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Abstract
Networks (graphs) permeate scientific fields such as biology, social science, eco-
nomics, etc. Empirical studies have shown that real-world networks are often
heterogeneous, that is, the degrees of nodes do not concentrate on a number. Recently,
the Rényi index was tentatively used to measure network heterogeneity. However, the
validity of the Rényi index in network settings is not theoretically justified. In this
paper, we study this problem. We derive the limit of the Rényi index of a hetero-
geneous Erdös–Rényi random graph and a power-law random graph, as well as the
convergence rates. Our results show that the Erdös–Rényi random graph has asymp-
totic Rényi index zero and the power-law random graph (highly heterogeneous) has
asymptotic Rényi index one. In addition, the limit of the Rényi index increases as the
graph gets more heterogeneous. These results theoretically justify the Rényi index
is a reasonable statistical measure of network heterogeneity. We also evaluate the
finite-sample performance of the Rényi index by simulation.
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1 Introduction

A network (graph) consists of a set of individuals (nodes) and a set of interactions
(edges) between individuals. It has been widely used to model and analyze many
complex systems. For example, in social science and economics, networks play a
central role in the transmission of information, the trade of many goods and services,
and determining how diseases spread, etc. Cruz (2018), Kulahci (2022), Read et al.
(2008); in biology, network is a method of representing the physical contacts between
proteins (Chen and Yuan 2006). In the past decade, network data analysis has been
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a primary research topic in statistics and machine learning (Abbe 2018; Amini et al.
2013; Bickel and Sarkar 2016; Goldenberg et al. 2010; Yuan and Shang 2021, 2022).

In many fields of science and engineering, one of the elemental problems is to
measure the statistical heterogeneity of datasets. For instance, in statistical physics
the entropy was devised to measure the randomness of systems (Kardar 2007). In
economics, various inequality indices were designed to gauge the evenness of the
distribution of wealth in human populations(Coulter 1989). Motivated by entropy and
inequality indices, Eliazar (2011) recently introduced the Rényi index to measure
statistical heterogeneity of probability distributions defined on the positive half-line.
The Rényi index takes values in the range [0, 1]. Larger value represents higher level
of heterogeneity. Its properties were systematically studied in Eliazar (2011), Eliazar
and Sokolov (2012) and the Rényi index of several well-known distributions (such
as Pareto distribution, Gamma distribution, Beta distribution, etc.) are calculated in
Eliazar (2011), Eliazar and Sokolov (2012).

Empirical studies have shown that many real-world networks are heterogeneous,
that is, the degrees of individuals do not concentrate on a number (Clauset et al. 2009;
Newman 2003; Voialov et al. 2019). It is important to be able to compare networks
according to heterogeneity that they exhibit, and thus to have a stable summary statistic
that provides insight into the structure of a network. Recently the Rényi index was
tentatively used tomeasure heterogeneity of financial networks and interestingfindings
were obtained (Nie et al. 2016; Nie and Song 2019, 2021; Nie 2021). However, the
validity of the Rényi index in network settings is not theoretically justified, and some
of the fundamental questions are not studied in Nie et al. (2016). For instance, whether
the Rényi index of a homogeneous network is actually close to zero, whether the Rényi
index of heterogeneous network is indeed large, and how the Rényi index depends on
network model parameters.

In this paper, we shall answer the above mentioned questions and provide a theo-
retical justification for the Rényi index as a network heterogeneity measure. To this
end, we derive the limit of the Rényi index of a heterogeneous Erdös–Rényi ran-
dom graph and a power-law random graph, as well as the convergence rates. Based
on our results, the Erdös–Rényi random graph (homogeneous) has asymptotic Rényi
index zero, while the well-known power-law random graph (highly heterogeneous)
has asymptotic Rényi index one. Moreover, the limit of the Rényi index explicitly
depends on model parameters, from which it is clear that the Rényi index increases
as the model gets more heterogeneous. These results theoretically justify the Rényi
index is a reasonable statistical measure of network heterogeneity. In addition, we run
simulations to evaluate finite-sample performance of the Rényi index.

The structure of the article is as follows. In Sect. 2 we collect the main results.
Specifically, in Sect. 2.1, we present the limit of the Rényi index of a heterogeneous
Erdös–Rényi random graph; in Sect. 2.2, we present the limit of the Rényi index of
a power-law random graph. Simulation studies are given in Sect. 3. All proofs are
deferred to Sect. 4.

Notation: Let c1, c2 be two positive constants. For two positive sequences an ,
bn , denote an � bn if c1 ≤ an

bn
≤ c2; denote an = O(bn) if

an
bn

≤ c2; an = o(bn) if
limn→∞ an

bn
= 0. Let Xn be a sequence of randomvariables.We use Xn ⇒ F to denote
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Xn converges in distribution to a probability distribution F . Xn = OP (an) means Xn
an

is bounded in probability. Xn = oP (an) means Xn
an

converges to zero in probability.
N (0, 1) stands for the standard normal distribution. Let I [E] be the indicator function
of an event E . We adopt the convention 0 log 0 = 0. Let n be a positive integer.

2 The Rényi index of network

A graph or network G consists of a pair (V, E), where V = [n] := {1, 2, . . . , n}
denotes the set of vertices and E denotes the set of edges. For i < j , denote Ai j = 1 if
{i, j} ∈ E is an edge and Ai j = 0 otherwise. Suppose Aii = 0, that is, self loops are

not allowed. Then the symmetric matrix A = (Ai j ) ∈ {0, 1}⊗n2 is called the adjacency
matrix of graph G. A graph is said to be random if the elements Ai j (1 ≤ i < j ≤ n)

are random.
Given a positive constant α, the Rényi index of a graph (Eliazar 2011; Eliazar and

Sokolov 2012; Nie et al. 2016; Nie and Song 2019) is defined as

Rα =

⎧
⎪⎨

⎪⎩

1 −
[
1
n

∑n
i=1

(
di
d

)α] 1
1−α

, if α 	= 1;
1 − exp

(
− 1

n

∑n
i=1

di
d log di

d

)
, if α = 1,

(1)

where di is the degree of node i , that is, di = ∑
j 	=i Ai j and d is the average of degree,

that is, d =
∑n

i=1 di
n . The Rényi index includes several popular indexes as a special

case. When α = 1, the Rényi index R1 is a function of the Theil’s index. When
α = 2, the Rényi index R2 is function of the Simpson’s index. For 0 < α ≤ 1 the
Rényi index Rα is the Atkinson’s index. The parameter α allows researchers to tune
the Rényi index to be more sensitive to different populations. In practice, commonly
used values are α = 1, 2, 3 (Nie et al. 2016; Nie and Song 2019).

Proposition 2.1 For any fixed α > 0, the Rényi index Rα is between 0 and 1.

The Rényi index takes values in [0, 1]. It is tentatively used to measure degree
heterogeneity of graphs (Nie et al. 2016). We shall derive an asymptotic expression of
the Rényi index of two random graphs. Note that Rα is a non-linear function of the
degrees di (1 ≤ i ≤ n), the degrees are not independent and may not be identically
distributed. This fact make studying asymptotic properties of the Rényi index a non-
trivial task.

2.1 The Rényi index of a heterogeneous Erdös–Rényi random graph

In this section, we study the asymptotic Rényi index of a heterogeneous Erdös–Rényi
random graph. Let f (x, y) be a symmetric function from [0, 1]2 to [0, 1]. Define the
heterogeneous Erdös–Rényi random graph G(n, pn, f ) as

P(Ai j = 1) = pn f

(
i

n
,
j

n

)

,
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where pn ∈ [0, 1]maydepend onn and Ai j (1 ≤ i < j ≤ n) are independent. If f ≡ c
for some constant c, then G(n, pn, f ) is simply the Erdös–Rényi random graph with
edge appearance probability cpn . For non-constant f , the random graph G(n, pn, f )
is a heterogeneous version of the Erdös–Rényi graph. The spectral properties of this
random graph have been extensively studied in Chakrabarty et al. (2020a, b, 2021).We
point out that our proof strategy works for other graph models such as the β-model in
Rinaldo and Fienberg, (2013) and the degree-corrected model in Karrer and Newman
(2011) with mild modifications.

2.1.1 Asymptotic Rényi index when˛ �= 1

In this subsection, we study asymptotic Rényi index of G(n, pn, f ) with α 	= 1. For
convenience, denote

fi j = f

(
i

n
,
j

n

)

, fi = 1

n

n∑

j 	=i

f

(
i

n
,
j

n

)

, λk,l =
∑

i 	= j f ki f li j
n2

.

Note that fi j , fi and λk;l depend on n. We will focus on f (x, y) ≥ ε for a constant
ε ∈ (0, 1) as assumed in Chakrabarty et al. (2020a). Later we will provide examples
of such functions.

