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Abstract
This paper develops a simple and computationally efficient parametric approach to the
estimation of general hidden Markov models (HMMs). For non-Gaussian HMMs, the
computation of themaximum likelihood estimator (MLE) involves a high-dimensional
integral that has no analytical solution and can be difficult to approach accurately. We
develop a new alternative method based on the theory of estimating functions and a
deconvolution strategy. Our procedure requires the same assumptions as the MLE and
deconvolution estimators. We provide theoretical guarantees about the performance
of the resulting estimator; its consistency and asymptotic normality are established.
This leads to the construction of confidence intervals. Monte Carlo experiments are
investigated and compared with the MLE. Finally, we illustrate our approach using
real data for ex-ante interest rate forecasts.
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1 Introduction

In this paper, a hidden non-linear Markov model (HMM) with heteroskedastic noise is
considered; we observe n random variables Y1, . . . , Yn having the following additive
structure {

Yi = Xi + εi

Xi+1 = bθ0(Xi ) + σθ0(Xi )ηi+1,
(1)

where (Xi )i≥1 is a strictly stationary, ergodic unobserved Markov chain that depends
on two known measurable functions bθ0 and σθ0 up to the unknown parameter θ0. In
addition to its initial distribution, the chain (Xi )i≥1 is characterized by its transition,
i.e., the distribution of Xi+1 given Xi and by its stationary density fθ0 . We assume
that the transition distribution admits a density �θ0 , defined by �θ0(x, x ′)dx ′ =
Pθ0(Xi+1 ∈ dx ′|Xi = x). For the identifiability of (1), we assume that ε1 admits a
known density with respect to the Lebesgue measure denoted by fε.

Our objective is to estimate the parameter vector θ0 for non-linear HMMs with
heteroskedastic innovations described by the function σθ0 in (1) assuming that the
model is correctly specified, i.e., θ0 belongs to the interior of a compact set � ⊂ R

r ,
with r ∈ N

∗.
Many articles have focused on parameter estimation and on the study of asymptotic

properties of estimators when (Xi )i≥1 is an autoregressive moving average (ARMA)
process (see Chanda (1995), Staudenmayer and Buonaccorsi (2005) and Costa and
Alpuim (2010)) or in a regression context with measurement error (see, e.g., Zhou
et al. (2010), Miao et al. (2013) or Fan et al. (2013)). However, for more general
models, (1) is known as HMMwith potentially a non-compact continuous state space.
This model constitutes a very famous class of discrete-time stochastic processes, with
many applications in various fields such as biology, speech recognition or finance. In
Douc et al. (2011), the authors study the consistency of the MLE estimator for general
HMMs, but they do not provide a method for calculating it in practice. It is well-
known that its computation is extremely expensive due to the non-observability of the
Markov chain and the proposed methodologies are essentially based on expectation-
maximization (EM) approach or Monte Carlo-based methods (e.g., Markov chain
Monte Carlo (MCMC), Sequential Monte Carlo (SMC) or particle Markov chain
Monte Carlo, see Andrieu et al. (2010), Chopin et al. (2013) and Olsson and Rydén
(2007)). Except in the Gaussian and linear setting, where the MLE can be processed
by a Kalman filter, the calculation will be relatively fast but there are few cases where
real data satisfy this assumption.

In this paper, we do not consider the Bayesian approach; we consider the model
(1) as a so-called convolution model, and our approach is therefore based on Fourier
analysis. The restrictions on error distribution and rate of convergence obtained for
our estimator are also of the same type. If we focus our attention on (semi-)parametric
models, few results exist. To the best of our knowledge, the first study that gives a
consistent estimator is Comte and Taupin (2001). The authors propose an estimation
procedure based on least squaresminimization. Recently, inDedecker et al. (2014), the
authors generalize this approach to the models defined as Xi = bθ0(Xi−1)+ηi , where
bθ0 is the regression function assumed to be known up to θ0 and for homoscedas-
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Parametric estimation of hidden Markov models by least squares... 1617

tic innovations ηi . Also, in El Kolei (2013) and El Kolei and Pelgrin (2017), the
authors propose a consistent estimator for parametric models assuming knowledge
of the stationary density fθ0 up to the unknown parameters θ0 for the construction
of the estimator. For many processes, this density has no analytic expression, and
even in some cases where it is known, it may be more complex to apply deconvo-
lution techniques using this density rather than the transition density. For example,
the autoregressive conditional heteroskedasticity (ARCH) processes form a family of
processes for which transition density has a closed form as opposed to the stationary
density. These processes are widely used to model economic or financial variables.

In this work, we aim to develop a new computationally efficient approach whose
construction does not require the knowledge of the invariant density. We provide a
consistent estimator with a parametric rate of convergence for general models. Our
approach is valid for non-linear HMMs with heteroskedastic innovations, and our
estimation principle is based on the contrast function as proposed proposed in a non-
parametric context by Lacour (2007) and Brunel et al. (2007). Thus, we aim to adapt
their approach in a parametric context, assuming that the form of the transition den-
sity �θ0 is known up to some unknown parameter θ0. The proposed methodology is
purely parametric, and we go a step further by proposing an analytical expression of
the asymptotic variance matrix �(θ̂n), which allows us to consider the construction
of confidence intervals.

