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Abstract
Zero-adjusted generalized linear models (ZAGLMs) are used in many areas to fit
variables that are discrete at zero and continuous on the positive real numbers. As
in other classes of regression models, hypothesis testing inference in the class of
ZAGLMs is usually performed using the likelihood ratio statistic. However, the LR
test is substantially size distorted when the sample size is small. In this work, we derive
an analytical Bartlett correction of the LR statistic. We also consider two different
adjustments for the LR statistic based on bootstrap. Monte Carlo simulation studies
show that the improved LR tests have null rejection rates close to the nominal levels
in small sample sizes and similar power. An application illustrates the usefulness of
the improved statistics.

Keywords Bartlett corrections · Chi-squared distribution · Maximum likelihood
estimates

Mathematics Subject Classification 62Fxx · 62F05

1 Introduction

Zero-adjusted regression models (ZAR models) are often used to fit variables that are
discrete at zero and continuous at some interval of the positive real numbers. They are
used in many areas such as insurance (Bortoluzzo et al. 2011), botany (Thomson et al.
2018), credit risk (Tong et al. 2016), microbiology (Rocha et al. 2017), biodiversity
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(Rubec et al. 2016) and meteorology (Zamani and Bazrafshan 2020). ZAR models
are also known as zero-augmented regression models (Nogarotto et al. 2020) or zero-
inflated regression models. The last expression is used especially when the continuous
component of the response variable is beta distributed (Ospina and Ferrari 2012).
However, zero-inflated regressionmodels usually refer tomodels inwhich the response
variable is discrete with more zeros than expected by a known probability distribution
(Lambert 1992). Recent works related to ZARmodels include Tomazella et al. (2019);
Calsavara et al. (2019); Hashimoto et al. (2019); Pereira et al. (2020); Michaelis et al.
(2020); Ye et al. (2021) and Silva et al. (2021).

Zero-adjusted generalized linear models (ZAGLMs) are a subclass of ZARmodels,
in which the continuous component of the regression model is a generalized linear
model (Dunn and Smyth 2018). Themain components of the class of ZAGLMs are the
zero-adjusted gamma regression models (ZAGA regression models, Tong et al. 2013)
and the zero-adjusted inverse Gaussian regression models (ZAIG regression models,
Heller et al. 2006).

Hypothesis testing inference in the class of ZAGLMs is usually performed using the
likelihood ratio (LR) statistic, especially when the null hypothesis of interest involves
more than one parameter. Under the null hypothesis, the LR statistic has an asymptotic
chi-squared distribution (Sen et al. 2010). However, in many regression models, the
chi-squared distribution is not a good approximation of the null distribution of the LR
statistic when the sample size is small (Melo et al. 2009; Pereira and Cribari-Neto
2014). As a consequence, in these cases, the test based on the LR statistic is often size
distorted.

An alternative to improve the chi-squared approximation to the exact null distribu-
tion of the LR statistic is to use the Bartlett correction (Bartlett 1937; Lawley 1956).
The Bartlett correction is usually effective in bringing the true sizes of the test of the
model closer to the nominal levels (Botter and Cordeiro 1997). In practical situations,
type I errors should be nearer to the fixed nominal value (usually 1%, 5% or 10%)
than the original statistic. Many authors have presented Bartlett correction factors for
specific regression models. Cordeiro (1983) derived the Bartlett correction factor for
generalized linear models and Botter and Cordeiro (1997) extended it to double gen-
eralized linear models. This correction was derived for mixed linear models and for
beta regression byMelo et al. (2009) and Bayer and Cribari-Neto (2013), respectively.
Moulton et al. (1993) and Das et al. (2018) showed that the Bartlett correction also
improves the LR statistic in logistic regression. Recent works related to this topic
include Loose et al. (2018); Araújo et al. (2020); Magalhães and Gallardo (2020);
Rauber et al. (2020); Guedes et al. (2020, 2021) and Melo et al. (2022).

Fewworks haveproposed small-sample adjustments to theLRstatistic inZARmod-
els. Pereira and Cribari-Neto (2014) derived a correction for the LR statistic known
as Skovgaard’s adjustment (Skovgaard 2001) for zero-adjusted beta regressions. For
the same model, Loose et al. (2017) proposed a Bartlett correction based on bootstrap
(Efron 1979), instead of the traditional analytical correction. To the best of our knowl-
edge, no study has proposed small-sample adjustments to the LR statistic in ZAGLMs.
Moreover, the previous works involving ZAR models have not studied the behavior
of the adjusted LR statistic when the null hypothesis of interest involves parameters
of more than a submodel of the ZAR model. In practice, it is often desirable to test
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whether the distribution of the response variable is related to a given covariate. In these
cases, the null hypothesis has parameters of all ZAGLM submodels.

