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Abstract
Nonparametric confidence distributions estimate statistical functionals by a distri-
bution function on the parameter space, instead of the classical point or interval
estimators. The concept bears analogy to the Bayesian posterior, but is nevertheless a
completely frequentist concept. In order to ensure the desired statistical properties, we
require that the cumulative distribution function on the parameter space is, evaluated
at the true parameter, uniformly distributed over the unit interval. Our main focus lies
on developing confidence distributions for the nonparametric relative effect and some
natural extensions thereof. We develop asymptotic, range preserving and—especially
important in the case of small sample sizes—approximate confidence distributions
based on rank and pseudo-rank procedures. Due to the close relationship between
point estimators, confidence intervals and p-values, these can all be approached in a
unified manner within the framework of confidence distributions. The main goal of
our contribution is to make the powerful theory of confidence distributions available
in a nonparametric context, that is, for situations where methods relying on parametric
assumptions are not justifiable. Application of the proposed methods and interpreta-
tion of the results is demonstrated using real data sets, including ordinal, non-metric
data.
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1 Introduction

The key idea underlying confidence distributions (CD) is to use a distribution function
on the parameter space in order to estimate a certain parameter—in a way analogue
to using a Bayesian posterior distribution, but without employing a prior distribution.
Thus, confidence distributions are a completely frequentist concept, but they do carry
the possibility to be a unifier for concepts from Bayesian, Frequentist, and Fiducial
statistics (Thornton and Xie 2020). The major advantage of a confidence distribution
is that it contains a wealth of information (like a posterior) for a parameter of interest
compared to the commonly used point estimates, confidence intervals, or p-values.

Due to the close relationship between the two latter concepts, they can also be
unified under the framework of confidence distributions or even be derived using CD.

As stated in the ICHE9Guideline “Estimates of treatment effects should be accom-
panied by confidence intervals” (The International Council for Harmonisation 1998),
decisions based on confidence intervals and the corresponding hypothesis tests should
coincide.

In order to ensure that this is the case, confidence distributions provide a natural and
simple solution. In addition to computing the confidence distribution (or the p-value
function), it is technically not even necessary to specify a concrete null hypothesis or
a confidence level in advance, which could allow for large flexibility in practice, but
requires much care in interpreting the results.

1.1 Motivating example

Let us give an example demonstrating why the unifying framework provided by con-
fidence distributions is useful in the context of rank and pseudo-rank procedures. In
this example, undesired toxic effects on male Wistar rats were examined for a drug
that was administered in four increasing dose levels. In the trial, n0 = 8 rats received
the placebo and n1 = 7, n2 = 8, n3 = 7, and n4 = 8 animals received the respective
increasing dose levels of the drug. The relative liver weight (as percentage of body
weight) is the primary endpoint.

For this ratio variable, the normality assumption or a classical shift effect model
do not seem justifiable. Thus, the data are analyzed based on a nonparametric model
framework, with methods employing (pseudo-)ranks. Here, the following research
question should be answered.

1. What is an estimate of the relative effect θ := P(X1 < X2) + 1
2 P(X1 = X2) for

each drug level against the placebo?
2. How variable are the estimators, and what are the confidence intervals for the

relative effect θ at difference confidence levels?
3. Is there a significant effect on the relative liver weights at each dose level of the

drug, and what are the associated p-values?

The major advantage of using a nonparametric confidence distribution approach as
presented in this paper is that we can answer these questions basically within just one
graph (and the associated quantitative information).
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1.2 Review on confidence distributions and rank- and pseudo-rank-based
procedures

The concept captured by CD has quite a long history, dating back to Fisher‘s fiducial
distribution (Fisher 1935), and the first usage of the term “confidence distribution” by
Cox (1958). However, CD were still rarely used till their rediscovery by Singh et al.
(2005) and Schweder and Hjort (2002). Many of the recent applications of confidence
distribution theory are in the field of fusion learning (e.g. Liu et al. 2014, 2015; Shen
et al. 2020; Cai et al. 2021; Liu et al. 2021), prediction (e.g. Shen et al. 2018; Xie and
Zheng 2021; Tian et al. 2021), and fields such as Fisher randomization tests (Luo et al.
2021) and survival studies (Tian et al. 2011).

Despite their colorful history and the well demonstrated usefulness of confidence
distributions along with their many applications, it appears that up to now most
published research on confidence distributions is still within the area of paramet-
ric statistics. The goal of the present paper is to change this and to develop results for
confidence distributions in a nonparametric context, so that we can use the well devel-
oped theory for confidence distributions without having to make many assumptions
on the data.

To this end, we consider the statistical functional θ := P(X1 < X2) + 1
2 P(X1 =

X2), the nonparametric relative effect or probabilistic index, which goes back to the
classical Mann–Whitney–Wilcoxon Test (Wilcoxon 1945; Mann and Whitney 1947),
and we will determine the corresponding (asymptotic) confidence distribution. In
order to do this, we make use of the theory developed by Brunner et al. (2018) and the
references therein.

One of the major advantages of this functional is its flexible use. The nonparametric
relative effect θ requires very few assumptions on the data, and accordingly it is
possible to use the resulting methods for metric, as well as ordinal data, as we will see
in the following. Consequently, we obtain a much more robust confidence distribution
than the one based on parametric statistical models. Indeed, due to their generality
andwide applicability, related rank-based nonparametric methods have been receiving
much popularity in practice, in particular also in the life sciences (Zimmermann et al.
2019).