Under general assumptions, we prove that our estimator is consistent and gives
some conditions under which the asymptotic normality can be stated and also pro-
vides an analytical expression of the asymptotic variance matrix. We show that this
approach is much less greedy from a computational point of view than the MLE for
non-Gaussian HMMs, and its implementation is straightforward since it requires only
Fourier transforms, as in Dedecker et al. (2014). In particular, a numerical illustra-
tion is given for the three following models: a Gaussian AR(1) model for which our
approach can be well understood, an AR(1) process with Laplace’s noise in order to
study the influence of the smoothness of observation noise on the estimation of the
parameters since it is known in deconvolution to affect the convergence rate (see, e.g.,
Fan et al. (1991)), and a stochastic volatility model (SV) also referred to as the unob-
served components/stochastic volatility model (see, e.g., Stock and Watson (2007),
Chan (2017) and Ebner et al. (2018)). There is a large literature on the fitting of SV
models (see, e.g., the reviews in Ghysels et al. (1996), Bos and Shephard (2006) and
Omori et al. (2007)). All are based on Bayesian methods, and in particular, Markov
chain Monte Carlo (MCMC) methods. We therefore propose an alternative estimation
method that is simple to implement and quick to calculate for this model, which is
widely used in practice. We provide a simulation study for both linear and nonlinear
examples and in a Gaussian and non-Gaussian setting. We then compare the empirical
performance of the proposed method with other methods from the literature. We also
illustrate the applicability of our procedure on a real dataset to estimate the ex-ante real
interest rate, since it is shown in Holston et al. (2017) and more recently in Laubach
and Williams (2003) that interest rates are subject to considerable real-time measure-
ment error. In particular, we focus on the great inflation period. We show that during
this period, the Gaussianity hypothesis of observation noise is not verified and that
in this study, an SV-type model gives better results for the latent variable estimation.
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1618 C. Chesneau et al.

In this context, the Kalman filter is no longer optimal and therefore leads to a bias in
parameter estimation, since in this case we approach the noise density by a Gaussian
density to construct the MLE. This bias in the parameters propagates in the estimation
of the latent variable (see El Kolei and Patras (2018)). This cannot be overlooked in
models where the latent variable to be predicted is used to make political decisions. It
seems important to study estimators other than the MLE that cannot be calculated by
the Kalman filter. In this regard, our approach therefore provides better results than
the (quasi-)MLE estimate.

The remainder of the paper is organized as follows. We present our assumptions
about the Markov chain in Sect. 2. Sect. 3 describes our estimator and its statistical
properties, and also presents our main results: the consistency and asymptotic nor-
mality of the estimator. Simulated examples are provided in Sect. 4 and the real data
application is in Sect. 5. The proofs are gathered in Sect. 6.

2 Framework

Before presenting in detail the main estimation procedure of our study, we introduce
some preliminary notations and assumptions.

2.1 Notations

TheFourier transformof an integrable functionu is denotedbyu∗(t) = ∫
e−i t x u(x)dx ,

and it satisfies the equation (u∗)∗(x) = 2πu(−x). We denote by ∇θ g the vector of
the partial derivatives of g with respect to (w.r.t.) θ . The Hessian matrix of g w.r.t. θ
is denoted by ∇2

θ g. For any matrix M = (Mi, j )i, j , the Frobenius norm is defined by

‖M‖ =
√∑

i
∑

j |Mi, j |2. Finally, we set Yi = (Yi , Yi+1), and yi = (yi , yi+1) is a

given realization of Yi . We set (t ⊗ s)(x, y) = t(x)s(y).
In the following, for the sake of conciseness,P,E,Var andCov denote respectively

the probability Pθ0 , the expected value Eθ0 , the variance Varθ0 and the covariance
Covθ0 when the true parameter is θ0. Additionally, we write Pn (resp. P) the empirical
expectation (resp. theoretical), that is, for any stochastic variable X = (Xi )i , Pn(X) =
(1/n)

∑n
i=1 Xi (resp. P(X) = E[X ]). For the purposes of this study, we work with

�θ on a compact subset A = A1× A2. For more clarity, we write�θ instead of�θ1A

and we denote by ||.||A (resp. ||.||2A) the norm in L1(A) (resp. L2(A)) defined as

||u||A =
∫ ∫

|u(x, y)| fθ0 (x)1A(x, y)dxdy, ||u||2A =
∫ ∫

u2(x, y) fθ0 (x)1A(x, y)dxdy.

2.2 Assumptions

For the construction of our estimator, we consider three different types of assumptions.
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A 1 Smoothness and mixing assumptions

(i) The function to estimate �θ belongs to L1(A)∩L2(A) and is twice continuously
differentiable w.r.t. θ ∈ � for any (x, x ′) and measurable w.r.t. (x, x ′) for all
θ in �. Additionally, each coordinate of ∇θ�θ and each coordinate of ∇2

θ �θ

belongs to L1(A) ∩ L2(A).
(ii) The (Xi )i is strictly stationary, ergodic and α-mixing with invariant density fθ0 .

Assumptions on the noise εt and innovations ηt

(iii) – The errors (εi )i are independent and identically distributed (i.i.d.) centered
random variables with finite variance, E

[
ε21

] = σ 2
ε . The random variable ε1

admits a known density, fε, belongs to L2(R), and for all x ∈ R, f ∗
ε (x) �= 0.

– The innovations (ηi )i are i.i.d. centered random variables.

Identifiability assumptions

(iv) The mapping θ �→ Pmθ = ∥∥�θ − �θ0

∥∥2
A − ∥∥�θ0

∥∥2
A with mθ defined in (2)

admits a unique minimum at θ0 and its Hessian matrix denoted by Vθ is non-
singular in θ0.