The chief goal of our paper is to improve the LR statistic in the class of ZAGLMs.
Two approaches are used. First, we derive an analytical Bartlett correction of the LR
statistic. In addition, we propose using two different adjustments for the LR statistic
based on bootstrap (Cordeiro and Cribari-Neto 2014). The performance in small and
medium-sized samples of the adjusted statistics is comparedwith the usualLRstatistics
through extensive Monte Carlo simulation studies.

The remainder of the paper is organized as follows. Section2 defines the ZAGLMs
and presents some of their inferential aspects. The adjusted LR statistic is derived
in Sect. 3 and the bootstrap corrections are also described in that section. In the fol-
lowing section, Monte Carlos simulation studies are performed to compare the finite
sample behavior of different LR statistics. Section5 presents an application to real
data. Concluding remarks are provided in Sect. 6.

2 Model

Suppose that the univariate random variable Y ∈ {0} ∪ (0,∞), has a density with the
following

g(y;π, θ, φ) =
⎧
⎨

⎩

0 if y < 0,
π if y = 0,
(1 − π) f (y; θ, φ) if y > 0,

(1)

where π = P(Y = 0) and f (y; θ, φ) is a probability density function (PDF) of a
positive continuous random variable. The expression (1) can be written as:

g(y;π, θ, φ) =
{

π
I
(y)
{0} (1 − π)

1−I
(y)
{0}

} {

f (y; θ, φ)
1−I

(y)
{0}

}

, (2)

with

I
(y)
{0} =

{
1 if y = 0,
0 otherwise.

In our work, we define

f (y, θ, φ) = exp {φ[yθ − b(θ) + c(y)] + d1(y) + d2(φ)} , (3)

where b(·), c(·), d1(·) and d2(·) are known functions, i.e., f (·, θ, φ) is the PDF of a
member of the exponential family (EF) with parameters θ and φ, the canonical and
the precision parameters respectively (the inverse, φ−1, is the dispersion parameter).
If Z ∼ EF(θ, φ), then E(Z) = db(θ)/dθ = μ and Var(Z) = φ−1d2b(θ)/dθ2 =
φ−1V (μ), where V = V (μ) is the variance function. Note that the function of the
random variable I

(y)
{0} , in (2), can be seen as a probability function of a Bernoulli
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distribution with probability π , also a member of the EF. Therefore,E(Y ) = (1−π)μ

and Var(Y ) = (1−π)[πμ2 +φ−1V (μ)]. Table 1 presents the quantities presented in
(3) for the distributions in the EF used this paper.

We consider that (1) has three systematic components, which are parameterized as
μ = μ(β), φ = φ(δ) and π = π(γ ). The systematic components are:

η1 = h1(μ) = x�β, η2 = h2(φ) = t�δ, η3 = h3(π) = s�γ , (4)

where h1(·) to h3(·) are the link functions and are known one-to-one continu-
ously four-times differentiable functions, η1 to η3 are the linear predictors, x =
(x1, . . . xpμ)�, t = (t1, . . . tpφ )�, s = (s1, . . . spπ )� are specified regressor vec-
tors, β = (β1, . . . , βp1)

�, δ = (δ1, . . . , δp2)
� and γ = (γ1, . . . , γp3)

� are sets of
unknown parameters to be estimated. We also assume that β, δ and γ are functionally
independent from each other.

Consider Y1, . . ., Yn independent random variables from (1) and the parameter
vector λ = (β�, δ�, γ �)�. The logarithm of the likelihood (log-likelihood) function
based on a sample of n independent observations is given by

l(λ) = l1(β, δ) + l2(γ ), (5)

where

l1(β, δ) =
∑

	:y	∈(0,∞)

{φ	 [y	θ	 − b (θ	) + c (y	)] + d1 (y	) + d2 (φ	)}

and

l2(γ ) =
n∑

	=1

{

I
(y	)
{0} log

(
π	

1 − π	

)

+ log(1 − π	)

}

.

The function (5) is assumed to be regular with respect to all λ derivatives. The score
vector, obtained by differentiation of the log-likelihood function l(λ) with respect to

λ, can be written as U = U(λ) = (
Uβ(λ)�,Uδ(λ)�,Uγ (λ)�

)�
, with

Uβ(λ) = X��W1/2V−1/2 I y( y − μ),

where X = (x1, . . . , xn)� is a specified n × p1 matrix of full rank p1 < n,
� = diag{φ1, . . . , φn}, W = diag{w1, . . . , wn}, w	 = (dμ	/dη1	)

2V−1
	 , V =

diag{V1, . . . , Vn}, I y = diag
{
1 − I

(y1)
{0} , . . . , 1 − I

(yn)
{0}

}
, y = (y1, . . . , yn)�, μ =

(μ1, . . . , μn)
�,

Uδ(λ) = T��1 I yν,
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where T = (t1, . . . , tn)� is a specified n × p2 matrix of full rank p2 < n, �1 =
diag{φ11, . . . , φ1n}, φ1	 = dφ	/dη2	, ν = (ν1, . . . , νn)

