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Abstract
The goal of this article is to test the hypothesis related to the independence of fea-
tures between any two repeated measures in a block compound symmetry structure
under the doubly multivariate normal model. The Rao score and Wald test statistics
are determined and the characteristic function of the likelihood ratio test statistic is
presented. For all of these test statistics, the asymptotic distributional properties are
compared using simulation studies, and the robustness of the empirical distributions
is considered. Furthermore, for power analysis purpose, the Kullback-Leibler diver-
gence is proposed to measure discrepancy between hypotheses and the power of each
mentioned tests, as well as F-test and Roy’s largest root test, is studied. Finally, all
mentioned tests are applied to a real data example.

Keywords Doubly multivariate model · Block compound symmetry · Rao score test ·
Wald test · Likelihood ratio test · Roy’s largest root test · Independence · Entropy
loss function · Power

Mateusz John and Daniel Klein have equally contributed to this work.

B Katarzyna Filipiak
katarzyna.filipiak@put.poznan.pl

Mateusz John
mateusz.john@put.poznan.pl

Daniel Klein
daniel.klein@upjs.sk
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1 Introduction

In modern experiments, huge datasets consisting of measurements of many features,
observed repeatedly in time, at various locations and depths, taken from many indi-
viduals, are usually collected. This paper deals with doubly multivariate data that can
be stored in a three-dimensional tensor of observations of size n × m × u, where n
is the number of individuals (sample size) and m and u are the numbers of repeated
measurements of, for example, different features and locations, respectively. In such
experiments, especially in genetics or medicine, the sample size is often too small to
estimate all the unknown parameters of the model. To avoid this problem, regular-
ization of estimators is proposed as one of the solutions, while the second one is to
consider a patterned covariance matrix.

One of the common patterns for a doubly multivariate model is a block compound
symmetry (BCS) structure, which is a direct extension of compound symmetry, com-
mon formultivariatemodels. BCS has been introduced in Rao (1945, 1953), where the
problem of discriminating genetically different groups is studied. Note that the BCS
structure is common for experiments, where the covariance matrix does not change
when vectors from different repeated measures are interchanged, and hence, in the
literature, it is also called an exchangeable structure.

A general method to test means and covariance matrices related to models with
the BCS covariance structure has been proposed in Arnold (1973, 1979) as a way of
reducing the number of unknown parameters for estimation. A similar problem has
been also studied in Szatrowski (1976, 1978, 1982). Furthermore, Perlman (1987)
found that if the collected data has symmetries, it is possible to obtain a more accurate
estimate of the covariance matrix. Recently, Leiva (2007) formulated the generalized
Fisher linear discrimination method under the BCS covariance structure and derived
themaximum likelihood estimators of BCS. The estimation of BCS, as well as circular
Toeplitz structure, was considered in Liang et al. (2012), while the optimal estimators
of the BCS structure was proposed in Roy et al. (2016); Kozioł et al. (2018). The
application of the BCS structure in multivariate interval data problems is shown in
Hao et al. (2015). The tests for the mean structure under the model with the BCS
covariancematrix were proposed in Zmyślony et al. (2018); Žežula et al. (2018), while
the likelihood ratio test (LRT) and the Rao score test (RST) to test the BCS covariance
structure were presented in Roy and Leiva (2011); Roy et al. (2018); Filipiak andKlein
(2021). The asymptotic normal distribution of the LRT under the assumption of the
size of each block and the sample size tending to infinity was presented in Sun and Xie
(2020). Very recently, Liang et al. (2021) derived the LRT for testing simultaneously
the mean and particular structures of blocks of the BCS covariance matrix.

The aim of this paper is to test independence between features measured repeatedly,
e.g., over time or locations, under the normalmodel with the BCS covariance structure.
The LRT for such a hypothesis was studied, for example, in Fonseca et al. (2018),
where also a new test statistic being F-distributed, say FT statistic, is proposed. In
the same year Tsukada (2018) compared the power of LRT, modified LRT (using
Bartlett correction), Wald test (WT) and RST, but only for selected types of alternative
hypothesis. It should be noted that the Wald test statistic is given without the proof
in Tsukada (2018). In this paper we revise this test and show that the form presented
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Testing independence under a block... 679

in Tsukada (2018) is not in line with the definition of Wald test given by Rao (2005).
Very recently Kozioł et al. (2021) gave a review on testing hypotheses under the BCS
structures, and introduced also Roy’s test statistics having the largest root distribution.

The main goals of this paper are to determine the RST and WT statistics and to
derive the exact distribution of LRT. Moreover, using simulation studies we compare
the asymptotical properties of mentioned likelihood ratio based tests and we verify
their robustness for non-Gaussian data. Finally, we recall the FT and Roy’s largest root
tests and we study the power of each considered test. For this purpose, we introduce
the entropy loss function (Kullback-Leibler divergence between two distributions) as
a measure of discrepancy between the null and alternative hypotheses. We show that
such an approach allows to compare the power of the test for various alternatives, in
contrast to the approach usually considered in the literature, where particular structures
of alternative hypotheses are studied; cf. Fonseca et al. (2018), Tsukada (2018). Note,
finally, that the presented results can be applied in many areas of science, e.g. genetics,
medicine, dietetics, agriculture, physics, image processing or engineering. In this paper
we use horticultural real data example to compare all considered tests.

The paper is organized as follows. In Sect. 2 the model and hypotheses of interest,
as well as the maximum likelihood estimators (MLEs) of unknown parameters, are
presented. The RST, WT, LRT, FT and Roy’s test statistics are formulated in Sect. 3,
together with their properties, such as the convergence of the distribution of RST and
WT statistics to the limiting chi-square distribution, the exact distribution of LRT
statistic, as well as the independence of the distributions of all test statistics on the
true values of unknown parameters. The powers of all tests are analyzed in Sect. 4.
Finally, to illustrate presented methods, the independence of the petal lengths between
any two flowers of Kalanchoe plants is tested in Sect. 5. The article is summarized in
the Discussion section.

2 Model and hypothesis

We consider an experiment performed on n individuals in whichm features are repeat-
edly measured u times, where these repeated measurements could be time points,
locations, depths, etc. LetXi = (x′

i1, . . . , x
′
iu)

′, i = 1, . . . , n, be independent and iden-
tically distributed um-dimensional vectors of observations, where xi j , j = 1, . . . , u,
are m-dimensional vectors of measurements of the j th feature on the i th individual
(at each of the u repetitions).

