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Abstract
In this note we develop a new technique for parameter estimation of univariate time
series by means of a parametric copula approach. The proposed methodology is based
on a relationship between a process’ covariance decay and parametric bivariate cop-
ulas associated to lagged variables. This relationship provides a way for estimating
parameters that are identifiable through the process’ covariance decay, such as in long
range dependent processes. We provide a rigorous asymptotic theory for the proposed
estimator. We also present a Monte Carlo simulation study to asses the finite sample
performance of the proposed estimator.
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Although recognized as an important issue in many applications, the copula literature
involving long range dependence is very sparse and mostly focused on empirical
investigation (Mendes and Kolev 2008; Härdle and Mungo 2008). The work of Beran
(2016) is an exception and formally studies the problem of long range dependence in
the estimation of extreme value copulas. In the weakly dependent case, an account on
general results can be found in Bücher and Volgushev (2013) and references therein.
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The works mentioned are, however, related to multivariate time series. The study of
dependence on univariate time series by means of copula has received a fair amount of
attention in the case of weakly dependent processes. Darsow et al. (1992) provide the
grounds of the modern use of copulas in stationary Markov processes. Lagerås (2010)
discusses some non-standard behavior presented by some copula-based Markov pro-
cesses. Some methods for constructing short memory time series based on conditional
copulas are discussed in chapters 4 and 8 of Joe (1997). Chen and Fan (2006) and Chen
et al. (2009) discusses semiparametric estimation in copula-based one dimensional sta-
tionaryMarkovian process. Other interesting properties of copula-basedMarkov chain
such as geometrical ergodicity, ρ-mixing, β-mixing, among others, are discussed in
Chen et al. (2009), Beare (2010) and Beare (2012) (see also references therein). Ibragi-
mov (2009) studies higher order Markov processes in terms of copulas and conditions
under which a copula-based Markov process of some given order exhibit the so-
called m-dependence, r -independence and conditional symmetry. Although copulas
are mainly applied to model nonlinear dependence, the literature on covariance decay
is remarkably sparse, especially in the context of long range dependent time series. The
recent literature on the subject either considers only the case of copula-based Markov
processes or focus on non-standard definition of long-range dependence. For instance,
Ibragimov and Lentzas (2017) attempts to understand long range dependence in terms
of copulas, but only non-standard definitions in terms of copula-based dependence
measures are discussed. Their approach, does not encompass the classical definition
of long range dependence.

In this note we aim to shed some light on this problem by exploring a connection
between the covariance decay in an univariate time series and arbitrary parametric
bivariate copulas associated to lagged variables. More specifically, let {Xt }∞t=0 be a
univariate time series of interest. In its simplest form, the idea behind our approach is
as follows. Suppose that associated to the pair (X0, Xt ) is a copula Cθt from a family
of parametric family, say {Cθ }θ∈�. Assume that Cov(X0, Xt ) ∼ R(t) → 0, say, as t
increases, for a continuous function R. So in one hand, to the covariance “eyes”, we
have the behavior R(t) as t increases, while on the other hand, to the copula’s family
point of view,wehave thebehavior θt in�. Thequestionwewould like to answer is, can
we infer from one regarding the other and vice-versa? Under some easily verifiable
conditions, the answer is yes, we can. This is achieved by studying a connection
between the covariance decay in an univariate time series and the parametric bivariate
copulas associated to lagged variables. Our approach is based on parameterizing the
copulas related to pairs (Xn0 , Xn0+h) for a fixed n0, assuming they come from a given
parametric family and it can be shown to be free from the so-called compatibility
problem, which hinders most attempts to solve this problem. We show that under
suitable simple conditions, the parameterization on the copula family will ultimately
determine the covariance decay of the pair (Xn0 , Xn0+h), as h increases.

The uncovered connection allows us to define a copula-based estimator of some
parameter of interested, identifiable through its covariance decay. An immediate appli-
cation is, of course, estimation of the dependence parameter in long range dependent
time series, but our approach covers any type of covariance decay or even convergence
to values other than 0. To the best of our knowledge, the proposed estimator is the first

123



A novel copula-based approach for parametric estimation… 1043

copula-based one designed to estimate long range dependence in the context of uni-
variate time series in the literature. The main strengths of our approach are that, being
copula-based, it naturally accommodates non-Gaussian time series and, by design,
applies directly to time series with missing data. We provide a rigorous asymptotic
theory for the proposed estimator, including conditions for its consistency and for
a central limit theorem to hold. We also present a complete Monte Carlo study on
the propose estimator, including a comparison with other commonly applied estima-
tors in the literature. The results show that not only the estimator is very competitive
in all proposed scenarios, but also outperforms the competitors in several instances,
especially for moderate to large samples.

1 Preliminaries

In this sectionwe recall a few concepts and results we shall need inwhat follows. An n-
dimensional copula is a distribution function defined in the n-dimensional hypercube
I n , where I := [0, 1], and whose marginals are uniformly distributed. More details on
the theory of copulas can be found in themonographs byNelsen (2013) and Joe (1997).

Copulas have been successfully applied and widely spread in several areas in the
last decade. In finances, copulas have been applied in major topics such as asset
pricing, risk management and credit risk analysis among many others (see the books
McNeil et al. 2010; Cherubini et al. 2004, for details). In econometrics, copulas
have been widely employed in constructing multidimensional extensions of complex
models (see Lee and Long 2009, and references therein). In statistics, copulas have
been applied in all sort of problems, such as development of dependence measures,
modeling, testing, just to cite a few. The main result in the theory is the so-called
Sklar’s theorem (Nelsen 2013) which elucidates the role copulas play as a tool for
statistical analysis and modeling.

Another result we shall need is the so-called copula version of the Hoeffding’s
lemma, which states that for X and Y , two continuous random variables with marginal
distributions F and G, respectively, and copula C ,

Cov(X ,Y ) =
∫∫

I 2

C(u, v) − uv

F ′(F (−1)(u)
)
G ′(G(−1)(v)

) dudv. (1)

In this work, N denotes the set of natural numbers, defined as N := {0, 1, 2, . . .}
for convenience, while N∗ := N \ {0}. For a given set A ⊆ R, A denotes the closure
of A and A′ denotes the set of all accumulation points. For a vector x ∈ Rk , x′
denotes the transpose of x. The measure space behind the notion of measurable sets
and functions is always assumed (without further mention) to be

(
Rn,B(Rn),m

)
(or

some appropriate restriction of it), whereB(Rn) denotes the Borel σ -field inRn and
m is the Lebesgue measure in Rn .