�, ν	 = y	θ	−b(θ	)+c(y	)+
dd2(φ	)/dφ	,

Uγ (λ) = S�W1/2
π V−1/2

π ( yI − π),

where S = (s1, . . . , sn)� is a specified n × p3 matrix of full rank p3 < n, Wπ =
diag{wπ1, . . . , wπn}, wπ	 = (dπ	/dη3	)

2V−1
π	 , Vπ = diag{Vπ1, . . . , Vπn}, Vπ	 =

π	(1 − π	), yI = (y I1 , . . . , y In )�, y I	 = I
(y	)
{0} , π = (π1, . . . , πn)

�. The partition

λ = (β�, δ�, γ �)� induces a corresponding partitioned Fisher information matrix
for these parameters. This matrix is block-diagonal given by:

Kλ,λ =
⎛

⎝
X�	W�X 0 0

0 −T�	D2�
2
1T 0

0 0 S�Wπ S

⎞

⎠ , (6)

where	 = diag{1−π1, . . . , 1−πn}, D2 = diag{d21, . . . , d2n}, d2	 = d2d2(φ	)/dφ2
	 ,

�2
1 = diag{φ2

11, . . . , φ
2
1n}, φ2

1	 = (dφ	/dη2	)
2. Thus, the parameters β, δ, γ are

globally orthogonal (Cox and Reid 1987) and their maximum likelihood estimates β̂, δ̂
and γ̂ are asymptotically independent. The former property is necessary to simplify the
calculations of the Bartlett corrections, whereas the latter is desirable in the context of
inference. The Fisher scoring method can be used to compute β̂, δ̂ and γ̂ by iteratively
solving the following equations:

⎛

⎜
⎝

β̂
(m+1)

δ̂
(m+1)

γ̂
(m+1)

⎞

⎟
⎠ =

⎛

⎜
⎝

β̂
(m)

δ̂
(m)

γ̂
(m)

⎞

⎟
⎠ +

[
K−1

λ,λ

](m) × U (m).

In many problems, the restrictions under a test involve a subset of the β, δ and

γ parameters. We partition the parameters as β = (
β�
1 ,β�

2

)�
, δ = (

δ�
1 , δ�

2

)�

and γ = (
γ �
1 , γ �

2

)�
where β1 = (

β1, . . . , βq1

)�, β2 = (
βq1+1, . . . , βp1

)�,
δ1 = (

δ1, . . . , δq2
)�, δ2 = (

δq2+1, . . . , δp2
)�, γ 1 = (

γ1, . . . , γq3
)� and γ 2 =

(
γq3+1, . . . , γp3

)�. The partitions of β, δ and γ induce the corresponding partitions
X = (X1, X2), T = (T1, T2), S = (S1, S2), U = (

Uβ1
(β1,β2)

�,Uβ2
(β1,β2)

� ,

Uδ1(δ1, δ2)
�,Uδ2(δ1, δ2)

�, Uγ 1
(γ 1, γ 2)

�,Uγ 2
(γ 1, γ 2)

�)�
and

Kβ,β =
(
Kβ11

Kβ12

Kβ21
Kβ22

)

, K δ,δ =
(
K δ11 K δ12

K δ21 K δ22

)

, K γ ,γ =
(
K γ 11

K γ 12

K γ 21
K γ 22

)

,

where X1, X2, T1, T2, S1 and S2 are known matrices of full rank and dimensions
n × q1, n × (p1 − q1), n × q2, n × (p2 − q2), n × q3, n × (p3 − q3), respectively, and
Kβ11

= X�
1 	W�X1, Kβ12

= K�
β21

= X�
1 	W�X2, Kβ22

= X�
2 	W�X2, K δ11 =
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−T�
1 	D2�

2
1T1, K δ12 = K�

δ21
= −T�

1 	D2�
2
1T2, K δ22 = −T�

2 	D2�
2
1T2,

K γ 11
= S�

1 Wπ S1, K γ 12
= K�

γ 21
= S�

1 Wπ S2 and K γ 22
= S�

2 Wπ S2.
We are interested in testing

{
H : β1 = β

(0)
1 , δ1 = δ

(0)
1 , γ 1 = γ

(0)
1

A : violation of at least one equality
(7)

whereβ
(0)
1 , δ(0)

1 and γ
(0)
1 are specified vectors of dimensionsq1,q2 andq3, respectively.

