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Abstract
We consider a problem of association test in high dimension. A new test statistic is
proposed based on the covariance of random vectors and its asymptotic properties
are derived under both the null hypothesis and the local alternatives. Furthermore
power enhancement technique is utilized to boost the empirical power especially under
sparse alternatives. We examine the finite-sample performances of the proposed test
via Monte Carlo simulations, which show that the proposed test outperforms some
existing procedures. An empirical analysis of a microarray data is demonstrated to
detect the relationship between the genes.

Keywords Association test · High dimension · Covariance of random vectors ·
Power enhancement technique

1 Introduction

Traditional statistical methods for measuring the association between random vectors
are generally based on coefficient (covariance). See Wilks (1935), Anderson (2003),
Robert et al. (1985), Székely et al. (2007) and among others. Wilks (1935) introduced
an effective likelihood ratio test (LRT) for block independence under Gaussian popu-
lation and Anderson (2003) detailed LRT for the Gaussian population. RV correlation
coefficient proposed by Escoufier (1973) was considered in Robert et al. (1985) to
measure multivariate association between two sets of variables. Székely et al. (2007)
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developed distance covariance and distance correlation, and provided an approach to
the problem of testing the joint independence of random vectors. The asymptotic prop-
erties of these classical procedures aforementioned are established under the scheme
that the sample size n tends to infinity and the dimensions(p and q) are fixed. This is
the so-called “small p and q, large n” paradigm.

However, high-dimensional data, such as microarray analysis, tumor classification
and biomedical imaging, tend to have a dimension ( p and (or) q ) comparable to, or
much larger than, the sample size n. This brings great challenges to these traditional
methods. For example, the empirical power of the conventional test may be largely
impacted by the increasing dimension, and even converges to the significance level
α due to “the curse of dimensionality”, which means that the test cannot distinguish
the null hypothesis from the alternatives. Therefore more and more statisticians are
pursuing new methods to address the high-dimensional problems. To accommodate
the large-dimensionality, Jiang et al. (2013) proposed the corrected likelihood ratio
test and large-dimensional trace criterion to test the independence of two large sets
of multivariate variables when the dimensions p + q and the sample size n tend to
infinity simultaneously. Tomake theRVcoefficient be applicable for high-dimensional
data, some test procedures are introduced in the following two papers. Srivastava
and Reid (2012) proposed a new statistic based on the RV coefficient for testing
the independence of two sub-vectors, and obtained its asymptotic properties under
the scheme that min(p, q, n) → ∞, p/(p + q) → d1 > 0, q/(p + q) → d2 >

0 and n = O((p + q)δ) for some constant δ > 0. By constructing an unbiased
estimator for the numerator of the RV coefficient, Li et al. (2017) considered the
independence test under the assumption that only one random vector has a divergent
dimension, that is, min(p, n) → ∞ and q is fixed. The asymptotic properties in
these three papers (Jiang et al. 2013; Srivastava and Reid 2012; Li et al. 2017) are
established under the assumption that the random vectors are multivariate normal
distributed. Without normal constraint, Yang and Pan (2015) proposed a test statistic
based on regularized canonical correlation coefficients, and they obtained the limiting
distributions when both p and q are comparable to the sample size n. Discovering that
the empirical distance correlation of the two vectors converges to one even though they
are independent as dimensions tend to infinity, Székely and Rizzo (2013) extended
the distance correlation with a modified version in high-dimensional settings, and
obtained a distance correlation t-test for independence of random vectors in arbitrarily
high dimension. Heller et al. (2012) presented a powerful test of association based
on ranks of distances which is consistent against all alternatives and can be applied
in any dimensions p and q even greater than n. On the basis of power enhancement
technique introduced by Fan et al. (2015), Zheng et al. (2022) developed a powerful
test on block-structured correlation of a high dimensional-random vector for sparse
or non-sparse alternatives without normality assumption, and obtained the statistical
properties under the asymptotic regime that (p + q)/n → y ∈ (0,∞).

This paper aims to develop a new and powerful test on high-dimensional association
under no strict distributional assumptions. To this end,we propose aU-statistic of order
four based on the RV covariance introduced in Escoufier (1973). To boost the power
especially under sparse alternatives a screening term is added. It is worth mentioning
that the proposed test statistic is effective not only for non-sparse alternatives but also
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for sparse alternatives. Four distinguishing features can be summarized as follows.
First, although the proposed U-statistic is order four, it can be fast implemented with
an estimated U-statistic of order two. Second, the asymptotic distributions of the U-
statistic under both null hypothesis and local alternatives are derived in the scheme
that p + q tends to infinity. It is noteworthy that this scheme can be divided into two
cases: one is that only p or q is much more than or comparable to the sample size n;
the other is that both p and q tend to infinity with n simultaneously. Third, the power
enhancement technique can dramatically improve the performance of the proposed
test, which is demonstrated by Monte Carlo simulations. Last but not least is some
examples under specific structures are given to gain more insights on the regularity
conditions.

The rest of this work is organized as follows. A new statistic for testing the asso-
ciation between two random vectors is proposed on the basis of RV covariance, and
its asymptotic properties are established in Sect. 2. In Sect. 3 we investigate the prop-
erties of the screening term based on the power enhancement technique. Numerical
studies and real data analysis are listed in Sect. 4 to examine the size and power of our
proposed test. The Appendix is devoted to gather the technical proofs.

2 Association test in high dimension

In this part, our interest is to study and test the association between two random
vectors X = (X1, . . . , X p)

� ∈ R
p and Y = (Y1, . . . ,Yq)� ∈ R

q . Let �XY denote
the population covariance matrix of X and Y. Our association test hypothesis can be
represented as follows:

H0 : �XY = 0p×q VS H1 : �XY �= 0p×q .

It is worth noting that �XY = 0p×q if and only if the two random vectors are
uncorrelated. Escoufier (1973) defined tr(�XY�YX) as the “covariance” of two ran-
dom vectors X and Y, where tr(·) denotes the trace operator. It is evident to see
that tr(�XY�YX) = 0 is equivalent to �XY = 0p×q . This motivates us to uti-
lize tr(�XY�YX) to quantify the discrepancy between �XY and 0p×q . Adopting
the idea of U-centring in Székely and Rizzo (2014) and Yao et al. (2018), we can
construct an unbiased estimator, denoted by Tn,p,q(X,Y), of tr(�XY�YX). Sup-

pose that Zi = (Xi ,Yi )
� ∈ R

p+q are random samples of Z = (X,Y)
�
in which

Xi = (Xi1, . . . , Xip)
� and Yi = (Yi1, . . . ,Yiq)�. Then Tn,p,q(X,Y) is given by

Tn,p,q(X,Y) =
(
n

4

)−1 ∑
i< j<k<l

h(Zi ,Z j ,Zk,Zl),

where

h(Z1,Z2,Z3,Z4) = 1

4!
(1,2,3,4)∑
(s,t,u,v)

1

4
(Xs − Xt )

�(Xu − Xv)(Ys − Yt )
�(Yu − Yv)
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and the summation is over all 24 permutations of the 4-tuples of indices (1, 2, 3, 4).
It is obvious to see that Tn,p,q(X,Y) is a U-statistic of order four and it is an

unbiased estimator of tr(�XY�YX).

Remark 1 Tests for high-dimensional regression coefficients in Zhong and Chen
(2011) and Cui et al. (2018) can be seen as a special case of our test hypothesis
with respect to measuring the discrepancy. Consider a linear regression model

Y = α + X�β + ε

where β = (β1, . . . , βp)
� ∈ R

p is a p−dimensional vector of regression coefficients
of interest and α is a nuisance intercept parameter. ε is random error with mean zero
and variance σ 2, and is independent of X. Testing the high-dimensional regression
coefficients simultaneously in the linear model can be formulated as follows:

H0 : β = 0p×1 VS H1 : β �= 0p×1.