2 Relationship between copulas and decay of covariance

Suppose {Cθ }θ∈� is a family of parametric copulas, for� ⊆ Rwith non-empty interior
and that the independence copula �, defined as �(u, v) = uv, is a member of the
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family, sayCa = �with a ∈ int(�). Assume for now that no other point in� yields a
null covariance. Let {θn}n∈N∗ be a sequence in � converging to a and let {Xn}n∈N be
a sequence of continuous random variables with finite second moment for which the
copula associated with (X0, Xn) isCθn , for all n ∈ N∗. For simplicity let us assume for
the moment that {Xn}n∈N is identically distributed and that Cov(X0, Xn) = γn → 0,
as n tends to infinity. With this set up, the question we want to answer is the following:
can we make a connection between how fast/slow γn decays to zero and how fast/slow
the sequence θn approaches to a in �? In order words, can we related the covariance
decay of Xn and the way Cθn approaches � for large n? Under some mild conditions,
an answer is given by Theorem 2.1 below.

The precise (and more general) mathematical formulation is the following: let
{Cθ }θ∈�, � ⊆ Rk , be a family of copulas for which Cθ is twice continuously
differentiable with respect to θ on an open neighborhood U ⊆ � of a point
a = (a1, . . . , ak)′ ∈ int(�). Recall that the differential of Cθ with respect to θ

at a ∈ Rk is the linear functional dθCa(u, v) : Rk → R whose value at a point
b = (b1, . . . , bk)′ ∈ Rk is

dθCa(u, v) · b =
k∑

i=1

∂

∂θi
Cθ (u, v)bi

∣∣∣∣
θ=a

.

The seconddifferential ofCθ with respect to θ at a ∈ Rk applied to b = (b1, . . . , bk)′ ∈
Rk is given by

d2θCa(u, v) · b2 =
k∑

i, j=1

∂2

∂θi∂θ j
Cθ (u, v)bib j

∣∣∣∣
θ=a

.

Let {Cθ }θ∈�, for � ⊆ Rk+s with non-empty interior, k ∈ N∗ and s ∈ N, be a family
of parametric copulas. The following assumptions will be needed.

C0 There exists a ∈ �′ such that limθ→a Cθ (u, v) = uv, for all u, v ∈ I .
C1 There exists a set D ⊆ � with non-empty interior such that a ∈ D′ and Cθ is

twice continuously differentiable with respect to {θ1, . . . , θk} in D.

Assumption C0 is a very mild and mathematically convenient assumption. It can
be replaced by the following assumption: there exists a point a ∈ � such that if
X ∼ F , Y ∼ G and the copula of (X ,Y ) is Ca, then Cov(X ,Y ) = 0. The limit in
assumption C0 is to be understood as the coordinatewise adequate lateral limits in
case a /∈ int(�). We can also allow for s coordinates to remain fixed, that is, θ =
(θ1, . . . , θk, θ

0
k+1, . . . , θ

0
k+s) −→ (a1, . . . , ak, θ0k+1, . . . , θ

0
k+s) = a. Assumption C1

is a mild regularity condition necessary to apply a second order Taylor expansion in
the proof of Theorem 2.1. It is easily verifiable for the majority of commonly applied
copula families.

Theorem 2.1 Let {Cθ }θ∈�, for� ⊆ Rk+s with non-empty interior, k ∈ N∗ and s ∈ N,
be a family of parametric copulas satisfying assumptions C0 and C1. Let {Fn}n∈N be
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a sequence of absolutely continuous distribution functions and define the sequences

K (i)
1 (n) =

∫∫
I 2

1

l0(u)ln(v)
lim
θ→a

∂Cθ (u, v)

∂θi
dudv, i = 1, . . . , k,

K (i, j)
2 (n) =

∫∫
I 2

1

l0(u)ln(v)
lim
θ→a

∂2Cθ (u, v)

∂θi∂θ j
dudv, i, j = 1, . . . , k,

where lm(x) := F ′
m

(
F (−1)
m (x)

)
. Let {θn}n∈N∗ be a sequence in D converging to a, and

let {Xn}n∈N be a sequence of random variables such that Xn ∼ Fn, and the copula
associated with (X0, Xn) is Cθn . Given a measurable function R : R → R satisfying
limn→∞ R(n) = 0, suppose that

k∑
i=1

K (i)
1 (n)(θ(i)

n − ai ) ∼ R(n) and
k∑

i, j=1

K (i, j)
2 (n)(θ(i)

n − ai )(θ
( j)
n − a j ) = o

(
R(n)

)
.

(2)

Then, Cov(X0, Xn) ∼ R(n) as n goes to infinity.

Proofs of all mathematical results are deferred to the Appendix.

Remark 2.1 If � ⊆ R and {Xn}n∈N is stationary, then the converse of Theorem 2.1
holds, since, in this case, l0(x) = ln(x) for all x and K (i)

1 (n) and K (i, j)
2 (n) do not

depend on n, for all i, j , so that the result follows trivially.

We emphasize that our approach does not rely on a full probability model for the time
series of interest, but only on the copulas related to {(X0, Xh)}∞h=1. No requirement
is made on the copulas related to any other pair of random variable. In this way, we
are only assuming minimal knowledge of the process’ dependence structure, avoiding
tackling the hard compatibility problem that arises when more control on the time
series dependence structure is needed. The compatibility-free nature of our approach
follows from the so-called pair-copula construction (Bedford and Cooke 2001, 2002),
since the require structure can be used as a starting point for the construction of a
pair-copula.

3 Definition of the estimator

To take advantage of the relationship presented in Proposition 2.1, in the sequel, we
shall work in the following mathematical framework.

3.1 Framework A

Let {Cθ }θ∈� be a family of parametric copulas, for � ⊆ R with non-empty inte-
rior. Assume that there exists a point a ∈ �′ such that limθ→a Cθ = �, where the
limit is to be understood as the adequate lateral limit if a /∈ int(�). Also assume that
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there exist a set D ⊆ � with non-empty interior such that a ∈ D′ and Cθ , seen as
a function of the parameter θ , is of class C2 in D. Let {θn}n∈N∗ be a sequence in
D such that limn→∞ θn = a. Let {Xn}n∈N be a process for which Xn is identically
distributed with common absolutely continuous distribution F , for all n ∈ N, satisfy-
ing Cov(X0, Xn) ∼ R(n, η), where R(n, η) is a given continuous function such that
R(n, η) → 0, as n goes to infinity and η ∈ S ⊆ Rp is some (identifiable) parameter
of interest. Also assume that θn − a ∼ L(n, η), where L(n, η) is a given continuous
function satisfying L(n, η) → 0, as n goes to infinity.

Remark 3.1 In the context of Framework A, the functions K (i)
1 (n) = K1 and

Ki, j
2 (n) = K2 in (2) are constants (provided they exist). Furthermore, R(h, η) ∼

K1L(h, η) and, if in addition, the process is weakly stationary, then Cov(Xt , Xt+h) ∼
K1L(h, η) for all (fixed) t ≥ 0.

