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Abstract

This paper addresses statistical inference in uncertain differential equations, focusing
on parameter estimation for a class of uncertain Vasicek model with a small dispersion
coefficient from discrete observations. Least squares estimators are obtained using a
defined contrast function. The consistency and asymptotic distribution of these esti-
mators are established. Numerical simulations and empirical analysis on real interest
rate data highlight the efficacy of the proposed estimators and the methodology’s
practicality in capturing interest rate dynamics.
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1 Introduction

When modeling or optimizing a stochastic system, due to the complexity of the internal
structure and the uncertainty of the external environment, parameters of the system are
unknown. If we assume that a system follows a stochastic differential equation, then it
is the parameter estimation problem in stochastic differential equations theory. In 1962,
Arato et al. (1962) first investigated the parameter estimation in a stochastic differential
equation when dealing a geophysical problem. In the past few decades, many authors
studied this topic. For example, Prakasa (2018) discussed the asymptotic properties of
the maximum likelihood estimator and Bayes estimator for linear stochastic differen-
tial equations driven by a mixed fractional Brownian motion. Ginovyan (2020) studied
parameter estimation for Lévy-driven continuous-time linear models with tapered data.
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When the system is observed discretely, Hu and Nualart (2010) applied a central limit
theorem for multiple Wiener integrals to discussed the least squares estimation for
fractional Ornstein-Uhlenbeck processes with Hurst parameter H > % Xiao et al.
(2011) obtained the drift and diffusion coefficient estimators of discrete form based
on approximating integrals via Riemann sums. Hu et al. (2019a) derived the strong
consistency of the least squares estimator for the fractional stochastic differential sys-
tem. At the same year, Hu et al. (2019b) studied the parameter estimation for fractional
Ornstein—Uhlenbeck processes with general Hurst parameter. Wei (2020) analyzed the
estimation for Cox—Ingersoll-Ross model driven by small symmetrical stable noises.
Kaino and Uchida (2021) considered a linear parabolic stochastic partial differential
equation with one space dimension. Wang et al. (2023) used method of moments to esti-
mate the parameters for fractional Ornstein—Uhlenbeck processes. When the system
is observed partially, Xiao et al. (2018) provided least squares estimators for Vasicek
processes, derived the strong consistency and asymptotic distribution of estimators.
Wei (2019) analyzed state and parameter estimation for nonlinear stochastic systems
by extended Kalman filtering. Botha et al. (2021) investigated particle methods for
stochastic differential equation mixed effects models.

From a practical point of view in parametric inference, it is more realistic and
interesting to consider asymptotic estimation for stochastic differential equations with
small noise based on discrete observations. Substantial progress has been made in this
direction. Bocquet (2015) investigated the problem of parameter estimation for Pareto
and K distributed clutter with noise. Li and Liu (2018) applied the hierarchical identifi-
cation principle and the data filtering technique to investigate the parameter estimation
problems for a class of bilinear systems with colored noises. Zhang et al. (2018) pre-
sented an interactive estimation algorithm for unmeasurable states and parameters
based on the hierarchical identification principle. Wei (2021) used least squares esti-
mation to obtain the estimators and derived the consistency and asymptotic distribution
of the estimator. Agulhari et al. (2021) proposed a robust adaptive parameter estimation
method to study the linear systems affected by external noises and uncertainties.

In practical problems, it is difficult to apply the general theory to build models
because of some emergencies. Liu (2007) created the uncertainty theory to address
this uncertainty. Then, Liu (2009) perfected the uncertainty theory by establishing four
axioms and proposed the Liu process. Different from stochastic differential equation,
uncertain differential equation is based on uncertainty theory, which models the time
evolution of a dynamic system with uncertain influences. Uncertain differential equa-
tion has been widely applied in the financial market, and many option pricing formulas
are derived based on uncertain differential equation. How to estimate the parameters
in an uncertain differential equation becomes a problem needed to be solved. In recent
years, this topic has been discussed in some literature. For instance, Yao and Liu (2020)
used the method of moments to estimate the parameters in uncertain differential equa-
tions. Sheng et al. (2020) employed least squares estimation for uncertain differential
equations and proposed a principle of minimum noise. Lio and Liu (2021) applied the
method of moments to estimate the time-varying parameters in uncertain differential
equations. Sheng and Zhang (2021) introduced three methods for uncertain differential
equations to estimate parameters based on different forms of solutions. Liu and Liu
(2022a) provided a new method in uncertain differential equation based on uncertain
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maximum likelihood estimation. Noorani and Mehrdoust (2022) suggested a novel
method for estimation of uncertain stock model parameters driven by Liu process.

