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Abstract
Uniform designs are widely used for experiments with mixtures. The uniformity of
the design points is usually evaluated with a discrepancy criterion. In this paper, we
propose a new criterion to measure the deviation between the design point distribution
and a Dirichlet distribution. The support of the Dirichlet distribution, is defined by the
set of d-dimensional vectors whose entries are real numbers in the interval [0,1] such
that the sum of the coordinates is equal to 1. This support is suitable for mixture exper-
iments. Depending on its parameters, the Dirichlet distribution allows symmetric or
asymmetric, uniform or more concentrated point distribution. The difference between
the empirical and the target distributions is evaluated with the Kullback–Leibler diver-
gence. We use two methods to estimate the divergence: the plug-in estimate and the
nearest-neighbor estimate. The resulting two criteria are used to build space-filling
designs for mixture experiments. In the particular case of the flat Dirichlet distribu-
tion, both criteria lead to uniform designs. They are compared to existing uniformity
criteria. The advantage of the new criteria is that they allow other distributions than
uniformity and they are fast to compute.

Keywords Space-filling design · Mixture experiments · Kullback–Leibler
divergence · Nearest neighbor density estimation · Kernel density estimation

1 Introduction

Mixture experiments consist in varying the proportions of some components involved
in a physico-chemical phenomenon, and observe the resulting change on the response.
The proportions of the mixture components vary between 0 and 1 and they must sum
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to 1 for each run in the experiment. The experimental region is reduced to a (d-1)-
dimensional simplex,

Sd−1 � {(x1, . . . , xd)|x1 + · · · + xd � 1, xk ≥ 0},

where xk is the proportion of the kth component, k � 1, . . . , d..
The purpose of design for mixture experiments is to define a set of points in the

simplex to catch as much information about the response as possible. Since Scheffé
(1958) many authors have investigated designs for mixture experiments. The pioneers
(Scheffé 1958; Kiefer 1961; Cornell 1981), defined optimal designs for linear and
quadratic mixture models. An alternative approach of model-free designs is proposed
by Wang and Fang (1990) and Fang and Wang (1994). The goal is to uniformly
cover the experimental region. The main idea is to generate a uniform design on the
(d − 1) dimensional unit cube as explained in Hickernell (1998) or in Fang et al.
(2005). Then they apply a mapping function to put the points in the simplex Sd−1.
Following this principle, many articles suggested improvements specially to take into
account complex constraints on the components, Fang and Yang (2000), Prescott
(2008), Borkowski and Piepel (2009), Ning et al. (2011), and Liu and Liu (2016).

The former design in the unit cube is uniform in the sense that the points minimize
a discrepancy criterion. The discrepancy measures the distance between the cumu-
lative function of the uniform distribution and the empirical cumulative function of
the design points. It is not guaranteed to conserve the uniformity after the mapping
function. Some authors defined criteria to assess the uniformity of design for mixture
experiments. Fang andWang (1994) proposed to use the mean square distance (MSD),
Borkowski and Piepel (2009) suggested the root mean squared distance, the maximum
distance and the average distance, Chuang and Hung (2010) defined the central com-
posite discrepancy. All these criteria require to compute the distance between the
design points and the points of a much larger uniform set of points. The computational
cost limits their usefulness in practice. To avoid this drawback, Ning et al. (2011)
generalized the star discrepancy and proposed a new discrepancy, DM2 discrepancy,
to measure the uniformity of designs for mixtures. They also gave a computational
formula of the DM2 discrepancy only based on the design points, which is useful in
practice, specially to use it in an optimization algorithm to build a uniform design for
mixture experiments.

In the same way, we defined in this paper a new criterion to measure the distribution
of the design points in the simplex Sd−1. The purpose is to obtain uniform designs,
andmore generally designs with a Dirichlet distribution. Depending on its parameters,
the Dirichlet distribution allows to obtain symmetric and asymmetric distributions,
designs with points uniformly spread in the simplex ormore concentrated in the center.
We used the Kullback–leibler (KL) divergence to measure the difference between the
probability density function of the design point distribution and the probability density
function of the Dirichlet distribution. The KL divergence has already been used to
define space-filling criteria but for a hypercube experimental domain (Jourdan and
Franco 2009, 2010). The target distribution was the uniform distribution on the unit
hypercube and the criterion was reduced to the estimation of the Shannon entropy. In
this paper, we adapt the criterion to the Dirichlet distribution.We propose twomethods
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to estimate the KL divergence, a plug-in estimation and a nearest neighbor estimation.
This leads to two criteria for assessing the distribution of the design points.