A normal matrix model is assumed here, in which the observation vectors for all
individuals are placed in rows one below the other, that is,

X = (X1,X2, ...,Xn)
′ ∼ Nn,um(1nμ′, In,�), (1)

where 1n is an n-dimensional vector of ones,μ is a um-dimensional general mean (the
same for every individual), In is an identity matrix of order n, and � isan unknown
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symmetric positive definite covariance matrix of order um. Model (1) can also be
presented in a vectorized form as

vecX ∼ Nnum((Ium ⊗ 1n)μ,� ⊗ In),

where vec is the operator stacking the columns of a matrix one below the other and ⊗
is a Kronecker product.

It is known, that if � is unstructured, its MLE is of the form

S = 1
nX

′QnX, (2)

whereQn = In − 1
n 1n1

′
n is the orthogonal projector onto the orthocomplement of the

column space of 1n , while an unbiased estimator has the form

S∗ = 1
n−1X

′QnX.

Note that, if um is close to the sample size, both estimators are ill-conditioned. Fur-
thermore, if um > n the estimators are singular. To avoid these problems and to reduce
the number of unknown parameters, one may impose the appropriate structure on the
covariance matrix, which decreases the number of unknown parameters. In this paper
we consider the BCS structure

�BCS =

⎛
⎜⎜⎜⎝

�0 �1 . . . �1
�1 �0 . . . �1
...

. . .
...

�1 �1 . . . �0

⎞
⎟⎟⎟⎠ = Iu ⊗ �0 + (Ju − Iu) ⊗ �1 := � (3)

with symmetric positive definite (p.d.) matrix �0 of order m, and with symmetric
matrix �1 of order m such that � is p.d. Matrix �0 is a variance-covariance matrix of
m features at any given repeated measurement, while �1 is a covariance matrix of m
features between any two repeated measurements.

After reparameterization one can get an equivalent form of BCS structure of the
form

� = Qu ⊗ �1 + Pu ⊗ �2, (4)

where Pu = 1
u 1u1

′
u is the orthogonal projector onto the column space of 1u . This

form is more useful from a computational point of view. Since PuQu = 0, to ensure
the positive definiteness of � it is enough to assume that �i , i = 1, 2, are symmetric
positive definite matrices. The relationship between (3) and (4) can be represented as

{
�1 = �0 − �1
�2 = �0 + (u − 1)�1.

Note that the BCS structure is also called exchangeable, since the vector xi j can be
interchanged with xi j ′ , j, j ′ = 1, . . . , u, without changing the covariance matrix.
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Since the space of BCS structures is a quadratic subspace, that is, the power of BCS
also belongs to the same space, cf. Seely (1971), the MLE of � is a projection of S
given in (2) onto the space of BCS structures, that is,

�̂ = Qu ⊗ �̂1 + Pu ⊗ �̂2, (5)

with
�̂1 = 1

u−1 BTrm [(Qu ⊗ Im)S], �̂2 = BTrm [(Pu ⊗ Im)S]; (6)

cf. Filipiak et al. (2020). Alternatively, if � is expressed as (3),

�̂0 = 1
u BTrm S, �̂1 = 1

u(u−1) (BSumm S − BTrm S), (7)

whereBTrm(A) = ∑u
i=1 Ai i is a block trace operator defined on the partitionedmatrix

A = (Ai j ), i, j = 1, . . . , u, with blocks of order m; cf. Filipiak et al. (2018), and
BSumm(A) = ∑u

i=1
∑u

j=1Ai j .
We are interested in testing the hypothesis related to the independence of features

between two repeated measurements. This means that we are testing the block diago-
nality of the covariance matrix, which can be presented as

H0 : � = � and �1 = 0 vs H1 : � = � (8)

or, equivalently, using parameterization (4),

H0 : �1 = �2 vs H1 : � = Qu ⊗ �1 + Pu ⊗ �2. (9)

The spectral form of the BCS structure given in (9) provides simpler algebraic transfor-
mations than the previous one, and thus will usually be considered in the forthcoming
sections.

Let us denote �1 = �2 in (9) by �. Then, the null hypothesis can be written as
� = Iu ⊗ �. Since the space of block diagonal matrices is a quadratic subspace, the
MLE of � is a projection of S onto the space of block diagonal matrices, that is,

�̂ = 1
u BTrm S. (10)

The MLEs given in (6) and (10) will be used for determining the test statistics in
the next section.

3 Test statistics

In this section we give an overview of the tests for the considered hypothesis, with
determination of RST and WT statistics. Note that the form of RST statistic has been
stated by Tsukada (2018), however, in this paper we present an alternative proof of its
form. Moreover, in Tsukada (2018) theWT statistic has been given without any proof;
therefore, in this paper we prove that the WT statistic has a more complex form. We
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also verify the convergence of likelihood ratio based tests to the limiting chi-square
distribution, using empirical distributions for RST and WT, and the exact distribution
of LRT, formulated in Theorem 3 and proved in Appendix C.

Another test for (9), FT, having F-distribution with respective degrees of freedom,
has been introduced by Fonseca et al. (2018). Its generalization is Roy’s test, having
the largest root distribution; cf.Mardia et al. (1979). In this paper we recall their forms,
and we verify the robustness of all tests for non-Gaussian data.

We start with determining the RST statistic. The proof of the following theorem
can be found in Appendix A.

Theorem 1 Under hypothesis (9) the Rao score test statistic can be expressed as

RS = n
2 tr

{ [
Ium − �̂(Iu ⊗ �̂)−1

]2 }
,

where �̂ and �̂ are given in, respectively, (5) and (10).

Denoting the MLEs of covariance matrix under alternative and null hypothesis by,
respectively, �̂H1 and �̂H0 , we may represent the above RS test statistic as

RS = n
2 tr

{ [
Ium − �̂H1�̂

−1
H0

]2 }
,

which is in line with the RS for testing various covariance structures in Filipiak and
Klein (2021).

It is worth noting that under hypothesis (8), which is obviously equivalent to (9),
we may formulate the following corollary, that can be proven directly from Theorem 1
by considering the parameterization of �̂ and �̂ through �̂0 and �̂1.

Corollary 1 Under hypothesis (8) the Rao score test statistic can be expressed as

RS = nu(u−1)
2 tr

[
(�̂

−1
0 �̂1)

2
]
,

where �̂0 and �̂1 are given in (7).

Note, that theRST statistic presented inCorollary 1 can be also expressed as formula
(3.20) in Tsukada (2018).

Finally, recall that, due to Rao (2005), under considered null hypothesis and if
the sample size n → ∞, presented RST statistic is χ2 distributed with m(m + 1)/2
degrees of freedom. The same limiting distribution is related to the second well know
test - Wald test, presented in the next theorem, with the proof in Appendix B.