Oldrich Alfons Vasicek introduced Vasicek model (1977) to describe the evolu-
tion of interest rates. Then, various methodologies have been developed to solve the
parameter estimation problem for Vasicek model over the past two decades, such as
Xiao and Yu (2019a) applied least squares method, Prakasa (2021) used maximum
likelihood mathod, Chen et al. (2021) via moment method. Moreover, Xiao and Yu
(2019b) discussed the asymptotic theory for rough fractional Vasicek models. Tanaka
et al. (2020) investigated the property of maximum likelihood estimator for the frac-
tional Vasicek model. As Liu process could deal with dynamic systems in uncertain
environments better, some authors studied the parameter estimation for Vasicek model
driven by Liu process recently. For example, Yang et al. (2022) used «-path approach to
estimate the parameter from discretely sampled data. Liu and Liu (2022b) presented a
method of moments based on residuals to estimate the unknown parameters. Liu (2021)
used generalized moment estimation to obtain the estimators. However, the asymptotic
properties of estimators have not been analyzed in previous literature. With the Wiener
processes describing the white noises, the stochastic differential equations may fail to
model many time-varying systems. Moreover, it is difficult to apply the general theory
to build models because of some emergencies in financial market. In this paper, we aim
to study the parameter estimation for uncertain Vasicek model with small dispersion
coefficient from discrete observations. By using contrast function, we obtain the least
squares estimators. By means of Markov’s inequality, Holder’s inequality and Gron-
wall’s inequality, we derive the consistency and asymptotic distribution of estimators.
The paper unfolds as follows. Section 2 gives the contrast function to obtain the least
squares estimators. Section 3 derives asymptotic properties related to the consistency
and asymptotic distribution of the estimators. In Sect. 4, some numerical simulations
are given. In Sect. 5, an empirical analysis on the interest rate under the real data is
provided. Some conclusions and further research are discussed in Sect. 6. All proofs
are deferred to Sect. 7.

Throughout the paper, all limits are taken when n — oo, where n denotes the

. P . N
sample size, — stands for the convergence in probability.

2 Problem formulation and preliminaries

Firstly, we give some definitions about uncertain variables and Liu process.

Definition 1 (Liu 2007, 2009) Let £ be a o-algebra on a nonempty set I'. A set
function M : £ — [0, 1] is called an uncertain measure if it satisfies the following
axioms:

Axiom 1: (Normality Axiom) M(I") = 1 for the universal set I'".

Axiom 2: (Duality Axiom) M(A) + M(A€) = 1 for any event A.

Axiom 3: (Subadditivity Axiom) For every countable sequence of events A1, Ao, .. .,

M {UAk} <) MiAL).
k=1 k=1
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Axiom 4: (Product Axiom) Let (I'x, L, Mj) be uncertainty spaces fork = 1,2, .. ..
Then the product uncertain measure M is an uncertain measure satisfying

M A} = Ikn>irll/\/lk{1\k},

where Ay are arbitrarily chosen events from Ly fork =1, 2, .. ..
An uncertain variable £ is a measurable function from the uncertainty space
(T, L, M) to the set of real numbers.

Definition 2 (Liu 2007) For any real number x, let & be an uncertain variable and its
uncertainty distribution is defined by

D (x) = M@ = x).

In particular, an uncertain variable £ is called normal if it has an uncertainty distribution

-1
®(x) = (1 +exp (%)) x €N,
o

denoted by N (i, o). If u = 0,0 = 1, & is called a standard normal uncertain variable.