Sect. 3.3 provides further analysis and comments on these assumptions.

3 Estimation procedure andmain results

3.1 Least squares contrast estimation

A key ingredient in the construction of our estimator of the parameter θ0 is the choice
of a “contrast function” depending on the data. Details about contrast estimators can be
found in Van der Vaart (1998). For the purpose of this study, we consider the contrast
function initially introduced by Lacour (2007) in a nonparametric setting, inspired
by regression-type contrasts and later used in various works (see, e.g., Brunel et al.
(2007) and Lacour (2008a, b, c)), that is

Pnmθ = 1

n

n−1∑
i=1

mθ (yi ), (2)

with mθ : y �→ Q�2
θ
(y) − 2V�θ (y). The operators Q and V are defined for any

function h ∈ L1(A) ∩ L2(A) as

Vh(x, y) = 1

4π2

∫ ∫
ei(xu+yv) h∗(u, v)

f ∗
ε (−u) f ∗

ε (−v)
dudv, Qh(x) = 1

2π

∫
eixu h∗(u, 0)

f ∗
ε (−u)

du,

and must meet the following integrability condition:

A 2 The functions �∗
θ / f ∗

ε , (∂�θ/∂θ j )
∗/ f ∗

ε and (∂2�θ/∂θ j∂θk)
∗/ f ∗

ε for j, k =
1, . . . , r belong to L1(A).
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1620 C. Chesneau et al.

This assumption can be understood as �∗
θ and its first two derivatives (resp. (�2

θ )
∗)

have to be smooth enough compared to f ∗
ε .

We are now able to describe in detail the procedure of Lacour (2007) to understand
the choice of this contrast function (see, e.g., Lacour (2007) and Brunel et al. (2007)
for the links between this contrast and regression-type contrasts). A full discussion of
the hypothesis is given in Sect. 3.3.

Owing to the definition of the model (1), theYi are not i.i.d.. However, by assump-
tionA1(ii), they are stationary ergodic,1 so the convergence ofPnmθ toPmθ as n tends
to infinity is provided by the ergodic theorem. Moreover, the limit Pmθ of the contrast
function can be analytically computed. To do this, we use the same technique as in the
convolution problem (see Lacour (2008a, b)). Let us denote by FX the density of Xi

and FY the density of Yi . We remark that FY = FX�( fε ⊗ fε) and F∗
Y = F∗

X ( f ∗
ε ⊗ f ∗

ε ),
where � stands for the convolution product, and then by the Parseval equality we have

E[�θ(Xi )] =
∫ ∫

�θ FX = 1

2π

∫ ∫
�∗

θ F∗
X =

∫ ∫
�∗

θ

f ∗
ε ⊗ f ∗

ε

F∗
Y .

= 1

2π

∫ ∫
V ∗

�θ
F∗

Y =
∫ ∫

V�θ FY = E[V�θ (Yi )].

Similarly, the operator Q is defined to replace the term
∫

�2
θ (Xi , y)dy. The oper-

ators Q and V are chosen to satisfy the following Lemma (see (Lacour 2008a, 6.1.
Proof of Lemma 2) for the proof).

Lemma 3.1 For all i ∈ {1, . . . , n}, we have

1. E[V�θ (Yi )] = ∫ ∫
�θ(x, y)�θ0(x, y) fθ0(x)dxdy.

2. E[Q�θ (Yi )] = ∫ ∫
�2

θ (x, y) fθ0(x)dxdy.
3. E[V�θ (Yi )|X1, . . . , Xn] = �θ(Xi )

4. E[Q�θ (Yi )|X1, . . . , Xn] = ∫
�θ(Xi , y)dy

It follows from Lemma 3.1 that

Pmθ =
∫ ∫

�2
θ (x, y) fθ0(x)dxdy − 2

∫ ∫
�θ(x, y)�θ0(x, y) fθ0(x)dxdy

= ||�θ ||2A − 2〈�θ,�θ0〉A = ∥∥�θ − �θ0

∥∥2
A − ∥∥�θ0

∥∥2
A . (3)

Under the identifiability assumption A1(iv), this quantity is minimal when θ=θ0.
Hence, the associated minimum-contrast estimator θ̂n is defined as any solution of

θ̂n = argmin
θ∈�

Pnmθ . (4)

1 We refer the reader to Doukhan (1994) for the proof that if (Xi )i is an ergodic process then the process
(Yi )i , which is the sum of an ergodic process with an i.i.d. noise, is again stationary ergodic. Moreover, by
the definition of an ergodic process, if (Yi )i is an ergodic process then the couple Yi = (Yi , Yi+1) inherits
the property (see Genon-Catalot et al. (2000)).
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3.2 Asymptotic properties of the estimator

The following result shows the consistency of our estimator and the central limit
theorem (CLT) for α-mixing processes. To achieve this aim, we further assume that
the following assumptions hold true:

A 3 (i) Local dominance: E
[
supθ∈�

∣∣∣Q�2
θ
(Y1)

∣∣∣] < ∞.

(ii) Moment condition: For some δ > 0 and for j ∈ {1, . . . , r}:

E

⎡
⎣
∣∣∣∣∣Q ∂�2

θ
∂θ j

(Y1)

∣∣∣∣∣
2+δ

⎤
⎦ < ∞.

