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Abstract
Based on a progressive first-failure censoring (PFFC) sample, we discuss the statisti-
cal inferences of the entropy of a Rayleigh distribution. In particular, the Maximum
likelihood and the different Bayes estimates for entropy are derived and compared via
aMonte Carlo simulation study. Bayes estimators are developed using both symmetric
and asymmetric loss functions. Approximate confidence intervals (CIs) and credible
intervals (CrIs) of the entropy of the model are also performed. Numerical examples
and a real data set are given to illustrate the proposed estimators.

Keywords Maximum likelihood estimator · Bayes estimator · Entropy · Progressive
First-Failure censored sampling · Confidence interval · MCMC simulation

AMS 2012 Subject Classifications 62F10 · 62F15 · 62F25 · 62N01

1 Introduction

Entropy is an uncertainty measure of random variables and the information shared
by them, in which the entropy mathematically represents the prospective quantity of
the information. In the nineteenth century, the concept of entropy was introduced in
thermodynamics and statistical mechanics as a measure of the disorder of a physical
system. Shannon (1948) developed the idea of entropy of random variables and related
it to the theory of communication as a measure of information. In the last two decades,
a considerable body of literature has been devoted to the importance and applications
of entropy, see, for example, Adami (2004); Misra et al. (2005); Liu et al. (2011) and
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Robinson (2011). There has beenmuchwork recently regarding parametric estimation
of entropy using classical and Bayesian methods for several distributions. Among
others are Cho et al. (2015) and Lee (2017).
Now, we suppose that the random variable X has the distribution function F with pdf
f . The Shannon entropy H( f ) of X is defined by

HX ( f ) = −
∫ ∞

−∞
f (x; θ) log f (x; θ)dx,

provided that the integral exists, see Cover and Thomas (2005). It is observed that
entropy is higher when the probability is spread out, while entropy is low for a very
sharply peaked distribution, i.e. H is a measure of uncertainty associated with f .
Moreover, entropy can be viewed as the measure of the uniformity of distribution.
Differential entropy has many applications in various areas especially in time series,
population genetics, physics, machine learning and information theory among others.
For further properties and applications of the entropy, onemay refer to Liu et al. (2011)
and Singh (2013).
In this paper, we suppose that N units are subjected to a life-testing experiment and
that the lifetimes of the units follow a Rayleigh distribution with a probability density
function (pdf) and cumulative distribution function:

f (x) = x

β2 exp

(
− x2

2β2

)
and F(x) = 1 − exp

(
− x2

2β2

)
, (1)

respectively, x > 0. So, the corresponding reliability and hazard functions at t0 (an
arbitrary time) are given by

R(t0) = exp

(
− t20
2β2

)
and h(t0) = t0

β2 , t0 > 0.

Historically, the Rayleigh distribution was introduced by Rayleigh (1880). The
Rayleigh distribution is widely used in communication engineering, electro vacuum
devices and several areas of statistics as a suitable model for service time or in the
lifetime of an object that progresses rapidly over time since its failure rate is a lin-
ear function and increasing. As a result, it has attracted several researchers and has
a number of applications, cf. Lee (2018) and Polovko (1968). Over the past decade,
a large body of literature has been devoted to the problem of inference about the
Rayleigh distribution (see, for example, Dey and Dey (2014); Kim and Han (2009);
Kotb and Raqab (2018) and Kotb and Mohie El-Din (2022)). Due to the importance
of the Rayleigh model, our goal is to estimate the entropy for this model. The mean,
variance and entropy of the Rayleigh model can be written as follows:

μ =
√

π

2
β, Var(X) = 4 − π

2
β2 and H( f ) = 1 + log

(
β√
2

)
+ �

2
, (2)