Theorem 2 Under hypothesis (9) the Wald test statistic can be expressed as

W = n
2 vec

′ (�̂1 − �̂2
) [

1

u − 1
(�̂1 ⊗ �̂1) + (�̂2 ⊗ �̂2)

]−1

vec
(
�̂1 − �̂2

)

with �̂1 and �̂2 given in (6).
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We shall note, that to determine the Wald test statistic under hypothesis (8) it is
enough to replacematrices�1,�2 by respective transformations given in (2), however,
the form of W will be much more complex. It is also possible to determine W going
directly from null hypothesis (8), nevertheless, in such a case the Fisher information
matrix given in Appendix A cannot be applied directly.

Finally observe, that plugging the MLE of covariance matrix under null hypothesis
instead of alternative into the formofWT, respective test statistic presented byTsukada
(2018) will be obtained. Note however, that such approach is not in line with the
definition of the Wald test given by Rao (2005).

The Rao score test is based on the MLE of vector of parameters under null hypoth-
esis, while the Wald test used the MLE under alternative. The third test of Rao’s “holy
trinity” is the likelihood ratio test, based on comparison of the MLEs under the null
and alternative hypotheses. When testing (9), the likelihood ratio � has the form

� =
(

| �̂1 |u−1| �̂2 |
| �̂ |u

)n/2

. (11)

It is well known (Rao 2005) that under the null hypothesis, LR = −2 ln� is approxi-
mately distributed as χ2 with m(m + 1)/2 degrees of freedom. It should be noted that
if the covariance parameters fall on the boundary of their parameter space, then the
asymptotic distribution of LR becomes a mixture of χ2 distributions, as discussed in
Self and Liang (1987). Instead of an approximate distribution, which works well only
for relatively large sample sizes, one can use the exact distribution of the LR presented
in the following theorem, with the proof given in Appendix C.

Theorem 3 The characteristic function of LR = −2 ln�, with � being the likelihood
ratio test statistic given in (11), is of the form

ϕ(t) = u−numit

(u − 1)−n(u−1)mit
·

m∏
j=1

[
�

(
(n−1)(u−1)+1− j

2 −i tn(u−1)
)

�
(

(n−1)(u−1)+1− j
2

) · �
(
n− j
2 −i tn

)

�
(
n− j
2

) · �
(

(n−1)u+1− j
2

)

�
(

(n−1)u+1− j
2 −i tnu

)
]

.

The exact distribution of LRT statistic with the use of the above characteristic
function can be computed with the use of R package CharFunToolR developed in
Gajdoš (2018) on the basis ofMatlab package CharFunTool provided inWitkovský
(2018).

We shall also mention, that in the literature some modifications of LRT are studied.
One of the example is multiplication of LR by a constant equal to 1 − (u2 − u +
1)(2m2 +3m −1)/(6(n−1)u(u−1)(m +1)); cf. Tsukada (2018). Using the general
theory of asymptotic expansions from Anderson (2003), such modified test statistic
converges faster to respective χ2 distribution. Nevertheless, since in this paper we
give the exact distribution of LRT, we do not consider mentioned modification as a
separate test.
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Finally note, that a big advantage of all presented test statistics is the following
property, with the proof given in Appendix D.

Proposition 1 The distributions of RST, WT and LRT statistics under the null hypoth-
esis in (9) do not depend on the true values of μ and �.

Using simulations, we compare now the behavior of the empirical distributions of
RST and WT statistics with respect to their convergence to the limiting distribution
and we collate them with the exact distribution of LRT.

Recall, that all proposed tests can be performed if n > m.Moreover, for n → ∞, the
distribution ofRS,WandLR test statistics tends to theχ2 distributionwithm(m+1)/2
degrees of freedom. Thus, in Figs. 1, 2, 3, 4 and 5 we present the empirical null
distributions of RST andWT, exact distribution of LRT and the limitingχ2 distribution
with respect to the sample size for u = 3 and respectivelym ∈ {3, 6, 9} and form = 3
and respectively u ∈ {6, 9}. It can be seen that distributions of all test statistics tend
to the limiting distribution with the increase of n, however, the convergence of RST
is the quickest and even for relatively small sample size does not differ significantly
from the limiting one, which is not the case for WT nor LRT.

The next two presented tests, the FT andRoy’s test, are based on unbiased estimators
of unknown parameters, instead of MLEs. Roy et al. (2016) presented such unbiased
estimators of �1 and �2 in terms of multiple sums of vector products. Recall that
since the space of BCS structures is a quadratic subspace, these estimators can also be
obtained by projection of sample covariancematrix S∗ onto the space of BCSmatrices;
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Fig. 1 Empirical null distribution of RST (blue) and WT (red) and exact distribution of LRT (green) along
with the χ2

6 distribution (black dashed) for m = 3, u = 3. (Colour figure online)
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Fig. 2 Empirical null distribution of RST (blue) and WT (red) and exact distribution of LRT (green) along
with the χ2

6 distribution (black dashed) for m = 3, u = 6. (Colour figure online)
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Fig. 3 Empirical null distribution of RST (blue) and WT (red) and exact distribution of LRT (green) along
with the χ2

6 distribution (black dashed) for m = 3, u = 9. (Colour figure online)
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Fig. 4 Empirical null distribution of RST (blue) and WT (red) and exact distribution of LRT (green) along
with the χ2

21 distribution (black dashed) for m = 6, u = 3. (Colour figure online)
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Fig. 5 Empirical null distribution of RST (blue) and WT (red) statistics and exact distribution of LRT
(green) statistic along with the χ2

45 distribution (black dashed) for m = 9, u = 3. (Colour figure online)
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cf. Filipiak et al. (2020). Thus, the unbiased estimators given in Roy et al. (2016) can
also be represented as

�̃1 = 1
u−1 BTrm [(Qu ⊗ Im)S∗], �̃2 = BTrm [(Pu ⊗ Im)S∗].

The FT statistic, introduced by Fonseca et al. (2018), has the form

F = v′�̃2v

v′�̃1v
,

and is F distributed with n − 1 and (n − 1)(u − 1) degrees of freedom; cf. Fonseca
et al. (2018)[Lemma 3.1]. Since the unbiased estimators of �1 and �2 differ from
respective MLEs only by a constant, we can also represent FT statistic in terms of
MLEs, that is

F = v′�̂2v

v′�̂1v
.