It tests the overall significance of linear regression coefficients. Both (Zhong and Chen
2011) and (Cui et al. 2018) adopted β��2

Xβ as an effective measure of the difference
between β and 0p×1. Simple calculation shows that tr(�XY�YX) = β��2

Xβ.

Remark 2 tr(�XY�YX), the squared distance covariance dCov2(X,Y) introduced by
Székely et al. (2007) and the squared martingale difference divergence MDD(Y |X)2

proposed in Shao and Zhang (2014) can be constructed in an analogous way. In fact,
write

τ(X,Y) = E(‖X − X′‖α‖Y − Y′‖β) + E(‖X − X′‖α)E(‖Y − Y′‖β)

−2E(‖X − X′‖α‖Y − Y′′‖β),

where Z′ = (X′,Y′)� and Z′′ = (X′′,Y′′)� are independent copies of Z = (X,Y)�.
When α = β = 1, τ(X,Y) = dCov2(X,Y) and it characterizes independence of ran-
dom vectors X and Y. τ(X,Y ) = 2MDD(Y |X)2 as α = 1 and β = 2, and it measures
the departure of conditional mean independence between a scalar response variable Y
and a vector predictor variable X. When α = β = 2, τ(X,Y) = 4tr(�XY�YX). Fur-
thermore, it is worth mentioning that tr(�XY�YX) can degenerate into the squared
covariance of random variable X and Y , when p = q = 1. This suggests us con-
sider not only the simultaneous measure between random vectors X and Y, but also
the marginal quantization between their components Xi and Y j , i = 1, . . . , p, j =
1, . . . , q due to the curse of dimensionality.

Remark 3 According to the Székely and Rizzo (2014) and Yao et al. (2018),
Tn,p,q(X,Y) can be fast implemented. Define the respective U-centred versions of
ai j = X�

i X j and bi j = Y�
i Y j as follows:

Ai j = ai j − 1

n − 2

∑
l �=i

ail − 1

n − 2

∑
k �= j

ak j + 1

(n − 1)(n − 2)

∑
k �=l

akl ,
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Bi j = bi j − 1

n − 2

∑
l �=i

bil − 1

n − 2

∑
k �= j

bk j + 1

(n − 1)(n − 2)

∑
k �=l

bkl .

Then Tn,p,q(X,Y) has the following reformulation:

Tn,p,q(X,Y) = 1

n(n − 3)

∑
i �= j

Ai j Bi j

which is shown to be a quick implementation in numerical simulations.

2.1 Asymptotic analysis of Tn,p,q(X, Y) under null hypothesis

In this subsection the asymptotic properties of Tn,p,q(X,Y) are investigated under
some regularity assumptions. Some notations are introduced before studying the prop-
erties of the proposed statistic.Write L1(Z,Z′) = E{L(Z,Z′′)L(Z′,Z′′)|(Z,Z′)}, and
ζ 2 = E{L(Z,Z′)2}, where L(Z,Z′) = X�X′Y�Y′. To obtain the asymptotic distri-
bution of Tn,p,q(X,Y) we require the following technical assumption.
(A1) E{L1(Z,Z′)2} = o(ζ 4), E{(X�X′Y�Y′)4} = o(nζ 4), E{(X�X′Y�Y′′)4} =
o(nζ 4) and E{(X�X′)4}E{(Y�Y′)4} = o(nζ 4).

The following theorem presents the limiting null distribution of Tn,p,q(X,Y).

Theorem 1 Suppose assumption (A1) holds. Then under H0, as (n, p + q) → ∞ we
have that

nTn,p,q(X,Y)√
2ζ 2

d−→ N (0, 1),

and a ratio consistent estimator of ζ 2 is

ζ 2
n = 1

n(n − 3)

∑
i �= j

A2
i j B

2
i j ,

where
d−→ denotes convergence in distribution.

By referring to Zhang et al. (2018) and its supplementary material, we impose
assumption (A1) to ensure the asymptotic normality of the degenerate U-statistic
Tn,p,q(X,Y) under the null hypothesis. Meanwhile this assumption guarantees that
ζ 2
n is ratio-consistent. To further understand this assumption, the following proposition

is established when Z = (X,Y)
�
follows a multivariate normal distribution.

Proposition 1 Suppose that Z = (X,Y)
� ∼ N (0(p+q)×1, Ip+q). Then we have

ζ 2 = pq, E{L1(Z,Z′)2} = pq,

E{(X�X′Y�Y′)4} = 9pq(p + 2)(q + 2),
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E{(X�X′Y�Y′′)4} = 9pq(p + 2)(q + 2),

E{(X�X′)4}E{(Y�Y′)4} = 9pq(p + 2)(q + 2).

Proposition 1 may shed light on the assumption (A1). It indicates that when Z
follows a standard multivariate normal distribution, this condition holds automatically
as long as n and p + q tend to infinity, which implies that condition (A1) is imposed
reasonably.

Remark 4 Theorem 1 states that the asymptotic null distribution of Tn,p,q is normal,
and we can reject H0 at a significance level α if

nTn,p,q(X,Y) ≥ zα
√
2ζ 2

n ,

where zα denotes the upper α quantile of N (0, 1).

2.2 Asymptotic analysis of Tn,p,q(X, Y) under the local alternatives

In this subsection, we turn to the asymptotic analysis of Tn,p,q(X,Y) under the local
alternatives.

The following assumption is required for theoretical study.
(A2) E{(X��XYY)2} = o(n−1ζ 2) and E{(X��XYY′)2} = o(ζ 2).

Theorem 2 Suppose that assumptions (A1) and (A2) hold. Then as (n, p + q) → ∞
we have

n{Tn,p,q(X,Y) − tr(�XY�YX)}√
2ζ 2

d−→ N (0, 1),

and ζ 2
n is still a ratio-consistent estimator of ζ 2.

Assumption (A2) characterizes the local alternative in the sense that the alternative
is not too far away from the null hypothesis, and thus shows that our proposed statistic
is a degenerate U-statistic. It is noteworthy that this assumption holds automatically
under the null hypothesis and it is given in light of Zhang et al. (2018). In following
we illustrate the assumptions (A1) and (A2) under linear regression model.

Proposition 2 Assume that Y = X�β + ε where X and ε are independent with X ∼
N (0p×1, Ip) and ε ∼ N (0, 1). Then we have

ζ 2 = (p + 8)‖β‖4 + 2(p + 2)‖β‖2 + p,

E{(X��XYY)2} = 3‖β‖4 + ‖β‖2,
E{(X��XYY′)2} = ‖β‖4 + ‖β‖2,
E{(X�X′Y�Y′)4} = O{p2(‖β‖2 + 1)4},
E{(X�X′Y�Y′′)4} = O{p2(‖β‖2 + 1)4},
E{(X�X′)4}E{(Y�Y′)4} = 27p(p + 2)(‖β‖2 + 1)4
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E{L1(Z,Z′)2} = (3‖β‖2 + 1)4 + (p − 1)(‖β‖2 + 1)4.

Proposition 2 implies that assumption (A1) holds automatically as (n, p) → ∞.
Furthermore, assumption (A2) can be satisfied when ‖β‖2/(1 + ‖β‖2) = o(p/n).
Therefore, assumption (A2) can be viewed as local alternatives.

Remark 5 It can be inferred from theorem 2 that the asymptotic power of the proposed
test under the local alternatives is

	

(
−zα + ntr(�XY�YX)√

2ζ 2

)
,

where 	(·) is the cumulative distribution function of the standard normal distri-
bution. It is clear to see that this power is dominantly affected by signal to noise
ratio term η(�XY) = tr(�XY�YX)/

√
2ζ 2. Specially, the power tends to α when

η(�XY) = o(n−1), which implies that the test fails to make a distinction between the
null hypothesis and the local alternatives. Meanwhile, if η(�XY) has a higher order
of n−1, the power converges to 1 and thus it is a consistent test.