Definition 3 (Liu 2009 process) An uncertain process C; is called a Liu process if (i)
Cop = 0 and almost all sample paths are Lipschitz continuous, (ii) C; has stationary
and independent increments, (iii) the increment Cs1, — C, has a normal uncertainty
distribution

—rx\\ ! !
O, (x) = (1 + exp (ﬁ)) , X €N,

With the Wiener processes describing the white noises, the stochastic differential
equations may fail to model many time-varying systems. Moreover, it is difficult to
apply the general theory to build models because of some emergencies in financial
market. Therefore, in this paper, we study the parametric estimation problem for the
following uncertain Vasicek model driven by Liu process:

€]

dX; =(a — BXy)dt + edCy, t€][0,1],
Xo =xo,
where o and § are unknown positive parameters, ¢ € (0, 1], C; is Liu process. It
is assumed that {X,,# > 0} is observed at n regular time intervals {f; = i =
1,2,...,n}.
Consider the following contrast function

l
n’

n
e, B) =Y |X;, = X, — (@ = BX; )AL, )
i=1
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where Ati_1 =t —ti_1 = %

It is easy to obtain the least square estimators

~ n Z?:I(th - Xti—l)Xti—l Z?:l Xti—] -n Z?:l(Xti - Xli—l) Z:’:I Xt2,~_1
Op,e = n 2 n 2
(Zizl Xy )" —n Zi:l X
B‘ _”2 i X = X DXy —n 30 (X = X ) D X
n,e — 2 :
(Z?=l ‘)(l‘i—l)2 —n Z?=] Xli_|

3)

3 Main results

Theorem 1 When ¢ — 0, n — 00, the least squares estimators &, ¢ and By are
consistent, namely

~ P ~ P
Ape —> Q, Bne — B.
Remark 1 In Theorem 1, the consistency in probability of least squares estimators &, ¢
and B, . are derived. We can see that when the sample size n is large enough and the
dispersion coefficient € is small enough, the obtained estimators are very close to the

true parameter value. The Simulation part will verify the results as well.

Let X0 = (X ?, t > 0) be the solution to the following ordinary differential equa-
tion:

dX? = (a — x0dr, X§ = xo, )

where o and B are true values of the parameters.

Next, we give the following lemmas which are very important for deriving the
asymptotic distributions of the estimators.

Denote

7= X, )

where [nt] is the integer part of nr.

Lemma 1 When e — 0 and n — oo, we have

sup |X; — X% 5 0.

0<r<l1

Remark2 As % — t when n — 00, according to Lemma 1, it can be checked that
P
ore 5 XY, (6)
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Lemma2 When e — Q0 andn — oo,
ti

n
x|
i=1 ti—1

The result in Lemma 2 is based on Lemma 1 and can be used to get the asymptotic
distributions of the estimators in Theorem 2.

1
exp(—pB(t; — 5))dC; i/ x%c;.
0

Theorem2 When ¢ — 0, n — oo and ne — 00,

Lo8) (1 — exp(—p))

2
L(xo = 2)*(1 — exp(—))2 — @(1 — exp(—28))
2

a Jo X0dCs (5 +

Q
@ —a) > P

2

e1( + LB (1~ exp(-2) + 2 (0 — £)1 — exp(—p)

2
u(1 —exp(=28))

L(xo—%)*(1 —exp(—))2 —

Jo X0dC, — (% + @(1 —exp(—$)))C

e Bre — B) >

I

2
L(xo— %)*(1 — exp(—B))2 — u(1—exp< 26))

where C is the Liu process when the time s in Cy is equal to 1.

Remark 3 Since the Liu process C; has stationary and independent increments and
the increment Cs4; — C has a normal distribution, we can see that the asymptotic
distributions of estimators in Theorem 2 are not normal distribution.

4 Simulations

In this experiment, the simulation is based on (3). Welet xo = 0.2.InTable 1,& = 0.01.
In Table 2, e = 0.001. Firstly, for given values of &, B and n suchasa = 1, 8 = 2,
n = 1000, by using the Monte Carlo simulation, we generate the discrete sample
(X4;,_,)i=1,...n- Then, for substituting the sample values into (3), we compute &, . and
B\n, ¢ The first two steps repeat 10 times. Subsequently, we take the average values of
the estimators. Finally, the absolute errors (AEs) between estimators and true values
are given. The tables list the value of least squares estimators “c, ", ,Bn ¢ and the
absolute errors (AEs) “[a,.c — a|”,“|f3\n£ Bl”.