In the following, we will develop confidence distributions for this nonparametric
two sample relative effect and some natural extensions thereof. They meet the desired
conditions asymptotically, and in one case also approximately, which is especially
important in the case of small sample sizes. As it is quite clear that the relative effect
can only take values in [0, 1], we would also want our confidence distribution to place
all its probability mass within this theoretically possible range. In order to guarantee
this, we are proposing to use range preserving confidence distributions in situations
where the estimated effect is close to the interval boundaries. This follows a similar
idea as Efron‘s range preserving confidence interval (Efron and Tibshirani 1994).

Because of the generality of our confidence distribution approach, we can expand
it to the case of more than two samples. However, in the case of three or more groups,
classical pairwise ranking methods can produce quite paradoxical results. This is due
to the fact that they lack an important transitivity property as is shown by Thangavelu
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1236 J. Beck, A. C. Bathke

and Brunner (2007) and Brunner et al. (2021). A solution to this problem is using
the unweighted mean of the distribution functions F1, . . . , Fd G := 1

d

∑d
i=1 Fi and

comparing each of the d distributions to this reference distribution (Brunner et al.
2017). This strategy also solves issues arising for weighted mean distributions in
unbalanced designs that have recently resulted in the development of procedures that
are based on pseudo-ranks instead of ranks (Brunner et al. 2021).

The remainder of this paper is organized as follows. Section2 gives a short review
of the theory of confidence distributions and their usefulness in many fields of statis-
tical inference. Additionally, we give an example of a confidence distribution for the
classical parametric Behrens–Fisher problem. Based on this consideration, we con-
tinue in Sect. 3 with a confidence distribution for the nonparametric relative effect.
Specifically, we develop asymptotic, approximate, and range preserving versions of
the CD. In the fourth section, we extend this to the case of three or more samples by
using procedures based on pseudo-ranks. In Sect. 5 we evaluate the performance of
the derived confidence distributions using an extensive simulation study. In the sixth
section we apply our approach to the toxic effect study on Wistar rats. We conclude
with a short summary and ideas for future research.

2 Confidence distributions

In this section, we provide a short summary regarding the concept of confidence
distributions. For further reading, see for example Xie and Singh (2013) and Schweder
and Hjort (2016).

After the definition and an explanation of themain statistical properties,we illustrate
the concept by giving a confidence distribution for the parametric Behrens–Fisher
Problem.

Let us start by defining confidence distributions, using the following definition
which was first proposed by Singh et al. (2005).

Definition 1 A function Hn(·) = Hn(X , ·) on X × � → [0, 1] is called a confidence
distribution (CD) for a parameter θ , if the following two conditions hold.

(i) For each given X ∈ X , Hn(·) is a cumulative distribution function on �.
(ii) At the true parameter value θ = θ0, Hn(θ0) = Hn(x, θ0), as a function of the

sample value x , follows the uniform distribution U [0, 1].
As convenient variations to this definition, the function Hn(·) is called an asymp-
totic confidence distribution or an approximate confidence distribution if the second
requirement only holds asymptotically or approximately, respectively. When it exists,
we call hn(θ) = H ′

n(θ) a confidence density. A CD function can be expressed alter-
natively as a confidence curve or p-value function: CVn(θ) = 1 − 2|Hn(θ) − 0.5| =
2min{Hn(θ), 1 − Hn(θ)}
In the definition of a confidence distribution, the first assumption ensures that Hn can
be a data-dependent “distribution estimator" of the parameter, and the second one
guarantees its desired statistical properties. Based on Hn , one can easily obtain one-
and two-sided confidence intervals at each desired level. Indeed, they are simply given
by (−∞, H−1

n (1 − α)], [H−1
n (α),∞), and [H−1

n (α/2), H−1
n (1 − α/2)].
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(a) Confidence Curve
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(b) Confidence Distribu-
tion
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(c) Confidence Density

Fig. 1 Confidence curve, confidence distribution function, and confidence density function for the shift
effect in a two-sample problem

The confidence curve is a very useful graphical tool to visualize the main inferential
evidence regarding a parameter. Every value on the y-axis, which indicates the respec-
tive α-level, corresponds to two points on the curve representing the equal-tailed 1−α

confidence interval for the parameter under consideration.
From the confidence distribution Hn , one can also derive point estimators in a

straightforward way. Similar to the way that estimators are constructed based on
(Bayesian) posterior distributions, sensible point estimators based on a (frequentist)
confidence distribution are, for example, the median Mn = H−1

n (1/2), the mean
θ̄n = ∫ ∞

−∞ tdHn(t), and the mode θ̂n = argmax hn(θ) of the CD. It can be proven that
these point estimators are consistent under mild conditions (see Theorem 3.1−3.3 in
Singh et al. (2007)).

For the usage of confidence distributions in hypothesis testing Singh et al. (2007)
introduced two measures of support for a null hypothesis K0 : θ ∈ C versus the
alternative K1 : θ ∈ Cc: Strong support is defined as ps(C) := ∫

C dHn , while
weak support is given by pw(C) := supθ∈C 2min{Hn(θ), 1−Hn(θ)}. Strong support
lends itself for use in case of interval type null hypotheses, while weak support may
be used in simple (singleton) null hypotheses. If the null hypothesis is of the type
(−∞, H−1

n (1 − α)] or [H−1
n (α),∞) it can be shown (Theorem 3.5 in Singh et al.

(2007)) that strong support agrees with classical p-values. A similar result can be
obtained for the weak support and the p-value in the singleton case. Thus, there is a
close connection to the concept of p-value functions (Fraser 1991). Let us now consider
an illustrative example.