Suppose we observe a realization (time series) x1, . . . , xn from a weakly station-
ary process {Xn}n∈N, under Framework A. To estimate the parameter η, the theory
developed in the last sections suggests the following multistage estimator.

1. Chosen a parametric family of copulas, {Cθ }θ∈�, we start by obtaining estimates
F̂n , F̂−1

n and F̂ ′
n of the underlying unknown distribution F , the quantile function

F−1 and the density function F ′, respectively.
2. With F̂−1

n and F̂ ′
n at hand, we can obtain K̂1 and K̂2, which must be finite and

K̂1 
= 0. We then form a new time series by setting yi := F̂n(xi ), for i = 1, . . . , n.
Notice that yi will lie on the unit interval.

3. Let s ≥ 1 and m ≥ 0 be two integers satisfying 1 < s < m < n. We shall call
s the starting lag of estimation and m the maximum desired lag. Next, we form
a bivariate time series {u(s)

k }n−s
k=1 by setting u(s)

i := (yi , yi+s), i = 1, . . . , n − s.

By Sklar’s theorem, {u(s)
k }n−s

k=1 can be regarded as a correlated sample from Cθs .
From these pseudo observations, θs can be estimated by using any reasonable
method. Let θ̂s(n) be the estimated θs . Notice that K̂1(θ̂s(n)− a) is an estimate of
K1L(s, η) ∼ R(s, η).

4. Proceeding analogously for each 
 ∈ {s + 1, . . . ,m}, we form the sequence
{u(
)

k }n−

k=1 by setting u

(
)
i := (yi , yi+
), i = 1, . . . , n−
, fromwhich we obtain the

estimate θ̂
(n). For each 
, K̂1(θ̂
(n) − a) is an estimate of K1L(
, η) ∼ R(
, η).
5. LetD : Rm−s+1×Rm−s+1 → [0,∞), be a given function measuring the distance

between two vectors in Rm−s+1. Let L̂s,m(n) := K̂1(θ̂s(n) − a, . . . , θ̂m(n) − a)′
and Rs,m(η) := (

R(s, η), . . . , R(m, η)
)′. The estimator η̂s,m(n) of η is then

defined as

η̂s,m(n) := argmin
η∈S

{
D

(
L̂s,m(n), Rs,m(η)

)}
. (3)

One of the main perks of being copula-based is that the proposed estimator can natu-
rally accommodate for non-Gaussian time series as well as multimodality, bounds, and
many other marginal behavior. It also easily handles missing data. To do that, we only
need to apply an estimator F̂n that is capable of handling missing data in step 1 (as, for
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instance, the empirical distribution) and then perform step 4 considering only lagged
pairs available in the pseudo-sample to estimate the copula parameter. Of course,
as most copula-based approach, we pay a price for this flexibility by being forced to
estimate the marginal behavior. Choosing the copula family that is best suited for a
given application is also a problem shared with other copula-based approaches.

In Step 4, the choices of s and m depend highly on the nature of the parameter
η. As a rule of thumb, s should be at least equal to the same dimension of η (1 in
most applications) and m should be a small fraction of n. For u, v ∈ Rk , k > 1,
say u = (u1, . . . , uk)′ and v = (v1, . . . , vk)

′, usual choices for the function D in
Step 5 are D(u, v) = ∑k

i=1 |ui − vi |, D(u, v) = ∑k
i=1(ui − vi )

2 and D(u, v) =
max1≤i≤k

{|ui − vi |
}
. However, the choice of D is mainly of theoretical importance

(for large sample theory). It has negligible impact in applications.
Examples of processes that present a covariance decay estimable by the proposed

approach are the classical ARMA processes, as well as general long range dependent
process, for which the covariance decay is of the form Cov(Xt , Xt+h) ∼ v(h)h−β , as
h goes to infinity, for some β ∈ (0, 1), where v is a slowing varying function. For the
classical ARFIMA(p, d, q) processes, v(h) = �(1 − d)/�(d), while for Fractional
Gaussian noise with Hurst parameter H , v(h) = H(2 H − 1).

4 Large sample theory

In this section we shall study large sample properties of the proposed estimator. We
start by proving its consistency. Framework A is assumed throughout this section.
We also need the following assumptions:

A0 F̂n , F̂ ′
n and F̂−1

n are consistent estimators of F , F ′ and F−1, in the sense that

F̂n(x)
P−→ F(x), F̂ ′

n(x)
P−→ F ′(x), for all x ∈ R, and F̂−1

n (u)
P−→ F−1(u), for

all u ∈ I , and such that K̂1
P−→ K1, as n tends to infinity.

A1 The estimator of the copula parameter at lag k, θ̂k(n), satisfies θ̂k(n)
P−→ θ0k , as

n → ∞, for all s ≤ k ≤ m, where θ0k denotes the true copula parameter at lag k.
A2 The space (Rm−s+1,D) is a metric space and D is equivalent to the usual metric

in Rm−s+1.

The consistency requirements inAssumptionA0 are verymild ones. In particular, gen-
eral sufficient conditions for the consistency of K̂1 are provided in Lemma 4.1 below.
Assumption A1 is a “high level” one in the sense that we require that the copula esti-
mator applied is consistent for the particular scenario applied. This is mathematically
convenient by keeping the list of assumptions simple, without having to rely on a
particular estimator (or class of estimators) for the theory to hold. Of course, other
assumptions might be needed to assure that A1 holds in a case-by-case fashion. See
Remark 4.1.
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1048 G. Pumi et al.

Lemma 4.1 Let Framework A hold and suppose that F̂n, F̂−1
n and F̂ ′

n are consistent
estimators of F, F−1 and F ′. Consider the conditions:

(a)
∫∫

I 2

∣∣∣∣ 1

F̂ ′
n

(
F̂ (−1)
n (u)

)
F̂ ′
n

(
F̂ (−1)
n (v)

) − 1

F ′(F (−1)(u)
)
F ′(F (−1)(v)

)
∣∣∣∣dudv

P−→ 0;

(b) sup
u,v∈I

{∣∣∣∣ 1

F̂ ′
n

(
F̂ (−1)
n (u)

)
F̂ ′
n

(
F̂ (−1)
n (v)

) − 1

F ′(F (−1)(u)
)
F ′(F (−1)(v)

)
∣∣∣∣
}

P−→ 0.

If either conditions (a) or (b) hold, then K̂1
P−→ K1, as n → ∞.

Theorem 4.1 LetFramework A hold and assume that the process {Xn}n∈N is strongly

stationary. Under assumptions A0–A2, η̂s,m(n)
P−→ η0, as n tends to infinity.