Noting that

�̂1 ∼ Wm

(
1

n(u−1)�1, (n − 1)(u − 1)
)

, �̂2 ∼ Wm
( 1
n�2, n − 1

)

are independent; cf. Roy et al. (2015), the F distribution of the above FT statistic also
follows.

Observe, that according to (D.1), the FT statistic can be expressed as

F = v′�1/2ϒ̂2�
1/2v

v′�1/2ϒ̂1�
1/2v

= w′ϒ̂2w

w′ϒ̂1w
,

where ϒ̂1 and ϒ̂2 are given in (D.2). Thus, even if under null hypothesis the distribution
of the above FT statistic does not depend on the true value of �, the choice of vector v
should be appropriate. Note, that if v is equal to the column of identity matrix, in fact
the hypothesis about specific entry of covariance matrix being equal to zero is tested,
which is the same as (9) only if m = 1. Furthermore, if v = 1m (as it was assumed
in, e.g., Fonseca et al. (2018)) then the hypothesis about the sum of all elements of �1
being equal to zero is tested. Thus, the proposed test statistic is appropriate to test (9)
if all the entries of �1 are of the same sign (or some of them, but not all, are zeros).
In fact, the choice of vector v as the vector of nonnegative (nonpositive) components
corresponds to testing the value of weighted sum of the elements of �1. Concluding,
for testing (9), it would be natural not to fix a single v, but to choose some optimal
vector of quadratic forms in FT.
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To achieve higher power of the test it is natural to choose a vector v maximizing
the value of the test statistic. Thus, maximizing F for all v ∈ R

m we obtain the test

statistic Fm = λmax

(
�̂2�̂

−1
1

)
; cf. Kozioł et al. (2021), where λmax (·) is the largest

root of the matrix in parenthesis. The inference can be made using Roy’s test of the
form

R =
1

u−1Fm

1 + 1
u−1Fm

,

which has the largest root distribution with parameters m, (n − 1)(u − 1), and n − 1;
for more details see e.g. Mardia et al. (1979). For simplicity we will abbreviate this
distribution as RLR (Roy’s largest root).

Notice, that vector v in Fm is the eigenvector corresponding to the maximal eigen-

value of �̂2�̂
−1
1 , thus it is not fixed anymore, but depends on the data. As a result, as it

is mentioned in Kozioł et al. (2021), Roy’s test does not necessarily have higher power
than the F-test, it is advantageous only when the largest eigenvalue is substantially
larger than the remaining ones.

In order to check the robustness of considered tests with respect to some perturba-
tions from normality, for various combinations of m, u and n, we generated the data
from the following non-Gaussian distributions: multivariate t3, t5, gamma distribution
with parameters (2, 1.5), and uniform on the interval (0, 1). The results for m = 9,
u = 3 and n ∈ {10, 25} are given in Fig. 6. It can be seen that for small sample
sizes, the distributions of all test statistics under non-normality are quite close to the
relevant empirical null distributions, however, if the sample size increases, for consid-
ered t distributions, the test statistics are appearing to tend to some other distribution
than chi-square. Similar observation was noticed for other sets of parameters (results
not presented in this paper). Therefore, the robustness of test statistics, especially for
multivariate t distributions, will be the topic of future research.

4 Power study of considered tests

For power comparison purpose Fonseca et al. (2018) considered the covariance struc-
ture under alternative constructed by choosing a block diagonal matrix with �0 on the
diagonal and stating a scaled randomly generated matrix �1 as off-diagonal blocks,
that is,

� = Iu ⊗ �0 + (Ju − Iu) ⊗ λ �1,

where λ is a parameter ensuring positive definiteness of�. Note, that for variousmatri-
ces �1, parameter λ belongs to different domains (ensuring positive definiteness), and
hence the discrepancies |λ| are not comparable. Moreover, such approach allows to
consider only very specific types of alternatives and also null hypothesis, choosing the
same �0 in both, null and alternative. Thus, in this paper, as a measure of discrepancy
between given alternative, �, and a set of block-diagonal matrices Iu ⊗ �, we mini-

123



Testing independence under a block... 689

0 20 40 60 80 100 120 140
0.00

0.01

0.02

0.03

0.04

0.05

0.06

RST; n 10

0 20 40 60 80 100 120 140
0.00

0.01

0.02

0.03

0.04

0.05

0.06

RST; n 25

0 20 40 60 80 100 120 140
0.00

0.02

0.04

0.06

0.08

0.10

0.12

WT; n 10

0 20 40 60 80 100 120 140
0.00

0.02

0.04

0.06

0.08

0.10

0.12

WT; n 25

50 100 150 200

0.01

0.02

0.03

0.04

0.05
LRT; n 10

50 100 150 200

0.01

0.02

0.03

0.04

0.05
LRT; n 25

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

F test; n 10

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

F–test; n 25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

Roy's test; n 10

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

Roy's test; n 25

Fig. 6 Empirical null distributions of test statistics (presented in rows) under normality (black dashed), the
multivariate t3 (red), t5 (green), gamma G(2, 1.5) (blue), and uniform U (0, 1) (purple) distributions, for
m = 9, u = 3, n = 10 (left panel), n = 25 (right panel). (Colour figure online)
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mize Kullback-Leibler divergence between two distributions that differ in covariance
matrix, that is

ζ = min
�

{
tr

[
�−1(Iu ⊗ �)

]
− ln | �−1 (Iu ⊗ �) | −um

}
, (12)

where the symmetric p.d. matrix � has BCS structure with some given symmetric
matrices �0 (p.d.) and �1, while � is a symmetric p.d. matrix for which the minimum
is attained. Using the same differentiation rules as in Appendix A, it can be shown
that the minimum (12) is obtained for

� =
(
u−1
u �−1

1 + 1
u�−1

2

)−1
(13)

with �1 and �2 defined in (2). It should be noted that (13) determines the block
diagonal structure which is the closest one in the sense of (12), and does not need to be
the same as the diagonal blocks used in the alternative hypothesis. Observe moreover
that since the value of ζ is not upper bounded, we use the transformation η = 1− 1

1+ζ
that shrinks ζ into the [0, 1) interval. Note that, in contrast to the method used by
Fonseca et al. (2018), for arbitrary randomly generated �0 and �1, the minimum �

and the discrepancy η can be determined and compared to each other.
Summing up, for various values of u and m, we first randomly generate matrices

�0 and �1, for which we determine the discrepancy η. For example, for u = m = 3,
we choose the matrices