Example 1 We have two independent normally distributed samples X1,k and X2,k ,
k = 1, . . . , n with mean μ1 and μ2. For now, assume that they both have variance σ 2,
andwe define δ = μ1−μ2 and δ̂ = X̄1,n− X̄2,n . In the case of a known σ , a CD for δ is

given by Hn(δ) = �( δ−δ̂√
2σ/

√
n
), a confidence curve CVn(δ) = 2min(�( δ−δ̂√

2σ/
√
n
), 1−

�( δ−δ̂√
2σ/

√
n
)), and a confidence density hn(δ) = 1

2
√

πσ 2/n
exp(− (δ−δ̂)2

4σ 2/n
). In Fig. 1a, b,

simulated versions of these functions are shown forμ1 = 0.4,μ2 = 0, and σ = 1/
√
2.

123



1238 J. Beck, A. C. Bathke

In all three figures, the red line indicates an equal-tailed 95% confidence interval for
the shift effect δ, and the vertical blue line gives the true value of δ.

For unknown σ , we have Hn(δ) = Ft2n−2(
δ−δ̂√
2s/

√
n
) as CD for δ, where Ft2n−2 is

the cdf of a t-distribution with 2n − 2 degrees of freedom and s the sample standard
deviation.

For different sample sizes n1 and n2 and different variances σ1 and σ2 (the classi-
cal parametric Behrens–Fisher Problem), we do have an approximate CD. Here, the

denominator of Hn changes to
√
s21/n1 + s22/n2 and the degrees of freedom estimator

has the well-known form

f̂ = (s21/n1 + s22/n2)
2

(s21/n1)
2/(n1 − 1) + (s22/n2)

2/(n2 − 1)
,

where s21 and s22 are the unbiased estimators of the respective population variance.

3 Confidence distribution for the nonparametric relative effect in two
samples

Most literature on confidence distributions assumes parametric models, and there are
only very few works considering the concept of confidence distributions outside a
parametric context (Chapter 11 in Schweder and Hjort (2016), Thornton and Xie
(2020), Liu et al. (2021)). Among these is a generalization of Example 1 that consists
of dropping the normality assumption and thus considering the location shift effect
in a more flexible, semiparametric way. For the resulting confidence distribution, see
Schweder and Hjort (2016) and Thornton and Xie (2020).

In the present section, we are extending the scope of confidence distributions
towards an even more general framework for the comparison of two samples, and
with as few assumptions on the respective underlying distributions F1 and F2 as pos-
sible. Inference will be based on the nonparametric relative effect which is defined as
follows. For two independent randomvariables X1 ∼ F1 and X2 ∼ F2, the probability

θ := P(X1 < X2) + 1

2
P(X1 = X2) =

∫

F1dF2

is called thenon-parametric relative effect of X2 with respect to X1. It can be calculated
without assuming a specific parametric model or a location shift effect. Indeed, it
may even be calculated for ordinal data, thus providing a substantial generalization
compared to the normal distributionmodel considered inExample 1.However, in order
to develop an intuition for this functional, it is instructive to calculate the nonparametric
relative effect within the framework of such a parametric example. In the concrete
situation of Example 1, the relative effect can be written as

θ = �

(
μ1 − μ2

√
σ 2
1 + σ 2

2

)

. (1)
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From the general definition of θ it follows that if θ < 1/2 the observations from F1
tend to have greater values than those from F2, and vice versa for θ > 1/2. As one
can clearly see in the previous parametric example, a value of θ = 1/2 does not imply
that X1 and X2 are identically distributed. Indeed, in the Behrens–Fisher problemwith
normal distributions, only the means must be identical for θ = 1/2 to hold, but not the
variances. A value of θ = 1/2 may be interpreted as no tendency to larger or smaller
values when comparing one distribution against the other.

For the estimation of the relative effect and an evaluation of the (asymptotic) proper-
ties of the estimator,we take advantage of the theory developed byBrunner andMunzel
(2000) and described, for example, by Brunner et al. (2018). Let us assume a statistical
model with two independent samples, Xik ∼ Fi i = 1, 2, k = 1, . . . , ni which con-
tain ni independent and identically distributed random variables. Further, assume that
N/ni ≤ N0 < ∞ for large N , and the variances σ 2

i = Var(Fj (Xi1)), i, j = 1, 2, i 	=
j satisfy σ 2

i > 0, i = 1, 2. In other words, for technical reasons, we exclude here the
situation that the distributions are fully separated or that one of them is concentrated in
one point only. In order to state the main results, we also need the following notation.
We call

Rik = 1

2
+

2∑

j=1

n j∑

l=1

c(Xik − X jl)

the rank (or overall rank) of Xik among all N = n1 + n2 observations, where c(u) =
0, 1/2, 1 for u <,=,> 0,

R(i)
ik = 1

2
+

n j∑

l=1

c(Xik − X jl)

the internal rank of Xik among the ni observations Xi1, . . . , Xini and R̄i · =
1
ni

∑ni
i=1 Rik for i = 1, 2 the rank means. Then, an unbiased and consistent estimator

(Proposition 3.1 in Brunner and Puri (2002)) for the relative effect θ = P(X1 <

X2) + 1
2 P(X1 = X2) = ∫

F1dF2 is

θ̂ = 1

n1

(
R̄2· − n2 + 1

2

)= 1 − 1

n2

(
R̄1· − n1 + 1

2

)

= 1

N
(R̄2· − R̄1·) + 1

2
.