The tables illustrate that when 7 is large enough and ¢ is small enough, the obtained
estimators are very close to the true parameter value. In Table 1, when the sample size
n = 5000, the absolute error of « and 8 are 0.0008 and 0.0005 respectively, the relative
error are 0.08% and 0.05% respectively. In Table 2, when the sample size n = 50,000,
the absolute error of o and 8 are 0.0002 and 0.0003 respectively, the relative error
are 0.02% and 0.03% respectively. Therefore, there is no obvious difference between
estimators and true values, estimators are good.
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Table 1 Simulation results of

. True Average AEs
confidence interval of « and 8 (@, B) Sizen  Gue Z‘\n,a Gn.e — |En,s — B
(1,2 1000 1.0208  2.0175  0.0208 0.0175
2000 1.0093  2.0093  0.0127 0.0086
5000 1.0008  2.0005  0.0008 0.0005
Tab::ledZ Simulatioln rfesults (;)f True Average AEs
confidence intervalofcand -y ) Sizen  @ue  Pue  [@ne—al  |Bue—fl
(1,2) 10,000  1.0079  2.0081  0.0079 0.0081
20,000  1.0014  2.0023  0.0014 0.0023
50,000  1.0002  2.0003  0.0002 0.0003

5 Empirical analysis on the interest rate

We verify the results under the real data in this section. Table 3 shows the real data about
benchmark six months deposit interest rates of RMB from 10/29/2004 to 12/20/2019,
which are available at http://www.pbc.gov.cn to illustrate our method. The interest
rate is described by uncertain Vasicek model as Eq. (1). Then, from Eq. (3), we derive
the least squares estimators

(Cln.es /’3\,,,8) = (1.7902, 1.0841).
Then, let ¢ = 0.7, the uncertain Vasicek model could be written as
dX, = (1.7902 — 1.0841X,)dt + 0.7dC,.

Hence, the y-path X ty (0 < y < 1)isthe solution of following ordinary differential
equation

V3o

dX? = (1.7902 — 1.0841X")dr + 0.7~ " 1In .
T

InFig. 1, we plotinterest rates, 0.05-path X9 and 0.99-path X° for the estimated
uncertain differential equation d X! = (1.7902 — 1.0841X/)dt + 0.7*/?5 In Zodt. It

is known that all observations fall into the area between 0.05-path X 9'05 and 0.99-path
X9 Therefore, the methods used in this paper are reasonable.

6 Conclusions and further research

In this paper, we have studied the problem of parameter estimation for uncertain
Vasicek model with small dispersion coefficient based on the solution from discrete
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Table 3 Benchmark six months deposit interest rate of RMB from 10/29/2004 to 12/20/2019
n 1 2 3 4 5 6 7 8 9 10
t 0 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40
Xy 2.07 2.13 2.25 243 2.61 2.88 3.15 3.42 3.78 3.51
n 11 12 13 14 15 16 17 18 19 20
t 6.00 6.60 7.20 7.80 8.40 9.00 9.60 10.20 10.80 11.40
Xy 3.24 2.25 1.98 2.20 2.50 2.80 3.05 3.30 3.05 2.80
n 21 22 23 24 25 26 27 28 29 30
t 12.00 12.60 17.20 17.80 18.40 19.00 19.60 20.20 20.80 21.40
Xt 2.55 2.30 2.05 1.80 1.55 1.30 1.30 1.30 1.30 1.30
4 : ; ;
35¢ ——~=0.99 1
———~=0.05
3r observation B
2.5 a
<2 ]
\
i ]
L5
\
1 N \\ T
\
0.5F a
0 1 1 1
0 10 15 20 25

Fig.1 Observations and y-path of X;

observations. Compared with the previous results, our differential equations and results
are new and different from the previous literature. We have derived the consistency
and asymptotic distribution of the estimators and provided an empirical analysis on
the interest rate under the real data to verify the effectiveness of the methods used in
this paper. We will consider the parameter estimation for partially observed uncertain

differential equations in future works.