Theorem 2.2 Let α 	= 1 be a fixed positive constant, npn → ∞ and f (x, y) ≥ ε for
some constant ε ∈ (0, 1). Then the Rényi index Rα of G(n, pn, f ) has the following
expression

Rα = 1 −
⎡

⎢
⎣

λα,0
(
λ0,1 + OP

(
1

n
√
pn

))α + OP

(
1

npn

)
⎤

⎥
⎦

1
1−α

, (2)

and the error rates 1
npn

and 1
n
√
pn

cannot be improved. Asymptotically, Rα has the

following concise expression:

Rα = 1 −
(

λα,0

λα
0,1

) 1
1−α

+ oP (1). (3)

Theorem 2.2 provides an asymptotic expression ofRα as an explicit function of α

and the model parameter f , along with the error rates. It is interesting thatRα mainly
depends on f and α through the ratio λα,0

λα
0,1
. The quantities λα,0 and λα

0,1 may or may

not converge to some limits as n goes to infinity. Later we will present two examples
where λα,0 and λα

0,1 converge.
We point out that even though empirical degree distributions are widely studied

in literature, it is not immediately clear how to obtain the asymptotic expression
of the Rényi index as in Theorem 2.2 from the empirical degree distributions.
Specifically, let Yn follows the empirical distribution of the degrees defined as
Femp(x) = 1

n

∑n
i=1 I [di ≤ x]. The term 1

n

∑n
i=1 d

α
i in the Rényi index is equal to
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E(Y α
n |d1, . . . , dn). Suppose Femp(x) converges almost surely or in probability to some

distribution function F(x) and let Y follow the distribution F(x). The convergence
of Femp(x) to F(x) does not necessarily impy the convergence of E(Y α

n |d1, . . . , dn)
to E(Y α) for arbitrary α > 0. Generally speaking, uniform integrability conditions
are required to guarantee the convergence of E(Y α

n |d1, . . . , dn) to E(Y α). Note that
E(Y α

n |d1, . . . , dn) is random. It is not immediately clear what kind of uniform integra-
bility conditions are needed.Moreover, even if we can conclude thatE(Y α

n |d1, . . . , dn)
converges to E(Y α) by assuming some uniform integrability conditions, it does not
provide the error rates (that cannot be improved) as in Theorem 2.2.

Next we provide two examples of random graphs satisfying the conditions of The-
orem 2.2 and calculate the ratio explicitly.

The first example is the Erdös–Rényi random graph, that is, f (x, y) ≡ 1. Since
each node of the Erdös–Rényi random graph has the same average degree, the Erdös–
Rényi graph is homogeneous. It is clear that λα,0

λα
0,1

= 1 + o(1), hence Rα = oP (1).

This shows the Rényi index of homogeneous network is actually close to zero.
Now we provide a family of non-constant f (x, y) that is bounded away from

zero. This model can attain any heterogeneity level, that is, the limit of λα,0
λα
0,1

can take

any value in (0, 1). Let f (x, y) = e−κx e−κ y with a non-negative constant κ . Then
e−2κ ≤ f (x, y) ≤ 1 for 0 ≤ x, y ≤ 1. Intuitively, smaller κ would produce less
heterogeneous models. In the extreme case κ = 0, the random graph is simply the
Erdös–Rényi random graph. Given a function f , denote the expected degree of node
i as μi := pn

∑
j 	=i fi j . Then for f (x, y) = e−κx e−κ y , μi is equal to

npne
−κ i

n (1 − e−κ + o(1)).

Note that μ1
μn

= e
κ
(
1− 1

n

)

. Large κ will enlarge the difference between the degrees of
node 1 and node n. Hence, the random graph with larger κ should be more heteroge-
neous. Simple calculations yield

λα,0 =
(
1

κ
− 1

κeκ

)α (
1

κα
− 1

καeκα

)

+ o(1), λ0,1 =
(
1

κ
− 1

κeκ

)2

+ o(1).

Plugging them into (3) yields

Rα = 1 −
(

(eκα − 1)κα−1

α(eκ − 1)α

) 1
1−α

+ oP (1), α > 0, α 	= 1. (4)

Note that limκ→∞
(

(eκα−1)κα−1

α(eκ−1)α

) 1
1−α = 0 and limκ→0+

(
(eκα−1)κα−1

α(eκ−1)α

) 1
1−α = 1 for any

α > 0 and α 	= 1. Asymptotically, Rα with large κ would be close to 1 and Rα with
small κ would be close to 0. This justifies that the Rényi index of heterogeneous graph
is actually non-zero. In addition, the limit of Rα can assume any value in (0, 1) by
changing κ . In this sense, this random graph can achieve any heterogeneity level with
suitably selected κ .
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2.1.2 Asymptotic Rényi index when˛ = 1

In this subsection, we study the asymptotic Rényi index of G(n, pn, f ) with α = 1.
For convenience, denote

fi j = f

(
i

n
,
j

n

)

, μi := pn
∑

j 	=i

fi j , li = log

(
μi

npnλ0,1

)

,

sk =
∑

i< j

(2 + li + l j )
k fi j (1 − pn fi j ),

Theorem 2.3 Let G(n, pn, f ) be the random graph with npn → ∞ and f (x, y) ≥ ε

for some constant ε ∈ (0, 1). If s2 � n2, then the Rényi index has the asymptotic
expression as

R1 = 1 − e
−rn+OP

(
1

n
√
pn

)

, rn = 1

n

n∑

i=1

μi

npnλ0,1
log

(
μi

npnλ0,1

)

, (5)

where the error rate 1
n
√
pn

cannot be improved.

Based on Theorem 2.3, R1 mainly depends on rn . For the Erdös–Rényi ran-
dom graph, that is, f (x, y) ≡ 1, it is obvious that λ0,1 = 1, μi = (n − 1)pn
and hence R1 = oP (1). For f (x, y) = e−κx e−κ y with a positive constant κ ,

μi = npne− κi
n λ1,0(1 + o(1)) � npn , then s2 � n2. The assumption of Theorem 2.3

are satisfied. Straightforward calculation yields

rn = g(κ) + o(1), (6)

where

g(κ) = −1 + κ

eκ − 1
− log

(
eκ − 1

κeκ

)

.

Note that limκ→0+ g(κ) = 0, limκ→∞ g(κ) = ∞. Hence larger κ produces more
heterogeneous random graph. This is consistent with the case α 	= 1.

The assumption that f (x, y) ≥ ε for a constant ε ∈ (0, 1) in Theorem 2.2 and
Theorem 2.3 can be relaxed and replaced by less restrictive assumptions. However,
the alternative assumptions are difficult to state and interpret and would lead to more
complex proofs. For simplicity, we do not pursue this relaxation. In addition, The-
orems 2.2 and 2.3 hold for sparse networks, since they allow pn = o(1) as long as
npn → ∞.

2.2 The Rényi index of a power-law random graph

Empirical studies have shown that many real-world networks are highly heteroge-
neous, that is, the degrees of nodes follow a power-law distribution (Clauset et al.
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2009; Newman 2003; Voialov et al. 2019). This motivates us to study whether the
Rényi index of power-law random graph is actually close to one.

Given a positive constant τ , let W be a random variable following a distribution
with power-law tail as

P(W > x) = x−τ , x ≥ 1. (7)

This distribution has heavy tail and the k-th moment of W exists if and only if k < τ .
The distribution (7) is widely used to define power-law random graphs (Britton et al.
2006; Janson et al. 2010; Janssen et al. 2019). Given independent and identically
distributed random variables ω1, . . . , ωn from distribution (7), define a power-law
random graph G(n, τ ) as

P(Ai j = 1|W ) = p
ω̃i ω̃ j

n
,

where W = (ω1, . . . , ωn), ω̃i = min{ωi ,
√
n}, p ∈ (0, 1) is a constant and Ai j (1 ≤

i < j ≤ n) are independent conditional on W .
The random graph G(n, τ ) was first defined in Bianconi and Marsili (2005, 2006)

and the order of large cliques was studied there. The cutoff
√
n in ω̃i guarantees the

edge appearance probability is less than 1. This cutoff is common in algorithm analysis
and random graph theory (Bogerd et al. 2020; Chiasserini et al. 2016; Yu et al. 2021).
We focus on the interesting regime τ ∈ (1, 2) as in literature (Britton et al. 2006;
Janson et al. 2010; Janssen et al. 2019). Note that the edges Ai j (1 ≤ i < j ≤ n) are
not independent and higher moments of ω̃i are not bounded. It is more challenging to
derive the limit of the Rényi index Rα of G(n, τ ) for arbitrary α > 0. In this paper,
we only study R2.

Theorem 2.4 Let G(n, τ ) be the power-law random graph with τ ∈ (1, 2). Then

R2 = 1 − OP

(
1

n1− τ
2

)

, (8)

where the rate 1

n1−
τ
2
cannot be improved.

According to Theorem 2.4, the Rényi index R2 of G(n, τ ) converges to one in
probability at rate n

τ
2−1. This indicates G(n, τ ) is extremely heterogeneous, consistent

with empirical observations (Clauset et al. 2009; Newman 2003; Voialov et al. 2019).
Note that nodes of G(n, τ ) have the same expected degree p (E[ω1])2. In this sense,
it seems G(n, τ ) is homogeneous as the Erdös–Rényi random graph. However, the
correlation between Ai j and Aik (1 ≤ i ≤ n, j 	= k) and the power-law tail property of
W jointly make the degrees extremely different so thatR2 = 1+oP (1). Theorem 2.4
provides an alternative justification that power-law random graph can be used as a
generative model of extremely heterogeneous networks.