3.1 Asymptotic confidence distribution for the relative effect

In order to derive an asymptotic confidence distribution for the nonparametric relative
effect, we first decompose

√
N (θ̂ − θ) = √

N

(∫

F̂1d F̂2 −
∫

F1dF2

)

= UN + CN , (2)
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where

UN = √
N

(
1

n2

n2∑

k=1

F1(X2k) − 1

n1

n1∑

k=1

F2(X1k) + 1 − 2θ

)

and

CN = √
N

∫

(F̂1 − F1)d(F̂2 − F2),

which can easily be verified. Brunner and Munzel (2000) has proved the following
theorem by invoking the Asymptotic Equivalence Theorem (Theorem 2.2 in Akritas
and Brunner (1997)):

Theorem 1 Let Xik ∼ Fi , i = 1, 2, k = 1, . . . , ni be independent random variables.
Additionally N = n1 + n2 → ∞ and N/ni ≤ N0 < ∞, i = 1, 2. Then

√
N (θ̂ − θ)

and UN are asymptotically equivalent.

Since X1k and X2k are independent, the asymptotic normality of UN was shown by
Brunner and Munzel (2000) using an appropriate central limit theorem. Therefore we

have UN/σN
P−→ N (0, 1), where

σ 2
N = Var(UN ) = N

n1n2

(
n1σ

2
2 + n2σ

2
1

)
.

The variances σ 2
1 and σ 2

2 are unknown and must be estimated. As X1k and X2k are
independent, also F2(X1k) and F1(X2k) are independent. If they were observable, an
unbiased and consistent estimator for σi would be

σ̃ 2
i = 1

ni − 1

ni∑

k=1

(Fi (Xik) − 1

ni

ni∑

k=1

Fi (Xik))
2. (3)

However, as these are not observable, the so-called normed placements are used
instead:

n2 F̂2(X1k) = R1k − R(1)
1k and n1 F̂1(X2k) = R2k − R(2)

2k . (4)

Using them, the variance can be estimated by σ̂ 2
N = N

n1n2

( S21
n2

+ S22
n1

)
with

S2i = 1

ni − 1

ni∑

k=1

(
Rik − R(i)

ik − R̄i · + ni + 1

2

)2
(5)
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for i = 1, 2. Theorem 7.24 in Brunner et al. (2018) proves that this estimator is
L2-consistent. To simplify our notation, we define

τ̂θ = 1√
N

σ̂N = 1

n1n2

√
√
√
√

2∑

j=1

n j S2j .

Then, based on the above considerations, an asymptotic confidence distribution for
the nonparametric relative effect θ is given by

H�
n (θ) = �

(θ − θ̂

τ̂θ

)
,

where� is the cumulative distribution function of the standard normal distribution. The
corresponding confidence curve (as defined in the previous chapter) is consequently
given by CV�

n (θ) := 2min{H�
n (θ), 1 − H�

n (θ)}.

3.2 Approximate confidence distribution for the relative effect

For small sample sizes Brunner and Munzel (2000) suggested using quantiles of the
t-distribution instead of the normal distribution, in order to improve the test’s perfor-
mance. This idea can be carried over to the concept of confidence distributions, in a
similar spirit as in Example 1. However, the result will only be an approximative CD:
Even if the original data are normally distributed, the corresponding confidence dis-
tribution does not fulfill the uniformity condition exactly. For the derivation, consider
again the unobservable variance “estimator”

σ̃ 2
N = N

n1n2

2∑

i=1

(N − ni )σ̃
2
i ,

with σ̃ 2
i defined as in (3). The distribution of σ̃ 2

N can be approximated by a (scaled)
χ2
f / f distribution. Next, substitute again the unobservable terms by the observable

normed placements (4).
The idea here is based on the Satterthwaite–Smith–Welch approximation in the

classical parametric Behrens–Fisher Problem (see, e.g., Moser and Stevens (1992) for
a detailed discussion on this topic). In nonparametric statistic such an approximation
was already used for testing by Brunner and Munzel (2000).

In case of normal distributed data (and unknown variance) it is possible to get an
exact confidence distribution using a t-distribution with n − 1 degrees of freedom
(see for example example 1 in Xie and Singh (2013)). This leads to the following
considerations: As the absolute quantiles of a t-distribution are always larger than the
corresponding absolute quantiles of standard normal distribution, the approximated
confidence distribution, based on the t-distribution, is always more conservative than
the asymptotic one.
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[ We have shown in the previous section that under the assumptions of Theorem 1,
and if the variances σ 2

i = Var(Fj (Xi1)), i, j = 1, 2, i 	= j satisfy σ 2
i > 0, i = 1, 2,

then the distribution of

√
N

θ − θ̂

σN
,

with σN defined as in (2), has asymptotically a standard normal distribution. Due to
the consistency of σ̂N for σN , the sampling distribution of

TN = √
N

θ − θ̂

σ̂N
,

can be approximated by a standard normal distribution.]
As this one is more or less liberal for small sample sizes, we use the more

conservative t-approximation, which converges with increasing sample size to the
asymptotic distribution. The degrees of freedom were taken from the parametric
Satterthwaite-Smith-Welch approximation:

f̂ =
(∑2

i=1 S
2
i /(N − ni )

)2

∑2
i=1(S

2
i /(N − ni ))2/(ni − 1)

. (6)

This justification is quite similar to the one of Result 3.22 in Brunner et al. (2018).
Using this we obtain as an approximate confidence distribution

Ht
n(θ) = Ft f̂

(θ − θ̂

τ̂θ

)
,

with the degrees of freedom estimator defined in (6). Obviously f̂ → ∞, so the
approximate confidence distribution converges to the asymptotic confidence distri-
bution. As in the previous section, the corresponding confidence curve is defined by
CV t

n (θ) := 2min{Ht
n(θ), 1 − Ht

n(θ)}.
Remark 1 Brunner and Munzel (2000) suggest that a sample size of 10 in each group
is needed to get an accurate approximation. The asymptotic results are quite accurate
for sample sizes larger than 50. For smaller sample sizes the test is in general too
liberal.