�0=
⎛
⎝

88.910 −13.002 14.855
−13.002 84.921 5.285
14.855 5.285 120.934

⎞
⎠, �1=

⎛
⎝

26.195 −0.231 −4.579
−0.231 2.357 −1.647
−4.579 −1.647 3.495

⎞
⎠, (14)

for which the minimum in (12) is attained at

� =
⎛
⎝

75.995 −13.2497 17.5422
−13.2497 84.7433 5.49956
17.5422 5.49956 120.196

⎞
⎠

giving η = 0.2012.
In the study on power, we start by verifying the power of all the tests mentioned for

m = u = 3 and n = 5, such that �0 is given in (14), and �1 is randomly generated
300 times. For each case that gives a positive definite � (exactly for 237 cases), we
generate the data matrix X ∼ Nn,um(0, In,�), for which all tests are then performed.
For rejection of null hypothesis we use respectively the empirical null distribution of
RST and WT, the exact distribution of LRT (presented in Theorem 3 and computed
using CharFunToolR package), F distribution with n−1 and (n−1)(u−1) degrees
of freedom for FT, and RLR distribution with m, (n − 1)(u − 1), and n − 1 degrees
of freedom (computed with the use of the algorithm of Chiani (2016)) for Roy’s test.
Similarly to Fonseca et al. (2018) and Kozioł et al. (2021), to perform FT we choose
v = 1m . In all comparisons, the significance level 0.05 is used. The empirical power
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Fig. 7 Empirical powers of RST, WT, LRT, FT, and Roy’s test statistics form = u = 3, n = 5, with respect
to discrepancy η. (Colour figure online)

is calculated as the ratio between the number of rejections and the number of all trials
performed. The results of the simulations are presented in Fig. 7.

It can be seen that RST, LRT, and Roy’s test statistics increase with the discrepancy,
in contrast to FT, for which for two equally distant BCS structures the power differs
significantly, and toWT, for which the power is often below nominal significance level
(Wald test is biased). The different behavior of these latter tests may also be caused
by inappropriate choice of discrepancy; however, this topic will be studied in future
research. Concluding, in the following part of this chapter, we compare power of RST,
LRT and Roy’s test only.

For power comparison, we consider m ∈ {3, 6}, u ∈ {3, 6, 9}, and m = 9, u ∈
{3, 6}. For each pair (u,m) we choose �0 and �1 in such a way that the discrepancy
η equals 0.2 and 0.4. The forms of all chosen matrices, except those given in (14),
are available from the authors on request. Then, similarly as in the previous case, for
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Fig. 8 Empirical powers of RST (blue), LRT (green) and Roy’s test (purple) statistics depending on n for
m = 3, u ∈ {3, 6, 9} and for η = 0.2 (left panel) and η = 0.4 (right panel). (Colour figure online)

selected sample sizes that ensure the existence of all three tests (n > m), we generate
50,000 data matrices, for which the empirical powers are computed. The simulation
results are presented in Figs. 8, 9 and 10. It can be seen that for both η the power of
the RST (blue line) and Roy’s test (purple line) exceed the power of the LRT (green
line) for each considered sample size. Moreover, for η = 0.4, the power of RST and
Roy’s test is indistinguishable.

5 Real data example

In this section we consider an example originally presented in Liang et al.
(2015)[Table 1], where the hierarchical model with block circular structure (in partic-
ular BCS structure) has been studied.

123



Testing independence under a block... 693

Fig. 9 Empirical powers of RST (blue), LRT (green) and Roy’s test (purple) statistics depending on n for
m = 6, u ∈ {3, 6, 9} and for η = 0.2 (left panel) and η = 0.4 (right panel). (Colour figure online)

Data consisting of measurements of petal length made in 11 specific Kalanchoe
plants from the same greenhouse are analyzed. From each plant 3 flowers have been
randomly chosen. Note that each flower has 4 petals. We assume that the covariance
between every two flowers is the same, which follows the BCS structure of the disper-
sion matrix. It is worth noting that since in each flower the arrangement of the petals
is circular, Liang et al. (2015) additionally assumed a circular structure of covariance
between the petals in each flower. This assumption is not required in this paper. For
clarity, in this experiment we have n = 11 individuals, m = 4 petals on each of u = 3
flowers.

Our aim is to verify the hypothesis related to the independence of petal lengths
between any two flowers; hence, the hypothesis (9) is suitable here. We use RST,
WT, and LRT statistics and exact and approximate quantiles of their distributions
to make the decision. Note that in the case of RST and WT the empirical null

123



694 K. Filipiak et al.

Fig. 10 Empirical powers of RST (blue), LRT (green) and Roy’s test (purple) statistics depending on n for
m = 9, u ∈ {3, 6} and for η = 0.2 (left panel) and η = 0.4 (right panel). (Colour figure online)

distributions are used as the exact distributions, while the quantiles (and thus also
the p-value) of the exact LRT distribution are computed using the R package
CharFunToolR. In all three cases, the χ2

10 distribution is used as the limiting one.
We also compute F test statistics for three different choices of v: 1m , vmax being the

eigenvector related to maximal eigenvalue of �̂2�̂
−1
1 , and some randomly generated

vg = (0.859853, 0.175291, 0.011513, 0.405039)′, as well as Roy’s test statistic and
we determine the p-values based on, respectively, F andRLRdistributionswith respec-
tive degrees of freedom. To calculate the p-value of Roy’s test, we use the algorithm
presented in Chiani (2016). The values of the test statistics together with the respective
p-values are given in Table 1.

The p-values computed from the exact distributions of all the tests suggest the same
decision: at the significance level 0.05, the hypothesis of independence is not rejected.
Furthermore, the decision made on the basis of limiting distribution of RST, WT and

Table 1 Values of RST, LRT, WT, F(1m ), F(vmax), F(vg), and Roy’s test statistics together with respective
p-values for real data example

RST LRT WT F(1m ) F(vmax) F(vg) R

test statistics 5.974 11.532 8.600 0.700 0.978 0.144 0.601

exact p-value 0.879 0.565 0.569 0.714 0.491 0.998 0.402

χ2
10 p-value 0.817 0.318 0.570 – – – –
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LRT remains the same. However, in the case of RST andWT, the exact and chi-square
p-values are close to each other, which is not the case for LRT. This observation is
very general, as can be seen from the significant discrepancies between the exact and
limiting distributions of LRT, especially for small n, given in Figs. 1, 2, 3, 4 and 5.