To conclude this section,we comment that Theorems 2.2, 2.3 and 2.4 jointly provide
a theoretical justification that the Rényi index is a reasonable measure of heterogene-
ity of networks. For homogeneous network, the Rényi index is asymptotically zero.
For extremely heterogeneous network, the Rényi index is asymptotically one. For
moderately heterogeneous network, the Rényi index resides between zero and one.
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3 Simulation

In this section, we conduct simulation study to evaluate finite-sample performance of
the Rényi index.

In this simulation, 20 graphs were generated from each random graph model
described in Sect. 2, and the Rényi index of each graph was calculated with α ∈
{0.5, 1, 2, 2.5, 3, 10}. Then the mean and standard deviation (sd) of the Rényi indexes
were computed, as well as the limit specified in Theorem 2.2 or Theorem 2.3.

Firstly, we consider the heterogeneous Erdös–Rényi random graph G(n, pn, f )
with f (x, y) = e−κx e−κ y for a positive constant κ . The limit of the Rényi index has
a closed form given in (4) for α 	= 1 and (6) for α = 1. With a little abuse of notation,
we denote the limit as Rα . The model parameters we used to generate graphs, Rα ,
and the mean and standard deviation of the Rényi indexes are listed in Tables 1, 2,
3. As n increases, the mean gets closer to the limit Rα , and pn highly affects the
convergence speed. These findings coincide with the results in Theorems 2.2 and 2.3.
For homogeneous model (κ = 0.1), the mean and limit Rα almost vanish, while for
heterogeneous model (κ = 25) both are pretty large (greater than 0.8). This confirms
that the Rényi index can effectively measure heterogeneity of networks. In addition,
the Rényi indexes increase as α increases.

Nowwe consider the power-law random graph in Sect. 2.2. Themeans and standard
deviations (in parentheses) are summarized in Table 4. We point out that although

the rate 1

n1−
τ
2
in Theorem 2.4 only depends on τ , the term OP

(
1

n1−
τ
2

)
does involve

constant p in a complex way (see proof of Theorem 2.4). As a result, the values of p, τ
may significantly affect how close is the mean to the limit R2 = 1 in finite-sample
case. Table 4 shows all the means of the Rényi indexes are larger than 0.6, indicating
the power-law random graph is indeed heterogeneous. When n = 10, 000, most of
the means are close to or larger than 0.90.

4 Proof of main results

In this section, we provide detailed proof of the main results. Note that Rα is a non-
linear function of degrees di as given in (1). The degrees di are not independent and
may not be identically distributed. It is not feasible to directly apply the classical Law
of large number or Central limit theorem to get the limit of Rα . To overcome this
issue, our strategy is to adopt the Taylor expansion to express the non-linear function
of di as a sum of polynomials of di plus a remainder term. Then we carefully bound
the remainder term and identify the limit and exact order of the polynomial terms. For
convenience, let

γk,l =
∑

i 	= j f ki f kj f
l
i j

n2
.

Proof of Theorem 2.2 The main challenge is that the degrees di (1 ≤ i ≤ n) are not
independent and may not be identically distributed. The classical tools such as the
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Table 1 The Rényi index of heterogeneous Erdös–Rényi random graph with α = 0.5, 1

n pn κ R0.5 mean sd R1 mean sd

100 0.1 0.1 0.0002 0.0263 0.0039 0.0004 0.0474 0.0072

500 0.1 0.1 0.0002 0.0053 0.0003 0.0004 0.0103 0.0005

2000 0.1 0.1 0.0002 0.0014 0.0001 0.0004 0.0029 0.0001

10000 0.1 0.1 0.0002 0.0004 0.0001 0.0004 0.0009 0.0001

100 0.1 4 0.238 0.6626 0.0326 0.380 0.7016 0.0280

500 0.1 4 0.238 0.3983 0.0115 0.380 0.4725 0.0098

2000 0.1 4 0.238 0.2780 0.0035 0.380 0.4069 0.0028

10000 0.1 4 0.238 0.2444 0.0007 0.380 0.3861 0.0005

100 0.1 25 0.840 0.9763 0.0073 0.891 0.9913 0.0109

500 0.1 25 0.840 0.9521 0.0072 0.891 0.9533 0.0080

2000 0.1 25 0.840 0.9078 0.0025 0.891 0.9198 0.0029

10000 0.1 25 0.840 0.8523 0.0002 0.891 0.8992 0.0004

100 0.5 0.1 0.0002 0.0032 0.0005 0.0004 0.0063 0.0008

500 0.5 0.1 0.0002 0.0008 0.0001 0.0004 0.0016 0.0001

2000 0.5 0.1 0.0002 0.0003 0.0001 0.0004 0.0007 0.0001

10000 0.5 0.1 0.0002 0.0002 0.0001 0.0004 0.0004 0.0001

100 0.5 4 0.238 0.4029 0.0413 0.380 0.4643 0.0224

500 0.5 4 0.238 0.2667 0.0076 0.380 0.3984 0.0065

2000 0.5 4 0.238 0.2445 0.0008 0.380 0.3854 0.0011

10000 0.5 4 0.238 0.2394 0.0001 0.380 0.3817 0.0001

100 0.5 25 0.840 0.9583 0.0185 0.891 0.9573 0.0157

500 0.5 25 0.840 0.9024 0.0072 0.891 0.9045 0.0041

2000 0.5 25 0.840 0.8739 0.0025 0.891 0.8998 0.0013

10000 0.5 25 0.840 0.8443 0.0003 0.891 0.8932 0.0002

law of large number and the central limit theorem can not be directly applied to
derive the limit of Rα . Our proof strategy is: (a) use the Taylor expansion to expand
∑n

i=1

(
di
n

)α

at
∑n

i=1

(
μi
n

)α as a sum of polynomials in di and a reminder term; (b)

find the exact order of the polynomial terms; (c) show the reminder term is bounded
by the polynomial terms. The key step is (c). We will use a truncation technique to
control the reminder term.

To fix the idea, we consider the case α ∈ (0, 3]\{1} first. Letμi = E(di ). By Taylor
expansion, we have

(
di
n

)α

−
(μi

n

)α = α
(μi

n

)α−1
(
di − μi

n

)

+ α(α − 1)

2!
(μi

n

)α−2
(
di − μi

n

)2

+α(α − 1)(α − 2)

3! Xα−3
n,i

(
di − μi

n

)3

. (9)
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Table 2 The Rényi index of heterogeneous Erdös–Rényi random graph with α = 2, 2.5

n pn κ R2 mean sd R2.5 mean sd

100 0.1 0.1 0.0008 0.0916 0.0113 0.0010 0.1082 0.0150

500 0.1 0.1 0.0008 0.0208 0.0014 0.0010 0.0251 0.0019

2000 0.1 0.1 0.0008 0.0058 0.0001 0.0010 0.0072 0.0002

10000 0.1 0.1 0.0008 0.0018 0.0001 0.0010 0.0022 0.0001

100 0.1 4 0.517 0.7352 0.0412 0.553 0.7475 0.0386

500 0.1 4 0.517 0.5848 0.0111 0.553 0.6106 0.0099

2000 0.1 4 0.517 0.5361 0.0029 0.553 0.5714 0.0032

10000 0.1 4 0.517 0.5212 0.0006 0.553 0.5569 0.0006

100 0.1 25 0.920 0.9761 0.0075 0.926 0.9771 0.0075

500 0.1 25 0.920 0.9572 0.0064 0.926 0.9645 0.0054

2000 0.1 25 0.920 0.9344 0.0032 0.926 0.9416 0.0034

10000 0.1 25 0.920 0.9235 0.0004 0.926 0.9300 0.0003

100 0.5 0.1 0.0008 0.0126 0.0020 0.0010 0.0158 0.0022

500 0.5 0.1 0.0008 0.0032 0.0001 0.0010 0.0040 0.0003

2000 0.5 0.1 0.0008 0.0014 0.0001 0.0010 0.0017 0.0001

10000 0.5 0.1 0.0008 0.0009 0.0001 0.0010 0.0011 0.0001

100 0.5 4 0.517 0.5679 0.0253 0.553 0.6049 0.0156

500 0.5 4 0.517 0.5315 0.0051 0.553 0.5650 0.0057

2000 0.5 4 0.517 0.5211 0.0010 0.553 0.5563 0.0013

10000 0.5 4 0.517 0.5187 0.0003 0.553 0.5542 0.0002

100 0.5 25 0.920 0.958 0.0170 0.926 0.9612 0.0149

500 0.5 25 0.920 0.931 0.0052 0.926 0.9347 0.0055

2000 0.5 25 0.920 0.923 0.0015 0.926 0.9290 0.0015

10000 0.5 25 0.920 0.921 0.0001 0.926 0.9270 0.0002

where Xn,i is a random variable between di
n and μi

n . Summing both sides of (9) over
i ∈ [n] yields

n∑

i=1

(
di
n

)α

−
n∑

i=1

(μi

n

)α = α

n∑

i=1

(μi

n

)α−1
(
di − μi

n

)

+α(α − 1)

2!
n∑

i=1

(μi

n

)α−2
(
di − μi

n

)2

+α(α − 1)(α − 2)

3!
n∑

i=1

Xα−3
n,i

(
di − μi

n

)3

. (10)