where � = 0.577216 is the Euler-Mascheroni constant.
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On another important issue, one can utilize type-I and type-II censoring schemes
as well as a mixture of type-I and type-II (referred to as hybrid censoring) in life stud-
ies when the researcher is unable to watch the lifetimes of all test units. Balasooriya
(1995) introduced a new scheme, named the first-failure censoring scheme, in which
tests k × n (instead of only n) units by testing n independent sets, each containing k
units. The censoring plan is conducted by first failure testing for each set separately.
One of the disadvantages of the different censoring plans mentioned above is that they
do not have flexibility to allow the removal of units or sets from the test at different
stages during the experiment. Therefore, many researchers have introduced censoring
mechanisms that are more general than the traditional censoring schemes. The pro-
gressive scheme is considered to be a generalization of type-I or type-II censoring
schemes where the removal of units prior to failure is preplanned at points other than
the terminal point of the experiment. For further details on progressive censoring, one
may refer to Balakrishnan and Aggarwala (2000) and Kotb and Raqab (2019). For
an excellent review of results on progressive censoring schemes, one may refer to
Balakrishnan (2007). Wu and Kus (2009) proposed a new life test plan called a PFFC
scheme to improve the cost-effectiveness of choosing sample units for an experiment
by combining the first-failure with progressive filtering. More recent references can be
found in Ahmadi et al. (2013) andWu and Huang (2012). The PFFC scheme has been
used by several authors to estimate some unknown parameters of the distributions. For
example, Kotb et al. (2021); Mohammed et al. (2017) and Soliman et al. (2012).
In this study, our main aim is to discuss the problem of estimating the entropy of the
Rayleigh model H( f ) based on PFFC Rayleigh data. Also, we present a comparison
study to find out which prior distribution, square root inverted gamma (SRIG) prior
or Gumbel prior, is more informative in the sense of estimating the entropy.

This article is organized as follows. In Sect. 2, we derive the maximum likelihood
estimators (MLEs) and associated two-sided approximate CI. In Sect. 3, we derive
the Bayes estimates (BEs) and the corresponding CrIs with SRIG and Gumbel priors
under four different loss functions for the entropy of the Rayleigh model. In Sect. 4,
an intensive Monte Carlo simulation study is performed to compare the so developed
methods.One data set representing aCOVID-19mortality rates data belongs toMexico
of 108 days and failure times of software model are analyzed for illustrative purposes
in Sect. 5. Finally, we conclude with a brief summary and some remarks on the
simulation results in Sect. 6.

2 Non-Bayesian estimation

Let X R
1;m,n,k < X R

2;m,n,k < . . . < X R
m;m,n,k be PFFC order statistics with the progres-

sive censoring scheme (CS) R = (R1, R2 . . . , Rm), where n = m +∑m
j=1 R j . Based

on PFFC sample, X R
1;m,n,k , X

R
2;m,n,k, . . . , X

R
m;m,n,k which can be written for simplicity
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as x = (x1, x2, . . . , xm), the joint pdf is given by

L(θ |x) = C
m∏
j=1

f (x j , θ)
[
1 − F(x j , θ)

]k(R j+1)−1
, (3)

where x = (
x1, x2, . . . , xq

)
and C = Pkm with P = n(n − R1 − 1)(n − R1 − R2 −

2) . . . (n − R1 − R2 . . . − Rm−1 − m + 1).
On substituting the cumulative distribution function and pdf in (1) into (3), the likeli-
hood function of β can be written as

L(β|x) = C

⎛
⎝ m∏

j=1

x j
β2

⎞
⎠ exp

⎛
⎝− k

2β2

m∑
j=1

(R j + 1)x2j

⎞
⎠ , (4)

hence, the log-likelihood function from (4) can be written as (except for the constant
term)

�(β|x) = −2m logβ − k

2β2

m∑
j=1

(R j + 1)x2j . (5)

In our set-up, the MLE of β is found to be

β̃ML =
⎛
⎝ k

2m

m∑
j=1

(R j + 1)x2j

⎞
⎠

1/2

. (6)

Using the invariance property ofMLEs (see Zehna (1966)), from (2) and (6), theMLEs
of the entropy function is given by

H̃ML = 1 + log

(
β̃ML√

2

)
+ �

2
. (7)

Moreover, after some algebraic simplification, the Fisher information on β can be
obtained by using (5) as

Iβ = 1

β2

⎧⎨
⎩−2m + 3k

β2 E

⎡
⎣ m∑

j=1

(R j + 1)x2j

⎤
⎦
⎫⎬
⎭ .

Hence, the sampling distribution of β̃ −β/
√
Iβ can be approximated by a standard-

normal distribution. These will enable us to construct an CI for β based on the limiting
standard-normal distribution. For constructing the asymptotic CI of � = H( f ), the
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asymptotic variance of �̃ has to be computed. From the asymptotic efficiency of
MLEs, the variance of �̃ can be approximated by

AVar(�̃) =
[(

∂�

∂β

)2

I−1
β

]

β̃

.

Therefore, Meeker and Escobar (1998) reported that the CI based on the asymptotic
theory of ln �̃ is superior to the one of �̃. The CI with confidence level 100(1− τ)%
for ln �̃ (denoted by LN) is given by

(
�

(l)
LN ,�

(u)
LN

)
=
⎡
⎣ �̃

exp
(
z1−τ/2 S̃�/�̃

) , �̃ exp
(
z1−τ/2 S̃�/�̃

)⎤⎦ ,

where S̃� =
√
AVar(�̃).