Note that for different choice of v in the F test we obtain various values of test
statistic and, obviously, different p-values. In the example considered, the decision
remains the same; however, for other datasets, different decisions can be made. Thus,
from a practical point of view, the Roy’s test should be preferable to the F-test, as
it does not depend on the choice of v. However, since the determination of the RLR
distribution, as well as the exact distribution of LRT, involves complex computations
with the use of special packages, while the (empirical) exact distributions of RST and
WT do not differ significantly from limiting χ2 distribution, even if the normality
assumption is not fulfilled, the RST or WT procedure with p-value taken from the
limiting distribution seems to be the most useful for practitioners. Finally, because of
biasedness of WT shown in the previous section, the type II error can be much higher
than one can accept. Therefore, the RST is suggested to be used by practitioners.

6 Discussion

In this article we determined the RST andWT statistics as well as we showed the char-
acteristic function of LRT statistic for testing the independence of features between
repeated measurements in the BCS covariance structure. For all of these test statistics
we proved that their null distributions do not depend on the true parameters. For FT and
Roy’s test this conclusion is obvious. The robustness analysis performed for selected
distributions showed, that all mentioned tests are relatively consistent, however, some
future research must be done under the non-normality assumption, especially for mul-
tivariate t distribution of the data. Nevertheless, since WT is biased, and since the
values of F test statistic strongly depend on the choice of vector v, it is difficult to
verify the power of these test, and thus they are not taken into consideration in power
comparison. In the power analysis we showed that the powers of RST and Roy’s tests
do not differ significantly and usually exceed the power of LRT.

Summing up, the F test would be good for testing the hypothesis about the values
of specific elements of covariance matrix, in which case vector v should be chosen
according to the tested hypothesis. Because of biasedness ofWTand since the determi-
nation of the exact distribution of LRT and RLR distribution is relatively complex, the
RST with its limiting χ2 distribution can be recommended for the use by researchers.
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Appendix A: Proof of Theorem 1

Following Rao (2005) the Rao score test statistics is a function of score vector s and
Fisher information matrix F, that is

RS = s′(̂θ)F−1(̂θ)s(̂θ).

Note, that the score vector s(θ) is a vector of first derivatives of log-likelihood
function with respect to the vector of parameters under alternative, that is θ =(
μ′, vech′ �1, vech′ �2

)′, where vechA is a vector obtained fromvecAby eliminating
all elements arranged above themain diagonal ofA; cf.Magnus andNeudecker (1986).
Observe, that it is easy to recover all the entries of vecA from vechA by duplication
of respective elements, that is vecA = Dm vechA, where Dm is an m2 × 1

2m(m + 1)
duplication matrix; cf. Magnus and Neudecker (1986).

Due to Magnus and Neudecker (1986), by the derivative of an arbitrary function

G(A)with respect toAwemean
d vecG(A)

d vec′ A
. IfA is a symmetricmatrix, the derivative

is computed with respect to vech′ A. It is easy to see that
d vecA
d vech′ A

= Dm , and thus,

according to the chain rule,
d vecG(A)

d vech′ A
= d vecG(A)

d vec′ A
·Dm . Since the log-likelihood

function is a scalar function, in considered case resulting score vector is of dimension
um + m(m + 1).

Noting, that θ̂ is the MLE of θ under the null hypothesis, for (9) we obtain θ̂ =(
μ̂′, vech′ �̂, vech′ �̂

)′
with μ̂ = 1

nX
′1n and �̂ presented in (10). Observe, however,

that since the considered hypothesis does not contain any restrictions on μ, the first
entry of the score vector (first derivative with respect to μ) will reduce to 0 when μ is
replaced by its MLE. Thus, without loss of generality, we consider the score vector of
the dimensionm(m+1). Similarly, the Fisher informationmatrix is of orderm(m+1).

Considering � given by (4) and since | � |=| �1 |u−1| �2 |, the log-likelihood
function under H1 in (9) can be presented as

ln L = −num

2
ln(2π) − n(u − 1)

2
ln | �1 | −n

2
ln | �2 | −1

2
tr(Y�−1Y′)

with Y := Y(μ) = X − 1nμ′. In order to obtain the score vector, we differentiate the
above log-likelihood function with respect to θ . Using the chain rule as described in
Magnus and Neudecker (1986), the differentiation formulas given in Fackler (2005),
and Corollary 2.10 of Filipiak et al. (2018), we obtain

∂ ln L

∂�1
= − n

2

[
(u − 1) vec′ �−1

1

− vec′ ( 1nY
′Y)(Iu ⊗ Km,u ⊗ Im)(vecQu ⊗ Im2)(�

−1
1 ⊗ �−1

1 )
]
Dm

= − n
2

[
(u − 1) vec′ �−1

1

− vec′ {BTrm[(Qu ⊗ Im) 1nY
′Y]} (�−1

1 ⊗ �−1
1 )

]
Dm,
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whereKm,u is an um×um commutation matrix that transforms anm×u matrixA as

Km,u vecA = vecA′. Similar result can be obtained for
∂ ln L

∂�2
with �1 replaced by

�2, with the projection matrix Qu replaced by Pu , and with trQu = u − 1 replaced
by tr Pu = 1. Plugging in θ̂ under H0 into the above formulas, and observing that

1

n
Y′Y = 1

n
Y′(μ̂)Y(μ̂) = 1

n
X′QnX = S,

we get

s(̂θ) = − n
2 (I2 ⊗ D′

m)

·
(

(u − 1) vec �̂
−1 − (�̂

−1 ⊗ �̂
−1

) vec{BTrm[(Qu ⊗ Im)S]}
vec �̂

−1 − (�̂
−1 ⊗ �̂

−1
) vec{BTrm[(Pu ⊗ Im)S]}

)
,

which, due to the formulas (6) for MLEs of BCS structure, can be simplified to

s(̂θ) = −n

2
(I2 ⊗ D′

m)

(
(u − 1)(�̂

−1 ⊗ �̂
−1

) vec(�̂ − �̂1)

(�̂
−1 ⊗ �̂

−1
) vec(�̂ − �̂2)

)
. (A.1)

To compute Fisher information matrix, second order partial derivatives and their
expected values are calculated. The detailed computations only for parameter �1 are
presented here, as the derivatives with respect to �2 result from the same arguments.

Using derivatives from Fackler (2005) and formula (1.4.23) from Kollo and von
Rosen (2005) we get

∂2 ln L

∂�2
1

= n
2D

′
m

{
(u − 1)(�−1

1 ⊗ �−1
1 )

−(vec′{BTrm[(Qu ⊗ Im) 1nY
′Y]} ⊗ Im2)(Im ⊗ Km,m ⊗ Im)

·(Im2 ⊗ vec′ �−1
1 + vec�−1

1 ⊗ Im2)(�
−1
1 ⊗ �−1

1 )
}
Dm .