In order to prove a central limit theorem for the proposed estimator, we shall need a
different set of assumptions.

A3 There exist a positive integer k0 such that, as a function of η, L(k, ·) : Rp → R

is twice differentiable in a neighborhood �0 ⊆ Rp of η0 and aka′
k is positive

definite, where, ak = ∂L(k,η)
∂η

, for all k > k0 and η ∈ �0.
A4. There exists a positive integer k1, a neighborhood �1 ⊆ Rp of η0 and a sequence

bn → ∞ such that the copula parameter estimator at lag k, θ̂k(n), satisfies,

bn
(
θ̂k(n) − a − L(k, η)

) d−→ Zk, ∀ k ≥ k1, η ∈ �1,

with E(Z2
k ) < ∞. Furthermore, we assume that the random variables {θ̂k(n)}k,n

and {Zk}k are defined in the same probability space for all k ≥ k1 and n.

Assumptions A3 and A4 are necessary to guarantee that the limit distribution is well
defined. A3 is a minimal condition and it is actually hard to come up with examples
of time series of practical importance for which A3 does not hold in the context of
Framework A. Assumption A4 also guarantees the existence of the limit distribu-
tion. Often, Zk in A4 will be normally distributed, but, even in this case the limiting
distribution for the proposed estimator may be non-standard as the sequence {θ̂k(n)}k
may not be independent nor jointly normally distributed. Furthermore, observe that
the estimation of the underlying distribution F is incidently imbedded in A4.

The rate of convergence in assumption A4 defines the convergence rate for the
proposed estimator. Also, observe that A1 is implied by A4. Finally, the limiting
distribution depends heavily on the metricD applied. To prove a CLT for the proposed
estimator, we shall consider the Euclidean distance in Rm−s+1.

Theorem 4.2 LetFramework A hold and assume that the process {Xn}n∈N is strongly
stationary. Also suppose that assumptions A3 and A4 hold. Then, for D(u, v) =∑m

i=1(vi − ui )2,

bn
(̂
ηs,m(n) − η0

) d−→
m−s∑
k=0

τ s+k Zs+k, (4)
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A novel copula-based approach for parametric estimation… 1049

as n tends to infinity, for all s and m, where τ s+k =
[∑m−s

j=0 as+ j a′
s+ j

]−1
as+k .

Remark 4.1 Assumptions A1 and A4 are high level ones. Under weak dependence,
such results are readily available in the literature [see Bücher and Volgushev (2013)
and Beran (2016), and references therein]. Consistency and the central limit theorem
of copula estimators under long range dependence, on the other hand, are difficult to
obtain, and the literature on the subject is sparse. For instance, Bücher and Volgushev
(2013) study the problem of weak convergence of the empirical copula under general
assumptions which can be extended to the case of long range dependence using the
results presented in Marinucci (2005). As an application of their findings, the authors
present asymptotic results related to Spearman’s ρ, showing that, under long range
dependence, the limiting distribution is non-Gaussian and the convergence rate is
slower than

√
n (see the discussion about condition 2.1, Remark 2.6(a) and example

2.7 in Bücher and Volgushev 2013).

5 Numerical results

In this section we present a Monte Carlo simulation study to assess the finite sample
behavior of the proposed estimator. As stated in Theorems 4.1 and 4.2, the asymptotic
properties of the proposed estimator η̂s,m(n) is directly connected to the estimation
of the copula’s parameter. However, the literature regarding the finite sample per-
formance of the latter in the context of correlated samples is very scarce, especially
under long-range dependence. Given its importance, we also evaluate the finite sam-
ple performance of three well-known estimators for the copulas’ parameters. Another
long-standing issue when working with copulas is deciding which parametric fam-
ily to use. To address this problem and evaluate the influence of misspecification in
the proposed estimator, we consider four parametric copula families in the simula-
tion. Besides these points, we also explore the influence of the step size, s and m,
the metric choice D , the estimation of K1, and asymptotic related results. Here we
present ourmain findings. Complete results can be found in the supplementarymaterial
accompanying the paper.

5.1 Data generating process

We simulate 1000 replicas of a Gaussian ARFIMA(0, d, 0) for d ∈ {0.1, 0.2, 0.3, 0.4}
using the traditional MA(∞) representation

Xt =
∞∑
k=0

ckεt−k, εt ∼ N (0, 1), c0 = 1, ck = �(k + d)

�(k + 1)�(d)
, for k ≥ 1,

truncated at lag 100,000 in all cases. Observe that in this case Xt is stationary and
ergodic with Xt ∼ N (0,

∑∞
k=0 c

2
k ), and the copula related to (Xt , Xt+h) is the
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Gaussian copula with parameter

ρh = �(d + h)�(1 − d)

�(h − d + 1)�(d)
∼ �(1 − d)

�(d)
h2d−1, as h → ∞, for all t ∈ Z. (5)

Sample size was set to n = 2,000 in all cases. More details can be found in Brockwell
and Davis (1991) and Palma (2007).

5.2 Parameter estimation

Given a sample x1, . . . , xn generated as described above, to estimate d we apply the
procedure outlined in Sect. 3. The estimation was performed by considering the entire
time series and subsamples of sizes 1000 and 500. The settings for each step are
outlined in the sequel.

In step 1, we consider four parametric families of copulas: the Ali–Mikhail–Haq
(AMH), Farlie–Gumbel–Morgenstern (FGM), Frank andGaussian. For detailed infor-
mation regarding these families, see Nelsen (2013). The Gaussian copula corresponds
to the true underlying family, so there is no misspecification. The others were chosen
due to their frequent use in applications and also because they all have closed formulas
for ∂Cθ (u, v)/∂θ , making the calculation of K1 easier.

Remark 5.1 Upon applying (1) considering standard Gaussian marginals, it can be
shown that for the AMH copula, the correlation varies approximately in the range
(−0.26, 0.5) while for the FGM copula, in the range (−0.32, 0.32). These narrow
ranges for the correlation hinder the use of AMH and FGM in applications, especially
under strong long range dependence.

In order to estimate the marginal distributions F , the quantile function F−1 and the
density function F ′, we proceed as follows:

• F is estimated upon applying the rescaled empirical distribution function, namely,
F̂n(x) := (n+1)−1 ∑n

i=1 I (Xi ≤ x). In the context of this simulation study, by the
generalizedGlivenko-Cantelli theorem for stationary and ergodic sequences (Stute
and Schumann 1980), the empirical distribution is a strong consistent estimator of
the underlying distribution, and so is F̂n .