7 Proofs

This section sketches the proofs of the results stated in the previous sections.
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Proof of Theorem 1 Since the solution of (1) is
o o !
Xp =+ (Xo = 5 ) exp(=pn) + e exp(—p0) / exp(Bs)dCs. (D)
0
we have
X, = d + (X — g) exp ( — é) + eexp(—B1t) /Zi exp(Bs)dC (8)
t B ti—1 B n 4 - S
Then, according to (3) and (8), we get
=g (1o (- 7))
dpe—o =n—|1—exp| — — —a
B n
3 2ioy Xoy iy Xy [i exp(=B(ti — $))dCy
(% Z?:l Xti—l)z - % ?:1 thi—l
eYIy [l exp(—B(t; —$))dC LY I X2 .
(% Z?:l Xli—|)2 - % Z?:l Xt2i—1 7
and
~ _ B
Bune—PB =n|l—exp - - B
ey Xiy Ji exp(=B(i — $))dCy
2
(% Z?:l Xli—l) - % Z?:l Xf2i—1
F Tior Xooy Xy Jy, 9P -G
_ K )
(i X)) — 5 X Xa
When n — o0, it is easy to check that
n3<1—exp(—é))—a—>o, (11)
B n
and
n(l—exp(—é))—ﬁeo. (12)
n

According to (7), we obtain that

1

e> X, / exp(—B(t; — $)dC,
i=1 !

—1
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= o3 (&4 (0 %) o)

i=1

1i— t;
e exp(—Bii_) / ' exp(Bs)dCy) / exp(—B (i — ))dC,s
0 ti

n

14
2% / exp(—p(t; — $))dC;
B j=17li-1

n ti
+e& Zxo exp(—pBti—1) / exp(—=B(t — 5))dCy
i=1 li-1

n 4
o DI / exp(—B (i — $))dC,s
i=1 fi-1

n ti— t;
+62 Y exp(—pti1) / ' exp(Bs)dC; / exp(—B(i; — $)dCs.  (13)
0 fi—1

i=1

According to Lemma 4.1 in Chen and Liu (2010), | [* X,(y)dCi(y)| < K(y) [”
|X¢(y)|dt. Forany > 0, by using Markov’s inequality and Holder’s inequality, when

& — 0and n — oo, we have

n ti
P(|8% Z/’ exp(—=B(t; — 5))dCy| > n)

co li
<S5 B[ exp(-pi - sndC]
IBU i=1 i

< ;i:’ ik(y) /t " exp(—p; — s)ds
i=1 i-1
ea (1=exp (= 1))

K
< (J/)ﬁ,7 é

— 0

’

n ti
P(le Yy xoexp(—Bti_1) f exp(—B(t; — 5))dCs| > n)
ti—1

i=1

n 2
= %ZEixo exp(—pti-1) f exp(—p(t; — ))dCy|
i=1 li-1

IA

i

(1-on(-2)

< K(y) xo exp(IB)) _
n

Exoexp() Y (EC | exp-pt = snacyt
i=1 fi-1
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— 0,

0 fi
P (5 Lewi-pi-n [ ewpa—naci > n)

Zmexp( A1) / exp(—B(t; — $)Cy|

<5
ﬂ—expum)Z(E( / exp(—Bi — $)dCH)?
ea (1 —exp(—£y)
< KOG o) =7 ——
— 0

’

n ti— 1
PU Y exp(—pin) [ exp(Bodcs [ exp—pt )il =)
i=1 i—1
82 n ti—1 ti
< S DB [ estgnac, [ espp —snac
: ti—1

< K@) /32( e (- 2)) g(l — exp(—ti-1))
— 0

’

where K (y) is the Lipschitz constant of the sample path X, (y).
Hence,

n t;
eY X, / exp(—B(t; — ))dCy > 0. (14)
i=1 i—1

According to (7), we have

1 n 4
8; Z Xl,',l Z/ exp(_ﬁ(li - s))dCs
i=1 i=1 Y-l
= 8% Z(% + (XO - %) exp(—pBti—1)
e exp(—fti_1) / exp(B5)dC,) Z / exp(—B(t — $))dC,
ti—1

—e—Z Z / exp(—Bli; — $)dC;
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1 n 4
te > xoexp(—Bi-1) Z/ exp(—=p(ti — 5))dC;s
i=1 j=1 71
1o — 1ot
B > exp(—Bii-1) Z/ exp(=B(t; — ))dC;s
i=1 i=1 Vi1
1 n ti_1 n ti
2 S exp(—pri) fo xp(p)dC Y [ exp(—p( = s)dC.
i=1 i=1 V-1
(15)