To compute the expectation of the above, we use the notation E(Y′Y) = � (cf. Kollo
and von Rosen (2005)[Th. 2.2.9(i)]), and hence from orthogonality of Pu and Qu , we
obtain

F11 = − n
2D

′
m

(
(u − 1)(�−1

1 ⊗ �−1
1 )

−{vec′[BTrm(Qu ⊗ �1)] ⊗ Im2}(Im ⊗ Km,m ⊗ Im)

·(Im2 ⊗ vec′ �−1
1 + vec�−1

1 ⊗ Im2)(�
−1
1 ⊗ �−1

1 )
)
Dm .

Noting, that the block-diagonal elements ofQu ⊗ �1 are equal to u−1
u �1 it is easy to

see that BTrm(Qu ⊗ �1) = (u − 1)�1. Furthermore, since for symmetric matrix A

(vec′ A ⊗ D′
m)(Im ⊗ Km,m ⊗ Im)(vecA−1 ⊗ Im2)

= (vec′ A ⊗ D′
m)(Im ⊗ Km,m ⊗ Im)(Im2 ⊗ vecA−1) = D′

m
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cf. Filipiak et al. (2016)[Lemma 1], we obtain

F11 = n(u − 1)

2
D′
m(�−1

1 ⊗ �−1
1 )Dm . (A.2)

Plugging in the MLE’s of unknown parameters under H0, we finally obtain

F(̂θ) = n

2

(
(u − 1)D′

m(�̂
−1 ⊗ �̂

−1
)Dm 0

0 D′
m(�̂

−1 ⊗ �̂
−1

)Dm

)

and, from Filipiak et al. (2016)[Prop. 1(iv)],

F−1(̂θ) = 2
n (I2 ⊗ D+

m)

( 1
u−1 (�̂ ⊗ �̂) 0

0 �̂ ⊗ �̂

)
(I2 ⊗ D+′

m ),

where D+
m is a Moore-Penrose inverse of Dm . Denoting the score vector (A.1) as

s(̂θ) = − n
2 (I2 ⊗ D′

m)

(
s1
s2

)
,

we get

RS = n
2

(
s′1, s′2

)
(I2 ⊗ DmD+

m)

( 1
u−1 (�̂ ⊗ �̂) 0

0 �̂ ⊗ �̂

)
(I2 ⊗ D+′

m D′
m)

(
s1
s2

)
.

UsingMagnus andNeudecker (1986)[formulas (54) and (36)] wemay further simplify
the above RS to

RS = n
2

[
(u − 1) vec′(�̂ − �̂1)(�̂

−1 ⊗ �̂
−1

) vec(�̂ − �̂1)

+vec′(�̂ − �̂2)(�̂
−1 ⊗ �̂

−1
) vec(�̂ − �̂2)

]

= n
2

{
(u − 1) tr[(�̂ − �̂1)�̂

−1
(�̂ − �̂1)�̂

−1]
+ tr[(�̂ − �̂2)�̂

−1
(�̂ − �̂2)�̂

−1]
}

= n
2

{
(u − 1) tr[Im − 2�̂1�̂

−1 + �̂1�̂
−1

�̂1�̂
−1]

+ tr[Im − 2�̂2�̂
−1 + �̂2�̂

−1
�̂2�̂

−1]
}

= n
2

[
tr Ium − 2 tr(Qu ⊗ �̂1�̂

−1
) + tr(Qu ⊗ �̂1�̂

−1
�̂1�̂

−1
)

− 2 tr(Pu ⊗ �̂2�̂
−1

) + tr(Pu ⊗ �̂2�̂
−1

�̂2�̂
−1

)
]

Finally, from idempotency and orthogonality of Qu and Pu we obtain

RS = n
2 tr

[
Ium − 2(Qu ⊗ �̂1 + Pu ⊗ �̂2)(Iu ⊗ �̂

−1
)

+(Qu ⊗ �̂1 + Pu ⊗ �̂2)(Iu ⊗ �̂
−1

)
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·(Qu ⊗ �̂1 + Pu ⊗ �̂2)(Iu ⊗ �̂
−1

)
]

= n
2 tr

{ [
Ium − �̂(Iu ⊗ �̂)−1

]2 }
.

Appendix B: Proof of Theorem 2

Due to Rao (2005) theWald test statistics for testing composite null hypothesis h(θ) =
c can be represented as

W = (h(̂θ) − c)′A−1(̂θ)(h(̂θ) − c),

whereA(θ) = H(θ)F−1(θ)H′(θ), withH(θ) being the matrix of derivatives of hwith
respect to the components of θ , F(θ) is the Fisher information matrix and θ̂ is the
MLE of θ under alternative. Considering hypothesis (9) we may note that the null
hypothesis can be written as vech(�1 − �2) = 0m(m+1)/2 which is equivalent to(
Im(m+1)/2,−Im(m+1)/2

)
θ = 0m(m+1)/2, where θ = (

vech′ �1, vech′ �2
)′. It follows

that h(θ) = (I,−I) θ with identity matrices of order m(m + 1)/2, and hence H(θ) =
(I,−I), while F(θ) is a block diagonal matrix with diagonal blocks given in (A.2) and
equal to n

2D
′
m(�−1

2 ⊗ �−1
2 )Dm . We then obtain

A(θ) = 2
n (I,−I)

( 1
u−1D

+
m(�1 ⊗ �1)D+′

m 0
0 D+

m(�2 ⊗ �2)D+′
m

) (
I

−I

)

= 2
nD

+
m

[
1

u−1 (�1 ⊗ �1) + (�2 ⊗ �2)
]
D+′
m

and, plugging the inverse of A(̂θ) into the formula for Wald test statistic, we get

W =
n
2 vech

′ (�̂1 − �̂2
)
D′
m

[
1

u−1 (�̂1 ⊗ �̂1) + (�̂2 ⊗ �̂2)
]−1

Dm vech
(
�̂1 − �̂2

)
.

From the definition of duplication matrix we have Dm vech
(
�̂1 − �̂2

) = vec
(
�̂1−

�̂2
)
and the thesis follows.

Appendix C: Proof of Theorem 3

Denoting A1 = n(u − 1)�̂1, A2 = n�̂2 and observing that

nu�̂ = nu(u − 1)�̂1 + nu�̂2 = A1 + A2,

we may write (11) as

�∗ = �2/n = uum

(u − 1)(u−1)m
· | A1 |u−1| A2 |

| A1 + A2 |u .
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where A1 ∼ Wm(�1, (n − 1)(u − 1)), A2 ∼ Wm(�2, n − 1) and A1 and A2 are
independent; cf. Roy et al. (2015); Filipiak and Klein (2021).

