let

Ŝ2(d) = q−2d

(
σ̂ (0) + 2

q∑
h=1

(
1 − h

q

)
σ̂ (h)

)
.

Proposition 3 Let d̂ be a consistent estimator for memory parameter d such that
log(n)(d̂−d) = oP (1). Let q → ∞ as n → ∞ such that q = O(

√
n). Then we have

Ŝ2(d̂)
P→ S2(d).

Proof Referring to Theorem 2.2. of Abadir et al. (2009) we just need to verify the
cumulant condition

sup
h

n∑
r ,s=1

|Cum(Y0,Yh,Yr ,Ys)| ≤ c̃n2d ,
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for some positive constant c̃. This is the case according to Lemma 2. ��
Remark 3 A readily available candidate for d̂ above is the Whittle estimator for which
the log(n) consistency was established in Theorem 2.

5 Simulation and discussion

Recall that in the context of this work, a long memory continuous process is observed
at random times T1, . . . , Tn according to a renewal process. Therefore the number
of observations n is fixed in advance but time period length Tn is random. In our
simulation, we compare various strategies for sampling a continuous-time process
to assess their impact on the inference regarding the mean and the long-memory
parameter. It’s important to note that, in applications, the choice of sampling strategies
is not deliberate but rather imposed.

The simulations are conducted in the following context. We consider a zero-mean
Gaussian process (Xt ) with a covariance function

σX (x) = 1

1 + x1−2d ,

where d is the memory parameter. This is actually a covariance function as it satisfies
Theorem 1’s conditions in Pólya (1949). The sampling process can either be a Poisson
process or deterministic.We contemplate twoways of constructing the Poisson process
with rate λ: either by fixing n, the number of arrivals or by setting in advance T , the
maximum duration for the observation period. The parameters of the three strategies
given in Table 1 are chosen to ensure comparability of the simulation results. Indeed,
on average, the time period length and the number of observations are the same for
the three strategies.

5.1 Description of the compared sampling strategies

The first corresponds to the sampling approach studied in this paper.

1. We fix n and we generate T1, T2, . . . , Tn as the first n arrivals of a Poisson
process with rate λ. The interarrival times, denoted as �i = Ti+1 − Ti , are inde-

Table 1 Parameters for the different sampling strategies

Strategy Number of observations Length of time period

1 Fixed n Random Tn ∼ �(n, λ)

E(Tn) = n/λ

2 Fixed n Fixed n/λ

3 Random N ∼ P(Tλ) Fixed T = n/λ

and E(N ) = n
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pendent Exponential(λ) random variables. Then we generate a Gaussian vector
(XT1 , . . . , XTn )with zeromean and covariancematrix�1 with entries σX (Ti −Tj ).

2. We fix n and we consider deterministic values t1, . . . , tn with increment λ−1 the
mean value of interarrival time of the previous Poisson process. Then we generate
a Gaussian vector (Xt1, . . . , Xtn ) with zero mean and covariance matrix �2 with
entries σX (ti − t j ).

3. We fix T , themaximumduration for the observation period, equal to themean value
of the last arrival time Tn in the strategy 1, i.e. T = λ−1n. To simulate realisation
of Poisson process on [0, T ] with rate λ, we generate N the number of arrivals on
[0, T ] from the Poisson distribution with parameter λT . We simulate τ1, . . . , τN
as an ordered sample of the uniform distribution [0, T ]. Then we generate a Gaus-
sian vector (Xτ1 , . . . , XτN ) with zero mean and covariance matrix �3 with entries
σX (τi − τ j ).

5.2 Summary of the simulation study and future directions

Numerical results are given in Table 2 and Figs. 1 and 2. We simulate from a Gaussian
zeromean stationary processwithmemory parameter d = .25.We compare estimation
results for themean and thememoryparameter for different rates of the renewal process
(λ = 1/2, 1 and 2).

We can see that as far as the mean is concerned, there is no noticeable difference
between these three strategies with little changes when the rate λ varies. For the
memory parameter d, we also see that the bias and the standard deviations remain of
the same orders across all three strategies.We retrieve the classical challenge of rightly
choosing the bandwidth in local Whittle estimation. This is more acute in our context
where the sampled process is neither Gaussian nor linear, despite the fact that the
original process is Gaussian. It would be worth further investigating the third strategy
of randomly sampling from a continuous time process at fixed period length T . One
difficulty resides in the fact that interarrival times will be dependent.