Applied with the flat Dirichlet distribution, the new criteria lead to designs with a
uniformdistribution of their points but they are not uniformdesigns in the sense defined
by Fang and Wang (1994). The new criteria are based on the density probability
function whereas the discrepancy for uniform designs is based on the cumulative
distribution function.

In Sect. 2, we define the criterion from the Kullback–Leibler divergence and the
Dirichlet distribution. In Sect. 3, we propose two methods to estimate the criterion.
In Sect. 4, we carry out a numerical comparison between the new and existing crite-
ria in the case of the uniform distribution. In Sect. 5, we propose two applications,
one concerning simplex-lattice designs and the other on the marginal distribution of
components.

2 Design points with a Dirichlet distribution

Suppose that the design points x1, . . . , xn, are n independent observations of the
random vector X � (X1, . . . , Xd) with absolutely continuous density function f
concentrated on the simplex Sd−1. The aim is to select the design points in such a way
as to have the corresponding empirical distribution “close” to theDirichlet distribution.

Dirichlet distribution is a family of continuousmultivariate probability distributions
parameterized by a vector α of positive reals. The support of the Dirichlet distribution
is the (d-1)-simplex Sd−1. Its probability density function is

g(x) � 1

B(α)

d∏

k�1

(xk)
αk−1, (1)

where x belongs to the (d-1)-simplex Sd−1, α � (α1, . . . , αd ) with αi > 0, and B(α)
is the normalizing constant,

B(α) �
∏d

k�1(αk)

(α0)
.

with α0 � ∑d
k�1 αk and � the Gamma function.

Hereafter, we focus on the symmetric Dirichlet distribution, that is all of the
elements making up the parameter vector α have the same value α, called the concen-
tration parameter, and we suppose that α ≥ 1. When α � 1, the symmetric Dirichlet
distribution is equivalent to a uniform distribution over the (d − 1)-simplex Sd−1. It
is called the flat Dirichlet distribution.

The aim is to generate n points in the simplex with a distribution as close as possible
of a Dirichlet distribution. On Fig. 1a (starting design), we can see that a simple
random generation of the Dirichlet distribution is not efficient to obtain a good point
distribution. The points do not uniformly cover the simplex: some points are very close
to each other while some areas are empty.
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(a) Star�ng random design (b) DM2 design (c) MSD design

(d) Ckern design with α=1 (e) Ckern design with α=2 (f) Ckern design with α=3

(g) Cnn design with α=1 (h) Cnn design with α=2 (i) Cnn design with α=3

Fig. 1 Designs with for d � 3 and n � 30. The flat Dirichlet random sampling a is a simple random
generation of 30 points with a Dirichlet distribution with α � 1. DM2, MSD, Ckern and Cnn designs
b–f are the resulting designs of the optimization algorithm

We defined a criterion to measure the “distance” between the point distribution and
the Dirichlet distribution. The criterion is then used in an optimization algorithm to
build a set of points with the expected distribution.

There are different ways to measure the difference between two distributions. In
the case of uniform design, discrepancies are based on the cumulative distribution
function (Fang et al. 2005). In this paper, we use the Kullback–Leibler divergence to
evaluate the deviation between two probability density functions f and g,

I ( f , g) �
∫

f (x)log

(
f (x)

g(x)

)
dx.
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This integral can be written as the expected value of a random vector X distributed
according to f ,

I ( f , g) � E

[
log

(
f (X)

g(X)

)]
.

We denote

I ( f , g) � I f ( f ) − I f (g)

where I f ( f ) � E
[
log( f (X)

]
and I f (g) � E

[
log(g(X)

]
.

Theorem 1. Let g be the probability density function of the Dirichlet distribution (1),
then integral I f (g) exists.

The proof of this theorem is given in Appendix A.
Throughout we suppose that f is the unknown density function of the design points

such that integral I f ( f ) exists. This assumption is feasible since the goal is to obtain
a density function f close to the Dirichlet density function g. Then we can use the
Kullback–Leibler divergence to evaluate the deviation between the design points dis-
tribution and the Dirichlet distribution.

