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Abstract
This paper studies a partially linear additive regression with spatial data. A new esti-
mation procedure is developed for estimating the unknown parameters and additive
components in regression. The proposed method is suitable for high dimensional data,
there is no need to solve the restricted minimization problem and no iterative algo-
rithms are needed. Under mild regularity assumptions, the asymptotic distribution of
the estimator of the unknown parameter vector is established, the asymptotic distri-
butions of the estimators of the unknown functions are also derived. Finite sample
properties of our procedures are studied through Monte Carlo simulations. A real data
example about spatial soil data is used to illustrate our proposed methodology.

Keywords Spatial data · Partially linear additive regression · Asymptotic distribution

1 Introduction

Spatial data, which are collected at different sites on the surface of the earth, arise
in various areas of research, including econometrics, epidemiology, environmental
science, image analysis, oceanography and many others. Many authors (e.g. Ripley
1981; Cressie 1991) have studied the parametric methods for statistical inference in
spatialmodels. However, one often encounters situationswhere a particular parametric
model cannot be adopted with confidence and thus a nonparametric method is used as
an alternative. In the last two decades, efforts have beenmade in the literature to explore
nonlinear relationship in spatial data. Among them, Tran (1990), Hallin et al. (2001)
and Lee et al. (2004) discussed kinds of asymptotic properties of density estimation
for spatial processes. Hallin et al. (2004) established weak consistency and asymptotic
normality for local linear regression estimation. Gao et al. (2006) developed the prop-
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erties of the local linear kernel estimator for semiparametric spatial regression model.
Al-Sulami et al. (2017) developed a two-step estimation procedure for semiparametric
spatial time-series autoregressive model and established the asymptotic properties of
the estimators. Nandy et al. (2017) developed a regularized variable selection tech-
nique for building a spatial additive model. The focus of our work is on the estimation
and inference of partially linear additive regression with spatial data.

Let {(Yi j , ZZZi j , XXXi j )} be a random field indexed by (i, j) ∈ E2, where E =
{0,±1,±2, · · · } and Yi j , with values in R, ZZZi j = (Zi j1, . . . , Zi jd1)

T , with values
in Rd1 , XXXi j = (Xi j1, . . . ,Ui jd2)

T , with values in Rd2 , are defined over some prob-
ability space (�,F , P). A point (i, j) ∈ E2 is referred to as a site. Let S and S′
be two sets of sites. The Borel fields B(S) = B((Yi j , ZZZi j , XXXi j ) : (i, j) ∈ S) and
B(S ′) = B((Yi j , ZZZi j , XXXi j ) : (i, j) ∈ S′) are the σ -fields generated by the random vec-
tors (Yi j , ZZZi j , XXXi j )with (i, j) being the elements of S and S′ respectively. Let d(S, S′)
be the Euclidean distance between S and S′. We will assume that {(Yi j , ZZZi j , XXXi j )} sat-
isfies the following mixing condition as defined in the literature (cf., Tran 1990; Hallin
et al. 2004): there exists a functionϕ(t) ↓ 0 as t → ∞, such thatwhenever S, S′ ⊂ E2,

α(B(S),B(S′)) = sup{|P(AB) − P(A)P(B)|, A ∈ B(S), B ∈ B(S′)}
≤ ψ(Card(S),Card(S′))ϕ(d(S, S′)), (1.1)

where Card(S) denotes the cardinality of S, and ψ is a symmetric positive function
nondecreasing in each variable. In particular, if ψ(∞,∞) ≤ C0 for some positive
constant C0, {(Yi j , ZZZi j , XXXi j )} is α-mixing (or strongly mixing). Introduced by Rosen-
blatt (1956), α-mixing dependence is a property shared by many time series models
such as the autoregressive linear processes (see Athreya and Pantala 1986).

A crucial problem for a number of applications is the problem of spatial regression,
where the influence of the vectors XXXi j and ZZZi j on some response variable Yi j is to be
studied in a context of complex spatial dependence. In many practical situations, it is
desirable to model multiple covariates nonparametrically. However, it is well known
that multivariate nonparametric estimation is subject to the curse of dimensionality. A
widely used approach for dimensionality reduction is to consider an additivemodel for
the nonparametric part of the regression function in the partly linear model, which in
turn results in the partially linear additive model. In this paper, we try to approximate
the conditional mean function E(Yi j |ZZZi j , XXXi j ) by a partially linear additive function
of the form

�(ZZZi j , XXXi j ) = μ + ZZZT
i jβββ0 +

d2∑

r=1

fr (Xi jr ), (1.2)

such that E(Yi j −�(ZZZi j , XXXi j ))
2 or, equivalently, E(E(Yi j |ZZZi j , XXXi j )−�(ZZZi j , XXXi j ))

2

is minimized over a class of partially linear additive functions of the form�(ZZZi j , XXXi j ),
whereμ is an unknown constant,βββ0 = (β01, . . . , β0d1)

T is a d1-dimensional vector of
unknown parameters, fr (xr ), xr ∈ [cr1, cr2], r = 1, . . . , d2 are unknown functions.
For identifiability, we assume that E[ fr (Xr )] = 0 for all 1 ≤ r ≤ d2.
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Additive models are a special case of the more general projection pursuit regression
model of Friedman and Stuetzle (1981). Additive models are useful for multivariate
data analysis. They enable us to avoid the curse of dimensionality while retaining
great flexibility in the regression function. However, in many empirical situations the
mean of the outcome is assumed to depend on some covariates parametrically and
some other covariates nonparametrically. Partially linear additive regression (PLAR),
which contains both linear and nonlinear additive components, are more flexible than
stringent linear models and are more parsimonious than general nonparametric regres-
sion models. PLAR have been studied by many authors, see, for example, Li (2000),
Fan and Li (2003), Liang et al. (2008), You and Zhou (2013), Cheng et al. (2014),
Lian et al. (2015), Sherwood and Wang (2016), Yang et al. (2019) and among others.

Gao et al. (2006) used marginal integration technique to estimate the additive
components in PLAR with spatial data. However, this method is not suitable for
high-dimensional vector XXXi j . In this paper, we develop a new estimation method
to estimate the additive components fr (xr ) in (1.1). Our method has the following
advantages comparing with the existing methods in the literature: (1) different from
spline approach (Stone 1985; Huang et al. 2010) which needs to solve the constrained
minimization problem and backfitting procedures (Brieman and Friedman 1985; Buja
et al. 1989) which needs iterative algorithms, our estimators of additive functions have
definite expressions, there is no need to solve the restricted minimization problem and
no iterative algorithms are needed, resulting in fast and efficient estimation; (2) since
there is only a smoothing parameter in B-spline procedure, when additive functions
have different degrees of smoothness, the estimators of some functions become inef-
ficient. In our proposed method, we first obtain the estimators of βββ0 and the piecewise
polynomial estimators of fr (xr ), r = 1, . . . , d2, the local linear estimator of fr (ur ) is
obtained by solving the univariate regression problem and the bandwidth hr is easily
chosen; (3) different from marginal integration approach of Gao et al. (2006), when
XXXi j is high-dimensional vector and the sample size is not big, our estimators behav-
ior well, this can be seen from the following simulation and application; (4) under
mild regularity conditions, the asymptotic properties of the proposed estimators are
established.

In our spatial PLAR, spatial information is added into a regression modeling by
the spatial dependence of the data {(Yi j , ZZZi j , XXXi j ), (i, j) ∈ E2}, where ZZZi j and XXXi j

may contain both exogenous and endogenous variables, that is, neighboring values
of Yi j . Moreover, a component Zi jr of ZZZi j or a component Xi jr of XXXi j may itself be
a linear combination of neighboring values of Yi j . In the literature, there is another
stream of spatial regressionmodeling by using a bivariate function to model the spatial
effect into the model, for example, Ramsay (2002) use a deterministic smooth surface
function to describe the variations and connections among values at different locations.
Yu et al. (2020) introduce a class of generalized geoadditive models, a synthesis of
geostatistics and generalized additivemodels,where the effect of explanatory variables
are modeled with additive univariate functions and the spatial effect is modeled via a
bivariate function.