3 Bayes Estimation

Here, we present the posterior densities of β and H based on Rayleigh PFFC data
to obtain the BEs (either point or interval) of the entropy of the Rayleigh distribu-
tion. This is done with respect to the squared error loss (SEL), LINEX loss, general
entropy loss (GEL), and Al-Bayyati loss (ABL) functions. The posterior distribution
is computationally efficient and analytically tractable when both prior and posterior
densities belong to similar families. So, we use the SRIG and Gumbel priors to obtain
the posterior densities of β and H , respectively.

3.1 Bayes estimation using SRIG prior

The SRIG prior density, see Fernández (2000), of β is written as

π (β; δ) ∝ β−2σ−1 exp

(
− ρ

2β2

)
, β > 0, (8)

where δ = (σ, ρ); σ > 0 and ρ > 0 are hyper-parameter constants. By combining (4)
and (8), the posterior density of β can be written as

π1(β|x) = 1

I (σ, ρ)
β−2(σ+m)−1 exp

⎛
⎝− 1

2β2

⎛
⎝ρ + k

m∑
j=1

(R j + 1)x2j

⎞
⎠
⎞
⎠ , (9)
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where I (σ, ρ) being the normalized constant and

I (σ, ρ) = 2σ+m−1� (σ + m)(
ρ + k

∑m
j=1(R j + 1)x2j

)σ+m .

It is known that the BE of � under SEL function is the posterior mean �. Then,
the BE for H( f ) can be obtained as follows:

H̃SE = 1 +
∫ ∞

0
log

(
β√
2

)
π1(β|x)dβ + �

2

= 1 + 1

2
log

⎛
⎝1

4

⎛
⎝ρ + k

m∑
j=1

(R j + 1)x2j

⎞
⎠
⎞
⎠ − 1

2
PG [σ + m] + �

2
,

where PG[z] ≡ PolyGamma [z] gives the digamma function which can be computed
easily byWOLFRAMMATHEMATICA. There are various asymmetric loss functions
used in the literature, see Chandra (2001) and Zellner (1986). One of themost common
asymmetric loss functions is the LINEX loss function. It was introduced by Varian
(1975) and has since been used this loss function in different estimation problems.
Furthermore, the BE of H under the LINEX loss function, denoted by H̃BL , is given
by

H̃BL = −1

c
ln EH

[
exp (−cH) |x]

= −1

c
ln

⎛
⎜⎝ 2c�∗(c) exp (−c − c�/2)(

ρ + k
∑m

j=1(R j + 1)x2j

)c/2
⎞
⎟⎠ ,

where �∗(c) = � (σ + m + c/2) /� (σ + m). A suitable alternative to the modified
LINEX loss, see Basu and Ebrahimi (1991), is the GEL proposed by Calabria and
Pulcini (1996). Based on posterior density (9), the BE of H under the GEL function
may be defined as

H̃GE =
(
E
[
H−£|x

])−1/£ =
(

η (−£)

I (σ, ρ)

)−1/£

,

where

η (ζ ) =
∫ ∞

0

(
1 + log

(
β√
2

)
+ �

2

)ζ

β−2(σ+m)−1

× exp

⎛
⎝− 1

2β2

⎛
⎝ρ + k

m∑
j=1

(R j + 1)x2j

⎞
⎠
⎞
⎠ dβ. (10)
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By integrating the integrands in the above equation with respect to β, the BEs can
be approximated via one of the numerical methods.Moreover, we use the loss function
which was introduced by Al-Bayyati (2002) and various authors as an example, Kotb
and Raqab (2018); Kotb and Mohie El-Din (2022) have used this loss function in
different estimation problems. The ABL function for H is

�AB

(
β̃, β

)
= βb

(
β̃ − β

)2
, b ∈ R.

Due to its analytical tractability in Bayesian analysis, it is frequently used. By using
the posterior density (9), the BE of H under ABL function is given by

H̃AB = E
[
Hb+1|x]

E
[
Hb|x] = η (b + 1)

η (b)
,

where η (b) is given in (10).

3.1.1 Bayes probability intervals

The posterior density of H can be defined through re-parameterization of the original
parameters. This can be achieved by considering a one-to-one transformation from

�β = {β : β > 0} onto �H = {H : −∞ < H < ∞} .