Next, we shall find the order of each term in the right-hand side of (10). We begin with
the first term. For given i ∈ [n], simple algebra yields
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Table 3 The Rényi index of heterogeneous Erdös–Rényi random graph with α = 3, 10

n pn κ R3 mean sd R10 mean sd

100 0.1 0.1 0.0012 0.1285 0.0158 0.0041 0.2612 0.0425

500 0.1 0.1 0.0012 0.0304 0.0021 0.0041 0.0875 0.0059

2000 0.1 0.1 0.0012 0.0086 0.0002 0.0041 0.0275 0.0007

10000 0.1 0.1 0.0012 0.0027 0.0001 0.0041 0.0091 0.0002

100 0.1 4 0.578 0.7540 0.0341 0.683 0.8391 0.0312

500 0.1 4 0.578 0.6400 0.0090 0.683 0.7603 0.0171

2000 0.1 4 0.578 0.5966 0.0042 0.683 0.7112 0.0042

10000 0.1 4 0.578 0.5820 0.0010 0.683 0.6896 0.0012

100 0.1 25 0.930 0.9686 0.0102 0.948 0.9774 0.0065

500 0.1 25 0.930 0.9640 0.0079 0.948 0.9720 0.0064

2000 0.1 25 0.930 0.9456 0.0026 0.948 0.9643 0.0027

10000 0.1 25 0.930 0.9338 0.0005 0.948 0.9537 0.0010

100 0.5 0.1 0.0012 0.0203 0.0021 0.0041 0.0561 0.0076

500 0.5 0.1 0.0012 0.0048 0.0003 0.0041 0.0154 0.0008

2000 0.5 0.1 0.0012 0.0021 0.0001 0.0041 0.0070 0.0002

10000 0.5 0.1 0.0012 0.0014 0.0001 0.0041 0.0047 0.0001

100 0.5 4 0.578 0.6178 0.0202 0.683 0.7265 0.0252

500 0.5 4 0.578 0.5899 0.0042 0.683 0.7028 0.0066

2000 0.5 4 0.578 0.5812 0.0012 0.683 0.6888 0.0018

10000 0.5 4 0.578 0.5795 0.0002 0.683 0.6847 0.0005

100 0.5 25 0.930 0.9618 0.0132 0.948 0.9661 0.0115

500 0.5 25 0.930 0.9394 0.0050 0.948 0.9585 0.0047

2000 0.5 25 0.930 0.9337 0.0015 0.948 0.9528 0.0017

10000 0.5 25 0.930 0.9312 0.0001 0.948 0.9499 0.0003

μi =
∑

j 	=i

E(Ai j ) =
∑

j 	=i

pn f

(
i

n
,
j

n

)

= npn fi ,

n∑

i=1

(μi

n

)α = pα
n

n∑

i=1

f α
i .

Then

n∑

i=1

(μi

n

)α−1
(
di − μi

n

)

= pα−1
n

n∑

i=1

f α−1
i

∑
j 	=i (Ai j − fi j pn)

n

= pα−1
n

∑
i< j ( f

α−1
i + f α−1

j )(Ai j − fi j pn)

n
. (11)

123



1784 M. Yuan

Table 4 The Rényi index of power-law random graph with α = 2

n p τ = 1.05 τ = 1.50 τ = 1.95

500 0.01 0.886(0.019) 0.939(0.013) 0.961(0.011)

0.05 0.744(0.017) 0.811(0.021) 0.855(0.017)

0.25 0.645(0.013) 0.656 (0.025) 0.653(0.033)

0.95 0.622(0.016) 0.611(0.023) 0.541(0.044)

1000 0.01 0.877(0.007) 0.939(0.009) 0.961(0.008)

0.05 0.766(0.012) 0.826(0.018) 0.855(0.018)

0.25 0.702(0.010) 0.691(0.024) 0.671(0.026)

0.95 0.686(0.006) 0.662(0.026) 0.549(0.064)

2000 0.01 0.886(0.009) 0.941(0.006) 0.964(0.006)

0.05 0.794 (0.011) 0.831(0.013) 0.858(0.013)

0.25 0.746(0.008) 0.731(0.016) 0.692(0.028)

0.95 0.741(0.011) 0.703(0.023) 0.606(0.032)

10000 0.01 0.927(0.002) 0.946(0.002) 0.964 (0.002)

0.05 0.901(0.003) 0.911(0.010) 0.903 (0.010)

0.25 0.898(0.003) 0.892(0.014) 0.851 (0.020)

0.95 0.895(0.001) 0.894(0.011) 0.825 (0.043)

Since Ai j , (1 ≤ i < j ≤ n) are independent and E[Ai j − fi j pn] = 0, then by (11)
one has

E

[
n∑

i=1

(μi

n

)α−1
(
di − μi

n

)]2

= p2α−2
n E

[∑
i< j ( f

α−1
i + f α−1

j )(Ai j − fi j pn)

n

]2

(12)

= p2α−2
n

∑
i< j E( f α−1

i + f α−1
j )2(Ai j − fi j pn)2

n2

= p2α−2
n

(∑
i 	= j ( f

α−1
i + f α−1

j )2 fi j pn

2n2
−

∑
i 	= j ( f

α−1
i + f α−1

j )2 f 2i j p
2
n

2n2

)

= p2α−1
n

∑
i 	= j f 2α−2

i fi j + ∑
i 	= j f α−1

i f α−1
j fi j

n2

−p2α−1
n

pn
∑

i 	= j f 2α−2
i f 2i j + pn

∑
i 	= j f α−1

i f α−1
j f 2i j

n2

= p2α−1
n

[(
λ2α−2,1 + γα−1,1

) − pn
(
λ2α−2,2 + γα−1,2

)]
. (13)

Since f (x; y) ≥ ε > 0, then λ2α−2,1 � 1, γα−1,1 � 1, λ2α−2,2 � 1, γα−1,2 � 1.
Hence the first term in the right-hand side of (10) is bounded by order pα−1

n
√
pn . By

Lemma 4.1, this is the exact order.
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Secondly, we find the order of the second term in the right-hand side of (10). Note
that

n∑

i=1

(μi

n

)α−2
(
di − μi

n

)2

= 1

n2

n∑

i=1

pα−2
n f α−2

i

∑

j,k 	=i

(Ai j − pn fi j )(Aik − pn fik)

= pα−2
n

1

n2
∑

i 	= j

(Ai j − pn fi j )
2 f α−2

i + pα−2
n

1

n2

∑

i 	= j 	=k

(Ai j − pn fi j )(Aik − pn fik) f
α−2
i

= S1 + S2. (14)

We claim S2 = oP (S1). To this end, we compute the second moment of S2 and the
first moment of S1. Straightforward calculations yield

E [S1] = pα−2
n

1

n2
∑

i 	= j

E(Ai j − pn fi j )
2 f α−2

i

= pα−2
n

⎛

⎝
1

n2
∑

i 	= j

pn fi j f
α−2
i − 1

n2
∑

i 	= j

p2n f
2
i j f

α−2
i

⎞

⎠

= pα−1
n

(
λα−2,1 − pnλα−2,2

)
. (15)

Note that λα−2,1 � 1, λα−2,2 � 1, due to the assumption f (x; y) ≥ ε > 0. Then S1
is bounded by order pα−1

n . By Lemma 4.1, this is the exact order.
Since 0 ≤ fi ≤ 1 and 0 ≤ fi j ≤ 1, then

E

[
S22

]
≤ p2(α−2)

n

n4
∑

i 	= j 	=k
r 	=s 	=t

E(Ai j − pn fi j )(Aik − pn fik)(Ars − pn frs)(Art − pn frt )

= p2(α−2)
n

n4
O

⎛

⎝
∑

i 	= j 	=k

E(Ai j − pn fi j )
2(Aik − pn fik)

2

⎞

⎠

= p2(α−2)
n

n4
O

⎛

⎝
∑

i 	= j 	=k

p2n fi j fik

⎞

⎠

= O

(
p2α−2
n

n

)

. (16)
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Then S2 = OP

(
pα−1
n√
n

)
. Hence the exact order of the second term in the right-hand

side of (10) is pα−1
n and S1 is the leading term.