The paper is organized as follows. Section 2 describes the estimation method.
Section 3 presents the asymptotic theory of our estimators. In Sect. 4, we conduct
simulation studies to examine the finite-sample performance of the proposed proce-
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dures. In Sect. 5, the proposed methods are illustrated by analyzing a real estate data
set. Technical proofs are relegated to the Appendix.

2 Estimationmethod

As stated in Sect. 1, the conditional mean function E(Yi j |ZZZi j , XXXi j ) is approximated
by a partially linear additive function of the form �(ZZZi j , XXXi j ) = μ + ZZZT

i jβββ0 +
∑d2

r=1 fr (Xi jr ) such that

E(Yi j − �(ZZZi j , XXXi j ))
2 = E[Yi j − (μ + ZZZT

i jβββ0 +
d2∑

r=1

fr (Xi jr ))]2

is minimized over a class of partially linear additive functions of the form�(ZZZi j , XXXi j )

with E( fr (Xi jr )) = 0, which implies that μ = E(Yi j ) − E(ZZZi j )
Tβββ0. Since

E[Yi j − (μ + ZZZT
i jβββ0 + ∑d2

r=1 fr (Xi jr ))]2
= E(E([Yi j − E(Yi j |XXXi j ) − (ZZZi j − E(ZZZi j |XXXi j ))

Tβββ0]2|XXXi j ))

+E[E(Yi j |XXXi j ) − μ − E(ZZZi j |XXXi j )
Tβββ0 − ∑d2

r=1 fr (Xi jr )]2,

we then have

βββ0 = (E[(ZZZi j − E(ZZZi j |XXXi j ))(ZZZi j − E(ZZZi j |XXXi j ))
T ])−1E[(ZZZi j − E(ZZZi j |XXXi j ))(Yi j

−E(Yi j |XXXi j ))]

provided that the inverse exists, and
∑d2

r=1 fr (Xi jr ) is a projection of E(Yi j |XXXi j ) −
μ − E(ZZZi j |XXXi j )

Tβββ0 on the space of additive functions of Xi jr , r = 1, ..., d2.
Assume that we have observations (Yi j , ZZZi j , XXXi j ) for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The total sample size is thus N = m×n. We first estimateβββ0. In order to approximate
fr (xr ) for xr ∈ [cr1, cr2], we construct piecewise polynomial estimators of fr (xr ) of
degree pr . We split equally [cr1, cr2] into MrN subintervals. Then the length of every
subinterval is 2hr0 = (cr2 − cr1)/MrN . Let Irν = [cr1 + 2(ν − 1)hr0, cr1 + 2νhr0)
for 1 ≤ ν ≤ MrN − 1 and IrMrN = [cr2 − 2hr0, cr2]. Let xrν denote the center of
the interval Irν and χrν denote the indicator function of Irν , so that χrν(xr )=1 or 0
according to xr ∈ Irν or xr ∈̄Irν .

Denote Ărνk(xr ) = χrν(xr )[(xr − xrν)/hr0]k for k = 0, 1, . . . , pr ; ν =
1, · · · , MrN ; r = 1, . . . , d2. We use f̆r (xr ) = ∑MrN

ν=1

∑pr
k=0 arνk Ărνk(xr ) to approx-

imate fr (xr ). Since E[ fr (Xr )] = 0, we then set E[ f̆r (Xr )] = 0, this can be
done by using Ărνk(xr ) − χrν(xr )E[ Ărνk(Xr )]/E[χrν(Xr )] to replace Ărνk(xr )
for k = 1, . . . , pr and setting

∑MrN
ν=1 arν0E[χrν(Xr )] = 0. Let arMrN 0 =∑MrN−1

ν=1 arν0E[χrν(Xr )]/E[χrMrN (Xr )]. Since E[ Ărνk(Xr )] and E[χrν(Xr )] are
unknown, we then use
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Ārνk =
m∑

i=1

n∑

j=1

χrν(Xi jr )[(Xi jr − xrν)/hr0]k/
[ m∑

i=1

n∑

j=1

χrν(Xi jr )
]

to replace E[ Ărνk(Xr )]/E[χrν(Xr )]. Denote

Arν0(xr ) = χrν(xr ) −
∑m

i=1
∑n

j=1 χrν (Xi jr )∑m
i=1

∑n
j=1 χrMrN (Xi jr )

χrMrN (xr ), ν = 1, . . . , MrN − 1,

Arνk(xr ) = χrν(xr ){[(xr − xrν)/hr0]k − Ārνk}, k = 1, . . . , pr ,
AAArν(xr ) = (Arν0(xr ), Arν1(xr ), · · · , Arνqr (xr ))

T , ν = 1, · · · , MrN − 1,
AAArMrN (xr ) = (ArMrN 1(xr ), · · · , ArMrN qr (xr ))

T ,

AAAr (xr ) = (AAAr1(xr )T , · · · , AAArMrN (xr )T )T , r = 1, . . . , d2.

Let aaarν = (arν0, arν1, · · · , arν pr )
T for ν = 1, . . . , MrN − 1, aaarMrN = (arMrN 1, · · · ,

arMrN pr )
T and aaar = (aaaTr1, · · · ,aaaTrMrN

)T . We use 	fr (xr ) = AAAT
r (xr )aaar to approx-

imate fr (xr ). Note that 	fr (xr ) is a piecewise polynomial of degree pr and sat-
isfies that 1

N

∑m
i=1

∑n
j=1

	fr (Xi jr ) = 0. Let Ȳ = 1
N

∑m
i=1

∑n
j=1 Yi j and Z̄ZZ =

1
N

∑m
i=1

∑n
j=1 ZZZi j be the estimator of E(Y ) and E(ZZZ) respectively. Based on spa-

tial observations {(Yi j , ZZZi j , XXXi j ) : 1 ≤ i ≤ m; 1 ≤ j ≤ n}, we use Ȳ − Z̄ZZ
T
βββ to

approximate μ and solve the following minimization problem

min
∑m

i=1
∑n

j=1{Yi j − Ȳ − (ZZZi j − Z̄ZZ)Tβββ − ∑d2
r=1 AAA

T
r (Xi jr )aaar }2 (2.1)

with respect to the βββ,aaar . Denote Ȳi j = Yi j − Ȳ , Z̄ZZi j = ZZZi j − Z̄ZZ , AAA(XXXi j ) =
(AAAT

1 (Xi j1), . . . , AAAT
d2

(Xi jd2))
T and aaa = (aaaT1 , . . . ,aaaTd2)

T . Then the estimator β̂ββ of βββ0 is
given by

β̂ββ = ���−1
N

[ m∑

i=1

n∑

j=1

Z̄ZZi j Ȳi j −WWWN AAA
−1
N

( m∑

i=1

n∑

j=1

AAA(XXXi j )Ȳi j
)]

, (2.2)

where

���N =
m∑

i=1

n∑

j=1

Z̄ZZi j Z̄ZZ
T
i j −WWWN AAA

−1
N WWWT

N , (2.3)

WWWN =
m∑

i=1

n∑

j=1

Z̄ZZi j AAA(XXXi j )
T , AAAN =

m∑

i=1

n∑

j=1

AAA(XXXi j )AAA(XXXi j )
T . (2.4)

The estimator ãaa = (ãaaT1 , . . . , ãaaTd2)
T of aaa is given by

ãaa = AAA−1
N

( m∑

i=1

n∑

j=1

AAA(XXXi j )
(
Ȳi j − Z̄ZZ

T
i jβ̂ββ

))
(2.5)
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and piecewise polynomial estimator f̃r (xr ) of fr (xr ) is given by

f̃r (xr ) = AAAT
r (xr )ãaar , xr ∈ [cr1, cr2].