Therefore, the posterior density of H based on x is

π2(H |x) = 1

J (σ, ρ)
exp

(
−2 (σ + m + 1/2) H − d

4

×
⎛
⎝ρ + k

m∑
j=1

(1 + R j )x
2
j

⎞
⎠ e−2H

⎞
⎠ , (11)

where d = exp(2 + �), J (σ, ρ) being the normalized constant,

J (σ, ρ) = � (σ + m + 1/2)

2
(
(d/4)

(
ρ + k

∑m
j=1(R j + 1)x2j

))σ+m+1/2 ,

and �(.) is the gamma function.
A 100(1 − τ)% (0 < τ < 1) two-sided Bayes probability interval (BPI) of H for

the limits φL and φU can be established by solving:

τ

2
=
∫ φL

−∞
π2 (H |x) dH = ϕL , say,

123



3142 M. S. Kotb, H. M. Alomari

and

τ

2
=
∫ ∞

φU

π2 (H |x) dH = ϕU , say,

see (Martz and Waller (1982), p. 208–209). After some algebra, we can be obtained
φL and φU by solving:

ϕL =
∞∑

�=0

ψ�,v(x) exp (−2 (σ + m + 1/2) φL) = τ

2
,

and

ϕU = −
∞∑

�=0

ψ�,v(x) exp (−2 (σ + m + 1/2) φU ) = τ

2
,

where

ψ�,v(x) = (−1)�+1 (d/4)σ+m+�+1/2

�!(σ + m + � + 1/2)

⎛
⎝ρ + k

m∑
j=1

(R j + 1)x2j + e2γ

⎞
⎠

σ+m+�+1/2

.

Next, we use the procedure proposed by Berger (1985) to develop 100(1 −
τ)% highest posterior density (HPD) credible set for H of the form CSH =
{H : π2 (H |x) > Cτ }, where Cτ is chosen so that P(φ ∈ CSH |x) = 1− τ . Based on
posterior density, the 100(1 − τ)% HPD CrI, (φL , φU ) of H , must satisfy:

∫ φU

φL

π2 (H |x) dH = 1 − τ and π2 (φL |x) = π2 (φU |x) .

Hence, the 100(1−τ)%HPDCrI, (φL , φU ) of H , can be solved numerically from:
ϕL + ϕU = τ and

e−2φL − e−2φU

φU − φL
= 2 (σ + m + 1/2)

(d/4)
(
ρ + k

∑m
j=1(R j + 1)x2j

) .

Another quite useful method is the Gibbs sampling technique. This technique
requires being able to generate Markov chain Monte Carlo (MCMC) samples and
then compute the BE and corresponding CrI of H . It should be noted that the poste-
rior density (11) has the modified extreme value (MEV) distribution. Specifically, the
posterior pdf of H can be rewritten in the following form:

H |x ∼ MEV

⎛
⎝σ + m + 1

2
,
d

4

⎛
⎝ρ + k

m∑
j=1

(1 + R j )x
2
j

⎞
⎠
⎞
⎠ .
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Moreover, to compute the BE as well as the corresponding CrI of H , we apply the
following Metropolis-Hastings (M-H) algorithm:
M-H algorithm for estimation

• Step 1: Generate H from

MEV

⎛
⎝σ + m + 1

2
,
d

4

⎛
⎝ρ + k

m∑
j=1

(R j + 1)x2j

⎞
⎠
⎞
⎠ .

• Step 2: Repeat Step 1 for N times to obtain Ht , t = 1, 2, . . . , N .
• Step 3: To obtain the credible intervals of H , arrange Ht as H [1], H [2], . . ., H [N ].
• Step 4: The 100(1 − τ)% symmetric credible intervals of H is

(
LMC ,UMC

)
=
(
H [N (τ/2)], H [N (1−τ/2)]) .

3.2 Bayesian estimation using Gumbel prior

The likelihood function of H can be defined through re-parameterization of the original
parameters. This can be achieved by considering a one-to-one transformation from�β

onto �H . Therefore, the likelihood function of H based on x is

�(H |x) ∝ exp

⎛
⎝−2mH − dk

4
e−2H

m∑
j=1

(R j + 1)x2j

⎞
⎠ , (12)

where d = exp(2 + �). From Eq. (12), the MLE of H can be obtained as

H̃ML = −1

2
ln

(
4m

dk
∑m

j=1(R j + 1)x2j

)
.