3.3 Range preserving confidence distribution

By definition, the relative effect θ can only take values in the interval [0, 1]. However,
when we have an estimate θ̂ that is very close to 0 or 1, or when the sample size
is rather small, it is possible that the resulting asymptotic or approximate confidence
distribution for θ assigns positive probabilitymass to an area outside the interval [0, 1].
Actually, in our case study example in Sect. 6.1, this occurs for dose levels 3 and 4.
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Certainly, it is hard to convey the interpretation of such an inferential result to statistics
practitioners, namely how positive confidence can be assigned to sets of impossible
parameter values. These concerns will be addressed in this subsection.

Let us call a confidence distribution range preservingwhen the distribution function
assigns positive probability mass only to areas that fall within the allowed range—
analogously to the concept of range preserving confidence intervals introduced by
Efron and Tibshirani (1994).

In order to obtain range preserving confidence distributions, we use the delta-
method. Hereby, we transform the open unit-interval (0, 1)which contains all relevant
values for the relative effect (ignoring the theoretical possibility of perfectly sepa-
rated distributions) to (−∞,∞) by a transformation-function g : (0, 1) → R. If the
function g has continuous first derivative g′(·) and g′ does not vanish at θ , and if
additionally the assumptions of Theorem 1 hold, in particular that N/ni ≤ N0 < ∞,
i = 1, 2, then

√
N (g(θ̂) − g(θ))

|g′(θ̂)|σ̂N

is asymptotically N (0, 1) distributed (see, e.g., Chapter 3 in van der Vaart (1998)). We
therefore obtain an asymptotic confidence distribution that is range preserving, that
is, it assigns all its positive probability mass on the unit interval by

Hn,g(p) = �

(
g(θ) − g(θ̂)

τ̂θ |g′(θ̂)|
)

.

In our example (see Sect. 6.1), we use the logit-function defined by logit(x) =
log(x/(1 − x)) and fulfilling all necessary conditions. Thus, we get an asymptotic
confidence distribution for the relative effect by

Hn,logit(θ) = �

(
logit(θ) − logit(θ̂)

τ̂θ /θ̂(1 − θ̂ )

)

.

There are certainly (infinitely) many possible transformation functions with good
analytical properties, so it does make sense to use ones that are already popular in
related statistical contexts such as the logit or probit functions. In terms of performance,
the particular choice among these is secondary.

4 Confidence distributions for nonparametric effects in several
samples

In practice, it is often not sufficient to compare a certain dose level of a verum to a
placebo. For example, a new treatment may be compared to a placebo and to an active
control. Following a nonparametric paradigm, using only pairwise relative effects in a
situation with several samples can yield paradox results, due to the non-transitivity of

123



1244 J. Beck, A. C. Bathke

these pairwise relative effects (see for example Thangavelu and Brunner (2007)). We
address this problemby comparing each distribution to the same reference distribution.

In this section, we consider Xi1, . . . , Xini ∼ Fi (x), i = 1, . . . , d independent
and within each group i identically distributed observations, and we denote by G :=
1
d

∑d
i=1 Fi the unweighted mean of the distribution functions F1, . . . , Fd , and define

the unweighted relative effects

θi :=
∫

GdFi = P(Z < Xi1) + P(Z = Xi1),

where Z ∼ G is a random variable independent of Xi1. We use the unweighted effect
measure instead of its weighted counterpart because the latter usually requires almost
balanced designs in order to provide useful and interpretable results (Brunner et al.
2017).

Also, we assume analogously to the previous part that N/ni ≤ N0 < ∞, where
N = ∑d

i=1 ni is the total number of observations, and we require that Fi is not a
one-point distribution.

To estimate the effect size, we denote by F̂i (x) = 1
ni

∑ni
k=1 c(x−Xik) the empirical

distribution function where c is the count function c(u) = 0, 1/2, 1, when u < 0, u =
0, u > 0 and by

R�
ik = 1

2
+ N

d

d∑

j=l

1

n j

n j∑

l=1

c(Xik − X jl)

the pseudo-rank of Xik among all N observations. We refer to the recent literature for
more details on the usefulness (Zimmermann et al. 2021) and the efficient computation
(Happ et al. 2020) of pseudo-ranks.

Additionally, we define by

R(ir)
ik = 1

2
+

∑

s=i,r

n j∑

l=1

c(Xik − Xsl)

the paired rank of Xik among all ni + nr observations, by

R(i)
ik = 1

2
+

n j∑

l=1

c(Xik − Xil)

the internal rank of Xik among all ni observations, and by R̄�
i · = 1

ni

∑ni
k=1 R

�
ik ,

i = 1, . . . , d the pseudo-rank mean. Under the stated assumptions, a consistent and
unbiased estimator of the unweighted relative effect is given by

θ̂i =
∫

Ĝd F̂i = 1

N

(

R̄�
i · − 1

2

)

, i = 1, . . . , d.
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Additionally ifwe denote by s2i the variance of our test statistic TN = √
N (θ̂i−θi ), then

TN/si converges to the standard normal distribution (Brunner et al. 2017). Consistent
estimation of the variance is possible using the previously defined different types of
ranks, as stated in the following theorem.