Table 2 Bias and standard deviation of the sample mean and the Local Whittle estimate

Estimation of μ = 0 Estimation of d = .25

Strategy 1 2 3 1 2 3

λ = 1/2

Bias 0.002 0.010 0.001 −0.060 −0.052 −0.060

SD 0.231 0.232 0.230 0.112 0.114 0.110

λ = 1

Bias 0.002 0.005 −0.009 −0.036 −0.014 −0.032

SD 0.271 0.264 0.280 0.113 0.110 0.114

λ = 2

Bias −0.004 −0.008 −0.015 0.008 0.016 0.006

SD 0.306 0.310 0.316 0.111 0.115 0.109

Estimations are based on 1000 independent replications, with sample size n = 1000

123



3130 M. Ould Haye et al.

Fig. 1 Estimation of the distribution of local Whittle estimate for n = 500 and λ =
1/2 (left), 1 (middle) and 2 (right). Estimation is based on 1000 independent replications of the Gaussian
process with zero mean μ = 0, long memory parameter d = .25 and n = 1000

Fig. 2 Estimation of the distribution of sample mean for n = 500 and λ =
1/2 (left), 1 (middle) and 2 (right). Estimations are based on 1000 independent replications of the
Gaussian process with zero mean μ = 0, long memory parameter d = .25 and n = 1000

Appendix: Proof of Lemma 2

Proof The proof is essentially based on Corollary 2 and a well known cumulant for-
mula.

Without loss of generality, we can assume that the Poisson rate is 1. The process Y
is 4th order stationary as the conditional joint distribution of (Yk,Yk+h,Yk+r ,Yk+s)

given (T1, . . . , Tk+max(h,r ,s)) is a multivariate normal with variance-covariance matrix
M(Tk, Tk+h, Tk+r , Tk+s) given by

M(Tk, Tk+h, Tk+r , Tk+s)

:=
(

σX (0) σX (Tk+h−Tk ) σX (Tk+r−Tk ) σX (Tk+s−Tk )
σX (Tk+h−Tk ) σX (0) σX (Tk+r−Tk+h) σX (Tk+s−Tk+h)
σX (Tk+r−Tk ) σX (Tk+r−Tk+h) σX (0) σX (Tk+s−Tk+r )
σX (Tk+s−Tk ) σX (Tk+s−Tk+h) σX (Tk+s−Tk+r ) σX (0)

)

(41)

which is k free. Hence it is enough to establish the lemma when k = 0. We apply the
total law of cumulance formula (Brillinger 1969), which for the sake of clarity, we
remind here: for all random vectors Z = (Z1, . . . , Zn)

′ and W , we have

cum(Z) =
∑
π

cum
[
cum(Xπ1 |W ), . . . , cum(Xπb |W )

]
(42)
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where Xπ j = (Xi , i ∈ π j ), and π1, . . . , πb, (b = 1, . . . , n) are the blocks of the
permutation π , and the sum is over all permutations π of the set {1, 2, . . . , n}.

But condition on T , the process Yt is jointly zero-mean Gaussian and therefore
E(Yt |T ) = 0 as well as cum(Yi ,Y j ,Yk,Y�|T ) = cum(Yi ,Y j ,Yk |T ) = 0 for all
i, j, k, �. Hence applying (42) to Yt with W = T , only the two-by-two partitions of
{0, h, r , s} will survive. and since cum(U , V ) = Cov(U , V ), we get from (41)

cum(Y0,Yh,Yr ,Ys) =Cov(σX (Th), σX (Tr − Ts)) + Cov(σX (Tr ), σX (Th − Ts))

+ Cov(σX (Ts), σX (Tr − Th)). (43)

Note that for h < min(r , s), Cov(σX (Th), σX (Tr − Ts)) = 0. Moreover

∑
1≤r≤h≤s≤n

|Cov(σX (Th), σX (Tr − Ts))|

≤
∑

1≤r≤h≤s≤n

Var(σX (Th))
1/2Var(σX (Ts − Tr ))

1/2

≤
∑

1≤r≤h≤s≤n

h−α/2(1 + s − r)−α/2

≤ h−α/2
∑

1≤r≤h

n∑
t=1

t−α/2

≤ h1−α/2

{
n1−α/2 = n2d−1/2 if d < 1/4

log(n) if d ≥ 1/4

≤
{
n4d−1 if d < 1/4

log(n) if d ≥ 1/4

≤ Cn2d for all 0 < d < 1/2.