Next, we show the third term of (10) is bounded by pα−1
n O

(
1√
npn

)
. If α = 2,

then the third term in (10) vanishes. The desired result holds trivially. We only need
to focus on the cases α 	= 1, 2. Note that Xn,i ≥ 0. Then

E

[∣
∣
∣
∣
∣

n∑

i=1

Xα−3
n,i

(
di − μi

n

)3
∣
∣
∣
∣
∣

]

≤
n∑

i=1

E

[

Xα−3
n,i

∣
∣
∣
∣
di − μi

n

∣
∣
∣
∣

3
]

. (17)

We shall show the right-hand side of (17) is bounded by pα−1
n O

(
1√
npn

)
. Consider

first the case α = 3. In this case, the expansion in Equation (9) holds with Xn;i = 1,
so that the analysis of Equation (17) is simpler. Since Xn,i = 1 for α = 3. By the
Cauchy–Schwarz inequality, we have

n∑

i=1

E

[∣
∣
∣
∣
di − μi

n

∣
∣
∣
∣

3
]

≤
n∑

i=1

√
√
√
√
E

[(
di − μi

n

)6
]

=
n∑

i=1

√∑
j1, j2,..., j6 	=i E(Ai j1 − pn fi j1)(Ai j2 − pn fi j2) . . . (Ai j6 − pn fi j6)

n6

=
n∑

i=1

√

15
∑

j1 	= j2 	= j3 	=i E(Ai j1 − pn fi j1)
2(Ai j2 − pn fi j2)

2(Ai j3 − pn fi j3)
2

n6

+
n∑

i=1

√

15
∑

j1 	= j2 	=i E(Ai j1 − pn fi j1)
4(Ai j2 − pn fi j2)

2

n6

+
n∑

i=1

√

20
∑

j1 	= j2 	=i E(Ai j1 − pn fi j1)
3(Ai j2 − pn fi j2)

3

n6

+
n∑

i=1

√∑
j1 	=i E(Ai j1 − pn fi j1)

6

n6

= O

(

n

√
n3 p3n + √

n2 p2n + √
npn√

n6

)

= p2nO

(
1√
npn

+ 1

npn
+ 1

npn
√
npn

)

= p2nO

(
1√
npn

)

. (18)
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Hence, for α = 3, it follows that

E

[∣
∣
∣
∣
∣

n∑

i=1

Xα−3
n,i

(
di − μi

n

)3
∣
∣
∣
∣
∣

]

= pα−1
n O

(
1√
npn

)

. (19)

Next we assume α ∈ (0, 3) and α 	= 1, 2. Let δ ∈ (0, 1) be an arbitrary small
constant. Note that

E

[∣
∣
∣
∣
∣

n∑

i=1

Xα−3
n,i

(
di − μi

n

)3
∣
∣
∣
∣
∣

]

= E

[∣
∣
∣
∣
∣

n∑

i=1

Xα−3
n,i

(
di − μi

n

)3 (
I [Xn,i ≥ δ

μi

n
] + I [Xn,i < δ

μi

n
]
)
∣
∣
∣
∣
∣

]

≤ E

[
n∑

i=1

Xα−3
n,i

∣
∣
∣
∣
di − μi

n

∣
∣
∣
∣

3

I
[
Xn,i ≥ δ

μi

n

]
]

+ E

[
n∑

i=1

Xα−3
n,i

∣
∣
∣
∣
di − μi

n

∣
∣
∣
∣

3

I
[
Xn,i < δ

μi

n

]
]

(20)

Note that, when α < 3, then α − 3 < 0. If Xn,i ≥ δ
μi
n , then Xα−3

n,i ≤ (
δ

μi
n

)α−3 ≤
δα−3 pα−3

n f α−3
i . So, it is possible to use the same approach as for the case α = 3. By

(17) and a similar calculation as in (18), we get

E

[∣
∣
∣
∣
∣

n∑

i=1

Xα−3
n,i

(
di − μi

n

)3

I [Xn,i ≥ δ
μi

n
]
∣
∣
∣
∣
∣

]

≤ δα−3 pα−3
n E

[
n∑

i=1

∣
∣
∣
∣
di − μi

n

∣
∣
∣
∣

3

f α−3
i

]

= pα−1
n O

(
1√
npn

)

. (21)

The difficult case is Xn,i < δ
μi
n . Suppose Xn,i < δ

μi
n . Recall that di

n ≤ Xn,i ≤ μi
n or

μi
n ≤ Xn,i ≤ di

n . Then Xn,i < δ
μi
n implies di

n ≤ Xn,i ≤ δ
μi
n . In this case, di

μi
≤ δ.

Dividing both sides of (9) by
(

μi
n

)α yields

(
di
μi

)α

− 1 = α

(
di
μi

− 1

)

+ α(α − 1)

2

(
di
μi

− 1

)2

+α(α − 1)(α − 2)

6

Xα−3
n,1

(
μi
n

)α−3

(
di
μi

− 1

)3

,

from which it follows that

α(α − 1)(α − 2)

6

Xα−3
n,i

(
μi
n

)α−3

(
di
μi

− 1

)3
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= − (α − 1)(α − 2)

2
+

(
di
μi

)α

+ α(α − 2)
di
μi

− α(α − 1)

2

(
di
μi

)2

. (22)

Note that di
μi

≥ 0. For a fixed α, there exists a sufficiently small constant δ > 0 such

that if di
μi

≤ δ then the right-hand side of (22) is bounded away from zero and infinity.

This implies that Xα−3
n,i ≤ C

(
μi
n

)α−3 for some constant C > 0 and C is independent
of i ∈ [n]. Then similar to (21), we have

E

[∣
∣
∣
∣
∣

n∑

i=1

Xα−3
n,i

(
di − μi

n

)3

I [Xn,i < δ
μi

n
]
∣
∣
∣
∣
∣

]

= pα−1
n O

(
1√
npn

)

. (23)

According to (20), (21) and (23), (19) holds for α ∈ (0, 3) and α 	= 1, 2.
By (17), (19) and (21), it follows that the third term of (10) is bounded by

pα−1
n OP

(
1√
npn

)
. Then the first two terms are the leading terms. By (10), we get

n∑

i=1

(
di
n

)α

− pα
n

n∑

i=1

f α
i

= α

n∑

i=1

(pn fi )
α−1

(
di − μi

n

)

+ α(α − 1)

2! pα−2
n

1

n2
∑

i 	= j

(Ai j − pn fi j )
2 f α−2

i

+OP

(
pα−1
n√
npn

+ pα−1
n√
n

)

= OP

(
pα−1
n

√
pn

)
+ OP

(
pα−1
n

)
+ OP

(
pα−1
n√
npn

+ pα−1
n√
n

)

. (24)

By Lemma 4.1, the rates OP
(
pα−1
n

√
pn

)
and OP

(
pα−1
n

)
in (24) are optimal. Besides,

d
n = pnλ0,1 + OP

(√
pn
n

)
and the rate

√
pn
n cannot be improved according to

Lemma 4.1. Then (2) follows for α ∈ (0, 3]\{1}.
Now assume α ∈ (k − 1, k] for any fixed integer k ≥ 4. By Taylor expansion, we

have

n∑

i=1

(
di
n

)α

−
n∑

i=1

(μi

n

)α

= α

n∑

i=1

(μi

n

)α−1
(
di − μi

n

)

+ α(α − 1)

2!
n∑

i=1

(μi

n

)α−2
(
di − μi

n

)2

+ · · · + α(α − 1) . . . (α − k + 1)

k!
n∑

i=1

Xα−k
n,i

(
di − μi

n

)k

, (25)

where Xn,i is between
di
n and μi

n . To complete the proof, it suffices to show the first
two terms of (25) are the leading terms. More specifically, we show only the first
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two terms “matter" among the first k − 1 terms. Then we show the remainder term is
negligible using a truncation argument, analogous to the one used for the case α < 3.

For integer t with 3 ≤ t ≤ k, we have

E

[∣
∣
∣
∣
∣

n∑

i=1

(μi

n

)α−t
(
di − μi

n

)t
∣
∣
∣
∣
∣

]

≤
n∑

i=1

(μi

n

)α−t
E

[∣
∣
∣
∣
di − μi

n

∣
∣
∣
∣

t]

≤
n∑

i=1

(μi

n

)α−t

√
√
√
√
E

[(
di − μi

n

)2t
]

= O

(
pα−t
n

nt−1

√

E
[
(di − μi )

2t ]
)

. (26)

Note that

E

[
(di − μi )

2t
]

= E

⎡

⎣
∑

j1, j2,..., j2t

(Ai j1 − pn fi j1) . . . (Ai j2t − pn fi j2t )

⎤

⎦ .

Since Ai j and Ail are independent if j 	= l, then E[(Ai j − pn fi j )(Ail − pn fil)] = 0
if j 	= l. If there exists an index js such that js is not equal to jr for any r =
1, 2, . . . , s − 1, s + 1, . . . , 2t , then

E

⎡

⎣
∑

j1, j2,..., j2t

(Ai j1 − pn fi j1) . . . (Ai j2t − pn fi j2t )

⎤

⎦ = 0.

Hence, each index js must equal another index jr with r 	= s. Then

E

[
(di − μi )

2t
]

=
t∑

s=1

∑

j1, j2,..., js :distinct
E

[
(Ai j1 − pn fi j1)

λ1 . . . (Ai js − pn fi js )
λs

]
,

where λr ≥ 2 are integers and λ1 + λ2 + · · · + λs = 2t . It is easy to verify that for
λr ≥ 2 (r = 1, 2, . . . , s),

E
[
(Ai jr − pn fi jr )

λr
] = (1 − pn fi jr )

λr pn fi jr + (−pn fi jr )
λr (1 − pn fi jr ) = O(pn).