The estimator of μ is given by

μ̂ = Ȳ − Z̄ZZ
T
β̂ββ. (2.6)

Since f̃r (xr ) is only piecewise smooth, it may not be appealing to use this piecewise
polynomial directly as the estimate of the function fr (xr ). After we estimated βββ0, for
a given x0r ∈ [cr1, cr2], for xr in the neighborhood of x0r , we use br0 + br1(xr − x0r )
to approximate the unknown coefficient function fr (xr ). We then solve the following
minimization problem

min
m∑

i=1

n∑

j=1

{Yi j − Ȳ − (ZZZi j − Z̄ZZ)T β̂ββ −
∑

k 
=r

f̃k(Xi jk) − [br0 + br1(Xi jr − x0r )]}2K

( Xi jr − x0r
hr

)
(2.7)

with respect to br0, br1, where K (·) is a given kernel function and hr is a chosen
bandwidth. Let bbbr = (br0, hrbr1)T and BBBi jr = (1, (Xi jr − x0r )/hr )T . Then the
estimator of bbbr is given by

b̂bbr =
( m∑

i=1

n∑

j=1

K
( Xi jr − x0r

hr

)
BBBi jr BBB

T
i jr

)−1( m∑

i=1

n∑

j=1

K
( Xi jr − x0r

hr

)
BBBi jr Ỹi jr

)
,(2.8)

where

Ỹi jr = Yi j − Ȳ − (ZZZi j − Z̄ZZ)T β̂ββ −
∑

r ′ 
=r

f̃r ′(Xi jr ′). (2.9)

The estimator of fr (x0r ) is given by f̂r (x0r ) = b̂r0 = (1, 0)b̂bbr for r = 1, . . . , d2.
To implement our estimationmethod, appropriate valuesMrN and hr are necessary.

Here, MrN are mainly used to estimate the parameters βββ0, for simplicity, we set
M1N = · · · = MdN = MN . The value for MN can be selected by the following BIC
information criterion:

BIC(MN ) = log{ 1
N

m∑

i=1

n∑

j=1

[Yi j − Ȳ − (ZZZi j − Z̄ZZ)T β̂̂β̂β

−
d2∑

r=1

AAAT
r (Xi jr )â̂âar ]2} + MN log N/(2N ). (2.10)

Large values of BIC indicate poor fits.
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The bandwidth hr can be selected by the following cross-validation (CV) score:

CV (hr ) = 1

N

m∑

i=1

n∑

j=1

(
Yi j − μ̂−i j − ZZZT

i jβ̂ββ
−i j −

∑

r ′ 
=r

f̃ −i j
r ′ (Xi jr ′) − f̂ −i j

r (Xi jr )
)2

,

(2.11)

where μ̂−i j , β̂ββ
−i j

, f̃ −i j
r ′ (Xi jr ′) and f̂ −i j

r (Xi jr ) are estimated by removing the (i,j)th
observation.

3 Asymptotic properties of the estimators

In this section, we shall describe the asymptotic properties of the estimators β̂ββ and
f̂r (xr ), r = 1, . . . , d2. We first list following assumptions.

1. The random field {(Yi j , ZZZi j , XXXi j ) : (i, j) ∈ E2} is strictly stationary. Themarginal
density gr (xr ) of Xi jr is continuous and bounded away from 0 uniformly over
[cr1, cr2] for r = 1, . . . , d2.

2. fr (xr ) ∈ C pr+1[cr1, cr2] for r = 1, . . . , d2.
3. E‖ZZZi j‖4+2δ < ∞ and E |εi j |4+2δ < ∞ for some δ > 0, where εi j = Yi j − (μ +

ZZZT
i jβββ0 + ∑d2

r=1 fr (Xi jr )).
4. The function ψ(·, ·) and ϕ satisfy that ψ(m, n) ≤ min(m, n) and

lim
k→∞ kγ

∞∑

t=k

t[ϕ(t)]δ/(2+δ) = 0

for some constant γ > (4 + δ)/(2 + δ).
5. M4+2δ/(4+δ)

N /N → 0 and NM−4(pr+1)
r N → 0, where MN = max1≤r≤d2 MrN .

6. min{m, n} → ∞ and there exist two sequences of positive integer vectors, pm,n =
(p1, p2) ∈ E2 and qm,n = (q, q) ∈ E2, with q → ∞ such that q/p1 → 0,
q/p2 → 0 and m/p1 → ∞, n/p2 → ∞, and pN = p1 p2 = o((Nhr )1/2),
Nϕ(q) → 0.

7. The kernel function K (·) ≥ 0 is a bounded symmetric function with a compact
support.

Assumption 1 is standard in this context; it has been used, for instance, by Gao et al.
(2006) in the spatial context. The constants γ and δ in assumption 4may be interpreted
as two indices of the mixing dependence. Generally, larger γ and smaller δ indicate
less dependence. If ϕ(t) = O(t−κ) for some κ > 4(3 + δ)/δ or ϕ(t) = O(e−ιt ) for
some ι > 0, then assumption 4 holds. Assumptions 6 is used to derive the asymptotic
normality of the estimators.

Let F denote the class of additive functions such that F(xxx) ∈ F if F(xxx) = μ +∑d2
r=1 Fr (xr ) and Fr (xr ) satisfies assumption 2 and E(Fr (Xr )) = 0 for r = 1, . . . , d2.

To obtain the asymptotic distribution of β̂ββ, we first need to adjust for the dependence
of ZZZi j and XXXi j , which is a common complication in semiparametric models. Let
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fk(XXXi j ) = μk +
d2∑

r=1

fkr (Xi jr ) = argin fF(xxx)∈F E[Zi jk − F(XXXi j )]2

and θk(XXXi j ) = E(Zi jk |XXXi j ). Since

E[Zi jk − fk(XXXi j )]2 = E[Zi jk − θk(XXXi j )]2 + E[θk(XXXi j ) − fk(XXXi j )]2,

therefore, fk(XXXi j ) are the projections of θk(XXXi j ) onto the additive functional space F
(under the L2-norm). In other words, fk(XXXi j ) is an element that belongs to F and it
is the closest function to θk(XXXi j ) among all the functions in F , for any k = 1, . . . , d1.
Let Vi jk = Zi jk − fk(XXXi j ) and VVV i j = (Vi j1, . . . , Vi jd1)

T . Set ��� = E(VVV i jVVV T
i j ) and

��� = ∑+∞
i=−∞

∑+∞
j=−∞ E[VVV 00VVV T

i jε00εi j ]. The following theorem gives the asymptotic

distribution of the estimator β̂ββ.

Theorem 3.1 Suppose that assumptions 1–6 hold. Then

√
N (β̂ββ − βββ0)

d→ N (O,���−1������−1). (3.1)

Let μk = ∫
xkK (x)dx , νk = ∫

xkK 2(x)dx for k = 0, 1, . . ., and σ 2
r (xr ) =

E(ε2i j |Xi jr = xr ). The following Theorem 3.2 gives the asymptotic distribution of the

estimators f̂r (xr ) for r = 1, . . . , d2.

Theorem 3.2 Suppose that assumptions 1–7 hold and σ 2
r (xr ) is continuous in some

neighborhood of x0r and M1+δ/(4+δ)
N hr ≤ C2 for some positive constant C2. If x0r is

an interior point of [cr1, cr2], then,

√
Nhr

(
f̂r (x0r ) − fr (x0r ) − μ2h2r

2μ0
f ′′
r (x0r )

) d→ N
(
0,

ν0σ
2
r (x0r )

μ2
0gr (x0r )

)
. (3.2)

The result of Theorem 3.2 indicates that the estimator of fr (x0r ) in partially lin-
ear additive model has the same asymptotic distribution as the estimator in spatial
univariate nonparametric regression.

4 Simulations

We now study the finite sample performance of our proposed method in Sect. 2 using
a simulation spatial dataset. We shall use the following spatial partially linear additive
model. Let {ε(k)

i j : (i, j) ∈ E2}, k = 1, 2, 3be threemutually independent i.i.d. N (0, 1)

white-noise processes and {ε(4)
i j = (ε

(4)
i j1, ε

(4)
i j2, ε

(4)
i j3)

T : (i, j) ∈ E2} be an i.i.d. N (0,���)

process with ��� = (θkk′)3×3 and θkk′ = exp(−|k − k′|/3). Let {ε(5)
i j : (i, j) ∈ E2} be

an i.i.d. N (0, 0.1) white-noise process. Let
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Yi j = μ + Zi j1β1 + Zi j2β2 + Zi j3β3 +
3∑

r=1

fr (Xi jr ) + εi j (4.1)

with μ = 2.4, β1 = 1.6, β2 = −2.5, β3 = 3.1 and fr (Xr ) = f0r (Xr ) − E( f0r (Xr )),
where

f01(X1) = 1.2(X1 − 0.9)2, f02(X2) = −2.1 sin(X2 + 1.5), f03(X3)

= 1.8 cos(3X3 − 0.6).