It is clear that the above equation is equivalent to Eq. (7). Now, to develop the BE
of H , we take the prior density of H as Gumbel distributed denoted by Gum(2). It is
well known that the random variable H has Gumbel distribution, Gum(λ), if it pdf is
given by

π(H) = λ exp
(
−λ(H − μ) − e−λ(H−μ)

)
, (13)

where −∞ < H < ∞, μ > 0 is location parameter and λ > 0 is scale parameter. By
combining (12) and (13), the posterior density of H is

π3(H |x) = 1

J (μ)
exp

⎛
⎝−2(m + 1)H − e−2H

⎛
⎝dk

4

m∑
j=1

(R j + 1)x2j + e2μ

⎞
⎠
⎞
⎠ ,

(14)
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where J (μ) being the normalized constant,

J (μ) = � (m + 1)

2
(
(dk/4)

∑m
j=1(R j + 1)x2j + e2μ

)m+1 .

It follows from (14) that the BE of H , under SEL function, is found to be

H̃∗
SE = log

⎛
⎝(dk/4)

m∑
j=1

(R j + 1)x2j + e2μ

⎞
⎠

1/2

+ �

2
− 1

2
HN (m),

where HN (m) ≡ HarmonicNumber [m] gives the mth harmonic number Hm . Sim-
ilarly, the BE of H based on the LINEX can expressed as follows:

H̃∗
BL = −1

c
ln

⎛
⎜⎝ 2c�∗∗(c) exp (−c − c�/2)(

k
∑m

j=1(R j + 1)x2j + e2μ
)c/2

⎞
⎟⎠ .

where �∗∗(c) = � (m + c/2 + 1) /� (m + 1). The BEs of H under GEL and ABL
functions are

H̃∗
AB = η (b + 1)

η (b)
and H̃∗

GE =
(

η (−£)

J (μ)

)−1/£

,

where

η (b) =
∫ ∞

−∞
Hb exp

⎛
⎝−2(m + 1)H − e−2H

⎛
⎝dk

4

m∑
j=1

(R j + 1)x2j + e2μ

⎞
⎠
⎞
⎠ dH .

By integrating the integrands in the above equation with respect to H , the BEs can
be approximated via one of the numerical methods.

3.2.1 Bayes probability intervals

A 100(1 − τ)% two-sided BPI of H for the limits φ∗
L and φ∗

U can be obtained by
solving:

τ

2
=
∫ φ∗

L

−∞
π3 (H |x) dH = ϕ∗

L , say,

and

τ

2
=
∫ ∞

φ∗
U

π3 (H |x) dH = ϕ∗
U , say.
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Estimating the entropy of a Rayleigh model... 3145

After some algebra, we can find φ∗
L and φ∗

U by solving:

ϕ∗
L =

∞∑
�=0

�∑
v=0

ψ�,v(x)
�(� − v + 1, 2vφ∗

L)

�(qm̄ + 1)
= τ

2
,

and

ϕ∗
U = −

∞∑
�=0

�∑
v=0

ψ�,v(x)
�(� − v + 1, 2vφ∗

U )

�(qm̄ + 1)
= τ

2
,

respectively, where

ψ�,v(x) = (−1)�+1

�!v�−v+1

(
�

v

)
(m + 1)�−v

⎛
⎝dk

4

m∑
j=1

(R j + 1)x2j + e2μ

⎞
⎠

v+m+1

,

and

�(ε; z) = 1

�(ε)

∫ ∞

z
uε−1 e−u du, ε, z > 0, (�(ε; 0) ≡ 1).

Based on posterior density (14), the 100(1 − τ)% HPD CrI, (φ∗
L , φ∗

U ) of H , must
satisfy:

∫ φ∗
U

φ∗
L

π3 (H |x) dH = 1 − τ and π3
(
φ∗
L |x) = π3

(
φ∗
U |x) . (15)

After some algebra, the equations in (15) become

ϕ∗
L + ϕ∗

U = τ and
e−2φ∗

L − e−2φ∗
U

φ∗
U − φ∗

L
= 2 (m + 1)

(dk/4)
∑m

j=1(R j + 1)x2j + e2μ
.

By the simultaneous solution of the above equations, the values of φ∗
L and φ∗

U can
be obtained numerically.

4 Numerical simulation study

Here, we carry out some numerical computations to examine and compare the per-
formances among the estimators of the entropy-based on PFFC samples from the
Rayleigh distribution. In each case, the MLEs and BEs using SEL, ABL and GEL
functions are computed and compared in terms of the mean square error (MSE), for
the following different sampling CSs:

• CS-I: Rm = n − m, R j = 0 for j 
= m.