Theorem 2 If N/ni ≤ N0 < ∞, then

ŝ2i = N

ni
v̂2i + N

d2

d∑

r 	=i

1

nr
τ̂ 2r :i , , r 	= i = 1, . . . , d,

with

v̂2i = 1

N 2(ni − 1)

ni∑

k=1

[

R�
ik − R̄�

i · − N

dni

(
R(i)
ik − ni − 1

2

)
]2

,

τ̂ 2r :i = 1

n2i (nr − 1)

nr∑

s=1

(
R(ir)
rs − R(r)

rs − R̄(ir)
r · + nr + 1

2

)2
, r 	= i .

is a consistent estimator of the asymptotic variance s2i of TN .

Proof See Theorem 7.40 in Brunner et al. (2018). 
�
With this result, we obtain an asymptotic confidence distribution for the parameter θi
as

H�
n (θi ) = �

( θi − θ̂i

ŝi/
√
N

)
,

where � is the cumulative distribution function of the standard normal distri-
bution. As usual, the corresponding asymptotic confidence curve is CV (θi ) :=
2min{H�

n (θi ), 1 − H�
n (θi )}.

By definition, the parameter θi can only take values in the interval [ 1
2d , 1 − 1

2d ].
Similar to the previous section we can use the δ-method to construct range preserving
confidence distributions, utilizing a transformation function g which fulfills the same
conditions as in Sect. 3.3. For example, using the logit transformation, we obtain the
range preserving asymptotic confidence distribution for the relative effect as

Hn,logit(θi ) = �

(
logit(θi ) − logit(θ̂i )

ŝi/{θ̂i (1 − θ̂i )
√
N }

))

.

5 Simulation study

In this part we evaluate the performance of our proposed methods, in particular their
accuracy. In the first subsection, we compare the estimated t-approximation and its
variability against the empirical distribution function, and in the second subsection,
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we investigate how the p-values derived by confidence distributions fulfill the desired
uniformity property, and examine the usefulness of range preserving transformations
for large estimated effects.

5.1 Simulation of the approximated confidence distribution

In this subsection, we analyze the accuracy of the approximative confidence distri-
butions using the t-distribution and the variability of the resulting estimates. For this
purpose, we have computed the empirical cumulative distribution function (ecdf) for
different simulated data sets and compared it to the t-approximation. We also simu-
lated this using the asymptotic normal approximation, but only show the comparison
to the t-approximation, due to negligible differences between both approaches.

Example 2 In this example we have drawn 10,000 times samples of size 20 for each
of the two random variables X1 and X2, where X1 ∼ N (1, 2) and X2 ∼ N (0, 2)
and computed the estimated relative effect θ := P(X1 < X2) + 1

2 P(X1 = X2) for
all 10,000 draws. The resulting empirical cumulative distribution function is shown
by the dotted line in Fig. 2a. Also, for each draw, we computed the t-approximation
analogously to Chapter 3. In the plot, the dashed line shows the mean of these 10,000
distribution functions. The grey area gives an equal-tailed 95% confidence interval of
these t-distributions. The vertical line gives the exact theoretical value computed by
θ = �(

μ1−μ2√
σ 2
1 +σ 2

2

).

Similar as before, we have drawn 10,000 times samples with size 20 for each of the
two random variables X1 and X2, but this time X1 is Cauchy distributed with location
1 and scale 1 and X2 is also Cauchy distributed with location 2 and scale 1. Again
the ecdf for the estimated relative effect is shown in Fig. 2b by the dotted line and the
mean of the t-distributions by the dashed one and the grey area the 95% confidence
interval of the t-approximations.

In Fig. 2c we have again drawn 10,000 times samples with size 20 for each of the
two random variables X1 and X2, but here X1 ∼ LN (1, 1) (lognormal distribution)
and X2 ∼ LN (0, 1). As before the ecdf of the relative effect and the t-approximations
are shown.

In the last Fig. 2d samples with size 20 for each for each group were drawn 10,000
times, but this time from a real data set, the number of implantations after dissection
for female Wistar rats with 12 animals in the placebo group and 17 who received the
drug. The plot shows the ecdf of the estimated relative effect and the t-approximations
as in the previous ones.

The main idea of our simulation is based on a Monte Carlo simulation of confidence
intervals. We simulated the range which is inside of 95 % of the confidence intervals
based on our t-approximation, but here for all possible confidence levels.

The simulation has been carried out for symmetric (a and b) as well as non-
symmetric (c and d) distributions. Typically, heavy tailed distributions such as the
Cauchy distribution and theLog-normal distribution yield problems for parametric sta-
tistical inference procedures. In our simulations, we see almost no differences between
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(b) cauchy distributed data
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(c) log-normal distributed data
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(d) resampling from real data set

Fig. 2 t-Approximation vs. ecdf

the simulations, especiallywhen comparing to the empirical drawn samples from a real
data set (Fig. 2d), confirming the robustness of the nonparametric approach pursued
in this paper.
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5.2 Simulation of range preserving confidence distribution

In this subsection, we examine the Range Preserving Confidence Distribution (RP-
CD) defined in Sect. 3.3. By definition the confidence distribution should follow the
uniform distribution on [0, 1]. Therefore, we evaluate the confidence curves at the true
value of the relative effect and compare them to the uniform distribution on [0, 1] by
means of a QQ-plot.