For any > 0, by using Markov’s inequality and Holder’s inequality, when ¢ — 0
and n — oo, we obtain that

1 n f
Pley Y53 [ ewpa - ndcyl > n
i=1 i=1""

n tl
<o ' SB[ exp(—p —9)dC]
i=1 M-l

i

ca (1o (1))

< K(y)—
< (J/)ﬁ’7 5

— 0

’

1 n n
P(|8; Zxo exp(—pBti—1) Z
i=1 i=1

3 1 n n [’.
<en B xoexp(—pii-) Y ft exp(—plt = 5)dC|
i=1 i=1""

ti

exp(—B(t; — $)ACy| > 1)

ti—1

1 n 1
<en'Bh [ exp=pas Y- [ exp(=pis —snac
i=171i-1

1 —exp(_t
<2 - exp(—ﬁ))K(y)(eX;#
Bn

n
— 0,

l o — - fi d
P(ley 5 Lemwt—pu-n Y [ ewt-pi—nac.i > n)

1 n n tl
< en ! S EIY exp(—pin) ) | ewi-pa —snac.
i=1 i=1 711

— 0

’

1 n ti_q n ti
P, Yewtpun [ expipnaco Y [ expi-pis —snaci > )
i=1 i=1 Y-

@ Springer



Least squares estimation for a class... 2453

< e ‘—E|Zexp< pun [ exp(ﬂs)dC)Z / exp(—B(i — )dC|
Li—1

1—exp(—£))1
< ezn—lwz 31— exp(—B1i-1))

n i=1
— 0,

where K (y) is the Lipschitz constant of the sample path X,(y).
Then,

g—Zth 12[ lexp(—,B(tl- —s)dc; 5o, (16)

Note that
1 n
2
. Xti—l
i=1

= % Z (% + (xo - %) exp(—pBti—1) + eexp(—pti—1) /Otil eXp(,Bs)dCs)z

2+% n (0= 5) espi-pii- 0)

i=1

1 fi—1
+- Z(sexp(—ﬂti_l)fo exp(Bs)dCy)?

o 22 5 (v0 = 5) exp(=pii-n)

ti—
- §Z%eexp(—ﬂn_1) /O exp(Bs)dC,s

o

+% 12;:2(’60 - %) exp(—pBti—1)e exp(—Bti—1) /Olil exp(Bs)dCs.
When n — oo, we have
%; (0~ %) exp(—pi-1))? = (o - —) Zexp( 2611)
= (xo - 3)2/1 exp(—281)d1
0

2
- @(1 — exp(—28)).

@ Springer



2454 C. Wei

and

_ 22 (xo — —) exp(—pBti—1) = 2/3 (xo - %) /01 exp(—pt)dt
=2“ (0 - ﬁ)(l — exp(—B)).

When ¢ — 0 and n — 00, it is easy to check that
1< li-1 , P
=D (eexp(—pti1) / exp(Bs)dCy)* = 0,
i=1 0
1< o li-1 P
vy 2geexn-pin [ exp(psrdc, o,
ne— B 0

and

1 & a fi— P
— Zz(xo — —) exp(—pBti_1)e exp(—ﬂti,l)/ exp(Bs)dCy — 0.
n “ B 0

i=1

Hence, we obtain that

2
1 n 2 X0 — a
- t2i_1 £ % + %(1 —exp(—28)) +2,32< %)(1 —exp(—p)).

a7

Similarly, we have

2 P 2

(% > Xti—l) - %
2 (xo— 4)(1 —exp(-p) + (v — 4) (1 —exp-p2 (18)