123



3146 M. S. Kotb, H. M. Alomari

Fig. 1 Results of MSEs of the BEs with respect to both the SRIG prior and the Gumbel prior based on the
optimal choice of η = (c, b, £) and different CSs

• CS-II: R1 = n − m, R j = 0 for j 
= 1.
• CS-III: Rm/2 = n − m, R j = 0 for j 
= m/2, if m is even, R(m+1)/2 = n − m,

R j = 0 for j 
= (m + 1)/2, if m is odd.

Based on these CSs, we replicate the process 5000 times and then compute the
corresponding MSEs as well as the average confidence interval lengths (ALs) and
coverage probability (CP) of LN 95% CIs as well as BPI, HPD and MCMC credible
intervals. For MCMCmethod, we compute the CIs based on 1000MCMC sample and
discard the first 100 values as ’burn-in’. For computing the BEs, the hyperparameter
values (σ, ρ) = (3.5, 1.5) and μ = 0.446 are chosen, which allows us to generate the
value of β = 0.735. Based on that generated values of β, the real values of H is 0.634.
For different tests, we considered the different sample sizes n(m) = 24(21) (small),
n(m) = 35(30) (moderate) and n(m) = 80(40, 60, 70) (large) with different group
sizes k = 1, 3. The MSEs of the simulated estimates of H are displayed in Table 1
and the ALs and simulated CPs of H( f ) are computed and displayed in Table 2.
Now, we present the comparison of the various loss functions by the use of the optimal
estimations for the entropy Hη( f ) based on the optimal choice of η = (c, b, £). For
simplicity of discussion, we want to determine the value of η to get the best-estimated
value of the entropy. Thus, we choose the optimal value of η, ηOP , as listed below

ηOP =
{
η|min

η
|H̃η( f ) − Ht ( f )|

}
,

where Ht ( f ) is the true values of the entropy H . Here, using NMinimize option of
Mathematica 11 to get the value of ηOP which minimize Abs(H̃(η) − Ht ), ηOP =
η/.Last[NMinimize[Abs(H̃η( f )−Ht ( f )), η]]. Thefindings ofMSEs for the different
estimators of entropy with respect to both the SRIG prior and the Gumbel prior under
different loss functions are summarized in Figure 1 based on the optimal choice of
η = (c, b, £). Visually, it is evident that the performances of BEs under the ABL
function based on SRIG prior are better than their corresponding BEs in other cases.

5 Data analysis (COVID-19mortality rates fromMexico)

Now, we discuss the analysis of a real-life data set with Rayleigh fitting distribution
and illustrate the methods of estimation developed here. The considered data set is
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Fig. 2 The empirical(a), and P-P plot(b) and QQ-plot(c) of Kaplan-Meier estimator of Rayleigh distribution
for COVID-19 data of Mexico

taken from ”https://covid19.who.int/”, which represents a COVID-19 mortality rates
data belongs to Mexico of 108 days. This data was recorded from 4 March to 20
July 2020 and presented in Table 3. Before progressing further, we check whether the
Rayleigh model is suitable for analyzing the above data, by using the Kolmogorov-
Smirnov distance and Kaplan-Meier estimator (see Kaplan and Meier (1958)). To test
the null hypothesis

H0 : F(x) ∼ Rayleigh model vs. H1 : F(x) � Rayleigh model.

Table 4 presents the Cramer-von Mises, Anderson-Darling, Kolmogorov-Smirnov
and Pearson χ2 tests and the corresponding p-values. We reject H0 if p−value < τ

(τ = 0.05). One cannot rule out the possibility that the data sets came from the
Rayleigh distribution based on the p−values. Furthermore, figure 2 shows fitted sur-
vival and empirical functions as well as the P-P plot of Kaplan-Meier estimator and
QQ plots. Visually, it can be easily seen that the depicted points for the fitted Rayleigh
survival function are near the 45 line, indicating a good fit. For more confirmation,
the correlation coefficient measure is also used to compare the fitting of this model.
Table 4 presents the correlation coefficient between the observed data and the cor-
responding expected values of the underlying model. These results indicate that the
Rayleigh distribution fits data set quite well.

To illustrate the inferential methods developed in this paper, after the order of the
data, we assume that the mortality data belong to Mexico and are randomly divided
into 36 groups with k = 3 items in each group. Suppose that the pre-determined PFFC
plan is applied using three different progressive censoring schemes, see Table 5. 9
groups are censored for this example, and 27 first failures are noted. Using Table 5,
the estimates of the entropy function are obtained in Tables 6 and 7. Moreover, the
lower (L) and the upper (U) 95% CI for H( f ) are computed and displayed in Table 8.