(iii) Hessian local dominance: For some neighborhood U of θ0 and for j, k ∈
{1, . . . , r}

E

[
sup
θ∈U

∣∣∣∣∣Q ∂2�2
θ

∂θ j ∂θk

(Y1)

∣∣∣∣∣
]

< ∞

Let us now introduce the matrix �(θ) given by

�(θ) = V−1
θ �(θ)V−1′

θ , �(θ) = �0(θ) + 2
+∞∑
j=2

� j−1(θ), (5)

where �0(θ) = Var (∇θ mθ (Y1)) and � j−1(θ) = Cov
(∇θmθ (Y1),∇θ mθ (Yj)

)
.

Theorem 3.1 Under Assumptions A1–A3, let θ̂n be the least square estimator defined
in (4). Then we have

θ̂n −→ θ0 in probability as n → ∞.

Moreover,

√
n(θ̂n − θ0) → N (0, �(θ0)) in law as n → ∞.

The proof of Theorem 3.1 is provided in Sect. 6.1.
The following corollary gives an expression of the matrices �(θ0) and Vθ0 defined

in �(θ) of Theorem 3.1.

Corollary 3.1 Under Assumptions A1–A3, the matrix �(θ0) is given by

�(θ0) = �1(θ0) + �2(θ0) + 2
+∞∑
j=3

� j (θ0),
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1622 C. Chesneau et al.

where

�1(θ0) = E[Q2
∇θ �2

θ

(Y1)] + 4E[V 2∇θ �θ
(Y1)] − 4E[Q∇θ �2

θ
(Y1)V∇θ �θ (Y1)]

−
{
E

(∫
∇θ�

2
θ (X1, y)dy

)2

+ 4E

(
∇θ�θ (X1)

)2

− 4E

(∫
∇θ�

2
θ (X1, y)dy

)
E

(
∇θ�θ (X1)

)}
,

�2(θ) =E

[∫
∇θ�

2
θ (X1, y)dy

∫
∇θ�

2
θ (X2, y)dy

]
− E

[∫
∇θ�

2
θ (X1, y)dy

]2

− 2

(
E

[(∫
∇θ�

2
θ (X1, y)dy

)
∇θ�θ (X2)

]
+ E[Q∇θ �2

θ
(Y2)V∇θ �θ (Y1)]

)

− 4

(
E

[∫
∇θ�

2
θ (X1, y)dy

]
E [∇θ�(X2)] + E [∇θ�(X1)]

2

−E
[
V∇θ �θ (Y1)V∇θ �θ (Y2)

])

and the covariance terms are given for j > 2 as

� j (θ0) = Cov

(∫
∇θ�

2
θ (X1, y)dy,

∫
∇θ�

2
θ (X j , y)dy

)

+ 4

(
Cov

(∇θ�θ (X1),∇θ�θ (X j )
) − Cov

(∫
∇θ�

2
θ (X1, y)dy,∇θ�θ (X j )

))
,

where the differential ∇θ�θ is taken at point θ = θ0.
Furthermore, the Hessian matrix Vθ0 is given by

([Vθ0

]
j,k

)
j,k

= 2

(〈
∂�θ

∂θk
,
∂�θ

∂θ j

〉
f

)
j,k

∣∣∣
θ=θ0

.

The proof of Corollary 3.1 is given in Sect. 6.2.

Sketch of proof Let us now state the strategy of the proof. The full proof is given
in Sect. 6. Clearly, the proof of Theorem 3.1 relies on M-estimator properties and on
the deconvolution strategy. The following observation explains the consistency of our
estimator: ifPnmθ converges toPmθ in probability, and if the true parameter solves the
limit minimization problem, then the limit of the argument of theminimum θ̂n is θ0. By
using the uniform convergence in probability and the compactness of the parameter
space, we show that the argmin of the limit is the limit of the argmin. Combining
these arguments with the dominance argument A3(i), we prove the consistency of our
estimator, and then, the first part of Theorem 3.1.

Asymptotic normality follows essentially fromCLT formixing processes (see Jones
(2004)). Thanks to the consistency, the proof is based on a moment condition of the
Jacobian vector of the functionmθ (y) = Q�2

θ
(y)−2V�θ (y) and on a local dominance

condition of its Hessian matrix. These conditions are given in A3(ii) and A3(iii). To
refer to likelihood results, one can see these assumptions as a moment condition of
the score function and a local dominance condition of the Hessian.
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3.3 Comments on the assumptions

In the following, we provide a discussion of the hypotheses.

• Assumption A1(i) is not restrictive; it is satisfied for many processes. Taking the
process (Xi )i defined in (1), we provide conditions on the functions b, σ and η

ensuring that AssumptionA1(ii) is satisfied (seeDoukhan (1994) formore details).

(a) The random variables (ηi )i are i.i.d. with an everywhere positive and con-
tinuous density function independent of (Xi )i .

(b) The function bθ0 is bounded on every bounded set; that is, for every K > 0,
sup|x |≤K |bθ0(x)| < ∞.

(c) The function σθ0 satisfies, for every K > 0 and constant σ1, 0 < σ1 ≤
inf |x |≤K σθ0(x) and sup|x |≤K σθ0(x) < ∞.

(d) There exist constants Cb > 0 and Cσ > 0, sufficiently large M1 > 0,
M2 > 0, c1 ≥ 0 and c2 ≥ 0 such that |bθ0(x)| ≤ Cb|x | + c1, for |x | ≥ M1
and |σθ0(x)| ≤ Cσ |x | + c2, for |x | ≥ M2 and Cb + E[η1]Cσ < 1.