If we consider that the design points D � {x1, . . . , xn} are n i.i.d. realizations of
the unknown distribution f , theMonte Carlo method gives an unbiased and consistent
estimator,

Î ( f , g) � Î f ( f ) − Î f (g) (2)

where Î f ( f ) � 1
n

∑n
i�1 log( f (xi )) and

Î f (g) � (α − 1)

n

n∑

i�1

d∑

k�1

log(xik) + log(B(α))

with xik �� 0, the kth component of the ith design point, i � 1, . . . , n and k � 1, . . . ,
d.

The estimator Î f ( f ) is not a computational formula since the density function f
is unknown. There are two common ways to estimate integral I ( f , g): the plug-in
estimate which consists in replacing the density function f by its kernel estimate, and
the nearest-neighbor estimate. We detail the two approaches in the next section.

The two estimations are not unbiased. However, having a bias is not a problem in
our application, if the bias is fixed for a given n and d. The goal is not to obtain an
accurate estimate of the integral but a criterion to compare two sets of points in the
optimization algorithm. We say that a design D1 is better than a design D2 if

Î ( f1, g) ≤ Î ( f2, g)

with f1 and f2 the density functions associated to D1 and D2 respectively.
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The minimization algorithm is an adaptation of the exchange algorithm described
in Jin et al. (2005)

3 Estimation of the criterion

In this section we propose two methods to estimate the unknown density function f
in Eq. 2. In each case we explain our choices (kernel, bandwidth, k in the k-nearest
neighbor distance) and we give a computational formula for the criterion.

3.1 Plug-in estimate

The unknown density function f is estimatedwith the design points D � {x1, . . . , xn}
by a kernel method (Scott 1992)

f̂ (x) � 1

n|H |1/2
n∑

i�1

K
(
H−1/2(x − xi )

)
,

where K is a multivariate kernel and H is the bandwidth matrix (symmetric and
positive definite matrix). It is known that the shape of the kernel has a minor influence
on the estimation (Silverman 1986). We use a multidimensional Gaussian kernel,

K (Z) � (2π)−d/2e− 1
2 ‖Z‖.

On the contrary, the choice of the bandwidth matrix has a great influence on the
accuracy of the estimation. We use a diagonal matrix, H � h2 Id , where

h � n−1/(d+4) 1

α0

√
α(α0 − α)

(α0 + 1)
.

This choice is motivated by Theorem 2.
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Theorem2. Weconsider the estimator Î f
(
f̂
)
of Î f ( f ). Suppose that f has continuous

first and second order derivatives and
∫

f (x)log2( f (x))dx exists then the bias is.

E
[
Î f ( f ) − Î f

(
f̂
)]

� O
(
n−1h−d

)
+ O

(
h2

)
.

The proof of this theorem is given in Appendix B.
The bias depends on the sample size n, the dimension d, and the bandwidth h.When

constructing an optimal design, the sizen and the dimensiond are fixed. The bandwidth
still needs to be fixed so that the bias does not vary during the optimization algorithm.
Usually the bandwidth matrix is chosen to be proportional to the covariance matrix of
the data. This solution implies that H varies during the optimization algorithm.An idea
to fix it, is to replace the covariance matrix of the data by the target covariance matrix,
i.e. the covariance matrix of the Dirichlet distribution. Unfortunately, this matrix is
singular. Then, even if the variables are correlated, we simplify the bandwidth matrix
into a diagonal matrix with the Scott’s rule (1992), H � diag

(
h21, . . . , h2d

)
with

hk � n−1/(d+4)σ̂k , where σ̂k is the estimation of the standard deviation of the k th

component. The estimate σ̂k depends on the design points, so hk and thus the bias
varies from one iteration to another in the algorithm. In order to fix the bias, we will
replace the estimate hk by a value independent of the design points. Since our goal is
to get closer to a Dirichlet distribution, the most obvious value for σ̂k is the standard
deviation of the target distribution,

σ̂k � 1

α0

√
αk(α0 − αk)

(α0 + 1)
.