The last configuration is

h∑
r ,s=1

|Cov(σX (Th), σX (Tr − Ts))| =
h∑

r ,s=1

|Var(σX (Th))
1/2Var(σX (Ts − Tr ))

1/2

≤ h−α/2
h∑

t=1

(h − t)t−α/2

≤ h−α/2

{
Ch1−α/2 = Ch2d−1/2 if d < 1/4

log(h) if d ≥ 1/4

≤ Cn2d for all 0 < d < 1/2.
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Therefore uniformly in h we have

n∑
r ,s=1

|Cov(σX (Th), σX (Tr − Ts))| ≤ Cn2d .

For the remaining two terms in the right hand side of (43) we have, for fixed h,

n∑
r ,s=1

|Cov(σX (Tr ), σX (Th − Ts))| =
n∑

r ,s=1

|Cov(σX (Ts), σX (Th − Tr ))|

≤
n∑

r ,s=1

Var(σX (Ts))
1/2Var(σX (Th − Tr ))

1/2

≤
n∑

r ,s=1

s−α/2(1 + |h − r |)−α/2

≤ C

{
n2−α = n4d−1 if d < 1/4

log(n)2 if d ≥ 1/4

≤ Cn2d for all 0 < d < 1/2.

This concludes the proof of (37).
Let us now prove (38). Note that

n∑
h,r ,s=0

cum(Y0,Yh,Yr ,Ys) = 3
n∑

h,r ,s=1

Cov(σX (Th), σX (Tr − Ts))

= 6
n∑

h=1

n∑
r<s=1

Cov(σX (Th), σX (Tr − Ts)). (44)

Moreover, we have

n∑
h,r ,s=1

|Cov(σX (Th), σX (Tr − Ts))| ≤ C
n∑

h,r ,s=1

h−α/2(1 + |r − s|)−α/2

≤ C
n∑

h=1

h−α/2
n∑

t=1

(n − t)t−α/2

≤ C

{
nn2−α = n4d if d < 1/4

n log(n)2 if d > 1/4

≤ Cn4d

In the particular case d = 1/4 (where we still have α = 2), a supplementary term
log(n) is needed in the bound. Indeedwe split the sum in the right hand side of (44) into
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3 configurations. when 1 ≤ h ≤ r < s ≤ n the covariance Cov(σX (Th), σX (Tr −Ts))
is zero. When the sum is over 1 ≤ r < h ≤ s ≤ n, we get

∑
1≤r<h≤s≤n

|Cov(σX (Th), σX (Tr − Ts))| ≤ C
n∑

s=1

s∑
h=1

h−1
h−1∑
r=1

(s − h + h − r)−1

∼ C
n∑

s=1

s∑
h=1

h−1 (log(s) − log(s − h))

= −C
n∑

s=1

s∑
h=1

(h/s)−1 log(1 − h/s)(1/s)

∼ −C
n∑

s=1

(∫ 1

0

log(1 − x)

x
dx

)
= C

π2

6
n.

For the last sum over 1 ≤ r < s ≤ h ≤ n (where we will need the log term) we have

∑
1≤r<s≤h≤n

|Cov(σX (Th), σX (Tr − Ts))| ≤ C
n∑

h=1

h−1
h∑

s=1

s−1∑
r=1

(s − r)−1

=
n∑

h=1

h−1
h∑

t=1

(h − t)t−1

=
n∑

h=1

h∑
t=1

(1 − t/h)t−1

∼ C
n∑

h=1

(log(h) − 1) ∼ Cn log(n).

This completes the proof of (38) in Lemma 2. ��
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