We set Zi j1 = X2
i j1 − 2Xi j2 + ε

(1)
i j , Zi j2 = Xi j1 + X2

i j2 − 0.6X2
i j3 + ε

(2)
i j , Zi j3 =

0.9 + sin(2Xi j2 − Xi j3) + ε
(3)
i j , Xi j1 = (Ui j1 + Ui j2)/2, Xi j2 = (Ui j2 + Ui j3)/2,

Xi j3 = (U(i j1 +Ui j3)/2. {Ui jr : (i, j) ∈ E2}, r = 1, 2, 3 are generated by the spatial
autoregression

Ui jr = sin(U(i−1) jr +Ui( j−1)r +U(i+1) jr +Ui( j+1)r ) + ε
(4)
i jr ,

and {εi j : (i, j) ∈ E2} is generated by the spatial autoregression εi j = (ε(i−1) j +
εi( j−1) + ε(i+1) j + εi( j+1))/5 + ε

(5)
i j .

Data were simulated from this model over a rectangular domain of m × n sites—
more precisely, over a grid of the form {(i, j) : 76 ≤ i ≤ 75+m, 76 ≤ j ≤ 75+n}, for
various values ofm and n. Each replication was obtained iteratively by the steps given
in Hallin et al. (2004). 500 simulated spatial data sets are independently generated. For
each simulated data set, the estimators of βr , r = 1, 2, 3 andμwere computed by (2.2)
with pr = 1 and (2.6). The number of subinterval M1N = M2N = M3N = MN were
determined byBIC criterion given by (2.10).The estimators of fr (xr ), r = 1, 2, 3were
computed by (2.8) with Epanechnikov kernel. Bandwidth hr was select by “leave-one-
out” cross-validation procedure given by (2.10).

Table 1 summaries the mean square errors (MSE) of the estimators μ̂ and β̂r for
r = 1, 2, 3 and the mean integrated squared errors (MISE) of the estimators f̂r (xr ) for
r = 1, 2, 3 based on 500 simulations for different m and n. Figure 1 depicts the actual
functions fr (xr ), r = 1, 2, 3 and the mean estimated curves over 500 simulations with
m = 20, n = 20 and their 95% pointwise confidence bands. We see from Table 1 and
Fig. 1 that our estimation procedure gives satisfactory results ever if for small m and
n.

We now compare the proposed method (PM) with the B-spline method (BM) given
in Huang et al. (2010). In B-spline method, cubic splines with equally spaced knots
are used to approximate the additive functions fr (ur ), r = 1, 2, 3, the smoothing
parameter Kn were determined by BIC criterion. For differentm and n, Table 2 reports
theMSEs of parametric estimators μ̂ and β̂r , r = 1, 2, 3 and the mean of the weighted
average squared error W ASEr of the estimators f̂r (xr ), r = 1, 2, 3 based on 500
simulations, where W ASEr is defined as

W ASEr = 1

mn + 1 − 2[0.025mn]
mn−[0.025mn]∑

i=[0.025mn]

[ f̂r (x(ir)) − fr (x(ir))]2
[range( fr )]2 ,
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Table 1 MSEs and MISEs of the estimators based on regular grid data

MSE MISE

μ̂ β̂1 β̂2 β̂3 f̂1(u1) f̂2(u2) f̂3(u3)

m=10,n=10 0.0358 0.0099 0.0099 0.0038 0.7340 0.3659 0.4870

m=20,n=10 0.0315 0.0077 0.0062 0.0022 0.4964 0.2803 0.4355

m=15,n=20 0.0236 0.0069 0.0041 0.0013 0.3736 0.2101 0.4108

m=20,n=20 0.0219 0.0062 0.0036 0.0011 0.3403 0.1833 0.3950

m=30,n=20 0.0197 0.0058 0.0026 0.0009 0.2890 0.1561 0.3871
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Fig. 1 The actual and themean estimated curves for fr (xr ), r = 1, 2, 3 inmodel (4.1) withm = 20, n = 20
the 95% pointwise confidence bands. —, true curves; - - -, mean estimated curves; ..., 95% pointwise
confidence bands

x(1r) ≤ x(2r) ≤ · · · ≤ x(mnr) is a permutation of {xi jr : 76 ≤ i ≤ 75 + m, 76 ≤ j ≤
75+n} and range( fr ) is the range of the function fr (xr ). Since the data near the bound-
ary points are sparse, the estimators near the boundary points become poor. So we
removed these points fromW ASEr . Based on 500 simulations withm = 20, n = 10,
Fig. 2 displays the boxplots for squared errors (SE) of parametric estimators μ̂ and
β̂r , r = 1, 2, 3 andW ASEr of the estimators f̂r (xr ), r = 1, 2, 3. We see from Table 2
and Fig. 2 that there are no obvious differences between the parametric estimators of
two methods, but the estimators of additive components fr (xr ), r = 1, 2, 3 obtained
by the proposed method outperform that obtained by B-spline method. Because the
number of knots of all the B-spline functions approximating the additive compo-
nents fr (ur ), r = 1, 2, 3 is the same, when additive functions have different degrees
of smoothness, some estimators will become inefficient. In the proposed method,
we first obtain the estimators of βββ0 and the piecewise polynomial estimators of
fr (xr ), r = 1, 2, 3, the local linear estimator of fr (ur ) is obtained by solving the
univariate regression problem and the bandwidth hr is easily chosen.

To investigate the performances of the estimators under different Mn , Table 3 dis-
plays the simulation results based on 500 simulations with m = 20, n = 10. Table 3
shows that the MSEs for parametric estimators and the WASEs for nonparametric
estimators are not sensitive to the choice of Mn and these estimators are efficient
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Table 2 Comparison of the proposed method with B-spline method

Method MSE WASE

μ̂ β̂1 β̂2 β̂3 f̂1(u1) f̂2(u2) f̂3(u3)

m=10,n=10 PM 0.0215 0.0063 0.0067 0.0029 0.0028 0.0418 0.0364

BM 0.0318 0.0070 0.0085 0.0036 0.1615 0.3057 0.5053

m=20,n=10 PM 0.0180 0.0054 0.0044 0.0013 0.0015 0.0296 0.0267

BM 0.0179 0.0040 0.0053 0.0024 0.0796 0.2164 0.2062
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Fig. 2 Box plots for SE and WASE. Label 1 is boxplot for the proposed method and Label 2 is boxplot for
B-spline method. a is boxplot for μ̂, b is boxplot for β̂1, c is boxplot for β̂2, d is boxplot for β̂3, e is boxplot
for f̂1(x1), f is boxplot for f̂2(x2) and g is boxplot for f̂3(x3)

under broad ranges of Mn . These results also illustrate that the above BIC smoothing
parameter selection procedure generally gives the satisfactory results.