We assume that 0 ≤ q1 ≤ p1, 0 ≤ q2 ≤ p2 and 0 ≤ q3 ≤ p3, but the trivial
case q1 = q2 = q3 = 0 is excluded because there are no parameters left under

the null hypothesis. Let λ̂ =
(
β̂

�
, δ̂

�
, γ̂

�)�
be the unrestricted maximum likelihood

estimates ofβ, δ andγ and λ̃ =
(
β

(0)�
1 , β̃

�
2 , δ

(0)�
1 , δ̃

�
2 , γ

(0)�
1 , γ̃ �

2

)�
be their restricted

maximum likelihood estimates underH. The likelihood ratio statistic for testingH is

LR = 2
[
l
(
β̂1, β̂2, δ̂1, δ̂2, γ̂ 1, γ̂ 2

)
− l

(
β

(0)
1 , β̃2, δ

(0)
1 , δ̃2, γ

(0)
1 , γ̃ 2

)]
,

which is, under H and some regularity conditions, asymptotically distributed as
χ2
q1+q2+q3 with approximation error of order n−1.

3 Corrected likelihood ratio tests

It is known that under the null hypothesis and general conditions of regularity, the
likelihood ratio statistic, LR, has an asymptotic χ2

q distribution, where q is the num-
ber of restrictions imposed on the parameters by the null hypothesis. Lawley (1956)
improved the LR statistic by defining a statistic, say LRc, such that PH (LRc ≤ w) =
P

(
χ2
q ≤ w

)
+O(n−2), whilePH (LR ≤ w) = P

(
χ2
q ≤ w

)
+O(n−1), wherePH (·)

is the cumulative distribution function under the null hypothesis. The improved statis-
tic is given by LRc = c̃−1LR, where c̃ = q−1Ẽ(LR) is a consistent estimate of
c = q−1E(LR) and E(LR) is the expectation of the likelihood ratio statistic, evalu-
ated under the null hypothesis up to order n−1. The factor c is known as the Bartlett
correction factor.

For the model presented in Sect. 2, define q = q1 +q2 +q3 and p = p1 + p2 + p3.
The expected likelihood ratio statistic to order O(n−1) for the test of hypotheses in
(7) is E(LR) = q + εp − εp−q , where

εp = εβp1
+ εδp2

+ εγp3

+ 1

2
tr

{
	�2WZβd Zδd − 	�1W(Z(2)

β 	 Zδ)W�1	
}

+ 1

4
1�	�1WZβd Zδ

[
ZβdW + 2Zδd

(
�2

1D3 + �2D2

)]
�1	1, (8)
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with 1 = (1, . . . , 1)�n×1, �2 = diag{φ21, . . . , φ2n}, φ2	 = d2φ	/dη22	, Zβ =
XKβ,βX�, Zβd = diag{zβ,11, . . . , zβ,nn}, Zδ = T K δ,δT�, Zδd = diag{zδ,11, . . . ,
zδ,nn}, Zγ = SK γ ,γ S�, Zγ d = diag{zγ,11, . . . , zγ,nn}, D3 = diag{d31, . . . , d3n},
d3	 = d3d2(φ	)/dφ3

	 , Z
(2)
β = Zβ 	 Zβ , Z

(3)
β = Z(2)

β 	 Zβ , Z
(2)
δ = Zδ 	 Zδ ,

Z(3)
δ = Z(2)

δ 	 Zδ , Z
(2)
γ = Zγ 	 Zγ , Z

(3)
γ = Z(2)

γ 	 Zγ and 	 represents a direct
product of matrices (Hadamard product). For sake of brevity, εβp1

, εδp2
, εγp3

are given

in the Appendix. The term εp is of orderO(n−1) evaluated at the true parameter point.
For sake of brevity, we will not discuss particular cases derived from (8). However,
they can be obtained similarly as Botter and Cordeiro (1997).

The Bartlett-corrected LR test statistic for testing (7) is

LRc = LR

(1 + ζ )
,

where ζ = (
εp − εp−q

)
/q, εp−q can be determined from (8) with X2, T2 and S2 in

place of X , T and S, respectively.
The Bartlett correction factor is very general, and in some cases it is very difficult

or even impossible to particularize its formula for specific regression models. For
instance, although Cordeiro et al. (1994) found the Bartlett correction factor for the
dispersion models, it has no closed-form for the simplex distribution. As can be seen
in (8), we have been able to apply the results for our model. For continuous case,
i.e., π	 = 0,∀	 = 1, . . . , n, εγp3

vanishes, 	 is the identity matrix and the term εp
in (8) coincides with equation (5) from Botter and Cordeiro (1997). Thus, our result
generalizes their work.

An alternative strategy for improving LR testing inference is to use the bootstrap
procedure. Suppose that μ̃, φ̃ and π̃ are the restricted MLEs of μ, φ and π from
the original dataset. In the parametric bootstrap case, B pseudo-samples with size n
are generated from ZAGLM(μ̃, φ̃, π̃ ), and, for each b, b = 1, . . . , B, the regressor

coefficients λ̂
(b)

are estimated and the LR statistic is calculated, as:

LR(b) = 2
[
l
(
λ̂

(b)) − l
(
λ̃

(b)
)]

.