Example 3 Random samples of size 20 were simulated from a normal distributionwith
variance 2 and means 1, 3, and 5, respectively. We then compute the p-value function
of the two sided test for the relative effect regarding data from a normal distribution
with mean 0 and variance 2. The QQ-plot indicates how the p-value function evaluated
at the true value of the relative effect (computed by formula (1)) coincides with the
uniform distribution on [0, 1]. On the left side of Fig. 3, we show the plots derived by
the asymptotic confidence distribution (aCD), and on the right side the ones derived
by the RP-CD.

In the first row, the relative effect of 0.64 is close enough to the center of the (0, 1)-
interval, and thus the transformation results in almost no difference. Both approaches
meet the uniformity condition quite well. In the second row, the theoretical relative
effect is at 0.86, andwe can already see a small difference between the two procedures.
The asymptotic confidence distribution without range preserving transformation tends
to be a bit too liberal. In the third row, we have a relative effect of 0.96, and we can
now see a major difference in the performance. The aCD is much too liberal, and the
RP-CD performs still quite well (although the performance is not as good as in the
case of relative effects closer to 0.5). Our simulation shows that the range preserving
confidence distribution (RP-CD) is only needed in cases where the relative effect takes
values very close to 0 or 1. In all other cases such an adjustment is not necessary.

6 Case study

We now come back to the relative liver weights example presented in the introduction,
and use this example to illustrate the confidence curve methodology that was intro-
duced in Sects. 3 and 4. Also, we will show that the proposed method can be applied
in situations where the main endpoint is an ordinal score,

6.1 Two-sample case (relative liver weights)

Undesired toxic effects of a drug administered in four increasing dose levels to male
Wistar rats were to be examined in a pairwise comparison study.

Figure4 helps to explain how confidence curves can answer our three questions
from the introduction. Here we focus on dose level 2 vs. placebo. The confidence curve
2min{Hn, 1−Hn} is shown in Fig. 4a, while Fig. 4b shows the confidence distribution
Hn , as well as 1 − Hn . Note that these figures don’t show the range preserving CD
(see Fig. 5c). As a consequence, positive probability is assigned outside the interval
[0, 1] in this example.
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(a) relative effect of N(1, 2) vs. N(0, 2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantiles of U(0,1)

Q
ua

nt
ile

s 
of

 p
−v

al
ue

 fu
nc

tio
n

(b) relative effect of N(1, 2) vs. N(0, 2)
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(c) relative effect of N(3, 2) vs. N(0, 2)
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(d) relative effect of N(3, 2) vs. N(0, 2)
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(e) relative effect of N(5, 2) vs. N(0, 2)
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(f) relative effect of N(5, 2) vs. N(0, 2)

Fig. 3 QQ-plots: p-values derived by the confidence distribution against the theoretical quantiles of an
uniform distribution: aCD on the left and RP-CD on the right

The top of the graph in Fig. 4a (intersection point in Fig. 4b) marks the point esti-
mator θ̂ of the relative effect θ on the x-axis (dashed line, θ̂ = 0.648). The variability
of this estimator is shown by confidence intervals for all possible confidence levels.
The y-axis in Fig. 4a gives the α-level for 1 − α equal-tailed two-sided confidence
intervals. Here the 95% confidence interval [0.318, 0.979] is shown explicitly (solid
line). The solid line in Fig. 4b shows a one-sided upper bound 95% confidence interval
[0, 0.918]. Of course a lower bound confidence interval can derived analogously.
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Fig. 4 Confidence curve and confidence distribution for the relative effect of drug vs. placebo regarding
relative liver weights

To evaluate the significance of an effect, the confidence curve provides us with the
following information for two-sided null hypotheses: for every null hypothesis value
θ on the x-axis, the corresponding p-value can be read on the y-axis. This justifies the
alternative term p-value function for the confidence curve. In Fig. 4a, the dotted line
shows the p-value for the null hypothesis K0 : θ = 1/2 (here: 0.344). For the one-
sided null hypothesis K0 : θ ≤ θ0 the confidence distribution (the increasing function
in Fig. 4b) gives the p-value, and similarly the decreasing one for K0 : θ ≥ θ0. For
example, the p-value for K0 : θ ≤ 1/2 is 0.172, and for K0 : θ ≥ 1/2 the p-value is
0.828 (dotted lines).

In the joint plot of the asymptotic confidence curves for all pairwise comparisons of
dose levels vs. placebo, we see in Fig. 5a that for all sensible confidence levels, doses
3 and 4 exhibit a relevant effect, while for the dose levels 1 and 2, such a statement is
not possible.

In addition to asymptotic confidence curves, we also calculate approximate confi-
dence curves for the relative liver weights. As can be seen in Fig. 5b, there are only
small differences between both approaches.

Finally, we show the use of asymptotic range preserving confidence curves for
the nonparametric pairwise relative effect. Here, the confidence distribution is by
construction restricted to the unit interval. We can see in Fig. 5c that the confidence
curve is now asymmetric, and especially for the fourth dose level, we obtain for almost
all points in [0, 1] large p-values and quite large confidence intervals. However, for
the other dose levels, the previously discussed statements are still valid.