6 Conclusions

Here, we have addressed the problem of estimating the entropy under PFFC Rayleigh
data. The MLEs, BEs and corresponding CIs and CrIs of the entropy have been
obtained. The BEs of the entropy under SEL, LINEX, ABL and GEL functions are
developed and compared to the MLEs in the sense of MSE. Our findings in this
paper are applied and illustrated by using a simulation study, for different choices of
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Table 1 MSEs for the simulated estimates of H( f ), with (σ, ρ, μ) = (3.5, 1.5, 0.446)

CSs (n,m) MLE SRIG Gumbel (n,m) MLE SRIG Gumbel
k HSE HSE k HSE HSE

I (24,21) 0.01209 0.01041 0.01128 (80,40) 0.00627 0.00584 0.00609

II 1 0.01217 0.01060 0.01149 3 0.00634 0.00590 0.00615

III 0.01275 0.01111 0.01204 0.00624 0.00581 0.00606

I (24,21) 0.01206 0.01051 0.01140 (80,60) 0.00429 0.00409 0.00421

II 3 0.01244 0.01084 0.01175 1 0.00415 0.00396 0.00407

III 0.01247 0.01062 0.01150 0.00403 0.00384 0.00395

I (35,30) 0.00869 0.00762 0.00806 (80,60) 0.00419 0.00400 0.00411

II 1 0.00829 0.00754 0.00797 3 0.00427 0.00407 0.00419

III 0.00856 0.00778 0.00823 0.00409 0.00390 0.00401

I (35,30) 0.00863 0.00785 0.00830 (80,70) 0.00347 0.00333 0.00342

II 3 0.00859 0.00781 0.00826 1 0.00367 0.00352 0.00361

III 0.00844 0.00767 0.00812 0.00380 0.00365 0.00374

I (80,40) 0.00630 0.00587 0.00612 (80,70) 0.00370 0.00355 0.00364

II 1 0.00639 0.00595 0.00620 3 0.00353 0.00339 0.00347

III 0.00634 0.00590 0.00616 0.00357 0.00343 0.00352

(n,m, k) and different CSs, and a real-life data set. From the results presented earlier,
the following remarks can be concluded:

1. From the results obtained in this article, we obtain the following special cases: (a)
Setting n = m, k = 1 and R j = 0, j = 1, 2, . . . ,m, we get the result for the
complete sample case. (b) Setting n = m, k 
= 1 and R j = 0, j = 1, 2, . . . ,m,
we get the result for the first-failure censoring sample. (c) Put Rm = n −m, k 
= 1
and R j = 0, j = 1, 2, . . . ,m − 1, we get the result for the type-II first-failure
censoring sample. (d) If k = 1, then we obtain the result for the progressive type-II
censoring sample. (e) If Rm = n − m, k = 1 and R j = 0, j = 1, 2, . . . ,m − 1,
then we obtain the result for the usual type-II censored sample case.

2. According to Table 1 and Figure 1, we note the following observations:

(a) It is checked that the performances of BEs of the entropy based on PFFC data
under the SEL function do well when compared to the MLEs.

(b) Based on the SEL function, it can be observed that the BEs under the SRIG
prior case have smaller MSE than the corresponding BEs under the Gumbel
prior case.

(c) For fixed values of n and m, we found that the results are not sensitive to CSs
or k. Also, for fixed values of k and for selected censoring schemes, we found
that the results are relatively sensitive to n and m.

(d) From Figure 1, it is noticed that the MSEs of BEs under ABL function are
getting smaller when compared to corresponding estimators under other loss
functions, it is recommended to choose the ABL function for estimating the
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Table 3 Real data set