Finally, by removing the terms independent of the design points and with αk � α,
k � 1, . . . , d, we obtain a simplified criterion,

Ckern(D) �
n∑

i�1

⎡

⎣log

⎛

⎝
n∑

j�1

e− 1
2
x j−xi

h

2

⎞

⎠

⎤

⎦ − (α − 1)
n∑

i�1

d∑

k�1

log(xik) (3)

where h � n−1/(d+4) 1
d

√
d−1
dα+1 .

3.2 Nearest-neighbor estimate

Wang et al. (2006) and Leonenko et al. (2008) proposed to estimate the Kullback-
–Leibler divergence with the k-nearest neighbor density estimation.

Let ρ(x, y) denote the Euclidian distance between two points x and y of IRd. We
note ρ(1)(x, S) ≤ ρ(2)(x, S) ≤ . . . ≤ ρ(m)(x, S), the ordered distances between x ∈
IRd and S � {

y1, . . . , ym
}
a set of points of IRd such that x /∈ S. ρ(k)(x, S) is the

k-nearest-neighbor distance from x to points of S. The previous authors demonstrated
that the following estimate of I f ( f ) with the design points D � {x1, . . . , xn} is
asymptotically unbiased and consistent,
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Î f
(
f̂
)

� −1

n

n∑

i�1

log

{
(n − 1)e−ψ(k)Vd

(
ρ(k)(xi , D−i )

)d}

withψ the digamma function, Vd the volume of the unit ball in IRd and D−i � D\{xi }.
Note that in this expression, we suppose that xi �� x j . The bias depends on n, d and
k. We need to fix the value of k so that the bias does not vary during the optimization
algorithm. Pronzato (2017) justified to restrict the estimation to k � 1.

By removing the terms independent of the design points, we obtain the following
criterion for a symmetric Dirichlet distribution,

Cnn(D) � −
n∑

i�1

log

{(
ρ(1)(xi , D−i )

)d} − (α − 1)
n∑

i�1

d∑

k�1

log(xik) (4)

Remark 1. Note that criteria Ckern and Cnn are reduced to their first term for the flat
Dirichlet (uniform) distribution (α � 1), which are estimations of the Shannon entropy
of the random vector X (except the coefficient 1/n).

Remark 2. As the points get closer to the edges of the simplex, the second term
increases. This means that the criteria will favor points inside the simplex. The higher
theα coefficient, themore the points will be in the center of the simplex, which respects
the behavior of the Dirichlet distribution.

Remark 3. Since the criteria are based on the Euclidian distance, they are invariant
under permuting factors or runs, and invariant under rotation of the coordinates.

4 Numerical tests

There is no criterion in the literature (except Ckern and Cnn) to assess whether a sample
follows a Dirichlet distribution in the general case. In the case of the flat distribution,
one can use existing criteria defined to evaluate the uniform distribution of points in
a simplex. Most of the criteria compute the distances between the design points and
the points of a much larger number-theoretic set within the simplex. Among these
distance-based criteria, we select the mean square distance (MSD) defined by Fang
and Wang (1994),

MSD(D) � 1

N

∑N

i�1
min

1≤ j≤n
d2

(
x j , zi

)
,

where d is the Euclidian distance between x j and zi , and z1, . . . , zN are N points of
a glp sets1 given in Fang and Wang (1994) with N� 610, 597, 701, 1069 and 2129
for d � 3 to 7 respectively, N� 3997 for d � 8 and 9, and N� 4661 for d � 10
(which is the smallest size found in Fang and Wang 1994). The computational cost of

1 Good Lattice Point sets.
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the distance-based criteria increases rapidly with the dimension d and the size n (see
Sect. 4.1) and limits their usefulness in practice. As far as we know, only the DM2
criterion defined by Ning et al. (2011) does not involve calculation with a large set
of points. It is an adaptation of the star discrepancy to the simplex and it is estimated
with the design points only,

DM2(D) �
( √

d

(d − 1)!

) 1
2

⎧
⎨

⎩cn, s − 2(d − 1)!

n

n∑

i�1

∑

(τ2, ..., τd )∈{0, 1}d−1

aτ .