In order to investigate the influence of degree of the piecewise polynomial on the
estimators, based on 500 simulations, Table 4 reports the simulation results under
qr = 1, 2, 3, which correspond to piecewise linear function, piecewise quadratic
polynomial and piecewise cubic polynomial respectively. We see from Table 4 that
there is no essential difference between the three estimates. Of course, in comparison,
piecewise linear function is easier to operate.
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Table 3 The MSEs and WASEs for the estimators with different MN

MN MSE WASE

μ̂ β̂1 β̂2 β̂3 f̂1(x1) f̂2(x2) f̂3(x3)

2 0.2777 0.1291 0.0147 0.0097 0.0023 0.0414 0.0040

3 0.1289 0.0251 0.0321 0.0062 0.0012 0.0145 0.0046

4 0.0389 0.0108 0.0065 0.0026 0.0006 0.0056 0.0022

5 0.0303 0.0086 0.0067 0.0020 0.0006 0.0067 0.0042

6 0.0197 0.0061 0.0047 0.0013 0.0009 0.0080 0.0035

7 0.0165 0.0050 0.0036 0.0011 0.0009 0.0104 0.0066

8 0.0144 0.0041 0.0035 0.0010 0.0027 0.0290 0.0226

9 0.0144 0.0051 0.0029 0.0010 0.0047 0.0879 0.0727

10 0.0204 0.0062 0.0028 0.0010 0.0439 0.0493 0.0636

Table 4 The MSEs and WAESs for the estimators with different pr

pr MSE WASE

μ̂ β̂1 β̂2 β̂3 f̂1(u1) f̂2(u2) f̂3(u3)

m=20, n=10 1 0.0235 0.0031 0.0023 0.0007 0.0014 0.0128 0.0123

2 0.0195 0.0029 0.0024 0.0008 0.0027 0.0135 0.0234

3 0.0206 0.0064 0.0037 0.0008 0.0005 0.0126 0.0150

m=20,n=20 1 0.0153 0.0026 0.0015 0.0003 0.0007 0.0016 0.0067

2 0.0067 0.0021 0.0012 0.0004 0.0011 0.0022 0.0123

3 0.0128 0.0045 0.0020 0.0005 0.0004 0.0018 0.0149

In order to investigate the performances of our estimators based on irregular grid
data, we first generate data over the rectangular grid ofm×n sites. We then randomly
selected half of the data to fit the model, that is, each site has a probability 0.5 of
being selected. The final sample size is about mn/2. For different m and n, Table 5
summaries theMSEs of the parametric estimators and theMISEs of the nonparametric
estimators f̂r (xr ) for r = 1, 2, 3 based on 500 simulations. Comparing Table 5 with
Table 1, we see that there is no clear difference between two estimators of μ and
βr , r = 1, 2, 3. When the sample size is small (N=100,200), the estimators of fr (xr )
for r = 1, 2, 3 based on regular grid data is slightly better than that based on irregular
grid data, but the sample size is large (N=300,400,600), there is no clear difference
between two estimators of fr (xr ) for r = 1, 2, 3. All these show that our estimation
method is also efficient for irregular grid data.

5 A real data example

In this section, we apply our methods to analyze a real estate data set which includes
the real estate data for 203 second-, third-and fourth-tier cities in China in 2016. Our
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Table 5 MSEs and MISEs of the estimators based on irregular grid data

MSE MISE

μ̂ β̂1 β̂2 β̂3 f̂1(u1) f̂2(u2) f̂3(u3)

m=20,n=10 0.0784 0.0070 0.0081 0.0030 0.7366 0.4266 0.5191

m=20,n=20 0.0513 0.0062 0.0047 0.0013 0.4999 0.3119 0.4523

m=30,n=20 0.0406 0.0041 0.0030 0.0008 0.3702 0.2130 0.4154

m=40,n=20 0.0334 0.0061 0.0027 0.0006 0.3437 0.1707 0.3962

m=30,n=40 0.0250 0.0037 0.0016 0.0004 0.2760 0.1606 0.3842

purpose is to study the relationship between urban housing prices and their influencing
factors. The response variable is urban housing price (Price). The covariates of primary
interests include the average annual income of urban residents (Income), urban cate-
gory, urban population, urban GDP, the ratio of no house and one house (RNO), bank
interest rate (BIR), urban livability index (ULI), urban comprehensive competitiveness
(UCC) and urban development index (UDI). We note that among these variables the
data of some variables such as population and GDP are very large, whereas that of
some variables such as ULI and UCC are small. For this purpose, for each data of these
variables, we first make the following modification: each observation was divided by
the maximum of all observations for this variable, so that the maximum of modified
data of the variable is 1.

We first consider the following partially linear additive regression

log(Price) = μ + β1Z1 + β2Z2 + f1(I ncome) + f2(Population) + f3(GDP)

+ f4(RNO) + f5(BI R) + f6(UL I ) + f7(UCC) + f8(UDI ) + ε,

(5.1)

where Z1 = 1, Z2 = 0 stands for second-tier city, Z1 = 0 and Z2 = 1 stands for
third-tier city and Z1 = 0 and Z2 = 0 stands for fourth-tier city.

The estimators of β1 and β2 are computed by (2.2) with pr = 1, the estimators ofμ
is computed by (2.6). The number of subinterval MN are determined by BIC criterion
given in Sect. 2. The estimators of fr (·), r = 1, . . . , 8 are computed by (2.8) with
Epanechnikov kernel. Bandwidth hr are selected by “leave-one-out” cross-validation
procedure. Table 6 exhibits the parametric estimators, and Fig. 3 shows the estimated
curves of the additive components and their 95% pointwise confidence intervals. The
fact that β̂1 > β̂2 > 0 in Table 6 indicates that the housing price for a second-tier
city is larger than that for a third-tier city and the housing price for a third-tier city
is larger than that for a fourth-tier city. We see from Fig. 3 that the estimated curves
f̂1(I ncome), f̂4(RNO) and f̂8(UDI ) show rising trends as Income, RNO and UDI
increase, while f̂5(BI R) show decreasing trends as BIR increase. Figure 3 shows the
subtle impact of the urban population and urban livability index (ULI) on housing
prices, which overall declines as the urban population increases, while housing prices
overall rise along with the urban livability index. This can be explained that some
central and western cities, such as Fuyang, Shangqiu, Nanyang and Handan, have
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Table 6 The parametric
estimators for model (5.1). The
values in parenthesis are
standard error

μ̂ β̂1 β̂2

8.4092 0.6110 0.3325

( 0.0110) ( 0.0385) (0.0135)
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Fig. 3 The estimated curves (solid line) and their 95% pointwise confidence intervals (dotted lines)

large populations, while housing prices in these cities are low. Figure 3 shows that
f̂3(GDP) appears the changing trend of decreasing first and then rising, this is due
to lower house prices in some central and western cities, and higher prices in some
eastern cities with high GDP. Figure 3 also shows that f̂7(UCC) appears the changing
trend of rising first and then decreasing.

We find from Fig. 3 that the estimated curves of f2(Population), f4(RNO) and
f6(UL I )) approximate straight line. We then further construct the following partially
linear additive regression

log(Price) = μ + β1Z1 + β2Z2 + β3Population + β4RNO + β5UL I
+ f1(I ncome) + f2(GDP) + f3(BI R) + f4(UCC) + f5(UDI ) + ε,

(5.2)

Table 7 displays the parametric estimators and Fig. 4 shows the estimated curves of
the additive components and their 95% pointwise confidence intervals in model (5.2).
We see from Table 7 that log(Price) is negatively associated with urban population
and positively associated with the ratio of no house and one house and urban livability
index. Since the absolute values of β̂3 and β̂5 are small, it is shown to have a small
effect on log(Price). Figure 4 shows that the estimated curves in model (5.2) are
similar to that in model (5.1).
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Table 7 The parametric estimators for model (5.2). The values in parenthesis are standard error

μ̂ β̂1 β̂2 β̂3 β̂4 β̂5

7.9804 0.4515 0.2860 −0.1311 0.5394 0.0519

( 0.1475) (0.0413) (0.0178) (0.0694) ( 0.1651) (0.0870)
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Fig. 4 The estimated curves (solid line) and their 95% pointwise confidence intervals (dotted lines)
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Fig. 5 Boxplot for the absolute prediction error | ̂log(Pricei )) − log(Pricei ))|, i = 1, . . . , 203 for two
models. Here 1 is the boxplot for model (5.1) and 2 is the boxplot for models (5.2)

To evaluate the prediction performance of model (5.1) and model (5.2), we applied
leave-one-out cross-validation to the data; i.e., when predicting the housing price for
the ith city, we omit the data for this city when fitting the models. Figure 5 displays
the boxplots for the absolute prediction errors | ̂log(Pricei ) − log(Pricei )|, i =
1, . . . , 203, for models (5.1) and (5.2), where Pricei denotes the housing price for
the ith city. The mean values of these errors for the two models are 0.3050 and 0.2031
respectively. We see from Fig. 5 and the mean absolute prediction errors that model
(5.2) behaviors better than model (5.1) in prediction performance.
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6 Conclusion and future studies

We have proposed a new estimation procedure for partially linear additive regressions
with spatial data using piecewise polynomials combined with local linear methods.
The proposedmethod is suitable for high dimensional data, there is no need to solve the
restricted minimization problem and no iterative algorithms are needed. Under mild
regularity assumptions, the asymptotic distribution of the estimator of the unknown
parameter vector is established, the asymptotic distributions of the estimators of the
unknown functions are also derived.