• F−1 is estimated by considering convex combinations of consecutive order statis-
tics, namely, F̂−1

n (p) := (1 − α)x(�τ�) + αx(�τ�), with τ = 1 + (n − 1)p
and α = τ − �τ�. This interpolation technique is the default in the R func-
tion quantile and ensures that F̂−1

n is a continuous function of p and also
a consistent estimator of F−1, as an application of Giraitis and Surgailis (1999).

• F ′ is estimated using a kernel density approach.More specifically, first yi = f̂ (x∗
i )

is estimated using T = 512 (default for the R function density) equally spaced
points x∗

i , 1 ≤ i ≤ T , in the interval [x(1)−3b, x(n)+3b], where b is the bandwidth
for the Gaussian kernel density estimator, chosen by applying the Silverman’s rule
of thumb (the default procedure in density). A cubic spline interpolation (the
defaultmethod for theR functionspline) is then applied to the pairs {(x∗

i , yi )}Ti=1

to obtain F̂ ′
n(x) for all x ∈ [x(1) −3b, x(n) +3b]. The consistency of F̂ ′

n(x) follows
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from the consistency of the kernel density estimator for infinite-order moving
average processes (Hall and Hart 1990).

Since these estimators can be applied in any context, it is interesting to compare their
performance to the respective true Gaussian counterparts, with mean and variance
replaced by the sample estimators.

In step 2, if K̂1 cannot be calculated analytically, we apply numerical integration
using the Gauss-Kronrod algorithm as implemented in the function integral2 in R
packagepracma (Borchers 2021). In steps 3 and 4we apply 11 different combinations
of the starting lag of estimation s and the maximum desired lagm, given by

{
(s,m) ∈

{1, 3, 6} × {6, 12, 24, 50} : s < m
}
. The goal is to investigate if there exist any

evidence that a specific combination of s and m provides better results in practice.
From the pseudo observations, we estimate the copula parameter by using three

different methods implemented in R package copula (Hofert et al. 2020), namely,
the maximum pseudo-likelihood estimator (mpl) and the estimators based on the
inversion of Kendall’s τ (itau) and Spearman’s ρ (irho). Notice that itau and
irho are rank-based methods, hence, using the empirical or Gaussian distribution
to obtain the pseudo observations will lead to the exact same estimates for θh . To
investigate how the dependence between the pseudo observations affects the estimation
of the copulas’ parameters, we only used pseudo observations that are far apart by a
fixed lag (thinning), which we call step. When step = 1, all pseudo observations are
used for estimation purposes, while when step = 10 only pseudo observations that are
(exactly) 10 lags apart are used. Of course, as there are more pseudo observations for
step = 1 compared to step = 10, the estimates based on the latter will present higher
variance.

Upon denoting by θh the parameter of the copula associated to (Xt , Xt+h), let θ̂h be
the estimate of θh based on the pseudo observations. In step 5, we apply theMinkowski
distance as metric, namely

D(x, y) =
(

n∑
i=1

|xi − yi |r
) 1

r

, for x, y ∈ Rn, and r > 0.

Upon observing that for all copula families considered we have a = 0, d is estimated
as

d̂ := argmin
|d|<0.5

{
m∑
h=s

∣∣∣∣K̂1θ̂h − �(1 − d)

�(d)
h2d−1

∣∣∣∣
r
}

, r > 0. (6)

The metric choice should only be relevant for derivations of asymptotic results, such
as Theorem 4.2, and should not significantly affect pointwise estimation. In order
to verify if that is really the case, we consider r = 2 (Euclidian distance) and also
r = 1/2. The latter might be advantageous in scenarios where the objective function is
globally too close to zero due to the value of d or the choices of s andm. Optimization
(6) is performed using a combination of golden section search and successive parabolic
interpolation, as implemented in R function optimize (R Core Team 2020).
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Fig. 1 Box-plots of the differences θ̂ Eh − θ̂Gh for d ∈ {0.1, 0.4} (row panels), h ∈ {1, 5, 10, . . . , 45, 50} (all
panels), n ∈ {500, 2000} (all panels) and step sizes 1 and 10 (column panels)

5.3 Simulation results

Estimation of the copulas’ parameters

In the sequel we discuss results obtained by considering the Gaussian copula, which
corresponds to the scenario were there is no misspecification in the copula’s family.
Results for AMH, FGMand Frank copula are discussed in the supplementarymaterial.

Figure 1 shows the box-plots of the differences θ̂ E
h −θ̂Gh based on 1000 replications,

where θ̂ E
h and θ̂Gh denote the estimated values θ̂h obtained from the mplmethod with

the Gaussian copula, considering pseudo observations obtained with the empirical
and the Gaussian distribution, respectively. To save space this figure only reports
the results for d ∈ {0.1, 0.4} (row panels), h ∈ {1, 5, 10, . . . , 45, 50} (all panels)
and n ∈ {500, 2000} (all panels). In all cases the results are presented for step sizes
1 and 10 (column panels). Also, for better visualization, the y-axis is restricted to
(−0.025, 0.025).

The results presented in Fig. 1 indicate that, for small values of h, the values of θ̂ E
h

tend to be slightly higher than θ̂Gh , for any sample size. The variability of the differences
θ̂ E
h − θ̂Gh does not appear to have any relation to h, being slightly higher for d = 0.4,
significantly increasing with the step size and decreasing with n. Analogous results
were found for d ∈ {0.2, 0.3} and n = 1000 (see the supplementary material).

Figure 2 shows the box-plots of the estimated values θ̂h obtained from methods
mpl, itau and irho (all panels), considering the Gaussian copula and pseudo
observations obtained with the empirical distribution and step sizes 1 and 10 (col-
umn panels). To save space, this figure only reports the results for d ∈ {0.1, 0.4} (row
panels), h ∈ {1, 5, 10, . . . , 45, 50} (all panels), n ∈ {500, 2000} (row panels). The
true values of θh = ρh , given by (5) are also reported (blue dots).
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Fig. 2 Box-plots of the estimated values θ̂h obtained from methods mpl, itau and irho (all panels) with
the Gaussian copula, considering pseudo observations obtained using the empirical distribution and step
sizes 1 and 10 (column panels), for d ∈ {0.1, 0.4} (row panels), h ∈ {1, 5, 10, . . . , 45, 50} (all panels),
n ∈ {500, 2000} (row panels). The connected blue lines represent the true value of θh

The results presented in Fig. 2 indicate that the three estimation methods perform
similarly. The estimation bias increases with d and decreases with h and n. Overall,
for large values of d, the estimation of the copula parameter present considerable
bias, which remains fairly constant as the lag increases. The estimation pattern for θ̂h
resembles the overall expected theoretical decay (blue line), with an almost constant
bias. This behavior is likely to be a consequence of the well-known ill behavior of the
covariance under strong long range dependence, which is reflected in the estimation
of the copula parameter and, ultimately, in the estimation of d using the proposed
approach. The variability in the estimates quickly increases from lag 1 to 10 and
increases at a much slower rate for h > 10. The step size does not appear to have any
influence on the bias, only on the variability of the estimates. More simulation results
are provided in the supplementary material.
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Fig. 3 Box-plots of the difference K̂ E
1 − K̂ G