Then E
[
(di − μi )

2t ] = O
(∑t

s=1 n
s psn

) = O(nt ptn). By (26), one has

E

[∣
∣
∣
∣
∣

n∑

i=1

(μi

n

)α−t
(
di − μi

n

)t
∣
∣
∣
∣
∣

]

= O

(
pα−1
n

(npn)
t
2−1

)

, 3 ≤ t ≤ k. (27)

If Xn,i ≤ δ
μi
n for a small constant δ > 0, by a similar argument as in (22), one can get

Xα−k
n,i ≤ M

(
μi
n

)α−k for a large constant M > 0. By (27), (24) holds. Then the proof
is complete. 
�
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Lemma 4.1 Under the assumption of Theorem 2.2, the following results are true. Then

∑n
i=1 (pn fi )α−1

(
di−μi

n

)

pα−1
n

√
pn(λ2α−2,1 + γα−1,1) − p2n(λ2α−2,2 + γα−1,2)

⇒ N (0, 1), (28)

1

n2
∑

i 	= j

(Ai j − pn fi j )
2 f α−2

i = pn(λα−2,1 − pnλα−2,2) + oP (1), (29)

and
∑

i< j

Ai j − pn fi j

n
√
pnλ0,1 + p2nλ0,2

⇒ N (0, 1). (30)

Proof of Lemma 4.1 (I). By (11) and (12), we get

∑n
i=1 (pn fi )α−1

(
di−μi

n

)

pα−1
n

√
pn(λ2α−2,1 + γα−1,1) − p2n(λ2α−2,2 + γα−1,2)

=
∑

i< j

( f α−1
i + f α−1

j )(Ai j − fi j pn)

n
√
pn(λ2α−2,1 + γα−1,1) − p2n(λ2α−2,2 + γα−1,2)

.

Note that Ai j , (1 ≤ i < j ≤ n) are independent and 0 < ε ≤ f (x, y) ≤ 1. Then
λ2α−2,2 � 1, λ2α−2,1 � 1, γα−1,1 � 1, γα−1,2 � 1 and

∑

i< j

E

[
( f α−1

i + f α−1
j )(Ai j − fi j pn)

n
√
pn(λ2α−2,1 + γα−1,1) − p2n(λ2α−2,2 + γα−1,2)

]4

= O

(∑
i< j ( f

α−1
i + f α−1

j )4 fi j

n4 pn

)

= o(1).

By the Lyapunov central limit theorem, (28) holds.
(II). Note that

E

⎡

⎣
1

n2
∑

i< j

( f α−2
i + f α−2

j )
[
(Ai j − pn fi j )

2 − pn fi j (1 − pn fi j )
]

⎤

⎦

2

= 1

n4
∑

i< j

( f α−2
i + f α−2

j )2E
[
(Ai j − pn fi j )

2 − pn fi j (1 − pn fi j )
]2

= O

⎛

⎝
1

n4
∑

i< j

( f α−2
i + f α−2

j )2 pn fi j

⎞

⎠

= O

⎛

⎝
pn
n4

∑

i 	= j

fi j f
2(α−2)
i + pn

n4
∑

i 	= j

fi j f
α−2
i f α−2

j

⎞

⎠ = o(1).
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Hence (29) holds.
(III). Note that

E

[∑
i< j (Ai j − pn fi j )

n2

]2

=
∑

i< j E(Ai j − pn fi j )2

n4
=

∑
i< j (pn fi j − p2n f

2
i j )

n4

= pnλ0,1 + p2nλ0,2
n2

.

Since f (x, y) ≥ ε > 0, then λ0,1 � 1, λ0,2 � 1 and

∑

i< j

E(Ai j − pn fi j )4
(
n
√
pnλ0,1 + p2nλ0,2

)4 = O

(∑
i< j fi j

n4 pn

)

= o(1).

By the Lyapunov central limit theorem, (30) holds. 
�

Proof of Theorem 2.3 The proof strategy is the same as the proof of Theorem 2.2. Note

that d
n = pnλ0,1 + OP

(√
pn
n

)
by Lemma 4.1 and d = 1

n

∑n
i=1 di . Then we have

1

n

n∑

i=1

di
d
log

di
d

= 1

n

n∑

i=1

di
d
log

(
npnλ0,1

d

di
npnλ0,1

)

= 1

n

n∑

i=1

di
d
log

(
npnλ0,1

d

)

+ 1

n

n∑

i=1

di
d
log

(
di

npnλ0,1

)

= log

(
npnλ0,1

d

)

+ npnλ0,1
d

1

n

n∑

i=1

di
npnλ0,1

log
di

npnλ0,1

= OP

(
1

n
√
pn

)

+ npnλ0,1
d

1

n

n∑

i=1

di
npnλ0,1

log
di

npnλ0,1
. (31)

It suffices to get the limit of
∑n

i=1
di

npnλ0,1
log di

npnλ0,1
. Recall that μi = E(di ) =

∑
j 	=i pn fi j . By the Taylor expansion, we have

di
npnλ0,1

log

(
di

npnλ0,1

)

= di
npnλ0,1

log

(
μi

npnλ0,1

)

+ di
μi

(
di − μi

npnλ0,1

)

− npnλ0,1di
2μ2

i

(
di − μi

npnλ0,1

)2

+ 1

3X3
n,i

di
npnλ0,1

(
di − μi

npnλ0,1

)3

,

(32)
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where di
npnλ0,1

≤ Xn,i ≤ μi
npnλ0,1

or μi
npnλ0,1

≤ Xn,i ≤ di
npnλ0,1

. Summing both sides of
(32) over i ∈ [n] yields

n∑

i=1

di
npnλ0,1

log

(
di

npnλ0,1

)

=
n∑

i=1

di
npnλ0,1

log

(
μi

npnλ0,1

)

+
n∑

i=1

di
μi

(
di − μi

npnλ0,1

)

−
n∑

i=1

npnλ0,1di
2μ2

i

(
di − μi

npnλ0,1

)2

+
n∑

i=1

1

3X3
n,i

di
npnλ0,1

(
di − μi

npnλ0,1

)3

. (33)

Next we isolate the leading terms in the right-hand side of (33). More specifically, we
show the first term is the leading term, and the second term, the third terms and the
remainder term are of smaller order. For the remainder term, a truncation technique
as in the proof of Theorem 2.2 will be used.

Firstly, we consider the second of (33). Note that

n∑

i=1

di
μi

(
di − μi

npnλ0,1

)

=
n∑

i=1

(di − μi )
2

μi npnλ0,1
+

n∑

i=1

di − μi

npnλ0,1
. (34)

We find the order of each term in the right-hand side of (34). Recall that Ai j , (1 ≤ i <

j ≤ n) are independent. Then straightforward calculations yield

E

[
n∑

i=1

(di − μi )
2

μi npnλ0,1

]

=
n∑

i=1

∑
j 	=i E(Ai j − pn fi j )2

μi npnλ0,1

=
n∑

i=1

∑
j 	=i pn fi j (1 − pn fi j )

μi npnλ0,1

=
n∑

i=1

∑
j 	=i pn fi j − ∑

j 	=i p
2
n f

2
i j

μi npnλ0,1

= 1

pnλ0,1

(

1 − pn
1

n

n∑

i=1

∑
j 	=i f 2i j

∑
j 	=i fi j

)

, (35)

and

E

[
n∑

i=1

di − μi

npnλ0,1

]2

=
n∑

i 	= j

E(Ai j − pn fi j )2

n2 p2nλ
2
0,1

=
∑n

i 	= j pn fi j − ∑n
i 	= j p

2
n f

2
i j

n2 p2nλ
2
0,1

= 1

pnλ0,1
− λ0,2

λ20,1
. (36)
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Note that 1
n

∑n
i=1

∑
j 	=i f 2i j∑
j 	=i fi j

≤ 1. Then (34) has order OP

(
1
pn

)
.

Next, we get the order of the third term in the right-hand side of (33). Simple algebra
yields

n∑

i=1

npnλ0,1di
μ2
i

(
di − μi

npnλ0,1

)2

= 1

npnλ0,1

n∑

i=1

(di − μi )
3

μ2
i

+ 1

npnλ0,1

n∑

i=1

(di − μi )
2

μi
.

(37)

Nowwe get an upper bound of the two terms in (37). By the Cauchy–Schwarz inequal-
ity, one gets

1

npnλ0,1
E

[∣
∣
∣
∣
∣

n∑

i=1

(di − μi )
3

μ2
i

∣
∣
∣
∣
∣

]

≤ 1

npnλ0,1

n∑

i=1

E

[
|di − μi |3

μ2
i

]

≤ 1

npnλ0,1

n∑

i=1

1

μ2
i

√
E(di − μi )6

≤ 1

npnλ0,1

n∑

i=1

1

μ2
i

√ ∑

j1 	= j2 	= j3 	=i

E(Ai j1 − pn fi j1 )
2(Ai j2 − pn fi j2 )

2(Ai j3 − pn fi j3 )
2

+ 1

npnλ0,1

n∑

i=1

1

μ2
i

√ ∑

j1 	= j2 	=i

E(Ai j1 − pn fi j1 )
3(Ai j2 − pn fi j2 )

3

+ 1

npnλ0,1

n∑

i=1

1

μ2
i

√ ∑

j1 	= j2 	=i

E(Ai j1 − pn fi j1 )
4(Ai j2 − pn fi j2 )

2

+ 1

npnλ0,1

n∑

i=1

1

μ2
i

√∑

j1 	=i

E(Ai j1 − pn fi j1 )
6

= 1

npnλ0,1
O

⎛

⎝
n∑

i=1

1√
μi

+
n∑

i=1

1

μi
+

n∑

i=1

1
√

μ3
i

⎞

⎠

= 1

pn
O

(
1√
npn

)

. (38)

Then the first term of (37) is bounded by 1
pn
OP

(
1√
npn

)
. By (35), the second term is

bounded by OP

(
1
pn

)
.