We method focuses on data on a regular grid. Simulation studies in Sect. 4 demon-
strate the proposed procedure is also efficient for data irregularly positioned, but the
relevant theoretical properties will need to be developed, which are left for future
research. As pointed out by a referee, geoadditive models in which spatial effect is
modeled via a bivariate function have been proposed and investigated in literature. Our
method can be extended to geoadditive models. We leave such extensions to future
work.

Appendix: Proofs

In this section, let C > 0 denote a generic constant of which the value may change
from line to line. For a matrix B = (bi j ), set ‖B‖∞ = maxi

∑
j |bi j | and |B|∞ =

maxi, j |bi j |. For a vector v = (v1, . . . , vk)
T , set ‖v‖∞ = ∑k

j=1 |v j | and |v|∞ =
max1≤ j≤k |v j |.

Let frν(xr ) = χrν(xr ) fr (xr ), f̄rν = (
∑m

i=1
∑n

j=1 frν(Xi jr ))/(
∑m

i=1
∑n

j=1 χrν

(Xi jr )),

f̌rν(xr ) = fr (xrν) Ărν0(xr ) + hr0 f
′
r (xrν) Ărν1(xr ) + . . . + h prr0 f (pr )

r (xrν) Ărνqr (xr )/pr !,

¯̌frν = (
∑m

i=1
∑n

j=1 f̌rν(Xi jr ))/(
∑m

i=1
∑n

j=1 χrν(Xi jr )) and f ∗
rν(Xi jr ) = [ frν(Xi jr )

− χrν(Xi jr ) f̄rν] − [ f̌rν(Xi jr ) − χrν(Xi jr )
¯̌frν]. Noting that fr (xr ) = ∑MrN

ν=1 frν(xr )

and frν(Xi jr ) = χrν(Xi jr ) f̄rν +[ f̌rν(Xi jr )−χrν(Xi jr )
¯̌frν]+ f ∗

rν(Xi jr ), we get that

fr (Xi jr ) = AAAT
r (Xi jr )a0ra0ra0r + F̄rMrN χrMrN (Xi jr ) + ∑MrN

ν=1 f ∗
rν(Xi jr ), (A.1)

where aaa0r = (aaaT0r1, · · · ,aaaT0rMrN
)T with aaa0rν = ( f̄rν, hr0 f ′

r (xrν), . . . , h
pr
r0 f

(pr )
r

(xrν)/pr !)T for ν = 1, . . . , MrN − 1 and aaa0rMrN = (hr0 f ′
r (xrMrN ), . . . ,

h pr
r0 f

(pr )
r (xrMrN )/pr !)T , F̄rMrN = (

∑m
i=1

∑n
j=1 fr (Xi jr ))/(

∑m
i=1

∑n
j=1 χrMrN (Xi jr )).

Let fkrν(xr ) = χrν(xr ) fkr (xr ), f ∗
krν(Xi jr ), k = 1, . . . , d1 and F̄krMrN are defined

similarly as f ∗
rν(Xi jr ) and F̄rMrN . Denote 	Y = Ȳ − E(Y ), 	ZZZ = Z̄ZZ − E(ZZZ),
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Z̆ZZi j = (Z̆i j1, . . . , Z̆i jd1)
T with

Z̆i jk =
d2∑

r=1

(F̄krMrN χrMrN (Xi jr ) +
MrN∑

ν=1

f ∗
krν(Xi jr )) − 	Zk + Vi jk, k = 1, . . . , d1.

(A.2)

Let

Y̆i j =
d2∑

r=1

(F̄rMrN χrMrN (Xi jr ) +
MrN∑

ν=1

f ∗
rν(Xi jr )) + 	ZZZT

βββ0 − 	Y + εi j . (A.3)

Then, we have

β̂ββ − βββ0 = �̆��
−1
N

[∑m
i=1

∑n
j=1 Z̆ZZi j Y̆i j − W̆WWN AAA

−1
N

(∑m
i=1

∑n
j=1 AAA(XXXi j )Y̆i j

)]
, (A.4)

with

�̆��N =
m∑

i=1

n∑

j=1

Z̆ZZi j Z̆ZZ
T
i j − W̆WWN AAA

−1
N W̆WW

T
N , W̆WWN =

m∑

i=1

n∑

j=1

Z̆ZZi j AAA(XXXi j )
T . (A.5)

Lemma A.1 Under assumptions 1–5, it holds that

max
1≤r≤d,1≤ν≤MrN ,1≤k≤pr

∣∣∣
1

N

m∑

i=1

n∑

j=1

Ărνk(Xi jr ) − E( Ărνk(Xr ))

∣∣∣ = op(M
−2
N ).

Proof Let DN = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, Ãrνk(Xi jr ) = Ărνk(Xi jr ) −
E( Ărνk(Xi jr )) and A∗ = max1≤r≤d2,1≤ν≤MrN ,1≤k≤pr

∣∣ 1
N

∑m
i=1

∑n
j=1 Ãrνk(Xi jr )|.

For any sufficiently small positive constant ε, we have

P(A∗ > εM−2
N ) ≤ M4

N
ε2N2

∑d2
r=1

∑MrN
ν=1

∑
k

[∑
(i, j)∈DN

E( Ă2
rνk(Xi jr ))

+∑ ∑
(i ′, j ′) 
=(i, j)∈DN

|E( Ãrνk(Xi jr ) Ãrνk(Xi ′ j ′r ))|
]
.

(A.6)

Let cNk = [Mδ/((2+δ)τ )
N ] for k = 1, 2, where τ > 2(4 + δ)/(2 + δ) is a constant. Let

the set {(i, j) 
= (i ′, j ′) ∈ DN } be split into the following two parts

S1 = {(i, j) 
= (i ′, j ′) ∈ DN : |i − i ′| ≤ cN1, | j − j ′| ≤ cN2},
S2 = {(i, j) 
= (i ′, j ′) ∈ DN : |i − i ′| > cN1 or | j − j ′| > cN2}.

By assumption 5, we have

M4
N

ε2N2

∑d2
r=1

∑MrN
ν=1

∑
k
∑

(i ′, j ′),(i, j)
∑

∈S1 |E( Ãrνk(Xi jr ) Ãrνk(Xi ′ j ′r ))|
≤ CM4+2δ/((2+δ)τ )

N /N = o(1).
(A.7)
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Turning to S2, using Lemma 5.1 of Hallin et al. (2004b), we obtain that

|E( Ãrνk(Xi jr ) Ãrνk(Xi ′ j ′r ))| ≤ C(E | Ãrνk(Xi jr )|2+δ))2/(2+δ)(ϕ(‖(i ′, j ′)
−(i, j)‖))δ/(2+δ) ≤ CM−2/(2+δ)

N (ϕ(‖(i ′, j ′)
−(i, j)‖))δ/(2+δ).

Therefore, by assumptions 4 and 5 , we get

M4
N

ε2N2

∑d2
r=1

∑MrN
ν=1

∑
k
∑

(i ′, j ′),(i, j)
∑

∈S2 |E( Ãrνk(Xi jr ) Ãrνk(Xi ′ j ′r ))|
≤ C

M4
N

ε2N2 N
∑2

l=1 c
τ
Nl

∑N
t=cNl

t(ϕ(t))δ/(2+δ) = o(1).
(A.8)

NowLemmaA.1 follows from (A.6)–(A.8) and the fact that
∑

(i, j)∈DN
E( Ă2

rνk(Xi jr ))

≤ NM−1
N . ��

Lemma A.2 Under assumptions 1-5, it holds that

‖W̆WWN/N‖∞ = op(M
1/2+δ/(2+δ)τ
N /N 1/2).