× (xi1)
2(d−1)−

2∑
j�2

τ j

.

d∏

j�2

(
xi j

)τ j +
1

n2

×
n∑

i�1, k�1

⎛

⎝max

⎛

⎝1 −
d∑

j�2

max
(
zi j , zk j

)
, 0

⎞

⎠

⎞

⎠
d−1

⎫
⎪⎬

⎪⎭

1
2

where cn, s � ((d − 1)! )32d−1/(2(d − 1)!
∏d−2

k�0 (2d + k − 1)) and aτ �
(d − 1)! /

(
2(d − 1) − ∑d

i�2τi

)
!.

In this section we use the optimization algorithm given in Sect. 2 (with 1000 iter-
ations) to build designs with the four criteria Ckern, Cnn, DM2 and MSD and for
different values of d, n and α. For each configuration, we built several designs to
consider the randomness in the initialization of the algorithm. Table 1 shows the cor-
relation between the four criteria computed with 1000 random designs with n � 10d.
The correlation is fairly weak especially when the dimension increases. This means
that the criteria do not operate in the same way to assess the uniform distribution of
the points. In the following sections, we compare the performance and behavior of the
criteria.

4.1 Design comparison in the case of the flat distribution

In Fig. 1, we use the same starting design (Fig. 1a) in the exchange algorithm in order
to visually compare the resulting designs for d � 3 and n � 30. The starting design
is a random set of points according the flat Dirichlet distribution. We observe that
some points are very close together, providing redundant information, while some
areas in the simplex are not explored by the points. The designs obtained the criteria
DM2, MSD, Ckern and Cnn with α � 1 (Fig. 1b, c, d, g) explore more uniformly the
experimental domain. Some points are still close together with the DM2 criterion but
there is no more empty area. The point distribution of the criteria MSD and Ckern
designs with α � 1 (Fig. 1c, d) is very regular like a grid distribution. The Ckern
criterion tends to push the points on the edges of the simplex. Figures 1e, f, h and i
illustrate that as α increases, the points are more concentrated inside the simplex. In
this case, the designs are not space-filling since they don’t explore the entire domain,
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Fig. 2 Average (x-axis) and standard deviation (y-axis) the of the nearest neighbor distances of the design
points with α � 1 for Ckern and Cnn criteria

but the points are well distributed, i.e. they’re not too close together and they explore
the concentrated area evenly.

This first visual comparison illustrates the fact that a simple random draw according
to the flat Dirichlet distribution is not enough, and an optimization algorithm with an
appropriate criterion is necessary to construct a design of experiments for mixtures
with points evenly spread in the simplex. We have drawn some conclusions about the
behavior of the criteria in dimension 3, but a visual comparison is not sufficient to
draw conclusions in dimensions greater than 3. That is why we introduce a graphical
tool (Fig. 2) in order to compare the inter-site distance of the design points in any
dimension. For a design, we compute the nearest neighbor distance of each point. The
x-axis is the average of the nearest neighbor distances of the design points (μ) and
the y-axis is the standard deviation (σ). A good coverage of the experimental region
is obtained by a design with points far from each other (high average) and close to
a regular grid (small standard deviation) like a scrambled grid. Then the target area
is at the bottom right of this graphic. In Fig. 2, we have designs in dimension d � 5
and size n � 30 (left), and dimension d � 10 and n � 50 (right). In both cases
Ckern criterion gives the best results since the points are on average far from their
nearest neighbor. The Cnn criterion is not as good in dimension 5, but gives almost
the same results in dimension 10. The DM2 and MSD criteria have the same results
than simple random designs, the average of the inter-site distance is smaller with a
high standard deviation. This means that some points are close to each other and will
provide redundant information (the red points will be explained in Sect. 5.2). The new
criteria are better than the existing ones in terms of inter-site distance.

The next comparison is about the computational time. The complexity is.

• O(d × n2) for Ckern and Cnn criteria,
• O((d − 2) × n2 + n × 2d−1 × (d − 2) + 2(d − 2)) for DM2 criterion,
• O(d × n × N ) for MSD criterion.
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Fig. 3 Evolution of complexity as a function of size n

Figure 3 gives the evolution of the complexity as a function of n for d � 3 and
d � 10. The calculation time for the MSD criterion is high, due to the calculation
of the distance between the design points and the points of a larger glp set. Time
increases dramatically with size, even if we choose the smallest size for the glp set in
Fang and Wang (1994). The DM2 criterion has the lowest complexity for d � 3 but
the complexity becomes very high for d � 10. The significant cost of the two existing
criteria explains why they are only five designs in Fig. 2 for d � 10.