Next, we consider the last term in the right-hand side of (33). Let δ ∈ (0, 1) be an
arbitrary small constant. We shall find an upper bound of the last term of (33) in two
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cases: Xn,i ≥ δ
μi

npnλ0,1
and Xn,i < δ

μi
npnλ0,1

. If Xn,i ≥ δ
μi

npnλ0,1
, then

1

3X3
n,i

di
npnλ0,1

∣
∣
∣
∣
di − μi

npnλ0,1

∣
∣
∣
∣

3

≤ 1

3δ3
di

npnλ0,1

∣
∣
∣
∣
di − μi

μi

∣
∣
∣
∣

3

. (39)

Suppose Xn,i < δ
μi

npnλ0,1
. If Xn,i <

di
npnλ0,1

, then Xn,i cannot be between
di

npnλ0,1
and

μi
npnλ0,1

. Therefore, di
npnλ0,1

≤ Xn,i < δ
μi

npnλ0,1
. Then di

μi
≤ δ. Since − log x → ∞ as

x → 0+ and di
μi

≥ 0, for small enough δ, by (32) we have

(
μi

npnλ0,1

)3

3X3
n,i

=
− log

(
di
μi

)
+

(
di
μi

− 1
)

− 1
2

(
di
μi

− 1
)2

(1 − di
μi

)3
≤ −2 log

(
di
μi

)

.

Consequently, it follows that

1

3X3
n,i

di
npnλ0,1

∣
∣
∣
∣
di − μi

npnλ0,1

∣
∣
∣
∣

3

≤ −2 log

(
di
μi

)
di
μi

|di − μi |3
μ2
i npnλ0,1

.

Note that limx→0+ x log x = o(1). For small enough δ, it follows that−2 log
(
di
μi

)
di
μi

≤
1 and hence

1

3X3
n,i

di
npnλ0,1

∣
∣
∣
∣
di − μi

npnλ0,1

∣
∣
∣
∣

3

≤ |di − μi |3
μ2
i npnλ0,1

. (40)

By (39) and (40), for a fixed small constant δ ∈ (0, 1), one has

n∑

i=1

1

3X3
n,i

di
npnλ0,1

∣
∣
∣
∣
di − μi

npnλ0,1

∣
∣
∣
∣

3

=
n∑

i=1

1

3X3
n,i

di
npnλ0,1

∣
∣
∣
∣
di − μi

npnλ0,1

∣
∣
∣
∣

3

I

[

Xn,i < δ
μi

npnλ0,1

]

+
n∑

i=1

1

3X3
n,i

di
npnλ0,1

∣
∣
∣
∣
di − μi

npnλ0,1

∣
∣
∣
∣

3

I

[

Xn,i ≥ δ
μi

npnλ0,1

]

≤ 1

npnλ0,1

n∑

i=1

|di − μi |3
μ2
i

+ 1

3δ3

n∑

i=1

di
npnλ0,1

∣
∣
∣
∣
di − μi

μi

∣
∣
∣
∣

3

. (41)

By (38), it follows that

1

npnλ0,1
E

[∣
∣
∣
∣
∣

n∑

i=1

di
μi

(di − μi )
3

μ2
i

∣
∣
∣
∣
∣

]

≤ 1

npnλ0,1

n∑

i=1

√

E

(
di
μi

)2
√
E(di − μi )6

μ4
i
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≤ 1

npnλ0,1

n∑

i=1

(

1 + 1√
μi

) √
E(di − μi )6

μ4
i

= 1

pn
O

(
1√
npn

)

. (42)

Hence by(33), (34), (35), (36), (38), (41), (42) and (37), we get that

n∑

i=1

di
npnλ0,1

log

(
di

npnλ0,1

)

−
n∑

i=1

μi

npnλ0,1
log

(
μi

npnλ0,1

)

=
n∑

i=1

di − μi

npnλ0,1

(

1 + log

(
μi

npnλ0,1

))

+ 1

2npnλ0,1

n∑

i=1

(di − μi )
2

μi
+ 1

pn
OP

(
1√
npn

)

. (43)

Further, it follows from Lemma 4.2 that

1√
s2 pn

n∑

i=1

di log

(
di

npnλ0,1

)

− 1√
s2 pn

n∑

i=1

μi log

(
μi

npnλ0,1

)

=
n∑

i=1

di − μi√
s2 pn

(1 + li ) + 1

2

n∑

i=1

∑
j 	=i (Ai j − pn fi j )2

μi
√
s2 pn

+ OP

( √
npn

pn
√
s2 pn

+
√
n√

s2 pn

)

= OP (1) + OP

(
pnτ1√
s2 pn

)

, (44)

and the rates OP (1) and OP

(
pnτ1√
pns2

)
cannot be improved. Then (5) follows from (31)

and (44). 
�

Lemma 4.2 Under the assumptions of Theorem 2.3, the following results are true.

n∑

i=1

di − μi√
s2 pn

(1 + li ) ⇒ N (0, 1), (45)

n∑

i=1

(di − μi )
2

μi
√
s2 pn

= pnτ1 − p2nτ1,2√
s2 pn

+ oP (1). (46)

Proof of Lemma 4.2 We firstly prove (45). Note that

n∑

i=1

(di − μi )(1 + li ) =
∑

i< j

(Ai j − pn fi j )(2 + li + l j ).
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Then

E

⎡

⎣
∑

i< j

(Ai j − pn fi j )(2 + li + l j )

⎤

⎦

2

=
∑

i< j

E(Ai j − pn fi j )
2(2 + li + l j )

2

=
∑

i< j

(2 + li + l j )
2 pn fi j (1 − pn fi j ) = s2 pn .

Besides,

∑

i< j

E(Ai j − pn fi j )4(2 + li + l j )4

s22 p
2
n

= O

(∑
i< j (2 + li + l j )4 pn fi j

s22 p
2
n

)

= O

(
s4

s22 pn

)

= o(1).

By the Lyapunov central limit theorem, we have

∑
i< j (Ai j − pn fi j )(2 + li + l j )√

s2 pn
⇒ N (0, 1).

Next we prove (46). Note that

n∑

i=1

(di − μi )
2

μi
=

n∑

i=1

∑
j 	=k 	=i (Ai j − pn fi j )(Aik − pn fik)

μi

+
n∑

i=1

∑
j 	=i (Ai j − pn fi j )2

μi
. (47)

Since

E

[
n∑

i=1

∑
j 	=k 	=i (Ai j − pn fi j )(Aik − pn fik)

μi

]2

=
n∑

i=1

∑
j 	=k 	=i E(Ai j − pn fi j )2(Aik − pn fik)2

μ2
i

= O (n) ,

then

n∑

i=1

(di − μi )
2

μi
=

n∑

i=1

∑
j 	=i (Ai j − pn fi j )2

μi
+ OP

(√
n
)
.
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Note that

n∑

i=1

∑
j 	=i (Ai j − pn fi j )2

μi
=

∑

i< j

(
1

μi
+ 1

μ j

)

(Ai j − pn fi j )
2,

∑

i< j

(
1

μi
+ 1

μ j

)

E(Ai j − pn fi j )
2 =

∑

i< j

(
1

μi
+ 1

μ j

)

pn fi j (1 − pn fi j ),

and

Var

⎛

⎝
∑

i< j

(
1

μi
+ 1

μ j

)

(Ai j − pn fi j )
2

⎞

⎠ = pnτ2(1 + o(1)).

Since τ2 = o(s2), then

∑
i< j

(
1
μi

+ 1
μ j

)
(Ai j − pn fi j )2

√
s2 pn

=
∑

i< j

(
1
μi

+ 1
μ j

)
pn fi j (1 − pn fi j )

√
s2 pn

+ oP (1).


�
Lemma 4.3 For positive k with k 	= τ , we have

E(ω̃k
1) = n

k−τ
2

k

k − τ
− τ

k − τ
.

Proof of Lemma 4.3 Recall that ω̃i = min{ωi ,
√
n}. By definition, the k-th moment of

ω̃1 is equal to

E(ω̃k
1) =

∫ +∞

1
(ωi ∧ √

n)kτω−τ−1
1 dω1

=
∫ √

n

1
τωk−τ−1dω +

∫ +∞
√
n

n
k
2 τω−τ−1dω

= τ

k − τ
ωk−τ |

√
n

1 + τn
k
2

1

(−τ)
ω−τ |+∞√

n

= τ

k − τ

(
n

k−τ
2 − 1

)
+ n

k−τ
2

= n
k−τ
2

(
τ

k − τ
+ 1

)

− τ

k − τ

= n
k−τ
2

k

k − τ
− τ

k − τ
, k 	= τ.