3 Power enhancement technique

In Sect. 2, Tn,p,q is constructed based on tr(�XY�YX), and its asymptotic distributions
are obtained under regularity conditions (A1)–(A2). It is worth noting that it is a simul-
taneous measure for association, and its power is adversely affected by the increasing
dimensions, especially under the sparse alternatives.We adopt the power enhancement
technique introduced by Fan et al. (2015), and utilize the marginal association to boost
the empirical power in this case. Define

S = {(i, j) : ρ2(Xi ,Y j ) ≥ 2δn,p,q , 1 ≤ i ≤ p, 1 ≤ j ≤ q}
Rn(Xi ,Y j ) = Tn,1,1(Xi ,Y j )√

Tn,1,1(Xi , Xi )Tn,1,1(Y j ,Y j )
, 1 ≤ i ≤ p, 1 ≤ j ≤ q,

where δn,p,q = c log(log(n))/ log(log(pq))(pq)1/4(log(n))3/4/n and ρ(Xi ,Y j ) is
the Pearson correlation coefficient.

The conditions below are imposed to derive the limiting properties ofRn(Xi ,Y j ).
(A3) pq = O(nκ), 0 < κ < 4 and E{(X�X′Y�Y′)4} exists.
(A4) max

1≤i≤p,1≤ j≤q
ξi j = O((pq)−1/2), where ξi j = σ 2(Xi ,Y j )Var{(Xi−E(Xi ))(Y j−

E(Y j ))} and σ(Xi ,Y j ) is the covariance of random variables Xi and Y j .
We present the following result regarding the asymptotic behavior of Rn(Xi ,Y j )

under both the null hypothesis and the alternatives.

Theorem 3 Suppose conditions (A3)–(A4) hold. Then we have that
(1) under H0, almost surely

max
1≤i≤p,1≤ j≤q

|Rn(Xi ,Y j )| = o(δn,p,q), n → ∞.
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(2) when S �= ∅, almost surely

max
1≤i≤p,1≤ j≤q

|Rn(Xi ,Y j )| ≥ δn,p,q , n → ∞.

Assumptions (A3)–(A4) are imposed based on the results of Section 5.3 in Serfling
(1980). pq = O(nκ), 0 < κ < 4 has an explicit relationship between p, q and
n, and means δn,p,q converges to 0 as n tends to infinity. It is worth noting that
assumption (A3) ensures an almost sure representation of the difference between U-
statistic Tn,1,1(Xi ,Y j ) and its projection. As for condition (A4), it holds automatically
under the null hypothesis and shows that ξi j is of order (pq)−1/2 uniformly among pq
components under sparse alternatives, which guarantees an almost sure representation
for the projection of U-statistic Tn,1,1(Xi ,Y j ). Details can be seen in the proof of
Theorem 3 in the Appendix.

Remark 6 In light of theorem 3, the screening term used for enhancing the empirical
power can be constructed as follows:

T 0
n,p,q = pq1

(
max

1≤i≤p,1≤ j≤q
|Rn(Xi ,Y j

)
| ≥ δn,p,q)

where 1(·) is an indicator function. It can be inferred from this theorem that T 0
n,p,q

is negligible under null hypothesis whereas it will diverge to infinity when S �= ∅.
Therefore the power of the test will be well enhanced if add the term T 0

n,p,q owing to
taking into account of more information from the alternative. Similar to the discussion
in Fan et al. (2015), a general form of the test statistic can be proposed as follows:

T̂n,p,q = Tn,p,q + T 0
n,p,q .

It is clear to see from Theorems 1 and 3 that the test statistic T̂n,p,q shares the same
distribution as Tn,p,q , which implies that the proposed test reject H0 at the significance
level α if T̂n,p,q ≥ zα . Furthermore, it yields from Theorems 2 and 3 that the empirical
power of T̂n,p,q can tend to 1 under some regularity conditions. This also indicates
that the power enhancement technique can be utilized to boost the power as long as a
test statistic has a limiting null distribution such as normal approximation.

Remark 7 Given that the kernel function of U-statistic Tn,1,1(Xi ,Y j ) has finite
fourth moments, the convergence rate, (log(n))3/4/n, of difference between a
U-statistic and its projection is obtained in Theorem 5.3.3 of Serfling (1980).
max1≤i≤p,1≤ j≤q |Rn(Xi ,Y j )| refers to the maximum of pq marginal correlation,
which indicates that the convergence rate should be multiplied by a function of pq. In
light of the fact that the kernel function of Tn,1,1(Xi ,Y j ) has finite fourth moments, we
choose (pq)1/4. More details can be found in the proof of Theorems 3. Furthermore,
it is worth noting that the choice of tuning parameter c will affect the performance of
the proposed test in both empirical size and empirical power. To be specific, given the
sample size and the dimension, larger c can lead to a higher probability of control-
ling the empirical size while smaller c has a greater chance of boosting the empirical
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power, which indicates that the choice of c becomes a trade-off between controlling
the empirical size and boosting the empirical power. In practical applications a series
of values are given to identify which ones can meet the need of size control. Based on
the selected values, we choose the smallest value as c, which can increase the empirical
power. More details can be found from the Example 1 in the simulation studies.

4 Numerical studies

In this section we illustrate the proposed test procedure by investigating its finite
sample performance through simulations and a real microarray gene data analysis.
For the purpose of comparison, we also consider the following methods. The first one
proposed in Zheng et al. (2022) adopts the Frobenius distance between covariance
matrix. The second procedure is based on the trace of covariance matrix advocated in
Li et al. (2017). The third one utilizes the modified distance correlation established in
Székely and Rizzo (2013). The fourth one is built based on ranks of distances in Heller
et al. (2012) and the remaining one is Tn,p,q proposed in this paper. To be specific, we
denote the method used in this section as follows:

• NEW1: the test based on Tn,p,q ;
• NEW: the test based on T̂n,p,q ;
• FDS: the test of Zheng et al. (2022);
• TCM: the test of Li et al. (2017);
• MDC: the test of Székely and Rizzo (2013);
• HHG: the test of Heller et al. (2012).

To implement MDC and HHG test procedures, we adopt the dcor.ttest function in
the energy package and the hhg.test function in the HHG package, respectively. We
set the sample size n = 100, 200, and the dimension p + q = 500. The nominal
significance level is fixed at α = 0.05, and the number of independent replications is
1000. All simulation studies are conducted using R version 4.1.2.

Example 1 This example is designed to compare the finite sample performance of the
test procedures. In this example, we assume that

Z = (X,Y)
� = �1/2W,

where the components of W = (W1, . . . ,Wp+q)
�
are i.i.d., and W1 is from the stan-

dard normal distribution N (0, 1), the uniform distribution U (−√
3,

√
3), the scaled

student distribution t(6)/
√
6/4 and the scaled chi-square distribution (χ2(6)−6)/

√
12

with 6 degrees of freedom, respectively. In this example, the dimension is p =
1, 5, 10, 20, 50, 100.

Recall from Remark 7, it is of importance to determine c under different choice
of (n, p, q). Thus we set c = (0.1, 0.2, . . . , 2) and investigate their empirical size of
our proposed test when � = Ip+q . Note that the choice of c should not be affected
by the distribution of W1. Here we choose W1 ∼ N (0, 1). Figures1 and 2 display the
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Fig. 1 The empirical size of the proposed test NEW under different values of c in Example 1 when n = 100

Fig. 2 The empirical size of the proposed test NEW under different values of c in Example 1 when n = 200
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empirical size of the proposed test procedure NEWand show that c = 1 can be applied
to all the settings except for the case (n, p, q) = (100, 1, 499) in this Example. We
choose c = 1.5 when (n, p, q) = (100, 1, 499).