4.2 Design behavior according to˛

Figure 4 represents the average of DM2 and MSD criterion values of 20 designs with
d � 3, n � 30 according to α. DM2 and MSD criteria measure the uniformity of
the designs. They should therefore reach their minimum value for α � 1, and this
is the case for Cnn designs. However, the Ckern designs have a minimal value for

Fig. 4 Average of the DM2 andMSD criterion values for the sampling of 20 designs with d � 3 and n � 30
(95% confidence interval in grey)
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α � 1.5. This means that the Ckern criterion tends to push the points on the edges
of the simplex, and that α must be increased to bring them back to the center. This
confirms our conclusion from the previous paragraph when visually comparing the
3-dimensional design in Fig. 1. We also note that there is less variability in criterion
values for Ckern designs.

5 Applications

5.1 Concentrated design

An alternative to build a uniform design for mixture experiments is the contraction
of a simplex-lattice (Scheffé 1958). The points of a simplex-lattice seem to be uni-
formly distributed on Sd−1 but most of them lie on the boundary (Fig. 5a) and some
experiments are reduced one or two components in the mixture (e.g. the first exper-
iment in the {3,3}-simplex lattice in Table 2 involves the first component X1 only).
Fang and Wang (1994) proposed to keep the simplex-lattice pattern while moving the
points towards the centroid of the simplex. An example of a lattice-simplex and the
contracted design is given in Table 2 and Fig. 5.

The smaller the contraction constant a, the more the points are concentrated in the
center. Fang and Wang (1994) and Ning et al. (2011) used MSD and DM2 criteria to
find the best value of a. In the same way, we optimize the Ckern and Cnn criteria to
determine a (Fig. 6).

The Cnn criterion is optimal for a high value of a (a � 9.6). It means that Cnn
criterion tends to push the points inside the simplex. The Ckern criterion find an optimal
value very close to the values obtained by Fang andWang (1994) andNing et al. (2011)
(a ∼� 5).

Fig. 5 Simplex-lattice (left) and contracted designs with a � 5 (right) with d � 3 and n � 10
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Table 2 {3,3}-Simplex lattice design and its contracted design

Simplex-lattice design Contracted design

x1 x2 x3 x1 x2 x3

1 0 0 1–1/a 1/(2a) 1/(2a)

0 1 0 1/(2a) 1–1/a 1/(2a)

0 0 1 1/(2a) 1/(2a) 1–1/a

2/3 1/3 0 2/3–1/(2a) 1/3 1/(2a)

1/3 2/3 0 1/3 2/3–1/(2a) 1/(2a)

2/3 0 1/3 2/3–1/(2a) 1/(2a) 1/3

1/3 0 2/3 1/3 1/(2a) 2/3–1/(2a)

0 2/3 1/3 1/(2a) 2/3–1/(2a) 1/3

0 1/3 2/3 1/(2a) 1/3 2/3–1/(2a)

1/3 1/3 1/3 1/3 1/3 1/3

Fig. 6 Ckern, Cnn, DM2 and MSD criteria against the contraction constant a. Best values of a are 4.9 with
Ckern, 9.6 with Cnn, 5.3 with DM2 and 4.6 with MSD

5.2 The curse of dimensionality andmarginal distribution

As the dimension d increases, some phenomena appear that cannot be ignored.
The first one is the prohibitive size of the {d,q} simplex-lattice when d increases,

n � (d + q − 1)! /(d − 1)! q!. Some examples are given in Table 3. In dimension
10, the simplex-lattice with q � 2 requires n � 55 experiments and tests only three
levels {0, 0.5, 1} for each component. If we need to test more levels, {0, 1/3, 2/3, 1}
with q � 3 for example, the size increases to n � 220 experiments. The idea is to
use the optimization algorithm with the previous criteria to select a well-distributed
subset of points in the simplex-lattice. The red points in Fig. 2 are the designs obtained
by this method with a simplex-lattice with q � 4. The inter-site distance of designs
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Table 3 Example of sizes for a {d,q} simplex-lattice

d 5 5 5 5 10 10 10 10

q 2 3 4 5 2 3 4 5

n 15 35 70 126 55 220 715 2002

Levels 3 4 5 6 3 4 5 6

constructed with the MSD criterion increases considerably in dimension 5 and 10. In
dimension 5, the DM2 and Ckern criteria perform less well than their original versions,
with DM2 in particular showing strong variability in inter-site distance. In dimension
10, all criteria increase the inter-site distance, with still high variability for the DM2
criterion. There is no result with the Cnn. The nearest-neighbor distance is constant
when we restrict the experimental domain to the points of the simplex-lattice, so the
optimization algorithm does not converge.