Then, we obtain that

1 n 2 p 2
(; Z Xti*l) _}l Z:l:l thifl — %(XO - %) (1 - exp(_ﬁ))z
i=1

2
(xr%)
- (1 —exp(—28)). (19)
Therefore, when ¢ — 0 and n — o0, we have
~ P
Bn.e — B. (20)
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Note that
1 & 1 &/ o
-Y'x, =- e - = —Bt;i_
n; fioi n;(ﬁ +(x0 IB)CXP( Bti—1)
ti—]
e exp(—pti_1) / exp(Bs)dC; ). @)
0
Since
1 ja o o (xo— %)
- - - = —Bti_ -+ (- -B)), (22
anI(ﬁ+(xo 5 e(pin) > TR e (B, (22)
and
1 & li—1 P
Y eexp-pin [ exppidc. 5o, @3)
i=1 0
we have
1 o pa (-3
- Z Xy, —> —+ u(l —exp(—$)). (24)
e B p
Then, when ¢ — 0 and n — 00, we obtain
1 n n i P
e DX Y X / exp(—B(t; — $))dCy — 0, (25)
i=1 i=1 iz
and
n t 1 n p
SZ/ exp(—A(ti = $)dCy~ dox;, >0 (26)
i=1 il i=1
Therefore, when ¢ — 0 and n — o0, we have
Qe > a 27)
Proof of Lemma 1 Note that
t t
X, — X = —,30/ (X5 — XOds + s/ dc;. (28)
0 0

Since Cp = 0, by using Markov’s inequality, we have

X, — X2
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t
<283 / Xy — XOds|? 4 26%|C,
0

t
< 253:2/0 1Xs — X0%ds + 262 sup |C;|%.

0<t<l1

By applying Gronwall’s inequality, we obtain

X, — X012 < 262507 sup |C, . (29)
0<r<l1
Thus, we get
sup X, — X°| < v2eefo” sup |Cy). (30)
0<r<l1 0<r<1

When0 <t <1, ﬁseﬁ(%’z — 0. Moreover, since the Liu process C; has stationary
and independent increments and the increment Cy4; — Cy has a normal distribution,
we obtain that supy.; <;|C;| < oo.

Therefore, when ¢ — 0 and n — 00, we have

sup |X, — X°| 5 0. G1)

0<t<l

Proof of Lemma 2 According to Lemma 1, when ¢ — 0 and n — oo,

n
Y
i=1

ti—

= ’ /01 Q7 ¢ exp ( - ﬂ([ns]n+ L s))dCs - /01 x%c;

<k [ fortew(~p("IE - ) -8

ti

1
exp(—B (i — $)dC; — / x%c,
1 0

ds

[ns]+1

< n.e — — ) . XO

= S Oy GXP( ﬂ( . S) s

— 0.

Hence,

n t; P 1 0
ZXti—I/ exp(—pB(t; — 5))dCs —>/ XJdCs. (32)
i=1 li-1 0

Proof of Theorem 2 According to (9) and (10), it is obvious that

5_1(6?,,,5 —a) = 5_1(n%(1 — exp ( - g)) - oz)

@ Springer



Least squares estimation for a class... 2457

. S X Xy Xa [ exp(=B(t — ))dCy

1 2 1 2 (33)
(_Zi IXI, 1) __Zi IXt, 1
Zn tfl : eXp( ,B(tl —_ S))dcgn Zl 1 tt 1 (34)
(z p- Xfi—l) - % > th,»,l
and
-1, -1 _ _ E _
e Bre—B) =& (n(1-exp (= =) - 8)
Sy Xiy [, exp(=Bt; — $)dCy
2

(% Z?:l XIH) - %Z?:l X121—1

_n X X Xy fy, XA )G
5 .
(3 o X)) — 5 i X,
When ¢ — 0,n — oo and ne — 00, it is easy to check that
1% (1 AN
P (nIB(l exp( n)) a)—0, (36)
and
“1(n(1 - AN
g (n(l exp( n)) ﬂ)—>0. (37)
When ¢ — 0, n — oo and ne — o0, it is obviously that
1 v0 a (XO_%)
s d Jo X0dCy — (§ + =52 (1 — exp(=$))) C

e Bue — B) > ! P 7 . (38)

Lxo— 201 - exp-p) - (5 ﬂ) (1 = exp(~2p))

Similarly, we have

J Jo X0dCy (% + (’“’%)(1 — exp(—$)))

e;"_l(f)?n"S —a) >

L(xo — 9)*(1 — exp(—B))2 — o )<1 exp(~28))

2
(% + (’“);,f) (1= exp(=28)) +2:% (x0 — ) (1 — exp(—$))) o

L(xo—%)*(1 —exp(—p))2 — (° ﬂ) (1 —exp(=28))
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