Additionally in Table 1we compared the different confidence curves evaluated at
1/2 (p-value for testing H0: θ = 1/2) with the studentized permutation test (SPT)
(Pauly et al. 2016) and the Wilcoxon-Mann–Whitney (WMW) test equality of two
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(a) asymptotic confidence distribution

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Effect

p−
va

lu
e 

fu
nc

tio
n 

fo
r t

w
o 

si
de

d 
te

st

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Dose 1
Dose 2
Dose 3
Dose 4

(b) approximate confidence distribution

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Effect

p−
va

lu
e 

fu
nc

tio
n 

fo
r t

w
o 

si
de

d 
te

st

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Dose 1
Dose 2
Dose 3
Dose 4

(c) range preserving confidence distribution

Fig. 5 Confidence curve for the relative effect different drug doses against the placebo on relative liver
weights
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Table 1 p-Values for the relative effect of different drug doses on the relative liver weights against the
placebo

Drug CV�
n (1/2) CV t

n (1/2) CV
logit
n (1/2) P-val SPT P-val WMW

1 0.421 0.437 0.441 0.418 0.447

2 0.323 0.344 0.353 0.338 0.342

3 0.000 0.000 0.008 0.004 0.001

4 0.000 0.000 0.671 0.006 0.000

Table 2 p-Values for the relative
effect of different drug doses on
the relative liver weights against
the mean distribution

Drug CV�
n (1/2) CV

logit
n (1/2) P-val KW Test

0 0.000 0.001 0.000

1 0.024 0.040

2 0.013 0.018

3 0.000 0.000

4 0.000 0.000

distribution functions. Except the range preserving confidence curve for drug (dose
level) 4, the p-values are more or less the same.

6.2 Several sample case (relative liver weights)

As explained in the fourth section, comparing different dose levels in a pairwise
comparison to the placebo does not always suffice. Therefore, we compare every dose
level and the placebo to the mean distribution of them. In Fig. 6a, we us the asymptotic
confidence curve, and in Fig. 6b the range preserving confidence curve. Here we can
see only a small difference between them, especially compared to the two-sample case
in the previous section. In both plots, we see a clear effect for the dose levels 3 and
4. For dose levels 1 and 2, we see a tendency to smaller values except for very small
confidence levels.

Table 2compares the confidence curves evaluated at 1/2 (p-value for testing H0:
θ = 1/2) with the approximate Kruskal–Wallis (KW) test for the equality of all
distributions (Hollander et al. 2013).

6.3 Several sample case for non-metrical data

As explained in the introduction, one major advantage of the used rank- and pseudo-
rank-based methods is the general validity of them. In addtion to metric data, one may
also apply these methods to ordinal data, as demonstrated in this example.

Here, we analyze how one gaseous substance in three different concentrations
irritated or damaged the nasal mucous membrane of 25 DBA/1J mice each after sub-
chronic inhalation. The damage was measured by a defect score from 0 to 4 (0 = “no
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(b) range preserving confidence distribution
Fig. 6 Confidence curve for the relative effect different drug doses compared to the mean distribution on
relative liver weights
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(b) range preserving confidence distribution

Fig. 7 Confidence curve for the relative effect different drug doses compared to the mean distribution on
the Nasal Mucosa

irritation”, 1 = “mild irritation”, 2 = “strong irritation”, 3 = “severe irritation”, 4 =
“irreversible damage”).

We can easily see in Fig. 7a and b that the highest concentration yields a significantly
larger damage than the “mean” of all treatment levels, and a significantly smaller
damage is observed at level 1. Again, we only have small differences between the
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Table 3 p-Values for the relative
effect of different drug doses on
the Nasal Mucosa against the
mean distribution

Drug CV�
n (1/2) CV

logit
n (1/2) P-val KW Test

1 0.000 0.000 0.000

2 0.052 0.055

5 0.000 0.000

asymptotic confidence curves in Fig. 7a and the range preserving confidence curve in
Fig. 7b.

Quite interesting in this example is the interpretation of the middle dose-level. For
a confidence level of 0.05 or smaller we have no tendency to smaller or larger values
but for a larger α-level, we have a tendency to smaller values for the middle dose-level,
which shows how useful communicating the confidence curve, instead of a confidence
interval for a certain confidence level, may prove.

Table 3compares again the confidence curves at 1/2 with the approximate Kruskal
Wallis (KW) test for the equality of all distributions (Hollander et al. 2013).

7 Discussion

We have introduced confidence distributions within a complete nonparametic frame-
work using relative effects and their estimators based on ranks and pseudo-ranks. The
nonparametric framework requires very few assumptions regarding the model and
the data, thus significantly extending the scope of confidence distributions and their
application. The resulting CD are more robust and more widely applicable than the
parametric ones. We hope that our contribution will contribute to making the powerful
and appealing theory of confidence distributions with its large field of applications,
such as fusion learning (e.g. Liu et al. 2021; Shen et al. 2020; Cai et al. 2021) or
predictive inference (e.g. Shen et al. 2018; Xie and Zheng 2021; Tian et al. 2021)
available for situations in which standard parametric assumptions are not justifiable.

An enormous challenge in applied statistics, especially in biostatistics is the com-
munication to practitioners. Here, confidence distributions could provide a major
simplification in communication, as a unifier for the basic and essential inferential
methods, such as p-values, point estimators, and confidence intervals.

The approach presented here provides asymptotic confidence distributions for large
samples, and also approximative confidence distributions for small samples. For the
case of a confidence distribution with positive probability mass outside the possible
parameter space, we are proposing range preserving confidence distributions. And for
the case of three or more samples, we recommend pseudo-rank procedures in order to
alleviate possible interpretative problems due to non-transitivity and other issues that
may arise with rank-based tests in unbalanced designs.

Most literature on confidence distribution assumes univariate parameter spaces.
The development of unifying multiple testing and simultaneous confidence intervals
within the confidence distribution theory may be a interesting extension to be pursued
in future.
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We have developed a unifying framework for statistical inference with the non-
parametric relative effect based on confidence distributions. Since the relative effect
is a nonparametric location measure, an extension of our theory to a nonparametric
dispersion measure could be an interesting direction for future research.
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