Since the probability density function of any m ×m matrixW ∼ Wm(�, ν) can be
expressed as

fW(W) = e− 1
2 tr

(
6−1W)

| W | ν−m−1
2

2
mν
2 �m( ν

2 ) | � | ν
2

, W > 0,

with multivariate gamma function of order m given as

�m( ν
2 ) = πm(m−1)/4

m∏
i=1

�(ν−i+1
2 ),

cf. Kollo and von Rosen (2005)[Th. 2.4.6], we may express the h-th moment of | W |
by the following formula

E(| W |h) =
∫
W

| W |h · fW(W)dW

=
∫
W

| W |h e− 1
2 tr

(
6−1W)

| W | ν−m−1
2

2
mν
2 �m( ν

2 ) | � | ν
2

dW

= �m( ν
2 + h)

2−mh�m( ν
2 ) | � |−h

∫
W

e− 1
2 tr

(
6−1W)

| W | ν−m−1+2h
2

2
m(ν+2h)

2 �m( ν
2 + h) | � | ν+2h

2

dW

= 2mh · | � |h ·�m
(

ν
2 + h

)

�m
(

ν
2

) , (C.1)

where W is the symmetric positive-definite matrices space. Hence, the h-th moment
of �∗ can be written as

E(�h∗) = uumh

(u − 1)(u−1)mh

·
∫
A1

∫
A2

| A1 |(u−1)h | A2 |h
| A1 + A2 |uh

× e− tr(1−1A1)/2 | A1 |[(n−1)(u−1)−m−1]/2

2m(n−1)(u−1)/2�m

(
(n−1)(u−1)

2

)
| 1 |(n−1)(u−1)/2

× e− tr(1−1A2)/2 | A2 |(n−2−m)/2

2m(n−1)/2�m
( n−1

2

) | 1 |(n−1)/2
dA1dA2
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= uumh

(u − 1)(u−1)mh
| 1 |uh ·2umh ·

�m

(
(n−1+2h)(u−1)

2

)

�m

(
(n−1)(u−1)

2

) · �m
( n−1+2h

2

)

�m
( n−1

2

)

×
∫
A1

∫
A2

1

| A1 + A2 |uh

× e− tr(1−1A1)/2 | A1 |[(u−1)(n−1+2h)−m−1]/2

2m(n−1+2h)(u−1)/2�m

(
(n−1+2h)(u−1)

2

)
| � |(n−1+2h)(u−1)/2

× e− tr(1−1A2)/2 | A2 |(n−1+2h−m−1)/2

2m(n−1+2h)/2�m
( n−1+2h

2

) | � |(n−1+2h)/2
dA1dA2

= (2u)umh

(u − 1)(u−1)mh

×
�m

(
(n−1+2h)(u−1)

2

)
�m

( n−1+2h
2

)

�m

(
(n−1)(u−1)

2

)
�m

( n−1
2

) · | � |uh ·E(| A |−uh),

where A = A1 + A2 ∼ Wm(�, (n − 1 + 2h)u). Now, using (C.1), we can write

E(�h∗) = uumh

(u − 1)(u−1)mh

�m

(
(n−1+2h)(u−1)

2

)
�m

( n−1+2h
2

)
�m

(
u(n−1)

2

)

�m

(
(n−1)(u−1)

2

)
�m

( n−1
2

)
�m

(
u(n−1+2h)

2

)

= uumh

(u − 1)(u−1)mh

×
m∏
j=1

[
�

(
(n−1)(u−1)+1− j

2 +h(u−1)
)

�
(

(n−1)(u−1)+1− j
2

) · �
(
n− j
2 +h

)

�
(
n− j
2

) · �
(

(n−1)u+1− j
2

)

�
(

(n−1)u+1− j
2 +hu

)
]

.

Appendix D: Proof of Proposition 1

It is enough to show that the distribution of theRS, LRandWald test statistics presented
respectively in Theorem 1, (11) and Theorem 2 under the null hypothesis given in (9)
does not depend on the true value of �.

The observation matrix X can be written as X = 1n¯′ + E�1/2, where �1/2 =
Iu ⊗ �1/2 with �1/2�1/2 = � and E ∼ Nn,um(0, In, Ium), therefore

X′QnX = �1/2E′QnE�1/2.

Hence, due to (10) and using Filipiak et al. (2018)[Lemma 2.11], we have

�̂ = 1
u BTrm[S] = 1

nu BTrm[X′QnX] =
= 1

nu BTrm[�1/2E′QnE�1/2] = 1
nu BTrm[(Iu ⊗ �1/2)E′QnE(Iu ⊗ �1/2)] =

= �1/2 1
nu BTrm[E′QnE]�1/2 = �1/2ϒ̂0�

1/2,
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where ϒ̂0 does not depend on the true values of the unknown parameters. Similarly
we find that the estimators in (6) can be expressed as

�̂1 = �1/2ϒ̂1�
1/2, and �̂2 = �1/2ϒ̂2�

1/2, (D.1)

where both ϒ̂1 and ϒ̂2 do not depend on the true values of the unknown parameters,
since

ϒ̂1 = 1
n(u−1) BTrm[(Qu ⊗ Im)E′QnE(Qu ⊗ Im)],

ϒ̂2 = 1
n BTrm[(Pu ⊗ Im)E′QnE(Pu ⊗ Im)]. (D.2)

Therefore for estimator �̂ given in (5) it holds

�̂ = (Iu ⊗ �1/2)

(
Qu ⊗ ϒ̂1 + Pu ⊗ ϒ̂2

)
(Iu ⊗ �1/2),

and after substituting into RST statistic given in Theorem 1 it can be presented as

RS = n

2
tr

{ [
Ium − (Qu ⊗ ϒ̂1 + Pu ⊗ ϒ̂2)(Iu ⊗ ϒ̂0)

−1
]2 }

.

The LRT statistic (11) and Wald test statistic given in Theorem 2 can be expressed
as

� =
(

| ϒ̂1 |u−1| ϒ̂2 |
| ϒ̂0 |u

)n/2

,

W = n
2 vec

′ (ϒ̂1 − ϒ̂2
) [

1

u − 1
(ϒ̂1 ⊗ ϒ̂1) + (ϒ̂2 ⊗ ϒ̂2)

]−1

vec
(
ϒ̂1 − ϒ̂2

)
,

respectively.
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