1 for d ∈ {0.1, 0.2, 0.3, 0.4} (column panels), sample sizes
n ∈ {500, 1000, 2000} (all panels), considering the AMH, FGM, Frank and Gaussian copula families (row
panels)

Estimation of K1

Let K̂ E
1 denote the estimator of K1 obtained by using the estimators of F−1 and F ′

presented in Sect. 5.2 and K̂ G
1 the estimator of K1 based on the Gaussian quantile and

density functions with mean and variance replaced by their sample estimators.
Figure 3 presents the box-plot of the difference K̂ E

1 − K̂ G
1 for d ∈ {0.1, 0.2,

0.3, 0.4} (column panels), sample sizes n ∈ {500, 1000, 2000} (all panels), consider-
ing the AMH, FGM, Frank and Gaussian copula families. From Fig. 3 we observe that
for the AMH, FGM, and Frank copulas, the box plots are fairly symmetric, centered
at 0, and showing small variability. This indicates that using the empirical or Gaussian
marginals makes little difference in the estimation of K1. For the correctly specified
Gaussian copula with Gaussian marginals, K1 coincides with the variance. In most
cases, we observe that K̂ G

1 > K̂ E
1 . However, the difference is very small and does not

significantly affect the estimation of d̂ (Figure 9 in the supplementary material).

Estimation of d and the influence ofD

Figure 4 shows the box-plots of the estimated values d̂ considering θ̂h obtained
from the mpl method, with the Gaussian copula and pseudo observations obtained
with the empirical distribution, with step sizes 1 and 10 (column panels). To save
space, we only report the results for d ∈ {0.1, 0.4} and n ∈ {500, 2000} (row panels).
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Fig. 4 Box-plots of the estimated values d̂ considering θ̂h obtained from the mpl method, with Gaussian
copula, pseudo observations obtained with the empirical distribution and step sizes 1 and 10 (column
panels), for d ∈ {0.1, 0.4} (row panels), n ∈ {500, 2000} (row panels), r ∈ {1/2, 2} (all panels) and each
combination of s and m in

{
(s,m) ∈ {1, 3, 6} × {6, 12, 24, 50} : s < m

}
(labeled s − m in all panels). In

all panels, the horizontal blue line represents the true value of d

For all panels r ∈ {1/2, 2}, {
(s,m) ∈ {1, 3, 6} × {6, 12, 24, 50} : s < m

}
(labeled

s − m) and the horizontal line represents the true value of d. For methods itau and
irho (presented in the supplementary material) the results are analogous.

Comparing the results for steps 1 and 10, we observe that step size 10 produces
estimates with higher bias and variance than step size 1 (see detailed graphs in the
supplementary material). This may be related to the variability observed in the esti-
mates of θh . The variability clearly decreases with d, for any pair (s,m) and any r .
This is expected, since θh is close to zero for small values of d (including 0.1), caus-
ing the objective function to become flat in the vicinities of d. The Euclidean metric
(r = 2) presents smaller variability, but pointwise estimation is similar for both met-
rics. Choosing r = 2, s = 1, m = 24 and step size 1 seem to produce estimates with
the smallest bias and variability. Using methods itau and irho yield analogous
results (see the Supplementary Material).
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Fig. 5 Kernel density estimator of the standardized values of d̂ considering θ̂h obtained from the mpl,
itau and irho methods (all panels), using copulas AMH, FGM, Frank and Gaussian (column panels),
pseudo observations obtained with the empirical distribution and step size 1, for d ∈ {0.1, 0.2, 0.3, 0.4}
(row panels), n ∈ {500, 1000, 2000} (all panels), r = 2, s = 1 and m = 24

We also assess the asymptotic normality of the proposed estimator using 3 different
copula estimator and under various scenarios. Figure5 presents the kernel density
estimates of standardizedvalues of d̂ obtained frommpl,itau andirhomethods (all
panels), using copulas AMH, FGM, Frank and Gaussian (column panels), considering
pseudo observations obtained using the empirical distribution and step size 1, for
d ∈ {0.1, 0.2, 0.3, 0.4} (row panels), n ∈ {500, 1000, 2000} (all panels), r = 2, s = 1
and m = 24.

Although with some visible bias, the plots show that applying the FGM and Frank
copulas yield overall good results, despite the misspecified scenario and the copula
estimator applied. Not surprisingly, the best results were obtained for the correctly
specified Gaussian copula. For strong long range dependence (d ∈ {0.3, 0.4}) and
considering the irho method for the AMH copula, we observe obvious departures
from normality for all sample sizes considered. As the true value of d increases, the
impact of the sample size n on the densities also increases in all cases. Overall, the
simulation results suggest that the proposed methodology is fairly robust to copula
misspecification and to the copula estimator applied.

Comparison with other estimators

We now compare the proposed estimator with some of the most commonly used
ones in the literature. We consider five estimators for d, namely, the rescaled range
estimator (R/S) proposed by Hurst (1951), the GPH estimator proposed by Geweke
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and Porter-Hudak (1983), the regression method based on the detrended fluctua-
tion analysis (DFA) proposed by Peng et al. (1994), the local Whittle estimator
(local.W)ofRobinson (1995) and theExact localWhittle estimator (ELW)ofShimotsu
and Phillips (2005). The GPH, local.W and ELW were estimated using R package
LongMemoryTS (Leschinski 2019). The bandwidth required in these estimators was
set at 1+√

n for all three. Estimators R/S and DFA were implemented by the authors.
The detrended variance necessary to the estimator DFA was calculated using the R
package DCCA (Prass and Pumi 2020). In calculating the detrended variance, we apply
non-overlapping windows of sizes {50, 51, . . . , 100} (Prass and Pumi 2021).

We apply the proposed estimator using r = 2, s = 1, m = 24 and step size 1, with
copulas AMH, Frank, FGM and Gaussian, considering pseudo-observations obtained
using the empirical distribution, for n ∈ {500, 1000, 2000}. The DGP is the same as
before. For brevity, we only present the results considering the mpl estimator. The
results using the irho and itau methods, presented in the supplementary material,
are very similar.

The results are presented in Table 1. Regarding point estimation, for the proposed
estimator the Gaussian copula is the best performer, as expected, followed closely by
theFrank andFGMcopulas. Forn = 500 andd = 0.1 the proposed estimator performs
uniformly better than the competitors regardless the copula. For other values of d, the
proposed estimator is very competitive, always in the top three. The worst performer
among all seems to be the local Whittle estimator, which presents a considerable bias.