The null hypothesis (7) is rejected if p� = (k + 1)/(B + 1) is smaller than or equal
to the significance level α. Here, k is the number of bootstrap replications in which
LR(b) is greater than the LR statistic computed using the original sample and p� is the
bootstrap p-value.

Rocke (1989) proposed bootstrap resampling to estimate the Bartlett correction
factor in the following form: B parametric bootstrap samples, imposing the null
hypothesis, are produced and the Bartlett-corrected bootstrap test statistic is computed
as

LRboot2 = qLR

LR
� ,
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where LR
� = B−1 ∑B

b=1 LR
(b), the average of all bootstrap statistics. The statistic

LRboot2 ∼ χ2
q , for more details on the Bartlett corrections, included the bootstrap

Bartlett adjustment, see Cordeiro and Cribari-Neto (2014).

4 Numerical results

This section presents the results of Monte Carlo simulation studies performed to eval-
uate the finite sample performance of the following tests: the likelihood ratio statistic
(LR), the Bartlett-corrected statistic (LRc), the bootstrap test based on p� (LRboot1),
and the Bartlett-corrected bootstrap statistic (LRboot2). For each considered scenario,
we used 5,000 Monte Carlo replications and B = 1, 000. The simulations were per-
formed using the Ox language (Doornik 2009).

The following ZAGA regression model was considered in the simulations:

⎧
⎨

⎩

h1(μl) = β1 + β2x2l + β3x3l ,
h2(φl) = δ1 + δ2t2l + δ3t3l ,
h3(πl) = γ1 + γ2s2l + γ3s3l ,

(9)

in which we considered x2l = t2l = s2l and x3l = t3l = s3l . First, we evalu-
ated the null rejection rates of the different tests considering three nominal levels
(1%, 5% and 10%) and three sample sizes (50, 75 and 100). We did not consider sam-
ple sizes smaller than 50, because in ZAR models, this leads to bootstrap samples
with a very small number of observations equal to zero or a very small number of
observations greater than zero. As a consequence, the parameters cannot be estimated
in many bootstrap samples when sample size is smaller than 50.

Initially, we considered four scenarios to test the following hypothesis:

{H : β3 = 0, δ3 = 0, γ3 = 0,
A : violation of at least one equality.

(10)

Note that in (10), we are testing if the distribution of the response variable is a function
of the covariate x3. In Scenarios 1 to 3, the covariate values were taken as random
draws of the standard uniformdistribution. In Scenario 4, x2 and x3 were taken from the
Gamma distribution and from inverse Gaussian distribution, respectively, considering
for these distributions the same mean and the same variance of the standard uniform
distribution. In all scenarios, covariate values were kept fixed in the Monte Carlo
replicates.

In Scenario 1, we considered β1 = 3.0, β2 = 2.0, β3 = 0.0, δ1 = 4.0, δ2 = −2.0,
δ3 = 0.0, γ1 = 0.1, γ2 = −1.0 and γ3 = 0.0. These parameter values yielded
μ ∈ (20.08, 148.42), φ ∈ (7.38, 54.60), and π ∈ (0.289, 0.525). In the second
scenario, we changed the value of γ1 to 0.8, which yielded π ∈ (0.450, 0.690). In the
third scenario, the value of δ1 was changed to 2.0, which yielded φ ∈ (1.00, 7.39).
Finally, in Scenario 4, we changed the distribution used to generate the covariates as
mentioned before.
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Table 2 Null rejection rates (%) of tests for three parameters