8.826 6.105 10.383 7.267 13.220 6.015 10.855 6.122 10.685 10.035 5.242 7.630

14.604 7.903 6.327 9.391 14.962 4.730 3.215 16.498 11.665 9.284 12.878 6.656

3.440 5.854 8.813 10.043 7.260 5.985 4.424 4.344 5.143 9.935 7.840 9.550

6.968 6.370 3.537 3.286 10.158 8.108 6.697 7.151 6.560 2.988 3.336 6.814

8.325 7.854 8.551 3.228 3.499 3.751 7.486 6.625 6.140 4.909 4.661 1.867

2.838 5.392 12.042 8.696 6.412 3.395 1.815 3.327 5.406 6.182 4.949 4.089

3.359 2.070 3.298 5.317 5.442 4.557 4.292 2.500 6.535 4.648 4.697 5.459

4.120 3.922 3.219 1.402 2.438 3.257 3.632 3.233 3.027 2.352 1.205 2.077

3.778 3.218 2.926 2.601 2.065 1.041 1.800 3.029 2.058 2.326 2.506 1.923

Table 4 Correlation coefficient, MLEs and goodness-of-fit test statistics

Correlation coefficient MLE Anderson-Darling Cramer-von Mises Pearson χ2

Statistic p−Value Statistic p−Value Statistic p−Value

0.91094 4.67155 0.93428 0.39324 0.16328 0.35154 20.33330 0.08721

Table 5 Three different PFFC data sets

R PFFC sample

R1 = (2, 2, 1, 2, 2, 22 ∗ 0) 1.041 2.070 2.926 3.219 3.395 4.120 4.424 4.661 4.909

5.242 5.406 5.854 6.105 6.182 6.412 6.625 6.814 7.260

7.630 7.903 8.551 8.826 9.550 10.043 10.685 12.042 14.604

R2 = (22 ∗ 0, 2, 2, 1, 2, 2) 1.041 1.800 1.923 2.070 2.352 2.506 2.926 3.029 3.219

3.257 3.327 3.395 3.537 3.778 4.120 4.424 4.661 4.909

5.242 5.406 5.854 6.105 6.182 6.814 7.903 8.826 10.685

R3 = (11 ∗ 0, 2, 2, 1, 2, 2, 11 ∗ 0) 1.041 1.800 1.923 2.070 2.352 2.506 2.926 3.029 3.219

3.257 3.327 3.395 4.120 4.909 5.406 6.182 6.814 7.260

7.630 7.903 8.551 8.826 9.550 10.043 10.685 12.042 14.604

parameters by using the Bayesian approach. This shows the importance of
adopting different error loss functions for developing the BEs.

3. Table 2 shows that:

(a) In general, the ALs and CPs for BPIs are nearly close to MCMC in most cases.
(b) In all cases, For fixed values of n and m, the ALs and CPs are not sensitive to

CSs or k.
(c) It is checked that the HPD credible intervals perform well when compared to

the approximate CIs based on MLEs or other credible intervals, for different
censoring schemes. Moreover, under the SRIG and Gumbel prior cases, ALs
of all the estimators have generally the following order:

ALHPD < ALMCMC < ALBP I < ALLN .
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Table 6 Estimates of H( f ), with (σ, ρ, μ) = (3.5, 1.5, 0.446)

n CSs MLE BE, SRIG
m HSE HBL HAB HGE
k c = 3.5 c = −3.5 b = 3.5 b = −3.5 £ = 3.5 £ = −3.5

36 R1 3.14270 3.09017 3.07586 3.10504 3.09965 3.08081 3.08414 3.09355

27 R2 3.07333 3.02082 3.00651 3.03569 3.03052 3.01124 3.01465 3.02427

3 R3 3.13487 3.08234 3.06804 3.09722 3.09185 3.07296 3.07630 3.08573

Table 7 Estimates of H( f ), with (σ, ρ, μ) = (3.5, 1.5, 0.446)

n CSs MLE BE, Gumbel
m HSE HBL HAB HGE
k c = 3.5 c = −3.5 b = 3.5 b = −3.5 £ = 3.5 £ = −3.5

36 R1 3.14270 3.13359 3.11820 3.15003 3.14379 3.12352 3.12710 3.13722

27 R2 3.07333 3.06422 3.04886 3.08070 3.07466 3.05393 3.05759 3.06793

3 R3 3.13487 3.12576 3.11037 3.14221 3.13599 3.11567 3.11926 3.12940

Table 8 The lower (L) and the upper (U) of the 95% CIs for H( f )

n CSs (L,U)
m LN BPI MCMC HPD
k

SRIG

36 R1 (2.95965,3.33708) (2.91221,3.26703) (2.90712,3.26130) (2.91273,3.25691)

27 R2 (2.89040,3.26783) (2.84286,3.19768) (2.83776,3.19195) (2.84488,3.19295)

3 R3 (2.95183,3.32926) (2.90438,3.25921) (2.89770,3.25910) (2.89929,3.25348)

Gumbel

R1 (2.95530,3.32897) (2.94968,3.32260) (2.96231,3.33428)

R2 (2.88594,3.25960) (2.88031,3.25324) (2.89248,3.26164)

R3 (2.94747,3.32114) (2.94185,3.31477) (2.95037,3.32095)

(d) As expected, all the estimators and ALs become better as n and m increase. It
is also observed that the ALs based on BPIs and MCMC are better with the
SRIG prior case when compared to the Gumbel prior case.
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