�
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Proof of Theorem 2.4 The proof strategy is similar to the proof of Theorem 2.2. Let
μ = τ 2

(τ−1)2
. By Lemma 4.3, μi = E(di ) = pμ. Simple algebra yields

n∑

i=1

(
di
n

)2

− p2μ2

n
= 2

pμ

n

n∑

i=1

di − μi

n
+

n∑

i=1

(
di − μi

n

)2

. (48)

We now find the order of each term in the right-hand side of (48).
The first term of (48) can be decomposed as

n∑

i=1

di − μi

n
=

∑
i 	= j

(
Ai j − p

ω̃i ω̃ j
n

)

n
+

∑
i 	= j

(
p

ω̃i ω̃ j
n − pμ

n

)

n
. (49)

Note that Ai j (1 ≤ i < j ≤ n) are conditionally independent given W . Then

E

⎡

⎣

∑
i< j

(
Ai j − p

ω̃i ω̃ j
n

)

n

⎤

⎦

2

=
∑

i< j E

(
Ai j − p

ω̃i ω̃ j
n

)2

n2
≤ E

[

p
ω̃i ω̃ j

n

]

= O

(
1

n

)

. (50)

The second moment of the second term of (49) can be bounded as

E

[

p

∑
i< j (ω̃i ω̃ j − μ)

n2

]2

= p2

n4
O

⎛

⎝
∑

i 	= j 	=k

E(ω̃i ω̃ j − μ)(ω̃i ω̃k − μ)

⎞

⎠

+ p2

n4
O

⎛

⎝
∑

i< j

E(ω̃i ω̃ j − μ)2

⎞

⎠

= p2μ2

n
O

(
n

2−τ
2

)
+ p2

n2
O

(
n2−τ

)

= O
(
n− τ

2 p2μ2
)

, (51)

where we used Lemma 4.3 in the second equality. Hence the first term of (48) is

OP

(
n−1− τ

4 pμ
)
.

Now we consider the second term of (48). By (50) and (51), we have

n∑

i=1

(
di − μi

n

)2

= 1

n2

n∑

i=1

⎛

⎝
∑

i 	= j

(

Ai j − p
ω̃i ω̃ j

n

)
⎞

⎠

2

+ p2

n4

n∑

i=1

⎛

⎝
∑

i 	= j

(ω̃i ω̃ j − μ)

⎞

⎠

2

+2
p

n3

n∑

i=1

⎛

⎝

⎡

⎣
∑

i 	= j

(

Ai j − p
ω̃i ω̃ j

n

)
⎤

⎦

⎡

⎣
∑

i 	= j

(ω̃i ω̃ j − μ)

⎤

⎦

⎞

⎠

= OP

(
1

n

)

+ p2

n4
∑

i 	= j 	=k

(ω̃i ω̃ j − μ)(ω̃i ω̃k − μ) + OP

(
1

n
1
2 + τ

4

)

, (52)
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where the last term OP

(
1

n
1
2+ τ

4

)

follows from the Cauchy–Schwarz inequality, (50)

and (51). Note that E
[∑

i 	= j 	=k ω̃2
i ω̃ j ω̃k

]
� n3+ 2−τ

2 . Then

∑

i 	= j 	=k

(ω̃i ω̃ j − μ)(ω̃i ω̃k − μ) =
∑

i 	= j 	=k

(ω̃2
i ω̃ j ω̃k − ω̃i ω̃ jμ − ω̃i ω̃kμ + μ2)

= (1 + oP (1))
∑

i 	= j 	=k

ω̃2
i ω̃ j ω̃k

= (1 + oP (1))2
∑

i< j<k

(ω̃2
i ω̃ j ω̃k + ω̃i ω̃

2
j ω̃k + ω̃i ω̃ j ω̃

2
k ).

Hence, by Lemma 4.4, the second term of (52) is the leading term and its exact order

is OP

(
n− τ

2

)
. Moreover, by (49), (50) and (51), we obtain d

n = pμ
n + OP

(
pμ

n1+
τ
4

)
.

Then the desired result follows. 
�
Lemma 4.4 Let θn = 3μ

(
n

2−τ
2 2

2−τ
− τ

2−τ

)
and

Un = 1
(n
3

)
∑

i< j<k

(
ω̃2
i ω̃ j ω̃k + ω̃i ω̃

2
j ω̃k + ω̃i ω̃ j ω̃

2
k − θn

)
.

Then √
4 − τUn

6μn
1
2− τ

4

⇒ N (0, 1). (53)

Proof of Lemma 4.4 Note thatUn is a U-statistic of order 3.We shall use the asymptotic
theory of U-statistics to get the desired result (53).

Let φ(ω̃1, ω̃2, ω̃3) = ω̃2
1ω̃2ω̃3 + ω̃1ω̃

2
2ω̃3 + ω̃1ω̃2ω̃

2
3 and φ1(ω̃1) = E[φ(ω̃1, ω̃2,

ω̃3)|ω̃1].Direct calculationyieldsφ1(ω̃1) = ω̃2
1μ+2ω̃1ηn withηn =

(
n

2−τ
2 2

2−τ
− τ

2−τ

)

τ
τ−1 . Note that

E[Un|ω̃1] = 1
(n
3

)
∑

1≤i< j<k≤n

E[φ(ω̃i , ω̃ j , ω̃k) − θn)|ω̃1] = 3

n
(φ1(ω̃1) − θn).

Let Ũn = 3
n

∑n
i=1(φ1(ω̃i ) − θn) and σ 2

n = Var(Ũn). Then

σ 2
n = 9

n
E(φ1(ω̃1) − θn)

2

= 9

n

[
E(ω̃4

1)μ
2 + 4η2nE(ω̃2

1) + 4μηnE(ω̃3
1) − θ2n

]

= (1 + o(1))
9

n

[
4μ2

4 − τ
n

4−τ
2 + 8η2n

2 − τ
n

2−τ
2 + 12μηn

3 − τ
n

3−τ
2 − θ2n

]

= (1 + o(1))
36μ2

4 − τ
n

4−τ
2 −1. (54)
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Let Yi = 3
n (φ1(ω̃i ) − θn). Then Yi (1 ≤ i ≤ n) are independent, E(Yi ) = 0 and

Ũn = ∑n
i=1 Yi . Since

∑n
i=1 E(Y 4

i )

σ 4
n

= 81

n4σ 4

n∑

i=1

E[(φ1(ω̃i ) − θn)
4] = O

(
E(ω̃8

1 + ω̃4
1η

4
n)

n5−τ

)

= O

(
n

8−τ
2 + n

4−τ
2 +2(2−τ))

n5−τ

)

= o(1),

by the Lyapunov Central Limit Theorem, we get that Ũn
σn

⇒ N (0, 1). To finish the

proof, it suffices to show Un
σn

= Ũn
σn

+ oP (1). Note that

E[ŨnUn] = E

[
3

n

n∑

i=1

(φ1(ω̃i ) − θn)Un

]

= 3

n

n∑

i=1

E[(φ1(ω̃i ) − θn)E(Un|ω̃i )]

= 32

n2

n∑

i=1

E[φ1(ω̃i ) − θn]2

= 32

n
E[φ1(ω̃1) − θn]2

= 32

n
Var(φ1(ω̃1)) = Var(Ũn).

Then

E

[
Un − Ũn

σn

]2

= 1

σ 2
n

[
E(Un)

2 + E(Ũ 2
n ) − 2E(ŨnUn)

]

= 1

σ 2
n

[E(U 2
n ) − E(Ũ 2

n )]. (55)

Next, we find E(U 2
n ).

E(U 2
n ) = 1

(n
3

)2

∑

i< j<k,
i1< j1<k1

E(φ(ω̃i , ω̃ j , ω̃k) − θn)(φ(ω̃i1, ω̃ j1 , ω̃k1) − θn)

= 1
(n
3

)2

∑

1≤i< j<k≤n

E(φ(ω̃i , ω̃ j , ω̃k) − θn)
2
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+ 1
(n
3

)2

∑

i< j<k,
i1< j1<k1|{i, j,k}∩{i1, j1,k1}|=2

E(φ(ω̃i , ω̃ j , ω̃k) − θn)(φ(ω̃i1, ω̃ j1 , ω̃k1) − θn)

+ 1
(n
3

)2

∑

i< j<k,
i1< j1<k1|{i, j,k}∩{i1, j1,k1}|=1

E(φ(ω̃i , ω̃ j , ω̃k) − θn)(φ(ω̃i1, ω̃ j1 , ω̃k1) − θn)

= O

(
1

n
3
2 τ−1

)

+ O

(
1

nτ−1

)

+ σ 2
n (1 + o(1)). (56)

Combining (55) and (56) yields Un
σn

= Ũn
σn

+ op(1). Then the proof is complete. 
�
Proof of Proposition 2.1 When α > 1, the function f (x) = xα is convex for x > 0.
By Jensen inequality, we have

1

n

n∑

i=1

(
di
d

)α

=
1
n

∑n
i=1

(
di
n

)α

(
1
n

∑n
i=1

di
n

)α ≥
1
n

∑n
i=1

(
di
n

)α

1
n

∑n
i=1

(
di
n

)α = 1.

Then Rα ∈ [0, 1].
When α ∈ (0, 1), the function f (x) = −xα is convex for x > 0. By Jensen

inequality, we have

−1

n

n∑

i=1

(
di
d

)α

≥ −
(
1

n

n∑

i=1

di
d

)α

= −1.

Then Rα ∈ [0, 1].
Whenα = 1, the function f (x) = x log x is convex for x > 0.By Jensen inequality,

we have

1

n

n∑

i=1

di
d
log

(
di
d

)

≥ f (1) = 0.

Then Rα ∈ [0, 1]. 
�
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