α = 1% α = 5% α = 10%
Scenario Test n 50 75 100 50 75 100 50 75 100

1 LR 2.74 2.00 1.50 8.90 7.46 6.16 15.52 14.08 12.18

LRc 1.18 0.84 0.92 5.50 5.40 4.86 10.12 10.34 9.44

LRboot1 0.98 0.84 0.86 5.18 5.22 4.98 9.84 10.62 9.70

LRboot2 1.06 0.90 0.88 5.34 5.26 5.06 9.96 10.40 9.76

2 LR 3.56 2.32 1.18 10.88 8.58 6.96 18.60 14.36 13.00

LRc 0.98 0.92 0.74 5.04 5.22 4.30 10.28 9.94 9.52

LRboot1 0.72 0.94 0.76 4.14 5.14 4.40 8.66 9.72 9.50

LRboot2 0.94 1.08 0.82 4.26 5.16 4.54 9.02 9.82 9.70

3 LR 2.42 1.28 1.50 8.12 6.82 6.42 14.82 12.64 12.08

LRc 0.98 0.70 0.90 5.14 4.62 5.20 9.68 9.52 9.76

LRboot1 0.96 0.80 1.08 5.04 4.80 5.30 9.20 9.62 9.88

LRboot2 0.98 0.76 0.96 5.10 4.86 5.32 9.30 9.70 9.86

4 LR 4.00 1.86 1.52 12.30 7.32 6.56 20.56 13.20 12.62

LRc 1.08 1.12 0.92 5.06 4.64 4.64 10.52 9.70 9.74

LRboot1 0.84 1.06 0.98 4.78 4.74 4.76 9.58 9.78 9.78

LRboot2 1.04 1.12 1.00 4.94 4.76 4.90 9.70 9.94 9.88

Table 2 presents the null rejection rates for the test (10) in the four scenarios
described above. The LR test is considerably liberal for n = 50, reaching, for example,
a rejection rate of 4.00 when α = 1% in Scenario 4. Even when n = 100, in all
scenarios, the rejection rates of the LR test were not close to the nominal levels. On
the other hand, in general, the three improved tests presented rejection rates close
to the nominal levels even when n = 50. For example, in Scenario 4, for α = 1%
and n = 50, the rejection rates of LRc, LRboot1 and LRboot2 were 1.08, 0.84 and 1.04,
respectively. There were some exceptions, mainly in Scenario 2, in which the rejection
rates of the test based on the LRboot1 statistic were not very close to the nominal levels.

We also performed simulation studies considering a hypothesis with a single param-
eter. We considered Scenario 1, and three different null hypotheses: H : β3 = 0,
H : δ3 = 0, and H : γ3 = 0. Table 3 presents the null rejection rates for these tests.
The LR test is also considerably liberal for the two tests related with the continuous
component of the model, but it performs well for the test related with the discrete
component of the model. On the other hand, the improved LR tests have null rejection
rates close to the nominal levels for the three hypothesis, even when n = 50.

In Tables 4, 5, 6, we present the simulation results to evaluate the non-null rejec-
tion rates of the tests (power) based on the statistics LRc, LRboot1 and LRboot2. The
LR statistic is not included in this study, because our simulations showed that it is
oversized. We considered the following three sets of hypotheses:

• H : β3 = 0, δ3 = 0, γ3 = 0 versus A : β3 �= 0, δ3 �= 0, γ3 �= 0, considering in A
β3 = δ3 = γ3 = τ (Table 4)
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Table 3 Null rejection rates (%) for tests for a single parameter in Scenario 1

α = 1% α = 5% α = 10%
H Test n 50 75 100 50 75 100 50 75 100

β3 = 0 LR 2.26 1.96 1.68 8.98 7.18 6.36 14.94 13.26 12.24

LRc 0.96 0.86 0.92 4.34 4.94 4.70 9.82 9.42 9.58

LRboot1 0.96 0.80 1.12 4.62 5.40 4.92 9.94 9.98 9.80

LRboot2 1.02 0.86 1.12 4.70 5.30 4.90 9.94 10.10 9.92

δ3 = 0 LR 2.38 1.44 1.66 8.12 6.68 6.00 13.98 12.40 11.34

LRc 0.80 0.76 1.06 5.06 4.96 4.78 9.94 9.94 9.56

LRboot1 0.80 0.84 1.02 4.90 5.10 4.96 9.58 9.90 9.58

LRboot2 0.88 0.84 1.10 4.86 5.00 5.02 9.60 10.06 9.52

γ3 = 0 LR 1.06 1.32 1.14 5.74 6.12 4.98 11.08 11.76 10.10

LRc 0.76 1.16 0.90 4.84 5.48 4.58 10.00 10.84 9.74

LRboot1 0.90 1.18 0.96 4.98 5.52 4.62 10.12 11.12 9.88

LRboot2 0.90 1.14 1.06 5.00 5.64 4.70 10.18 11.08 9.78

Table 4 Non-null rejection rates
(%) for
H : β3 = 0, δ3 = 0, γ3 = 0 -
Scenario 1 with
β3 = δ3 = γ3 = τ

n = 50
α = 5% α = 10%

τ LRc LRboot1 LRboot2 LRc LRboot1 LRboot2

−0.50 79.3 78.3 78.7 87.4 87.1 87.3

−0.25 27.3 27.0 27.4 40.7 39.7 39.8

0.25 30.1 28.9 29.3 43.6 42.4 42.6

0.50 84.2 82.8 83.3 91.5 90.3 90.4

n = 100

α = 5% α = 10%

τ LRc LRboot1 LRboot2 LRc LRboot1 LRboot2

−0.50 96.3 96.2 96.4 98.3 98.3 98.3

−0.25 53.8 53.8 54.2 66.7 66.8 66.9

0.25 56.3 56.8 56.8 68.6 69.0 69.0

0.50 98.9 98.8 98.9 99.6 99.6 99.6

• H : β3 = 0, δ3 = 0, γ3 = 0 versus A : β3 �= 0, δ3 �= 0, γ3 �= 0, considering in A
β3 = τ, δ3 = γ3 = 0 (Table 5)

• H : β3 = 0 versus A : β3 �= 0, considering in A β3 = τ, (Table 6)

where τ =−0.50,−0.25, 0.25 and 0.50. The remaining parameterswere as in Scenario
1.