Assumption A1(iii) on fε is quite usual when considering deconvolution estima-
tion. In particular, the first part is essential for the identifiability of the model (1).
This assumption cannot be easily removed: even if the density of εi is completely
known up to a scale parameter, the model (1) may be non-identifiable as soon as
the invariant density of Xi is smoother than the density of the noise (see Butucea
and Matias (2005)). The second part of A1(iii) is a classical assumption ensuring
the existence of the estimation criterion.

• For some models, Assumption A2 is not satisfied. In particular, for models where
this integrability assumption is not valid, we propose inserting a weight function ϕ

or a truncation kernel as in (Dedecker et al. 2014, p. 285) to circumvent the issue
of integrability. More precisely, we define the operators as follows:

Qh�K Bn
(x) = 1

2π

∫
eixu (h�K Bn )

∗(u, 0)

f ∗
ε (−u)

du, V ∗
h�K Bn

= (h�K Bn )
∗

f ∗
ε ⊗ f ∗

ε

,

where K ∗
Bn

denotes the Fourier transform of a density deconvolution kernel with
compact support and satisfies |1 − K ∗

Bn
(t)| ≤ 1|t |>1 and Bn is a sequence which

tends to infinity with n. The contrast is then defined as

Pnmθ = 1

n

n−1∑
i=1

Q�2
θ �K Bn

(Yi ) − 2V�θ�K Bn
(Yi ). (6)

This contrast is still valid under Assumptions A1–3 by taking K Bn (t)
∗ = 1|t |≤Bn

with Bn = +∞.
• It should be noted that the construction of the contrasts (2)-(6) does not need
to know the stationary density fθ0 . The second part of Assumption A1(iv) is an
exeption because the first part concerns the uniqueness of Pmθ , which is strictly
convex w.r.t. θ . Nevertheless, the second part requires computing the Hessian
matrix of Pmθ to ensure that it is invertible and secondly to calculate confidence
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1624 C. Chesneau et al.

intervals. For the latter, we propose to use in practice the following consistent
estimator for the confidence bounds:

V
θ̂n

= 1

n

n−1∑
i=1

Q ∂2�2
θ

∂θ2

(Yi ) − 2V ∂2�θ

∂θ2

(Yi ), (7)

because, under the integrability assumption A2 and the Hessian local dominance
Assumption A3(iii), the matrix V

θ̂n
is a consistent estimator of Vθ0 . This matrix

and its inverse can be computed in practice for a large class of models.
• The local dominance Assumptions A3(i) and (iii) are not more restrictive than
AssumptionA2 and are satisfied if for j, k = 1, . . . , r the functions supθ∈� �∗

θ / f ∗
ε

and supθ∈�(∂2�θ/∂θ j∂θk)
∗/ f ∗

ε are integrable.
• In most applications, we do not know the bounds of the true parameter. The com-
pactness assumption can be replaced with: θ0 is an element of the interior of a
convex parameter space � ⊂ R

r . Then, under our assumptions except for the
compactness, the estimator is also consistent. The proof is the same and the exis-
tence is proved by using convex optimization arguments. One can refer to Hayashi
(2000) for this discussion.

4 Simulations

4.1 Linear autoregressive processes

We start from this following HMM:

{
Yi = Xi + εi

Xi+1 = φ0Xi + ηi+1,
(8)

where the noises εi and the innovations ηi are supposed to be i.i.d. centered random
variables with variance respectively σ 2

ε and σ 2
0,η.

Here, the unknown vector of parameters is θ0 = (φ0, σ
2
0,η) and for stationary and

ergodic properties of the process Xi , we assume that the parameterφ0 satisfies |φ0| < 1
(see Doukhan (1994)). In this setting, the innovations ηi are assumed Gaussian with
zero mean and variance σ 2

0,η. Hence, the transition function�θ0(x, y) is also Gaussian

with mean φ0x and variance σ 2
0,η. To analyse the effect of the regularity of the density

of observation noises on the estimation of parameters, we consider three types of
noises:
Case 1: ARMA model with Gaussian noise (super smooth) The density of ε1 is
given by

fε(x) = 1

σε

√
2π

exp

(
− x2

2σ 2
ε

)
, x ∈ R.
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Wehave f ∗
ε (x) = exp

(−σ 2
ε x2/2

)
. The vector of parameters θ0 belongs to the compact

subset � given by � = [−1 + r; 1 − r ] × [σ 2
min; σ 2

max] with σ 2
min ≥ σ 2

ε + r where r ,
r , σ 2

min and σ 2
max are positive real constants. We consider this condition (σ 2

0,η > σ 2
ε )

for integrability assumption but one can relax this assumption (see Sect. 6.3 for the
discussion on Assumptions A 1-A 3).
Case 2: ARMA model with Laplace’s noise (ordinary smooth) The density of ε1
is given by

fε(x) = 1√
2σε

exp

(
−

√
2

σε

|x |
)

, x ∈ R.

It satisfies f ∗
ε (x) = 1/(1 + σ 2

ε x2/2).
Case 3: SV model: log−X 2 noise (super smooth) The density of ε1 is given by

fε(x) = 1√
2π

exp

(
x

2
− 1

2
exp(x)

)
, x ∈ R.