Based on the choice of c, we investigate the empirical size of these tests when
� = Ip+q . Table 1 presents the results and shows that all the empirical sizes are close
to the nominal significance level α = 0.05. Meanwhile, the fact that little difference
existing between the empirical sizes of NEW and NEW1 indicates that the screening
term T 0

n,p,q has little effect on the size under the null hypothesis.

To examine the powers of these test procedures, we set � = (0.5|i− j |)p+q
i, j=1. The

simulation results are summarized in Table 2. From this table it is convenient to see
that the performance of NEW and FDS outperform the remaining methods, especially
when n = 200, which can be attributed to the adoption of the power enhancement
technique. Furthermore, it is worth noting that the empirical power of each procedure
as n = 200 is much higher than that under the setting n = 100, which shows the large
sample theory.

Example 2 The power of the test procedures are evaluated via the model studied in
Jiang et al. (2013). They define the populations X and Y as

X = U1 + γUp
2 ,Y = U2 + γU2

where U1 = (U11, . . . ,U1p)
�
and U2 = (U21, . . . ,U2q)

�
are independent, Up

2 is a
subset ofU2 consisting of its first p variables, and the factor γ represents the degree of
dependence. In this example γ = 0.3. We assume that U11, . . . ,U1p,U21, . . . ,U2q
are i.i.d., and follow the same distribution as W1 in Example 1. The dimension is
p = 20, 50, 100 when the sample size is n = 100. As for the sample size n = 200, the
dimension is p = 5, 10, 20. From this model it is easy to calculate that the covariance
matrices are respectively

�X = (1 + γ 2)Ip,�Y = (1 + γ )2Iq ,�XY = γ (1 + γ )(Ip1, Op,q−p),

where Op,q−p denotes a p × (q − p) zero matrix. Table 3 displays the performance
of these methods, and shows the empirical power of each procedure increases with
the increasing dimension p, which implies that these methods are effective against the
dense alternatives. At the same time to achieve the same performance for each of these
test procedures, the dimension p under the setting that n = 200 can be much smaller
than that of n = 100, which implies that the powers of these methods can tend to be
1 as long as the sample size n is sufficiently large.

Example 3 To illustrate the application of our proposed procedure in high-dimensional
settings, we analyze amicroarray data reported in Scheetz et al. (2006). In order to gain
a broad perspective of gene regulation in the mammalian eye and to identify genetic
variation relevant to human eye disease, 120 twelve-week-old male offspring were
chosen for tissue harvesting from their eyes and microarray analysis. 18,976 probes
on the array which was used to analyze the RNA from the eyes of these F2 animals
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Table 4 P-value in Example 3

n p NEW1 NEW FDS TCM MDC HHG

120 18,975 0 0 0 0 0 0.005

18,956 0.895 0.895 0.875 0.878 0.749 0.493

were detected sufficiently expressed and variable. More details of the experiment can
be found in Scheetz et al. (2006).

Note that 1389163_at, one of the 18,976 sufficiently expressed probes, is from the
gene TRIM32. This gene is found in Chiang et al. (2006) to cause an extremely hetero-
geneous human obesity syndrome known as Bardet-Biedl syndrome. The relationship
between the probe 1389163_at and the remaining 18,975 ones is first investigated.
The P-values of the three tests are listed in Table 4 and denoted by p = 18,975, which
suggests that gene TRIM32 and the rest of gene exhibit some type of association.
Huang et al. (2008) verified this situation and further studied the data set. They used
the adaptive Lasso in sparse high-dimensional linear regression models and selected
19 genes whose expression are most correlated with that of gene TRIM32. Exclud-
ing these 19 probes, we take another test to check whether the probe 1389163_at is
associated with the 18,956 ones or not. To remove the effects of these 19 genes on
TRIM32, we replace the value of TRIM32 with the residual from a multiple linear
regression on the response variable TRIM32 and these 19 genes being the predictors.
Table 4 also presents the result when p = 18, 956, which shows the absence of a linear
relationship between the gene TRIM32 and the 18,956 ones.
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Appendix

Proof of Theorem 1 Without loss of generality, we can assume that E(X) = 0p×1
and E(Y) = 0q×1 hereafter. Define that ξc = Var{hc(Z1, . . . ,Zc)}, where
hc(z1, . . . , zc) = E{h(z1, . . . , zc,Zc+1, . . . ,Z4)} for c = 1, 2, 3, 4. DenoteG(X,X′)
= X�X′ and H(Y,Y′) = Y�Y′. Observe that E{L(Z,Z′)} = E{L(Z,Z′)|Z} =
E{L(Z,Z′)|Z′} = 0 under the null, and that E{G(X,X′)|X} = E{G(X,X′)|X′} =
E{H(Y,Y′)|Y} = E{H(Y,Y′)|Y′} = 0. Then we can obtain under the null hypothe-
sis that

h1(Z1) = 0,

h2(Z1,Z2) = 1

6
G(X1,X2)H(Y1,Y2),
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h3(Z1,Z2,Z3) = 1

12
[{2G(X1,X2) − G(X1,X3) − G(X2,X3)}H(Y1,Y2)

+{2G(X1,X3) − G(X1,X2) − G(X2,X3)}H(Y1,Y3)

+{2G(X2,X3) − G(X1,X2) − G(X1,X3)}H(Y2,Y3)],
h4(Z1,Z2,Z3,Z4) = 1

12
[{2G(X1,X2) + 2G(X3,X4) − G(X1,X3) − G(X1,X4)

− G(X2,X3) − G(X2,X4)}{H(Y1,Y2) + H(Y3,Y4)}
+ {2G(X1,X3) + 2G(X2,X4) − G(X1,X2) − G(X1,X4)

− G(X2,X3) − G(X3,X4)}{H(Y1,Y3) + H(Y2,Y4)}
+ {2G(X1,X4) + 2G(X2,X3) − G(X1,X2) − G(X1,X3)

− G(X2,X4) − G(X3,X4)}{H(Y1,Y4) + H(Y2,Y3)}].

Under Assumption (A1) we have

ξ1 = 0, ξ2 = ζ 2

36
, ξ3 = o(nζ 2), ξ4 = o(n2ζ 2).

Applying the Hoeffding’ decomposition in Serfling (1980), we get that

nTn,p,q(X,Y)√
2ζ 2

=

∑
1≤i< j≤n

L(Zi ,Z j )

√(n
2

)
ζ 2

+ op(1).

Write Mj = ∑ j−1
i=1 L(Zi ,Z j ), Su = ∑u

j=2
∑ j−1

i=1 L(Zi ,Z j ) = ∑u
j=2 Mj

and the filtration Fu = σ {Z1, . . . ,Zu}. Since E{L(Z,Z′)} = E{L(Z,Z′)|Z} =
E[L(Z,Z′)|Z′} = 0, then E(Su) = 0 and for u < v,

E(Sv|Fu) = Su +
v∑

j=u+1

u∑
i=1

E{L(Zi ,Z j )|Zi } +
v∑

j=u+2

j−1∑
i=u+1

E{L(Zi ,Z j )}

= Su .

This implies that Su is adaptive toFu and thus it is a mean-zero martingale sequence.

To obtain the asymptotic normality of
∑

1≤i< j≤n L(Zi ,Z j ))/

√(n
2

)
ζ 2, we only

need to verify the two following conditions given by Corollary 3.1 in Hall and Heyde
(1980).

Condition (1): the conditional variance

2

n(n − 1)ζ 2

n∑
j=2

E(M2
j |F j−1)

P−→ 1,
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and Condition (2): the conditional Lindeberg condition, that is, for all ε > 0,

1

n(n − 1)ζ 2

n∑
j=2

E
[
M2

j I{|Mj | > ε
√
n(n − 1)ζ 2}|F j−1

]
P−→ 0.