For the three tables, with fixed values of α, n and τ , the non-null rejection rates
were similar in the three tests. As expected, for all cases, the non-null rejection rates
increased as n and the absolute value of τ grew.
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Table 5 Non-null rejection rates
(%) for
H : β3 = 0, δ3 = 0, γ3 = 0 -
Scenario 1 with
β3 = τ, δ3 = γ3 = 0

n = 50
α = 5% α = 10%

τ LRc LRboot1 LRboot2 LRc LRboot1 LRboot2

−0.50 80.2 79.2 79.4 88.8 88.0 88.0

−0.25 28.0 27.0 27.5 40.4 39.6 39.8

0.25 27.4 26.3 26.7 39.6 39.1 39.2

0.50 80.3 79.0 79.6 88.2 87.6 87.8

n = 100

α = 5% α = 10%

τ LRc LRboot1 LRboot2 LRc LRboot1 LRboot2

−0.50 97.6 97.6 97.6 98.8 98.8 98.8

−0.25 54.2 54.8 54.5 67.2 67.2 67.5

0.25 46.7 47.0 47.2 59.2 59.4 59.5

0.50 97.9 97.9 98.0 99.1 99.1 99.1

Table 6 Non-null rejection rates
(%) for tests for H : β3 = 0 -
Scenario 1 with β3 = τ

n = 50
α = 5% α = 10%

τ LRc LRboot1 LRboot2 LRc LRboot1 LRboot2

−0.50 88.6 88.5 88.7 93.7 93.6 93.6

−0.25 37.6 37.9 38.3 51.2 51.3 51.4

0.25 37.4 37.7 37.5 50.4 50.4 50.6

0.50 88.3 88.2 88.3 93.6 93.5 93.4

n = 100

α = 5% α = 10%

τ LRc LRboot1 LRboot2 LRc LRboot1 LRboot2

−0.50 99.7 99.7 99.7 99.9 99.9 99.9

−0.25 64.4 65.3 65.3 75.9 76.6 76.6

0.25 71.0 72.3 72.4 81.6 82.2 82.1

0.50 99.8 99.8 99.9 99.9 99.9 99.9

5 Application

This section presents an application to real data using the LR test and its improved
versions. The data are part of the work presented in Rocha et al. (2009) and refer to
the production of mycotoxin FB2 in corn grains in Brazil. Fusarium verticillioides
is a species of fungus that commonly produces mycotoxins in corn grains. When
these substances are produced in high quantity, the corn grains become improper for
consumption.

The dataset consists of 200 unit samples, each composed of 30gs of corn grains.
The response variable is the quantity of mycotoxin FB2 (measured in μg/g) and the
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covariates are the percentage of water activity (x2) and the percentage of grains with
F. verticillioides infection (x3). A total of 51 out of 200 unit samples did not contain
mycotoxin FB2.

We fitted ZAGA and ZAIG regression models for the quantity of mycotoxin FB2
with the following three systematic components:

⎧
⎨

⎩

log(μl) = β1 + β2x2l + β3x3l ,
log(φl) = δ1 + δ2x2l + δ3x3l ,
logit(πl) = γ1 + γ2x2l + γ3x3l .

(11)

Note that we considered in (11) the two covariates in the three components of the
model. We used a logarithmic link function in the submodels for μ and φ and a logit
link in the submodel for π . Diagnostic analysis omitted here for the sake of brevity
suggested that the ZAGA regression model is adequate to fit these data and that the
ZAIG regression model produces a worse fit. In addition, the AIC value is much lower
for the ZAGA regressionmodel (373.09) than for the ZAIG regressionmodel (429.37).

First, we tested if the three parameters related to the percentage of grains with
Fusarium verticillioides are all equal to zero. The p-values of the four tests considered
here are greater than 0.1. Therefore, there is no evidence that the quantity ofmycotoxin
FB2 is a function of the the percentage of grains withF. verticillioides andwe excluded
this covariate from the model.

Second, we fitted a model using water activity as the single covariate and tested
if the three parameters related to this covariate were all equal to zero. The second
and third columns of Table 7 present the results. Note that the value of the statistic is
greater for the LR test than for the corrected test, in agreement with the simulation
results. However, all tests yielded the same conclusion, that the quantity of mycotoxin
FB2 is a function of the water activity at the usual nominal levels.