Proof We first prove

‖ 1

N

m∑

i=1

n∑

j=1

AAA(XXXi j )Vi jl‖∞ = op(M
1/2+δ/(2+δ)τ
N /N 1/2), l = 1, . . . , d1. (A.9)

Let ξi jrν1 = χrν(Xi jr ) − E(χrν(Xr ))χrMrN (Xi jr )/E(χrMrN (Xr )),

ξrν2 =
∑m

i=1
∑n

j=1 χrν (Xi jr )∑m
i=1

∑n
j=1 χrMrN (Xi jr )

− E(χrν (Xr ))
E(χrMrN (Xr ))

,

ηi jrνk1 = ( Xi jr−xrν
hr0

)k − E(((Xr−xrν )/hr0)kχrν (Xr ))
E(χrν (Xr ))

,

ηrνk2 =
∑m

i=1
∑n

j=1 χrν (Xi jr )((Xi jr−xrν )/hr0)k∑m
i=1

∑n
j=1 χrν (Xi jr )

− E(χrν (Xr )((Xr−xrν )/hr0)k)
E(χrν (Xr ))

.

Then

‖ 1
N

∑m
i=1

∑n
j=1 AAA(XXXi j )Vi jl‖∞

≤ ∑d2
r=1

∑MrN−1
ν=1

1
N

∣∣∑m
i=1

∑n
j=1(ξi jrν1 + χrMrN (Xi jr )ξrν2)Vi jl

∣∣
+∑d2

r=1

∑MrN
ν=1

∑pr
k=1

1
N

∣∣∑m
i=1

∑n
j=1 χrν(Xi jr )(ηi jrνk1 + ηrνk2)Vi jl

∣∣.
(A.10)

Similar to the proof of Lemma A.1, we obtain that E[∑m
i=1

∑n
j=1 ξi jrν1Vi jl ]2 ≤

CNM2δ/((2+δ)τ )−1
N and E[∑m

i=1
∑n

j=1 χrν(Xi jr )ηi jrνk1Vi jl ]2 ≤ CNM2δ/((2+δ)τ )−1
N .

Hence,

d2∑

r=1

MrN−1∑

ν=1

1

N
|

m∑

i=1

n∑

j=1

ξi jrν1Vi jl | = op(M
1/2+δ/(2+δ)τ
N /N 1/2), (A.11)
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d2∑

r=1

MrN∑

ν=1

pr∑

k=1

1

N
|

m∑

i=1

n∑

j=1

χrν(Xi jr )ηi jrνk1Vi jl | = op(M
1/2+δ/(2+δ)τ
N /N 1/2).

(A.12)

Lemma A.1 implies max1≤r≤d2,1≤ν≤MrN−1 |ξrν2| = op(M
−1
N ), max1≤r≤d2,1≤ν≤MrN

|ηrνk2| = op(M
−1
N ). Since E[χrν(Xi jr )Vi jl ] = E[(χrν(Xi jr ) − Eχrν(Xi jr ))Vi jl ] +

E(χrν(Xi jr ))E(Vi jl) = 0, then by arguments similar to those used in the proof of
Lemma A.1, we have

1

N

∣∣
m∑

i=1

n∑

j=1

χrMrN (Xi jr )Vi jl
∣∣ = op(N

−1/2), (A.13)

Therefore,

d2∑

r=1

MrN−1∑

ν=1

|ξrν2|
N

∣∣
m∑

i=1

n∑

j=1

χrMrN (Xi jr )Vi jl
∣∣ = op(N

−1/2), (A.14)

d2∑

r=1

MrN∑

ν=1

pr∑

k=1

|ηrνk2|
N

∣∣
m∑

i=1

n∑

j=1

χrν(Xi jr )Vi jl
∣∣ = op(N

−1/2). (A.15)

Now (A.9) follows from (A.10)–(A.12), (A.14) and (A.15). Similar to the proof of
(A.9), we deduce that

‖ 1

N

m∑

i=1

n∑

j=1

χrMrN (Xi jr )AAA(XXXi j )‖∞ = op(M
−1
N ). (A.16)

Using the fact that E( fr (Xr )) = 0, we get that F̄rMrN = Op(M
3/2
N /N 1/2). Hence,

‖ 1

N

m∑

i=1

n∑

j=1

F̄rMrN χrMrN (Xi jr )AAA(XXXi j )‖∞ = op(M
1/2
N /N 1/2). (A.17)

Similar to the proof of (A.9) and using Assumptions , we have

‖ 1

N

m∑

i=1

n∑

j=1

[ d2∑

r=1

MrN∑

ν=1

f ∗
krν(Xi jr )

]
AAA(XXXi j )‖∞ = op(M

−pr
N N−1/2). (A.18)

Similar to the proof of (A.17), we get that

‖ 1

N

m∑

i=1

n∑

j=1

	ZkAAA(XXXi j )‖∞ = op(M
−1/2
N N−1/2). (A.19)
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Now Lemma A.2 follows from (A.9) and (A.17)–(A.19)and Assumption 5. ��
Lemma A.3 Under Assumptions 1-5, it holds that

�̆��N/N = ��� + op(1).

Proof Wefirst prove thatMN AAAN/N is invertible. Let λmin be theminimum eigenvalue
of MN AAAN/N . By Lemma 3 of Stone (1985) and Lemma A.1 and using Assumption
4 and the fact that χrν(Xi jr )χrν′(Xi jr ) = 0 for ν 
= ν′, we have that

λmin = inf‖aaa‖=1
MN
N aaaT AAANaaa

= inf‖aaa‖=1
MN
N

∑m
i=1

∑n
j=1

( ∑d2
r=1[

∑MrN−1
ν=1

∑pr
k=0 arνk Arνk(Xi jr )

+∑pr
k=1 arMrN k ArMrN k(Xi jr )]

)2

≥ C inf‖aaa‖=1
∑d2

r=1
MN
N

∑m
i=1

∑n
j=1

[ ∑Mrn−1
ν=1 (arν0χrν(Xi jr )

+∑pr
k=1 arνk Arνk(Xi jr ))

2

+(−χrMrN (Xi jr )
∑MrN−1

ν=1 arν0ErMrN ν + ∑pr
k=1 arMrN k ArMrN k(Xi jr ))

2
]

≥ C inf‖aaa‖=1
∑d2

r=1(
∑Mrn−1

ν=1 aaaTrνGraaarν + aaaTrMrn
G∗

r aaarMrn ) + op(1),

where ErMrN ν = ∑m
i=1

∑n
j=1 χrν(Xi jr )/

∑m
i=1

∑n
j=1 χrMrN (Xi jr ), Gr =

(gri j )(pr+1)×(pr+1) with gr11 = 2 and gri j = ∫ 1
−1 x

i+ j−2
r dxr −∫ 1

−1 x
i−1
r dxr

∫ 1
−1 x

j−1
r

dxr/2 for i > 1 or j > 1, G∗
r = (g∗

ri j )pr×pr with g∗
ri j = ∫ 1

−1 x
i+ j
r dxr −

∫ 1
−1 x

i
r dxr

∫ 1
−1 x

j
r dxr/2 and aaarν = (arν0, arν1, . . . , arν pr )

T for ν = 1, . . . , Mrn − 1
and aaarMrn = (arMrn1, . . . , arMrn pr )

T . For fixed pr , it is easy to prove that Gr

and G∗
r are positive definite. Hence, there exists a positive constant C∗

1 such that
λmin ≥ C∗

1 + op(1) and consequently MN AAAN/N is invertible. By arguments simi-
lar to those used to prove Lemma A.1 and using the fact that E( fkr (Ur )) = 0 for
k = 1, . . . , d1, we get that

1

N

m∑

i=1

n∑

j=1

Z̆ZZi j Z̆ZZ
T
i j = E(VVVVVV T ) + op(1). (A.20)

Using Lemma A.2 and assumption 5, we obtain that

|W̆WWN AAA
−1
N W̆WW

T
N/N |∞ ≤ MN‖W̆WWN/N‖2∞ · |(MN AAAN/N )−1|∞ = op(1). (A.21)

Now Lemma A.3 follows from (A.5), (A.20) and (A.21). ��
Proof of Theorem 3.1 Using (A.13), we obtain that

d2∑

r=1

1

N

m∑

i=1

n∑

j=1

F̄rMrN χrMrN (Xi jr )Vi jk = op(M
3/2
N N−1). (A.22)
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Similar to the proof of (A.18), we have

1

N

m∑

i=1

n∑

j=1

[ d2∑

r=1

MrN∑

ν=1

f ∗
krν(Xi jr )

]
Vi jk = op(M

−pr
N N−1/2). (A.23)

Since

1

N

m∑

i=1

n∑

j=1

( 	ZZZT
βββ0 + 	Y )Vi jk = ( 	ZZZT

βββ0 + 	Y )
1

N

m∑

i=1

n∑

j=1

Vi jk = op(MN N
−1),

(A.24)

then by (A.3), we have

N−1/2
m∑

i=1

n∑

j=1

Y̆i j Vi jk = N−1/2
m∑

i=1

n∑

j=1

εi j Vi jk + op(1). (A.25)

Similarly, N−1/2 ∑m
i=1

∑n
j=1(Z̆i jk − Vi jk)εi j = op(1). Under the assumptions of

Theorem 3.1, it is easy to prove that

N−1/2
m∑

i=1

n∑

j=1

(Z̆i jk − Vi jk)(Y̆i j − εi j ) = op(1).