To prove condition (1), it is sufficient to prove that

E

⎧⎨
⎩

2

n(n − 1)ζ 2

n∑
j=2

E(M2
j |F j−1)

⎫⎬
⎭ = 1,

and

Var

⎧⎨
⎩

2

n(n − 1)ζ 2

n∑
j=2

E(M2
j |F j−1)

⎫⎬
⎭ −→ 0.

Notice again that E{L(Z,Z′)} = E{L(Z,Z′)|Z} = E{L(Z,Z′)|Z′} = 0. We then
show that

E

⎧⎨
⎩

2

n(n − 1)ζ 2

n∑
j=2

E(M2
j |F j−1)

⎫⎬
⎭

= 2

n(n − 1)ζ 2

n∑
j=2

E

⎧⎨
⎩

j−1∑
i,i ′=1

L(Zi ,Z j )L(Zi ′ ,Z j )

⎫⎬
⎭

= 1.

Next we will prove that

Var

⎧⎨
⎩

2

n(n − 1)ζ 2

n∑
j=2

E(M2
j |F j−1)

⎫⎬
⎭ −→ 0.

Recall that L1(Z,Z′) = E{L(Z,Z′′)L(Z′,Z′′)|(Z,Z′)}. It is easy to check that

E{L1(Z,Z′)} = E{L1(Z,Z′)|Z} = E{L1(Z,Z′)|Z′} = 0.

Then we have that

Var

⎧⎨
⎩

n∑
j=2

E(M2
j |F j−1)

⎫⎬
⎭

=
n∑
j=2

Var
{
E(M2

j |F j−1)
}

+ 2
∑

2≤ j<t≤n

Cov
{
E(M2

j |F j−1),E(M2
t |Ft−1)

}
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= n(n − 1)(2n − 1)

6
Var{L1(Z,Z)} + n(n − 1)2(n − 2)

3
E{L1(Z,Z′)2}.

When assumption (A1) is true, we thus obtain that

Var

⎧⎨
⎩

2

n(n − 1)ζ 2

n∑
j=2

E(M2
j |F j−1)

⎫⎬
⎭ = 4

n2(n − 1)2ζ 4 Var

⎧⎨
⎩

n∑
j=2

E[M2
j |F j−1)

⎫⎬
⎭

−→ 0,

which ensures condition (1).
Next condition (2) will be verified. Direct calculation shows that

n∑
j=2

E(M4
j ) =

n∑
j=2

j−1∑
i1,i2,i3,i4=1

E{L(Zi1,Z j )L(Zi2 ,Z j )L(Zi3 ,Z j )L(Zi4 ,Z j )}

= n(n − 1)

2
E{L(Z,Z′)4] + n(n − 1)(n − 2)E[L(Z,Z′)2L(Z,Z′′)2].

Again under assumption (A1), it is easy to show that

1

n4ζ 4

n∑
j=2

E(M4
j ) → 0,

which implies that

1

n2(n − 1)2ζ 4

n∑
j=2

E(M4
j |F j−1)

P−→ 0.

Notice that for all ε > 0,

1

n(n − 1)ζ 2

n∑
j=2

E[M2
j I{|Mj | > ε

√
n(n − 1)ζ 2}|F j−1]

≤ 1

ε2n2(n − 1)2ζ 4

n∑
j=2

E(M4
j |F j−1),

which implies condition (2).
Therefore, we can show that

∑
1≤i< j≤n

L(Zi ,Z j )

√(n
2

)
ζ 2

d−→ N (0, 1).
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Using the Slutsky theorem we obtain that

nTn,p,q((X,Y))√
2ζ 2

d−→ N (0, 1). (41)

In the following, we will show the consistency of ζ 2
n . That is,

ζ 2
n

ζ 2
P−→ 1. (42)

To obtain this result, it is sufficient to verify E(ζ 2
n /ζ 2) → 1 and Var(ζ 2

n /ζ 2) → 0,
respectively. Recall the definition of Ai j and Bi j , we can rewrite them in the following
form:

Ai j = ai j − 1

n − 2

∑
l �=i

ail − 1

n − 2

∑
k �= j

ak j + 1

(n − 1)(n − 2)

∑
k �=l

akl ,

= n − 3

n − 1

⎧⎨
⎩G(Xi ,X j ) − 1

n − 2

∑
l /∈{i, j}

G(Xi ,Xl) − 1

n − 2

∑
k /∈{i, j}

G(Xk,X j )

+ 1

(n − 2)(n − 3)

∑
{k,l}⋂{i, j}=∅

G(Xk,Xl)

⎫⎬
⎭

:= n − 3

n − 1
(In,1 + In,2 + In,3 + In,4),

Bi j = bi j − 1

n − 2

∑
l �=i

bil − 1

n − 2

n∑
k �= j

bk j + 1

(n − 1)(n − 2)

∑
k �=l

bkl ,

= n − 3

n − 1

⎧⎨
⎩H(Yi ,Y j ) − 1

n − 2

∑
l /∈{i, j}

H(Yi ,Yl) − 1

n − 2

∑
k /∈{i, j}

H(Yk,Y j )

+ 1

(n − 2)(n − 3)

∑
{k,l}⋂{i, j}=∅

H(Yk,Yl)

⎫⎬
⎭

:= n − 3

n − 1
(Jn,1 + Jn,2 + Jn,3 + Jn,4).

Notice that E{G(X,X′)|X} = 0 and E{H(Y,Y′)|Y} = 0, we have for 1 ≤ i �= j ≤ n,

(n − 1)4

(n − 3)4
E(A2i j B

2
i j )

= E{(In,1 + In,2 + In,3 + In,4)
2(Jn,1 + Jn,2 + Jn,3 + Jn,4)

2}
= E[{I 2n,1 + 2In,1(In,2 + In,3 + In,4) + (In,2 + In,3 + In,4)

2}
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{J2n,1 + 2Jn,1(Jn,2 + Jn,3 + Jn,4) + (Jn,2 + Jn,3 + Jn,4)
2}]

= E(I 2n,1 J
2
n,1) + 2E{I 2n,1 Jn,1(Jn,2 + Jn,3 + Jn,4)} + 2E{J2n,1 In,1(In,2 + In,3 + In,4)}

+E{I 2n,1(Jn,2 + Jn,3 + Jn,4)
2} + E{J2n,1(In,2 + In,3 + In,4)

2} + E[{2In,1(In,2

+In,3 + In,4) + (In,2 + In,3 + In,4)
2}

{2Jn,1(Jn,2 + Jn,3 + Jn,4) + (Jn,2 + Jn,3 + Jn,4)
2}],

which implies that

∣∣∣∣ (n − 1)4

(n − 3)4
E(A2

i j B
2
i j ) − E(I 2n,1 J

2
n,1)

∣∣∣∣
≤ O{E(I 2n,1 J

2
n,2) + E(I 2n,1 J

2
n,3) + E(I 2n,1 J

2
n,4)

+E(I 2n,2 J
2
n,1) + E(I 2n,2 J

2
n,2) + E(I 2n,2 J

2
n,3) + E(I 2n,2 J

2
n,4)

+E(I 2n,3 J
2
n,1) + E(I 2n,3 J

2
n,2) + E(I 2n,3 J

2
n,3) + E(I 2n,3 J

2
n,4)

+E(I 2n,4 J
2
n,1) + E(I 2n,4 J

2
n,2) + E(I 2n,4 J

2
n,3) + E(I 2n,4 J

2
n,4)}.