We have f ∗
ε (x) = (1/

√
π)2i x� (1/2 + i x) e−iEx ,where E = E[log(ξ2i+1)] and

Var [log(ξ2i+1)]= σ 2
ε = π2/2, and �(x) denotes the gamma function defined by

�(x) = ∫ ∞
0 t x−1e−t dt . For the cases 2 and 3, the vector of parameters θ = (φ, σ 2)

belongs to the compact subset � given by [−1+ r; 1− r ]× [σ 2
min; σ 2

max ] with r , σ 2
min

and σ 2
max positive real constants. Furthermore, this latter case corresponds to the SV

model introduced by Taylor in Taylor (2005):

{
Ri+1 = exp

(
Xi+1
2

)
ξ

β
i+1,

Xi+1 = φ0Xi + ηi+1,

where β denotes a positive constant. The noises ξi+1 and ηi+1 are two centered Gaus-
sian random variables with standard variance σ 2

ε and σ 2
0 .

In the original paper Taylor (2005), the constant β is equal to 12. In this case,
by applying a log transformation Yi+1 = log(R2

i+1) − E[log(ξ2i+1)] and εi+1 =
log(ξ2i+1) −E[log(ξ2i+1)], the log-transform SV model is a special case of the defined
model (8).

For all these models, we report in Sect. 6.3 the verification of Theorem 3.1 assump-
tions.

4.1.1 Expression of the contrasts

For all the models described above, we can express the theoretical and empirical
contrasts regardless of the type of observation noise used. These expressions are given
in the following proposition.

2 We argue that our approach can be applied when we introduce a long mean parameter μ in the volatility
process.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 Contrast functions. a Pmθ as a function of the parameters φ and σ 2
η for one realization of (8), with

n = 2000. b PnmG
θ . c PnmL

θ . d PnmX
θ . e–h Corresponding contour lines. The red circle represents the

global minimizer θ0 of Pmθ and the blue circle, the one of PnmG
θ , PnmG

θ and PnmX
θ , respectively

Proposition 4.1 For the HMM model (8), the theoretical contrast defined in (3) is
given by

Pmθ = −1 + ση + σ0,η

2
√

πσησ0,η
−

√√√√ 2(φ2
0 − 1)

πσ 2
η (−1 − φ2

0) − πσ 2
0,η(1 + φ2 − 2φφ0)

, (9)

and the empirical contrasts used in our simulations are obtained as follows:

PnmG
θ = 1

2
√

πση

− 1

n

√
2

π(σ 2
η − (φ2 + 1)σ 2

ε )

n−1∑
i=1

exp

(
− Ai

2(σ 2
η − (φ2 + 1)σ 2

ε )

)
,

PnmL
θ = 1

2
√

πση

− 2

n
√
2πσ 9

η

n−1∑
i=1

exp

(
− Ai

2σ 2
η

)(
4σ 8

η − 2(1 + φ2)σ 4
η σ 2

ε (Ai − σ 2
η )

+ φ2σ 4
ε (A2

i − 6Aiσ
2
η + 3σ 4

η )

)
,

where Ai = (Yi+1 − φYi )
2.

The notations PnmG
θ and PnmL

θ correspond to the case 1 and case 2, respectively,
(see Fig. 1 for a visual representation of these contrasts as a function of the parameters
φ and σ 2

η ).

For the SVmodel (case 3), the inverse Fourier transform of�∗
θ / f ∗

ε does not have an
explicit expression in particular because of the gamma function� in f ∗

ε . Nevertheless,
the contrast can be approached numerically using a fast Fourier transform (FFT) and
is also represented. Figure 1 depicts the three empirical and true contrast curves as
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functions of the parameters φ and σ 2
η for one realization of (8), with n = 2000. It

can be observed that these three empirical contrasts give reliable estimates for the
theoretical contrast, and in turn, also a high-quality estimate of the optimal parameter
for the three types of noise distributions considered in this simulation study.

4.1.2 Monte Carlo simulation and comparison with the MLE

Let us present the results of our simulation experiments. First, we perform a Monte
Carlo (MC) study for the first two cases to study the influence of the noise regularity
on the performance of the estimate (case 3 has the same regularity as case 1). For the
first case, we compare our approach to the MLE. This case is favorable for the MLE
since its calculation is fast via the Kalman filter. Indeed, the linearity of the model and
the gaussianity of the observation noises make the use of the Kalman filter suitable
for the computation of the MLE. However, this is no longer the case for non-Gaussian
noises such as Laplace noises. For noises other thanGaussian noises, the calculation of
the MLE is generally more complicated in practice and requires the use of algorithms
such as MCMC, EM, Stochastic Approximation of EM (SAEM), SMC, or alternative
estimation strategies (see Andrieu et al. (2010), Chopin et al. (2013) and Olsson and
Rydén (2007)), which require a longer computation time. In the case of Laplace’s
noise, we use the R package tseries Trapletti and Hornik (2019) to fit an ARMA(1,1)
model to the Yi observations by a conditional least squares method (Hannan and
Rissanen 1982). Moreover, it is important to note that even in the most favourable
case for calculating the MLE, our approach is faster than the Kalman filter as it only
requires the minimization of an explicitly known contrast function as opposed to the
MLE where the Kalman filter is used to construct the likelihood of the model to be
maximized.