The second phenomenon that arises as the dimension increases is that the opti-
mization process tends to push the points to the edges of the experimental domain.
This phenomenon is well known in the construction of space-filling designs in the unit
cube. It is reinforced in the case of design for mixture experiments by the fact that
the marginal distributions of the Dirichlet distribution are Beta distributions, Beta(αi ,
α0 − αi ). In the special case of the uniform distribution (α � 1), the distributions are
Beta(1, d − 1). As shown in Fig. 7, the skewness of the density function increases
with dimension. When the dimension is large, small proportions are over-represented
in the experimental design. To avoid this inconvenience, we can build designs with a
Dirichlet distribution, which allows us to control the distribution of small proportions
by choosing an appropriate α value. For example, if X is a random variable with a

Fig. 7 Density function of Beta(1,d-1)
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Fig. 8 Marginal distribution of X1 for designs with d � 5 and n � 30

Dirichlet distribution, then P(X < 0.1) � 20% implies that α � 2.3 for d � 5.
Figure 8 provides the marginal distribution of X1 for different designs with d � 5 and
n � 30 build with the optimization algorithm. Note that with α � 2.3, the frequency
of component proportion below 0.1 decreases considerably. The objective is there-
fore achieved. On the other hand, increasing α contracts the design symmetrically.
As a result, the frequency of large proportions also decreases. There is no longer any
proportion greater than 0.5.

6 Conclusion

In this paper we have proposed two new criteria for evaluating the point distribution
of designs for mixture experiments. The Dirichlet distribution allows to build design
points with uniform or contracted distribution. The Kullback–Leibler divergence is
used to measure the difference between the Dirichlet and design point distributions.
We have used the plugin estimate with a Gaussian kernel and the nearest neighbor
distance to estimate the Kullbeck-Leibler divergence. The two criteria are simplified
to be used in an optimization process to build designs for mixture experiments with a
target Dirichlet distribution.

Numerical tests in dimension 3 show that the criteria allow to evenly spread the
points in the simplex as well as the existing criteria. Tests in higher dimensions show
that the new criteria give better results. The distance between points is higher with the
new criteria than with the existing DM2 and MSD criteria, and with lower variability.
On the other hand, calculation time for the existing criteria increases considerably
as the dimension increases. This makes them difficult to use for mixtures with many
components. The new criteria therefore seem to be the best choice in this case.

We have proposed two applications in the high-dimensional case. The first comes
from the observation that the number of points in a simplex-lattice becomes exces-
sive as the dimension increases, especially if we wish to test many levels for each
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Fig. 9 Ckern and Cnn designs with d � 3 and n � 10 for an asymmetric Dirichlet distribution with α �
(2,4,8). The starting design points are n i.i.d random generation of the Dirichlet distribution

component. The criteria are then used to select a subset of simplex-lattice points that
are well distributed over the experimental domain. The Ckern and MSD criteria give
good results in terms of inter-site distance. The advantage of the Ckern criterion lies in
its computational speed. The second application comes from the observation that low
proportions are over-represented in the design, and that this phenomenon is amplified
as the dimension increases. One of the advantages of the two criteria proposed in this
paper is that they are based on Dirichlet distribution, which deals with more than just
uniform distribution. We can determine the value of the α parameter to control the
frequency of small proportions in the experimental design. We can also set different
values of α depending on the component and obtain an asymmetrical design as shown
in Fig. 9.

The second application is not entirely satisfactory, because by reducing the fre-
quency of small proportions, we also reduce the large proportions that are already
under-represented. Having a uniform distribution on the simplex Sd−1 and a symmet-
ric distribution on each axis seems to be two conflicting objectives. A multi-objective
optimization algorithm (instead of the exchange algorithm) would allow to manage
this problem. The first objective function would be one of the two criteria defined in
this paper. The second objective function could be defined in order to measure the
difference between the distribution of each component and a univariate symmetric
distribution with support [0,1] (e.g. symmetric triangular or truncated normal distri-
bution). As we did in this paper, the Kullback–Leibler divergence and its estimates
could be used to define a criterion for the second objective function. The Pareto front
could be used to find the best compromise between the two objectives.