As n increases, the results for all estimator improve, as expected, but especially so
for the proposed estimator. For instance, for n = 1000, the proposed model present
the smallest bias for all values of d, except for d = 0.4, for which the smallest
bias is achieved by the GPH estimator. For n = 2000, the proposed estimator with
the Gaussian copula performs uniformly better than the competitors with the Frank
copula usually in the top 2 often followed by the FGM in the top 4. Finally, in terms of
variability, the proposed estimator is almost uniformly better than all other competitors,
regardless the copula. In terms of variability, the only competitor on par with the
proposed one is the R/S. Curiously the proposed estimator using the AMH copula is
the best overall performer in this regard.

Computational aspects

The simulation was performed on a PC equipped with 8GB of RAM and a Intel
Core i7-8700 processor (3.20GHz, 6 cores, 12 threads), running linux Ubuntu 20.04.
Simulations were performed using version 4.1.3 of R (R Core Team 2020), using
the package doParallel (Microsoft Corporation and Weston 2020) for parallel
execution, considering 4 cores (one for each value of d).

The estimation of the copula’s parameters is the most demanding task. Each repli-
cation consists of estimating θh , for h ∈ {1, . . . , 50}, for a given scenario. The itau
and irhomethods are much faster than mpl. In the slowest case, running 1000 repli-
cations takes about 1min, for itau, and 4min, for irho. For the mpl method, the
same task may take anywhere between 4 and 83min, depending on d, step size and the
marginal applied. In contrast, once the copula parameters are obtained for the 1000
replications of any given scenario, it only takes about 1.6 s on average to estimate d.
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Table 1 Comparison between the proposed estimator for copulas AMH, Frank, FGM and Gaussian and the
traditional R/S, GPH, DFA, local.W and ELW estimators, for the mplmethod. Presented are the estimated
value and standard deviation (in parenthesis)

d DFA GPH local.W ELW R/S Gaussian Frank FGM AMH

n = 500

0.1 0.070 0.051 −0.037 0.046 0.157 0.085 0.079 0.079 0.072

(0.179) (0.163) (0.138) (0.112) (0.056) (0.037) (0.036) (0.036) (0.034)

0.2 0.164 0.163 0.064 0.128 0.222 0.175 0.167 0.166 0.153

(0.200) (0.164) (0.139) (0.151) (0.058) (0.045) (0.044) (0.044) (0.042)

0.3 0.257 0.277 0.167 0.242 0.283 0.265 0.259 0.254 0.235

(0.219) (0.165) (0.139) (0.173) (0.060) (0.052) (0.053) (0.052) (0.050)

0.4 0.350 0.392 0.270 0.366 0.340 0.354 0.352 0.338 0.316

(0.239) (0.163) (0.137) (0.168) (0.059) (0.058) (0.060) (0.057) (0.054)

n = 1,000

0.1 0.074 0.034 0.007 0.041 0.144 0.092 0.085 0.085 0.080

(0.111) (0.138) (0.114) (0.107) (0.042) (0.026) (0.026) (0.026) (0.025)

0.2 0.169 0.152 0.108 0.122 0.213 0.187 0.179 0.177 0.165

(0.122) (0.138) (0.115) (0.140) (0.044) (0.033) (0.033) (0.033) (0.032)

0.3 0.264 0.271 0.211 0.245 0.280 0.283 0.277 0.271 0.253

(0.131) (0.138) (0.115) (0.156) (0.045) (0.040) (0.041) (0.040) (0.038)

0.4 0.360 0.392 0.312 0.373 0.340 0.380 0.378 0.363 0.341

(0.140) (0.139) (0.112) (0.148) (0.045) (0.046) (0.048) (0.045) (0.042)

n = 2,000

0.1 0.077 0.040 0.034 0.038 0.133 0.095 0.089 0.089 0.084

(0.073) (0.111) (0.091) (0.083) (0.037) (0.019) (0.018) (0.018) (0.018)

0.2 0.173 0.158 0.135 0.123 0.208 0.194 0.186 0.185 0.173

(0.079) (0.112) (0.091) (0.119) (0.040) (0.025) (0.025) (0.025) (0.024)

0.3 0.271 0.278 0.238 0.256 0.280 0.297 0.290 0.285 0.267

(0.085) (0.112) (0.091) (0.139) (0.041) (0.031) (0.032) (0.031) (0.029)

0.4 0.368 0.398 0.340 0.388 0.345 0.401 0.399 0.383 0.360

(0.090) (0.113) (0.089) (0.117) (0.041) (0.037) (0.039) (0.035) (0.032)

6 Conclusion

In this work we investigate how long range dependence can be understood from the
perspective of copulas. We uncovered a relationship between the covariance decay
in univariate time series and the parametric copulas associated to lagged variables.
Inspired by this relationship, a copula-based estimator for parameters identifiable
through the covariance structure in univariate time series was proposed, excelling in
the context of long range dependence. Being copula-based, the proposedmethodology
is very flexible, naturally accommodating non-Gaussian time series, missing data, as
well as awide range ofmarginal behavior. To the best of our knowledge, in this context,
the proposed estimator is the first copula-based one in the literature.
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We derive a rigorous asymptotic theory related to the proposed estimator. Under
mild assumptions, we show its consistency and a central limit theorem. Its finite
sample performance is investigated in great detail through a Monte Carlo simulation
study. Among our findings, our simulation suggests that the proposed methodology
is robust against misspecification of the copula family and the choice of the copula
parameter estimator. We found that using the correctly specified marginals or using
sample estimators has little affect on the estimator’s performance. We also compared
the proposed estimator with some of the most commonly applied ones in literature.
We found that the proposed estimator is very competitive even in small samples,
outperforming the competitor ones in most scenarios studied.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-023-01418-z.
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Appendix 1: Mathematical proofs

Proof of Theorem 2.1: We present the proof for the case where a /∈ int(�). The other
cases are dealt analogously. Let {αm}m∈N∗ be an arbitrary sequence of parameters in
D such that αm → a (assuming the adequate lateral limit when necessary, allowing
for s coordinates to remain fixed). Applying a second order Taylor expansion in θn
around a, apart from an o(‖θn − a‖2) remainder, we have

Cθn (u, v) = lim
m→∞Cαm(u, v)+ lim

m→∞dθCαm(u, v)(θn−a)+ 1

2
(θn−a)′ lim

m→∞d
2
θCαm(u, v)(θn−a)

= uv +
k∑

i=1

lim
m→∞

[
∂Cθ (u, v)

∂θi

∣∣∣∣
θ=αm

]
(θ(i)

n − ai )+

+ 1

2

k∑
i, j=1

lim
m→∞

[
∂2Cθ (u, v)