For each simulation, we consider three different signal-to-noise ratios denoted by
SNR (i.e., SNR = σ 2

η /σ 2
ε = 1/σ 2

ε , with σ 2
ε equals to 1/40, 1/20 and 1/10 corre-

sponding to low, medium, and high noise levels, respectively). For all experiments,
we set φ = 0.7 and generate samples of different sizes (i.e., n = 500 up to 2000)
while keeping the financial and economic context in mind. We represent the results
obtained, on boxplots for each parameter and for 100 repetitions in Figs. 2 and 3
(corresponding to cases 1 and 2, respectively). We can see that, as already noticed in
the deconvolution setting, there is little difference between Laplace and Gaussian εi ’s.
The convergence is slightly better for Laplace noise. Moreover, increasing the sample
size leads to noticeable improvements in the results. In the Gaussian case (Fig. 2), the
MLE provides better overall results, which is not surprising since in case 1, it is the
best unbiased linear estimator. However, we can see that for the φ parameter, our esti-
mator is slightly better. The estimation of the variance σ 2

η is more difficult, especially
as the SNR decreases. For Laplace’s noise (Fig. 3), our contrast estimator provides
better results, whatever the number of observations and the SNR. The differences with
the MLE are even more significant when estimating the variance σ 2

η . The contrast
approach is an interesting alternative to the MLE in the non-Gaussian case.

Our estimation procedure allows us to deepen our analysis since Theorem 3.1
applies and as we already mentioned, Corollary 3.1 allows to compute confidence
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(a) SNR = 40 (b)SNR = 20 (c) SNR = 10

(d)SNR = 40 (e) SNR = 20 (f) SNR = 10

Kalman MLE Contrast

Fig. 2 Boxplots of parameter estimators for different sample sizes in case 1. The horizontal lines represent
the values of the true parameters σ 2

η and φ

(a) (b) (c)

(d) (e) (f)

Fig. 3 Boxplots of parameter estimators for different sample sizes in case 2. The horizontal lines represent
the values of the true parameters σ 2

η and φ
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Coverage probabilities for 95%CIs versus sample size n (Case 1 top Case 2 bottom) based on 1000
simulations

intervals (CIs) in practice, i.e., for i = 1, 2:

P

⎛
⎝θ̂n,i − z1−α/2

√
e′

i�(θ̂n)ei

n
≤ θ0,i ≤ θ̂n,i + z1−α/2

√
e′

i�(θ̂n)ei

n

⎞
⎠ → 1 − α,

as n → ∞ where z1−α/2 is the 1 − α/2 quantile of the Gaussian distribution, θ0,i
is the i th coordinate of θ0 and ei is the i th coordinate of the vector of the canonical
basis of R2. The covariance matrix �(θ̂n) is computed by plug-in the variance matrix
defined in (7).

We investigate the coverage probabilities for sample sizes ranging from 100 to
2000 with a replication number of 1000. We compute the confidence interval for each
sample and plot the proportion of samples for which the true parameters are contained
in the corresponding confidence intervals for the two cases 1 and 2. The results are
shown in Fig. 4. It can be seen that the computed proportions provide good estimators
for the empirical coverage probability for the confidence intervals of both parameters,
whatever the type of noise. We can also see that these proportions deviate slightly
from the theoretical value as the noise level increases. Indeed, the size of the ICs tends
to increase as the noise level increases.

4.1.3 Sensibility of the contrast w.r.t. �2
"

In this section, we focus on the sensitivity of our contrast estimator when we relax the
assumption A1(iii), that is, we assume that fε is known up to the unknown σ 2

ε . Many
authors have addressed this issue from both a theoretical and practical perspective. We
can highlight the following works, although this list is not exhaustive: in the context
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of Efromovich (1997) and Neumann and Hössjer (1997), where the error density is
unknown and estimated from additional direct observations which come from the
error density. Meister (2004) considered a testing procedure for two possible densities
competing to be the error density. Butucea and Matias (2005) introduced a uniformly
consistent estimation procedure when the error variance σ 2

ε is unknown but restricted
to a known compact interval. InKappus andMabon (2014), the authors considered two
different models: a first one where an additional sample of pure noise is available, as
well as themodel of repeatedmeasurements,where the contaminated randomvariables
of interest can be observed repeatedly, with independent errors. In Delaigle and Hall
(2016), the authors proposed a completely new approach to this problem, which does
not require any extra data of any kind and does not require smoothness assumptions
on the signal distribution.

To estimate σ 2
ε here, we use the approach proposed in Meister (2004), which is

very simple to implement and yields good results. Let us present the methodology. We
consider the absolute empirical Fourier transform defined by

ϕ̂n(t) =
∣∣∣∣1n

n∑
j=1

eitY j

∣∣∣∣.

In the sequel we denote (kn)n∈N, (ωn)n∈N and (σ 2
n )n∈N three sequences of positive

numbers described below. We set

σ̃ 2
n = −2k−2

n log

(
ϕ̂n(kn)

Ck−β
n

)
,

where C and β > 0 are arbitrary constants not stipulated to be known, so they might
be misspecified in practice. If we know the regularity of the density of Xi , that is,
if fθ ∈ F , where F is the ordinary smooth or super smooth function class, one can
choose these parameters according to it. For all examples considered in this section, the
stationary density fθ is super smooth. Otherwise, we fix these parameters arbitrarily
and set ωn = kn/log(kn) with kn → ∞. Thus, the estimator of σ 2

ε is defined as

σ̂ 2
n,ε =

⎧⎪⎨
⎪⎩
0 if σ̃ 2

n < 0

σ̃ 2
n if σ̃ 2

n ∈ [0, σ 2
n ].