Appendices

Appendix A. The proof of theorem 1

We apply the Jensen’s inequality to the expected value I f (g) � E
[
log(g(X)

]
.
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Let denote the function ϕ(x) � log(g(x)),

ϕ(x) � log

(
1

B(α)

d∏

k�1

(xk)
αk−1

)
�

d∑

k�1

(αk − 1)log(xk) − log(B(α)).

ϕ is a concave function since the logarithmic function is concave and (αk − 1) is
positive for αk ≥ 1. The Jensen’s inequality implies that, E[ϕ(X)] ≤ ϕ(E[X]). Let
E[X] � (μ1, . . . , μd), then

ϕ(E[X]) �
d∑

k�1

(αk − 1)log(μk) − log(B(α)) < ∞

since 0 < μk < 1 (supp(Xk) � [0, 1] and we exclude the special case of a constant
random variable equals to 0).

Appendix B. The proof of theorem 2

The prof of Theorem 2 is a direct application of a result demonstrated by Joe (1989).
We just have to verify the assumptions.

The choice of a Gaussian kernel satisfies the conditions.

K (−z) � K (z)
The kernel is of the form K (z) � K (z1, . . . , zd) � ∏d

j�1 K0(z j ) where K0 is a

symmetric univariate density satisfying
∫
u2K0(u)du � 1.

The d components of X have approximately the same scale in [0,1], the logarithmic
function is thrice differentiable. Moreover, we suppose that

∫
f (x)log( f (x))dx and∫

f (x)log2( f (x))dx exists. Hence all conditions are satisfied to apply the results
demonstrated by Joe (1989).

We have already noted that the existence hypothesis of
∫

f (x)log( f (x))dx is
feasible since f is close to g, andwe proved the existence of this integral in Theorem 1.
However, we have not demonstrated the existence of

∫
f (x)log2( f (x))dx when f �

g. This is demonstrated below in the case of d � 2 to simplify notation. It remains
true in the general case.

I � ∫ f (x)log2( f (x))dx � ∫
S1

f (x1, x2)log
2( f (x1, x2))dx1dx2.

The line x1 + x2 � 1 has the parametric representation,

{
x1(t) � −t
x2(t) � 1 + t
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where t ∈ [−1, 0]. We define the mapping functionM : [−1, 0] → [0, 1] ×
[0, 1],M(t) � (−t , 1 + t). Then,

I � 0∫
−1

f (−t , 1 + t)log2( f (−t , 1 + t))
(
x ′
1(t), x

′
2(t)

)
dt

� √
2

0∫
−1

f (−t , 1 + t)log2( f (−t , 1 + t))dt

If f � g,

I �
√
2

B(α)

0∫
−1

(−t)α1−1(1 + t)α2−1log2
(

1

B(α)
(−t)α1−1(1 + t)α2−1

)
dt � I1 + I2 + I3

With

I1 �
√
2

B(α)

0∫
−1

(−t)α1−1(1 + t)α2−1log2
(

1

B(α)

)
dt

I2 � (α1 − 1)

√
2

B(α)

0∫
−1

(−t)α1−1(1 + t)α2−1log2(−t)dt

I3 � (α2 − 1)

√
2

B(α)

0∫
−1

(−t)α1−1(1 + t)α2−1log2(1 + t)dt

I1 < +∞ since αi ≥ 1.
I2 is an improper integral in 0, but (−t)α1−1(1 + t)α2−1log2(−t) ∼

(−t)α1−1log2(−t) when t tends to 0 and
∫ 0

−1(−t)α1−1log2(−t)dt is a convergent
Bertrand’s integral.

I3 is an improper integral in -1, but (−t)α1−1(1 + t)α2−1log2(1 + t) ∼
(1 + t)α2−1log2(1 + t) when t tends to -1 and

∫ 0
−1(1 + t)α2−1log2(1 + t)dt is a con-

vergent Bertrand’s integral.
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