Hence,

N−1/2
m∑

i=1

n∑

j=1

Z̆ZZi j Y̆i j = N−1/2
m∑

i=1

n∑

j=1

VVV i jεi j + op(1). (A.26)

Similar to the proof of Lemma A.2, we deduce that

‖ 1

N

m∑

i=1

n∑

j=1

AAA(XXXi j )Y̆i j‖∞ = op(M
1/2+δ/(2+δ)τ
N /N 1/2). (A.27)

Therefore, Using Lemma A.2 and (A.27), we conclude that

N−1/2|W̆WWN AAA
−1
N

( m∑

i=1

n∑

j=1

AAA(XXXi j )Y̆i j
)|∞

≤ N 1/2MN‖W̆WWN/N‖∞ · |(MN AAAN/N )−1|∞ · ‖ 1

N

m∑

i=1

n∑

j=1

AAA(XXXi j )Y̆i j‖∞

= N 1/2MNop(M
1+2δ/(2+δ)τ
N /N ) = op(1). (A.28)
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By arguments similar to those used in the proof of Lemma 6 of Tang andCheng (2009),
we canprove that N−1/2 ∑m

i=1
∑n

j=1 VVV i jεi j is asymptotically normal. Therefore, (3.2)
follows from (A.4), Lemma (A.3), (A.25) and (A.28). The proof of Theorem 3.1 is
completed. ��
Proof of Theorem 3.2 Let aaa0 = (aaaT01, . . . ,aaa

T
0d)

T . By arguments similar to those used
to prove Lemma A.2, we deduce that

‖ãaa − aaa0‖2 ≤ CM2
N‖

m∑

i=1

n∑

j=1

AAA(XXXi j )
(
Ȳi j − Z̄ZZ

T
i jβ̂ββ − AAAT (XXXi j )aaa0)‖2

= op(M
2+2δ/(2+δ)τ
N /N ).

Hence, under the assumptions of Theorem 3.2, by arguments similar to those used to
prove Lemma A.2, we obtain that

( ∑m
i=1

∑n
j=1 K

( Xi jr−x0r
hr

)( ∑
r ′ 
=r f̃r ′(Xi jr ′) − ∑

r ′ 
=r fr ′(Xi jr ′)
))2

≤ ‖ãaa − aaa0‖2
∥∥∑m

i=1
∑n

j=1 K
( Xi jr−x0r

hr

)
AAA−r (XXXi j )

∥∥2

+[ ∑m
i=1

∑n
j=1 K

( Xi jr−x0r
hr

)∑
r ′ 
=r (F̄r ′Mr ′N χr ′Mr ′N (Xi jr ′) + ∑Mr ′N

ν=1 f ∗
r ′ν(Xi jr ′))

]2

= op(NM1+2δ/(2+δ)τ
N h2r ) = op(Nhr ),

where AAA−r (XXXi j ) = (AAA1(Xi j1), . . . , AAAr−1(Xi j(r−1)), AAAr+1(Xi j(r+1)), . . . , AAAd(Xi jd))
T .

Therefore,

(Nhr )
−1/2

m∑

i=1

n∑

j=1

K
( Xi jr − x0r

hr

)
BBBi jr

( ∑

r ′ 
=r

f̃r ′(Xi jr ′) −
∑

r ′ 
=r

fr ′(Xi jr ′)
) = op(1).

(A.29)

Now by arguments similar to those used in the proof of Theorem 3.1 of Hallin et al.
(2004) and using (A.29), we can easily complete the proof of Theorem 3.2. ��

References

Al-Sulami D, Jiang Z, Lu Z, Zhu J (2017) Estimation for semiparametric nonlinear regression of irregularly
located spatial time-series data. Econom Stat 2:22–35

Athreya KB, Pantala SG (1986) A note on strong mixing of ARMA processes. Stat Probab Lett 4:187–190
Brieman L, Friedman J (1985) Estimating optimal transformations for multiple regression and correlation

(with discussion). J Am Stat Assoc 80:580–619
Buja A, Hastie T, Tibshirani R (1989) Linear smoothers and additive models (with discussion). Ann Stat

17:453–555
ChengG,ZhouL,Huang J (2014)Efficient semiparametric estimation in generalized partially linear additive

models for longitudinal/clustered data. Bernoulli 20:141–163
Cressie NAC (1991) Statistics for spatial data. Wiley, New York
FanY,LiQ (2003)Akernel-basedmethod for estimating additive partially linearmodels. Stat Sin 13:739–62
Friedman J, Stuetzle W (1981) Projection pursuit regression. J Am Stat Assoc 76:817–823

123



Estimation for partially linear additive regression… 2063

Gao J, Lu Z, Tjøstheim D (2006) Estimation in semiparametric spatial regression. Ann Stat 34:1395–1435
Hallin M, Lu Z, Tran LT (2001) Density estimation for spatial linear processes. Bernoulli 7:657–668
Hallin M, Lu Z, Tran LT (2004) Local linear spatial regression. Ann Stat 32:2469–2500
Huang J, Horowitz J, Wei F (2010) Variable selection in nonparametric additive models. Ann Stat 38:2282–

2313
Lee YK, Choi H, Park BU, Yu KS (2004) Local likelihood density estimation on random fields. Stat Probab

Lett 68:347–57
Li Q (2000) Efficient estimation of additive partially linear models. Int Econ Rev 41:1073–1092
Lian H, Liang H, Ruppert D (2015) Separation of covariates into nonparametric and parametric parts in

high-dimensional partially linear additive models. Stat Sin 25:591–607
Liang H, Thurston S, Ruppert D, Apanasovich T, Hauser R (2008) Additive partial linear models with

measurement errors. Biometrika 95:667–678
Nandy S, Lim C, Maiti T (2017) Additive model building for spatial regression. J R Stat Soc B 79:779–800
Ramsay T (2002) Spline smoothing over difficult regions. J R Stat Soc B 64:307–319
Ripley B (1981) Spatial statistics. Wiley, New York
Rosenblatt M (1956) A central limit theorem and a strong mixing condition. Proc Natl Acad Sci USA

42:43–47
Sherwood B, Wang L (2016) Partially linear additive quantile regression in ultra-high dimension. Ann Stat

44:288–317
Stone C (1985) Additive regression and other nonparametric models. Ann Stat 13:689–705
Tang Q, Cheng L (2009) B-spline estimation for varying coefficient regression with spatial data. Sci Chin

Ser A 52(11):2321–2340
Tran LT (1990) Kernel density estimation on random field. J Multivar Anal 34:37–53
Yang J, Yang H, Lu F (2019) Rank-based shrinkage estimation for identification in semiparametric additive

models. Stat Pap 60:1255–1281
You J, ZhouX (2013)Efficient estimation in panel data partially additive linearmodelwith serially correlated

errors. Stat Sin 23:271–303
Yu S, Wang G, Wang L, Liu C, Yang L (2020) Estimation and Inference for Generalized Geoadditive

Models. J Am Stat Assoc 115:761–774

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Estimation for partially linear additive regression  with spatial data
	Abstract
	1 Introduction
	2 Estimation method
	3 Asymptotic properties of the estimators
	4 Simulations
	5 A real data example
	6 Conclusion and future studies
	Appendix: Proofs
	References