Finally, using the same model, we tested if each of the parameters of the model
was equal to zero; the results are presented in the last 6 columns of Table 7. At the
usual nominal levels, all statistics also yielded the same conclusion for the three tests.
The mean of the continuous component of the quantity of mycotoxin FB2 and the
probability of the quantity of mycotoxin FB2 assuming a zero value are functions
of the water activity, but there is no evidence that the dispersion parameter of the
continuous component of the quantity of mycotoxin FB2 was a function of the water
activity.

Table 8 presents the estimates of the parameters and their standard errors for the
final model. To interpret the estimates of the parameters, the table also presents the
exponential of the estimates. The results indicated that, for every percentage point
increase in the water activity, the mean quantity of mycotoxin FB2, given that there
is some FB2 (mean of the continuous component of the response variable), increased
by 5.5%. It was also estimated that, for every percentage point increase in the water
activity, the odds of a random sample of 30gs of corn not containing FB2, decreased
by 12.8%.

Similar to Melo et al. (2022), we randomly selected a subset to illustrate that the
conclusions of different testsmay be different.We selected the sample using a binomial
random variable with probability of success of 0.2 and obtained a dataset with n = 41.
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Table 8 Estimates and standard errors for the final ZAGA model in the completed mycotoxin database

Submodel Covariate Estimate St. Error Exp(estimate)

μ Intercept −4.9084 1.1917 –

Water activity 0.0535 0.0144 1.055

φ Intercept −0.0350 0.0513 –

π Intercept 10.0101 2.6123 –

Water activity −0.1371 0.0326 0.872

Table 9 Test results for the ZAGA model in the reduced mycotoxin database

H : β2 = δ2 = γ2 = 0 H : β2 = 0 H : δ2 = 0 H : γ2 = 0

Test Value P-value Value P-value Value P-value Value P-value

LR 12.986 0.0047 4.185 0.0408 3.871 0.0491 5.09 0.0241

LRc 11.024 0.0116 3.178 0.0746 2.856 0.0910 4.368 0.0366

LRboot1 – 0.0120 – 0.0619 – 0.0679 – 0.0240

LRboot2 11.272 0.0103 3.357 0.0669 3.549 0.0596 5.681 0.0171

Table 9 presents for this reduced dataset the results of the same tests performed before
for the complete data. Note that considering a significance level of 1% or 5%, the
conclusions were different between the LR tests and the improved LR tests. Based
on the results of the simulation studies, if the reduced database were the true one, we
would rely on the conclusions reached when using the improved LR tests.

6 Concluding remarks

Response variables that are discrete at zero and continuous on the positive real numbers
are common in many areas and they are usually fitted using zero-adjusted generalized
linear models. In many regression models, the likelihood ratio test is used to perform
hypothesis testing, especially when the null hypothesis involves more than one param-
eter. However, the likelihood ratio test is considerably liberal (oversized) in the class
of ZAGLMs when the sample size is small. In this work, we derived an analytical
Bartlett-corrected likelihood ratio test and considered two bootstrap-based corrected
likelihood ratio tests. We developed Monte Carlo simulation studies that showed that
the null rejection rates of the three improved tests are close to nominal levels for
small sample sizes. We also concluded that the three improved likelihood ratio tests
considered here have similar power. An application illustrated the usefulness of the
improved statistics.

Zero-adjusted regression models are a wide class of regression models that contain
the ZAGLMs. There are no previous studies that have evaluated the performance of
improved hypothesis tests that simultaneously involve parameters of the continuous
and discrete component of the model. Therefore, this work is the first to show that the
improved likelihood ratio tests perform well for these kinds of hypotheses, which are

123



T. M. Magalhães et al.

useful when one wants to test if the distribution of the response variable is a function
of a covariate.

Based on the results of the simulation studies and the features of the three corrected
likelihood ratio tests considered here, we suggest that practitioners use the analytical
Bartlett-corrected likelihood ratio test when the sample size is small and they want
to perform hypothesis testing in the class of ZAGLMs. Our recommendation is based
especially on two reasons. First, the performances of the tests related to size and
power were similar, but in one of the scenarios considered here, the null rejection
rate of the bootstrap corrected test was slightly size distorted. The other reason is that
bootstrap uses randomization. For this reason, when the p-value of the test is close to
the significance level, two practitioners can reach different conclusion for the same
database and hypothesis. This does not happen with the analytical correction.

Appendix

The remaining quantities to define the Bartlett correction factor, see equation (8), are:
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F = diag{ f11, . . . , fnn}, G = diag{g11, . . . , gnn}, Fπ = diag{ fπ11, . . . , fπnn},
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Although deriving the expression for εp entails a great deal of algebra, this
expression only involves simple operations of diagonal matrices, i.e. they are sim-
ple expressions to implement.
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