∂θi∂θ j

∣∣∣∣
θ=αm

]
(θ(i)

n − ai )(θ
( j)
n − a j ). (7)

Let {Xn}n∈N and {Fn}n∈N be as in the enunciate. Hoeffding’s lemma combined with
(7) yields

Cov(X0, Xn) =
k∑

i=1

[∫∫
I 2

1

l0(u)ln(v)
lim

m→∞
∂Cθ (u, v)

∂θi

∣∣∣∣
θ=αm

dudv

]
(θ(i)

n − ai )+

+ 1

2

k∑
i, j=1

[ ∫∫
I 2

1

l0(u)ln(v)
lim

m→∞
∂2Cθ (u, v)

∂θi∂θ j

∣∣∣∣
θ=αm

dudv

]
× (θ(i)

n − ai )(θ
( j)
n − a j )
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=
k∑

i=1

K (i)
1 (n)(θ(i)

n − ai ) + 1

2

k∑
i, j=1

K (i, j)
2 (n)(θ(i)

n − ai )(θ
( j)
n − a j ) ∼ R(n) + o

(
R(n)

) ∼ R(n),

by the hypothesis on K (i)
1 and K (i, j)

2 . �

Proof of Lemma 4.1: Under Framework A, there exists M > 0 such that∣∣∣ limθ→a
∂Cθ (u,v)

∂θ

∣∣∣ ≤ M for all u, v ∈ I , since it is a continuous function defined

on a compact set. Now, since

|K̂1 − K1|
≤

∫∫
I 2

∣∣∣∣ 1

F̂ ′
n

(
F̂ (−1)
n (u)

)
F̂ ′
n

(
F̂ (−1)
n (v)

) − 1

F ′(F (−1)(u)
)
F ′(F (−1)(v)

)
∣∣∣∣
∣∣∣∣ limθ→a

∂Cθ (u, v)

∂θ

∣∣∣∣ dudv,

≤ M
∫∫

I 2

∣∣∣∣ 1

F̂ ′
n

(
F̂ (−1)
n (u)

)
F̂ ′
n

(
F̂ (−1)
n (v)

) − 1

F ′(F (−1)(u)
)
F ′(F (−1)(v)

)
∣∣∣∣ dudv, (8)

given ε > 0, it follows from (8) that

P
(|K̂1 − K1| > ε

) ≤
≤ P

( ∫∫
I 2

∣∣∣∣ 1

F̂ ′
n

(
F̂ (−1)
n (u)

)
F̂ ′
n

(
F̂ (−1)
n (v)

) − 1

F ′(F (−1)(u)
)
F ′(F (−1)(v)

)
∣∣∣∣ dudv >

ε

M

)
→ 0,

as n → ∞, by condition (a). Hence K̂1
P−→ K1 as desired. To complete the proof,

observe that (b) ⇒ (a) trivially. �

Proof of Theorem 4.1: UnderA0, K̂1
P−→ K1, while underA1, θ̂k(n)−a

P−→ θ0k −a ∈
R, for all s ≤ k ≤ m, as n tends to infinity, so that L̂s,m(n)

P−→ Rs,m(η0). Now, by
assumption A2D is equivalent to the usual metric inRm−s+1 and since (Rm−s+1,D)

is a complete metric space, it follows that,

D
(
L̂s,m(n), Rs,m(η0)

) P−→ 0, (9)

as n tends to infinity. Let η̂s,m(n) be as in (3) and notice that, for sufficiently large n,

D
(
Rs,m(η0), Rs,m(η̂s,m(n))

)
< D

(
Rs,m(η0), L̂s,m(n)

) + D
(
L̂s,m(n), Rs,m(η̂s,m(n))

)
< ε + D

(
L̂s,m(n), Rs,m(η̂s,m(n))

)
, (10)

hence limn→∞ D
(
Rs,m(η0), Rs,m(η̂s,m(n))

) ≤ limn→∞ D
(
L̂s,m(n), Rs,m(η̂s,m(n))

)
.

By the definition of η̂s,m(n), given δ > 0, D
(
L̂s,m(n), Rs,m(η̂s,m(n))

) ≤
D

(
L̂s,m(n), Rs,m(η)

)
, for all η ∈ Bδ(η̂s,m(n)), the closed ball inRp with radius δ cen-

tered at η̂s,m(n). Now, by (9), it follows that for sufficiently large n, η0 ∈ Bδ(η̂s,m(n)),
so that

D
(
L̂s,m(n), Rs,m(η̂s,m(n))

) ≤ D
(
L̂s,m(n), Rs,m(η0)

) P−→ 0.
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Now, since D is a metric in Rm−s+1, by the continuity of R and by the identifiability
of η0, it follows thatP

(‖η̂s,m(n)−η0‖ < ε
) −→ 1, as n tends to infinity. �

Proof of Theorem 4.2: Without loss of generality, we shall assume that a = 0. Let
s0 = max{k0, k1} and � = �0 ∩ �1 in A3 and A4 and let s > s0. Under the
hypothesis, upon defining

Ss,m(η; n) =
m−s∑
k=0

(
θ̂s+k(n) − L(s + k, η)

)2
,

as n tends to infinity, with probability 1

0 = ∂Ss,m(η; n)

∂η

∣∣∣∣̂
η

= ∂Ss,m(η; n)

∂η

∣∣∣∣
η0

+
(

∂2Ss,m(η; n)

∂η∂η′

∣∣∣∣
η

)
(̂η − η0),

for some η ∈ � such that ‖η −η0‖ ≤ ‖̂η −η0‖. In order to prove the result, it suffices
to show that

bn

(
∂Ss,m(η; n)

∂η

∣∣∣∣
η0

)
d−→ −2

m−s∑
k=0

as+k Zs+k and
∂2Ss,m(η; n)

∂η∂η′

∣∣∣∣
η

P−→ 2
m−s∑
k=0

as+ka′
s+k

(11)

and to observe that the right hand side in the second relation in (11) is positive definite
by A3. On one hand, by A3, we can write

∂Ss,m(η; n)

∂η
= −2

m−s∑
k=0

as+k
(
θ̂s+k(n) − L(s + k, η)

)
,

so that the first equation in (11) follows from A4 by multiplying both sides by bn and
taking the limit as n tends to infinity. On the other hand, by A3 and A4, for η ∈ �,

∂2Ss,m(η; n)

∂η∂η′ = −2
m−s∑
k=0

{
∂2L(s + k, η)

∂η∂η′
(
θ̂s+k(n) − L(s + k, η)

) − as+ka′
s+k

}

= 2
m−s∑
k=0

as+ka′
s+k + oP (1),

and the proof is complete. �
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