By the Cauchy–Schwarz inequality, we have under condition (A1) that

E{G(X,X′)2H(Y,Y′′)2} ≤
√
E{G(X,X′)4H(Y,Y′′)4}

= o(nζ 2),

E{G(X,X′)2}E{H(Y,Y′′)2} ≤
√
E{G(X,X′)4}E{H(Y,Y′′)4}

= o(nζ 2).

Then it is trivial to check that

E(I 2n,1 J
2
n,1) = ζ 2,

E(I 2n,1 J
2
n,2) = 1

(n − 2)2
E

⎡
⎣G(Xi ,X j )

2

⎧⎨
⎩
∑

l /∈{i, j}
H(Yi ,Yl )

2

+
∑

{l,l ′}⋂{i, j}=∅
H(Yi ,Yl )H(Yi ,Yl ′ )

⎫⎬
⎭
⎤
⎦

= 1

(n − 2)
E{G(X,X′)2H(Y,Y′′)2}

= o(ζ 2),

E(I 2n,1 J
2
n,3) = E(I 2n,2 J

2
n,1) = E(I 2n,3 J

2
n,1)

= 1

(n − 2)
E{G(X,X′)2H(Y,Y′′)2}

= o(ζ 2),
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E(I 2n,1 J
2
n,4) = 1

(n − 2)2(n − 3)2
E

⎡
⎣G(Xi ,X j )

2

⎧⎨
⎩

∑
{k,l}⋂{i, j}=∅

2H(Yk ,Yl )
2

+
∑

{k,l,l ′}⋂{i, j}=∅
4H(Yk ,Yl )H(Yk ,Yl ′ )

+
∑

{k,k′,l,l ′}⋂{i, j}=∅
H(Yk ,Yl )H(Yk′ ,Yl ′ )

⎫⎬
⎭
⎤
⎦

= 2

(n − 2)(n − 3)
E{G(X,X′)2}E{H(Y,Y′)2}

= o(ζ 2),

E(I 2n,4 J
2
n,1) = 2

(n − 2)(n − 3)
E{G(X,X′)2}E{H(Y,Y′)2}

= o(ζ 2),

E(I 2n,2 J
2
n,2) = 1

(n − 2)4
E

⎡
⎣
⎧⎨
⎩
∑

l /∈{i, j}
G(Xi ,Xl )

2 +
∑

{l,l ′}⋂{i, j}=∅
G(Xi ,Xl )G(Xi ,Xl ′ )

⎫⎬
⎭

⎧⎨
⎩
∑

l /∈{i, j}
H(Yi ,Yl )

2 +
∑

{l,l ′}⋂{i, j}=∅
H(Yi ,Yl )H(Yi ,Yl ′ )

⎫⎬
⎭
⎤
⎦

= 1

(n − 2)3
ζ 2 + n − 3

(n − 2)3
E{G(X,X′)2H(Y,Y′′)2}

+2(n − 3)

(n − 2)3
E{G(X,X′)H(Y,Y′)G(X,X′′)H(Y,Y′′)}

≤ O

{
ζ 2 + E{G(X,X′)2H(Y,Y′′)2}

n2

}

= o(ζ 2),

E(I 2n,3 J
2
n,3) = 1

(n − 2)3
ζ 2 + n − 3

(n − 2)3
E{G(X,X′)2H(Y,Y′′)2},

+2(n − 3)

(n − 2)3
E{G(X,X′)H(Y,Y′)G(X,X′′)H(Y,Y′′)}

≤ O

{
ζ 2 + E{G(X,X′)2H(Y,Y′′)2}

n2

}

= o(ζ 2),

E(I 2n,2 J
2
n,3) = 1

(n − 2)4
E

⎡
⎣
⎧⎨
⎩
∑

l /∈{i, j}
G(Xi ,Xl )

2 +
∑

{l,l ′}⋂{i, j}=∅
G(Xi ,Xl )G(Xi ,Xl ′ )

⎫⎬
⎭

⎧⎨
⎩
∑

k /∈{i, j}
H(Yk ,Y j )

2 +
∑

{k,k′}⋂{i, j}=∅
H(Yk ,Y j )H(Yk′ ,Y j )

⎫⎬
⎭
⎤
⎦

= 1

(n − 2)3
E{G(X,X′)2H(Y,Y′′)2} + n − 3

(n − 2)3
E{G(X,X′)2}E{H(Y,Y′)2}
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+2(n − 3)

(n − 2)3
E{G(X,X′′)H(Y,Y′′′)G(X′,X′′)H(Y′,Y′′′)}

≤ O

{
E{G(X,X′)2H(Y,Y′′)2} + E{G(X,X′)2}E{H(Y,Y′)2}

n2

}

= o(ζ 2),

E(I 2n,3 J
2
n,2) = 1

(n − 2)3
E{G(X,X′)2H(Y,Y′′)2} + n − 3

(n − 2)3
E{G(X,X′)2}E{H(Y,Y′)2}

+2(n − 3)

(n − 2)3
E{G(X,X′′)H(Y,Y′′′)G(X′,X′′)H(Y′,Y′′′)}

≤ O

{
E{G(X,X′)2H(Y,Y′′)2} + E{G(X,X′)2}E{H(Y,Y′)2}

n2

}

= o(ζ 2),

E(I 2n,2 J
2
n,4) = 1

(n − 2)4(n − 3)2
E

⎡
⎣
⎧⎨
⎩
∑

l /∈{i, j}
G(Xi ,Xl )

2 +
∑

{l,l ′}⋂{i, j}=∅
G(Xi ,Xl )G(Xi ,Xl ′ )

⎫⎬
⎭

⎧⎨
⎩

∑
{k,l}⋂{i, j}=∅

2H(Yk ,Yl )
2 +

∑
{k,l,l ′}⋂{i, j}=∅

4H(Yk ,Yl )H(Yk ,Yl ′ )

+
∑

{k,k′,l,l ′}⋂{i, j}=∅
H(Yk ,Yl )H(Yk′ ,Yl ′ )

⎫⎬
⎭
⎤
⎦

= 1

(n − 2)4(n − 3)2
{4(n − 2)(n − 3)E(G(X,X′)2H(Y,Y′′)2)

+2(n − 2)(n − 3)(n − 4)E(G(X,X′)2)E(H(Y,Y′)2)
+4(n − 2)(n − 3)E(G(X,X′)G(X,X′′)H(Y′,Y′′)2)

+8(n − 2)(n − 3)(n − 4)E{G(X,X′′)H(Y,Y′′′)G(X′,X′′)H(Y′,Y′′′)}
≤ O

{
E(G(X,X′)2H(Y,Y′′)2)

n3
} + O{E(G(X,X′)2)E(H(Y,Y′)2)

n3

}

= o(ζ 2),

E(I 2n,3 J
2
n,4) = E(I 2n,4 J

2
n,2) = E(I 2n,4 J

2
n,3)

≤ O

{
E(G(X,X′)2H(Y,Y′′)2)

n3
} + O{E(G(X,X′)2)E(H(Y,Y′)2)

n3

}

= o(ζ 2),

E(I 2n,4 J
2
n,4) = 1

(n − 2)4(n − 3)4
E

⎡
⎣
⎧⎨
⎩

∑
{k,l,l ′}⋂{i, j}=∅

4G(Xk ,Xl )G(Xk ,Xl ′ )

+
∑

{k,l}⋂{i, j}=∅
2G(Xk ,Xl )

2 +
∑

{k,k′,l,l ′}⋂{i, j}=∅
G(Xk ,Xl )G(Xk′ ,Xl ′ )

⎫⎬
⎭

⎧⎨
⎩

∑
{k,l}⋂{i, j}=∅

2H(Yk ,Yl )
2 +

∑
{k,l,l ′}⋂{i, j}=∅

4H(Yk ,Yl )H(Yk ,Yl ′ )
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+
∑

{k,k′,l,l ′}⋂{i, j}=∅
H(Yk ,Yl )H(Yk′ ,Yl ′ )

⎫⎬
⎭
⎤
⎦

= 1

(n − 2)4(n − 3)4
[O(n2ζ 2) + O{n3E(G(X,X′)2H(Y,Y′′)2)} + O{n4E(

G(X,X′)2)E(H(Y,Y′)2)} + O{n3E(G(X,X′)2H(Y,Y′′)H(Y′,Y′′))}
+O{n3E(H(Y,Y′)2G(X,X′′)G(X′,X′′))}
+O{n3E(G(X,X′)G(X,X′′)H(Y,Y′)H(Y,Y′′))}
+O{n3E(G(X,X′)G(X,X′′)H(Y,Y′)H(Y′,Y′′))}
+O{n4E(G(X,X′)G(X,X′′)H(Y′′′,Y′)H(Y′′′,Y′′))}
+O{n4E(G(X,X′)G(X′′,X′′′)H(Y,Y′)H(Y′′,Y′′′))}
+O{n4E(G(X,X′)G(X′′,X′′′)H(Y,Y′′)H(Y′,Y′′′))}]

≤ O

{
ζ 2

n4

}
+ O

{
E(G(X,X′)2H(Y,Y′′)2)

n4

}
+ O

{
E(G(X,X′)2)E(H(Y,Y′)2)

n4

}

= o(ζ 2).

From the computations above we can conclude under assumption (A1) that

E

(
ζ 2
n

ζ 2

)
−→ 1.

Using similar technique we also show under assumption (A1) that

Var

(
ζ 2
n

ζ 2

)
−→ 0.

This proof is thus completed.
��

Proof of Proposition 1. Note that Z = (X,Y)
�

is from multivariate normal dis-
tribution N (0(p+q)×1, I(p+q)). Then we can conclude that X and Y are inde-
pendent, X ∼ N (0p×1, Ip) and Y ∼ N (0q×1, Iq). Therefore we only need
to compute ζ 2, E{L1(Z,Z′)2} and E{(X�X′Y�Y′)4} since E{(X�X′Y�Y′)4} =
E{(X�X′Y�Y′′)4} = E{(X�X′)4}E{(Y�Y′′)4}. Direct calculations show that

ζ 2 = E{‖X‖2}E{‖Y‖2} = pq,

E{L1(Z,Z′)2} = E{(X�X′)2}E{(Y�Y′)2} = pq,

E{(X�X′Y�Y′)4} = 9E{‖X‖4}E{‖Y‖4} = 9pq(p + 2)(q + 2).

��
Proof of Theorem 2 Recall the expression of h4(Z1,Z2,Z3,Z4) in the proof of Theo-
rem 1, and the fact that E{G(X,X′)|X} = E{G(X,X′)|X′} = 0 and E{H(Y,Y′)|Y} =
E{H(Y,Y′)|Y′} = 0, we obtain the corresponding h1(Z1), h2(Z1,Z2) and h3(Z1,
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Z2,Z3) under the local alternative as follows.

h1(Z1) = 1

2
{K (X1,Y1) + tr(�XY�YX)},

h2(Z1,Z2) = 1

6
{G(X1,X2)H(Y1,Y2) + 2K (X1,Y1) + 2K (X2,Y2)

−K (X2,Y1) − K (X1,Y2) + tr(�XY�YX)},
h3(Z1,Z2,Z3) = 1

12
[{2G(X1,X2) − G(X1,X3) − G(X2,X3)}H(Y1,Y2)

+{2G(X1,X3) − G(X1,X2) − G(X2,X3)}H(Y1,Y3)

+{2G(X2,X3) − G(X1,X2) − G(X1,X3)}H(Y2,Y3)

+2K (X1,Y1) − K (X2,Y1) − K (X3,Y1) + 2K (X2,Y2)

−K (X1,Y2) − K (X3,Y2) + 2K (X3,Y3) − K (X1,Y3)

−K (X2,Y3),

where K (Xi ,Y j ) = X�
i �XYY j . Again using theHoeffding decomposition in Serfling

(1980). we can show under assumptions (A1) and (A2) that

n(Tn,p,q(X,Y) − tr(�XY�YX))√
2ζ 2

=

∑
1≤i< j≤n

L̃(Zi ,Z j )

√(n
2

)
ζ 2

+ op(1),

where L̃(Zi ,Z j ) = L(Zi ,Z j ) − K (Xi ,Yi ) − K (X j ,Y j ) + tr(�XY�YX).
Note that E(L̃(Z,Z′)) = E(L̃(Z,Z′) | Z) = E(L̃(Z,Z′) | Z′) = 0. Using similar

arguments by replacing L(Zi ,Z j ) in the proof of Theorem 1 with L̃(Zi ,Z j ), we can
show that ∑

1≤i< j≤n
L̃(Zi ,Z j )

√(n
2

)
ζ 2

d−→ N (0, 1),

which yields that

n(Tn,p,q(X,Y) − tr(�XY�YX))√
2ζ 2

d−→ N (0, 1).

Applying similar technique in proving the ratio-consistency in theorem 1, it is easy to
show that

ζ 2
n

ζ 2
P−→ 1,

provided that conditions (A1) and (A2) hold. We thus complete this proof.
��
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Proof of Proposition 2. For ‖β‖ �= 0, we assume that U is a p × p orthogonal matrix
whose first column is β/‖β‖. Then S = (S1, . . . , Sp)� = U�X ∼ N (0p×1, Ip).
Moreover, S′ = (S′

1, . . . , S
′
p)

� = U�X′ and S′′ = (S′′
1 , . . . , S′′

p)
� = U�X′′ can be

viewed as copies of S. Note that E(S1) = 0, E(S21 ) = 1 and E(S41) = 3. Elemental
calculations show that

ζ 2 = E{L(Z,Z′)2}
= E{(X�X′)2(X�β + ε)2(X′�β + ε′)2}
= E{(X�X′)2((X�β)2 + 1)((X′�β)2 + 1)}
= E{(X�X′)2((X�β)2(X′�β)2 + (X�β)2 + (X′�β)2 + 1)}
= E{(S�S′)2(‖β‖4S21 S′

1
2 + ‖β‖2S21 + ‖β‖2S′

1
2 + 1)}

= (p + 8)‖β‖4 + 2(p + 2)‖β‖2 + p,

E{(X�X′Y�Y′)4}
= E{(X�X′)4(X�β + ε)4(X′�β + ε′)4}
= E{(X�X′)4((X�β)4 + 6(X�β)2 + 3)((X′�β)4 + 6(X′�β)2 + 3)}
= E{(S�S′)4(‖β‖4S41 + 6‖β‖2S21 + 3)(‖β‖4S′4

1 + 6‖β‖2S′2
1 + 3)}

= O{p2(‖β‖2 + 1)4},
E{(X�X′Y�Y′′)4}

= E{(X�X′)4(X�β + ε)4(X′′�β + ε′′)4}
= 9(‖β‖2 + 1)2E{‖X‖4((X�β)4 + 6(X�β)2 + 3)}
= 9(‖β‖2 + 1)2E{‖S‖4(‖β‖4S41 + 6‖β‖2S21 + 3)}
= O{p2(‖β‖2 + 1)4},

E{(X�X′)4}E{(Y�Y′)4}
= E{(X�X′)4}E{(X�β + ε)4}E{(X′�β + ε′)4}
= 27(‖β‖2 + 1)4E(‖X‖4)
= 27p(p + 2)(‖β‖2 + 1)4.

We then calculate E{(X��XYY)2} and E{K (X��XYY′)2}. It is easy to show that
X��XYY = X�βY and X��XYY′ = X�βY′. Then we can obtain that

E{(X��XYY)2} = E{(X�β)2((X�β)2 + 2εX�β + ε2)}
= E{(X�β)4} + E{(X�β)2}
= ‖β‖4E(S41) + ‖β‖2E(S21 )

= 3‖β‖4 + ‖β‖2,
E{(X��XYY′)2} = E{(X�β)2}E{(X′�β)2 + 2ε′X′�β + ε′2}

= E{(X�β)2}E{(X′�β)2 + 1}
= ‖β‖2E(S21 )E(‖β‖2S′2

1 + 1)

= ‖β‖4 + ‖β‖2.
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Next we consider E{L1(Z,Z′)2}.
Careful calculations show that

E{L1(Z,Z′)2}
= E[{E(L(Z,Z′′)L(Z′,Z′′)|(Z,Z′))}2]
= E[{E(YY′X′′�XX′�X′′Y′′2|(X,Y,X′,Y′))}2]
= E[{E(YY′X′′�XX′�X′′((X′′�β)2 + 1)|(X,Y,X′,Y′))}2]
= E

[
(‖β‖S1 + ε)2(‖β‖S′

1 + ε′)2

{
(3‖β‖2 + 1)S1S

′
1 + (‖β‖2 + 1)

p∑
i=2

Si S
′
i

}2
⎤
⎦

= E
[
(‖β‖4S21 S′2

1 + ‖β‖2S21 + ‖β‖2S′2
1 + 1)

{
(3‖β‖2 + 1)S1S

′
1 + (‖β‖2 + 1)

p∑
i=2

Si S
′
i

}2
⎤
⎦

= (3‖β‖2 + 1)4 + (p − 1)(‖β‖2 + 1)4.

Thus this proof is completed. ��

Proof of Theorem 3 (1) Let λn,pn ,qn = n(pnqn)−1/4(log n)−3/4. It suffices to show
that, for any ε > 0, almost surely λn,pn ,qn max

1≤i≤pn ,1≤ j≤qn
|Rn(Xi ,Y j )| < ε for all n

sufficiently large, that is,

Pr
(
λn,pn ,qn max

1≤i≤pn ,1≤ j≤qn
|Rn(Xi ,Y j )| > ε for infinitely many n

)
= 0.

Applying the Borel–Cantelli lemma, it suffices to show that

∞∑
k=0

Pr

(
max

2k≤n≤2k+1

(
λn,pn ,qn max

1≤i≤pn ,1≤ j≤qn
|Rn(Xi ,Y j )|

)
> ε

)
< ∞.

Notice that Tn,1,1(Xi , Xi ) and Tn,1,1(Y j ,Y j ) are U-statistics of order 4. By the Theo-
rem 5.4.C in Serfling (1980), it is easy to check that for each i, 1 ≤ i ≤ p, 1 ≤ j ≤ q,
almost surely

Tn,1,1(Xi , Xi )

σ 2(Xi , Xi )
= 1 + O

(
1√
n

)
,
Tn,1,1(Y j ,Y j )

σ 2(Y j ,Y j )
= 1 + O

(
1√
n

)
,
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provided the assumption (A3) holds. In addition, underH0,E{G(Xi , X ′
i )H(Y j ,Y ′

j )} =
K (Xi ,Y j ) = 0. We can obtain from a standard result in section 32 of Loève (1978)
and Markov’s inequality that

∞∑
k=0

Pr

(
max

2k≤n≤2k+1
(λn,pn ,qn max

1≤i≤pn ,1≤ j≤qn
|Rn(Xi ,Y j )|) > ε

)

≤
∞∑
k=0

p2k+1∑
i=1

q2k+1∑
j=1

Pr

(
max

2k≤n≤2k+1
(λn,pn ,qn |Rn(Xi ,Y j )|) > ε

)

≤
∞∑
k=0

p2k+1∑
i=1

q2k+1∑
j=1

ε−4 24(k+1)

(k + 1)3 p2k+1q2k+1(log 2)3
E(|T2k ,1,1(Xi ,Y j )|4)
σ 4(Xi , Xi )σ 4(Y j ,Y j )

=
∞∑
k=0

O((k + 1)−3),

where the last equality follows from Theorem 5.3.2 in Serfling (1980). Thus the result
in (1) can be obtained.

(2) We need to show that almost surely

Pr

(
max

1≤i≤p,1≤ j≤q
|Rn(Xi ,Y j )| < δn,p,q |S �= ∅

)
→ 0, n → ∞. (43)

To obtain the result, it is sufficient to prove that

Pr

⎛
⎝ max

1≤i≤p,1≤ j≤q

|Tn,1,1(Xi ,Y j ) − σ 2(Xi ,Y j )|√
σ 2(Xi , Xi )σ 2(Y j ,Y j )

> δn,p,q |S �= ∅
⎞
⎠ → 0,

since

Pr

(
max

1≤i≤p,1≤ j≤q
|Rn(Xi ,Y j )| < δn,p,q |S �= ∅

)

≤ Pr

⎛
⎝ max

1≤i≤p,1≤ j≤q

|Tn,1,1(Xi ,Y j ) − σ 2(Xi ,Y j )|√
σ 2(Xi , Xi )σ 2(Y j ,Y j )

> δn,p,q |S �= ∅
⎞
⎠ .

Write the projection of U-statistic Tn,1,1(Xi ,Y j ) as

T̂n,1,1(Xi ,Y j ) =
n∑

t=1

E{Tn,1,1(Xi ,Y j )|(Xti ,Yt j )} − (n − 1)σ 2(Xi ,Y j ).

Thus we obtain that
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Tn,1,1(Xi ,Y j ) − σ 2(Xi ,Y j )

= 4

n

n∑
t=1

{
K (Xti ,Yt j ) − σ 2(Xi ,Y j )

}
+ (Tn,1,1(Xi ,Y j ) − T̂n,1,1(Xi ,Y j )),

where K (Xti ,Yt j ) = σ(Xi ,Y j )XtiYt j . Similar to prove (1), it is easy to check that
almost surely

max
1≤i≤p,1≤ j≤q

|Tn,1,1(Xi ,Y j ) − T̂n,1,1(Xi ,Y j )|√
σ 2(Xi , Xi )σ 2(Y j ,Y j )

= o(δn,p,q), n → ∞.

Hence, we only need to show that

Pr

⎛
⎝ max

1≤i≤p,1≤ j≤q

∣∣∣∣∣∣
4

n

n∑
t=1

K (Xti ,Yt j ) − σ 2(Xi ,Y j )√
σ 2(Xi , Xi )σ 2(Y j ,Y j )

∣∣∣∣∣∣ > δn,p,q |S �= ∅
⎞
⎠ → 0.

Similarly, we have that

∞∑
k=0

Pr

⎛
⎝ max

2k≤n≤2k+1
(λn,pn ,qn max

1≤i≤pn ,1≤ j≤qn

∣∣∣∣∣∣
4

n

n∑
t=1

K (Xti , Yt j ) − σ 2(Xi , Y j )√
σ 2(Xi , Xi )σ 2(Y j , Y j )

∣∣∣∣∣∣) > ε

⎞
⎠

≤
∞∑
k=0

p2k+1∑
i=1

q2k+1∑
j=1

ε−2 22(k+1)

(k + 1)3/2(p2k+1q2k+1)1/2(log 2)3/2

max
1≤i≤p2k+1 ,1≤ j≤q2k+1

ξi j

22kσ 2(Xi , Xi )σ 2(Y j , Y j )

=
∞∑
k=0

O((k + 1)−3/2),

where the last equality is true when (A4) holds. Therefore, we have almost surely that

max
1≤i≤p,1≤ j≤q

|Tn,1,1(Xi ,Y j ) − σ 2(Xi ,Y j )|√
σ 2(Xi , Xi )σ 2(Y j ,Y j )

= o(δn,p,q), n → ∞.

This proof is thus completed.
��
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