σ 2
n if σ̃ 2

n > σ 2
n

(10)

To analyse the sensitivity of our approach w.r.t. the noise variance σ 2
ε , we applied

our contrast estimator defined in Proposition 4.1 for the AR Gaussian model where
we plugged the estimator given in (10). We then compared our results with the MLE
estimation where the same variance estimator is used. The results are shown in Fig. 5
for each parameter and for a different number of observations. For the construction of
the estimator (10), we took the following parameters C = 1/4, β = 4, σ 2

n = 1 and
kn = √

n and a number of MC trials equal to 50.We tested different sets of parameters
to see the influence of these parameters. As the influence was negligible, we did not
report all the tests.
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(a) (b)

Fig. 5 Left. Estimation of φ with unknown σ 2
ε . (Horizontal line: true value). Right. Estimation of σ 2

η with

unknown σ 2
ε . (Horizontal line: true value)

The results obtained are similar to those of the Sect. 4.1.2. We note that whatever
the number of observations, the MLE is more robust in this favourable case (Gaussian
measurement noise). Nevertheless, our approach gives as good results as when the
variance is assumed to be known. The given estimator (10) is a good alternative in
practice when we relax the hypothesis on the knowledge of the observation noises and
is readily implementable.

4.1.4 Sensibility of the contrast w.r.t. the truncature of the asymptotic variance
matrix

The asymptotic variance of our estimator �(θ) defined in (5) suggests computing
the covariance matrix �(θ), which requires the computation of the infinite sum of
covariance terms. In practice, we use the following empirical covariance with lag j
defined as

�̂ j (θ̂n) = 1

n

n∑
i=| j |+1

(
∇θmθ (Yi−|j|)

)(
∇θmθ (Yi)

)
,

and the sum in (5) has been truncated for a large value of j . In this part we wish to
analyze the influence of this truncation on the asymptotic variance of our estimator. The
illustration is made for the Gaussian AR model. In Table 1, we report the asymptotic
variance w.r.t. the truncation denoted J and the number of observations n. We note that
the asymptotic variance decreases w.r.t. J and no longer varies for a given moderate
lag, whatever the number of observations. This phenomenon is explained by the fact
that at a certain rank j0, we have that for j ≥ j0 the covariance terms � j are infinitely
small and negligible in front of�1, which is in agreement with the mixing assumption
A1(ii), satisfied for the AR process. Furthermore, as expected, the asymptotic variance
also decreases with the number of observations.
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Table 1 Asymptotic variance
�(θ̂n) w.r.t. the truncation J for
n = 500, 1000 and 5000

J 2 5 10 20

n = 500

φ0 = 0.7 0.2367 0.2364 0.2338 0.2338

σ 2
η = 1 0.4299 0.4287 0.4211 0.4211

n = 1000

φ0 = 0.7 0.1671 0.1664 0.1653 0.1653

σ 2
η = 1 0.3032 0.3008 0.2977 0.2977

n = 5000

φ0 = 0.7 0.0747 0.0744 0.0739 0.0739

σ 2
η = 1 0.1356 0.1345 0.1332 0.1332

4.2 NonLinear autoregressive processes

We conclude this simulation study with an example of a nonlinear process of the form

{
Yi = Xi + εi

Xi+1 = φ0 sin(Xi ) + ηi+1,
(11)

where the noises εi and the innovations ηi are supposed to be i.i.d. centered ran-
dom variables with variance respectively σ 2

ε and σ 2
0,η. The transition density is given

by �θ0(x, y) = fη(y − φ0 sin(x)) (see Mokkadem (1987)). In spite of the explicit
expressions of the Fourier transforms of �θ0 and fε, the contrast does not admit an
explicit expression but can easily be calculated by FFT or numerical integration. More
precisely, in this typical example, the operator V�θ in the contrast is not explicit, but
we give in Sect. 6.3 some details of its computation. For this example, we compare
our contrast to the MLE computed with the Extended Kalman filter (EKF) adapted to
nonlinear models. The latter, after a linearization of the model, can be used to compute
the likelihood. Nevertheless, the properties of EKF are known to be good when the
model is not strongly nonlinear, which is not the case for the drift function given by
the sinus. We therefore propose to also compare our approach with the more general
SAEM (see Delyon et al. (1999) for more details). Given the unobservable character of
the variables Xi , the latter uses a conditional particle filter (see Lindsten (2013)) in the
expectation step. For this experiment we take SNR = 1/40, φ0 = 0.7, σ 2

0,η = 0.5, a
number of replications MC = 50 and we generate samples of different sizes n = 500,
1000 and 2000. For the SAEM, we took a number of particles equal to 50 in the con-
ditional particle filter and a number of iterations (denoted nbIter) for the convergence
of the EM equal to 400 (below this threshold, there was no convergence). The results
are represented by boxplots for each parameter (see Fig. 6) and synthesized in Table 2,
where the mean square error (MSE) is given and computed as

MSE(θ0, θ̂0) = 1

MC

MC∑
j=1

(φ̂ j − φ0)
2 + (̂σ 2

η, j − σ 2
η,0)

2.
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Fig. 6 Boxplots of parameter estimators for different sample sizes and MC = 50, nbIter=400 and NbPar-
ticles=50 for the SAEM. The horizontal lines represent the values of true parameters σ 2

η and φ. Left:

parameter σ 2
η . Right: parameter φ

Table 2 Nonlinear AR(1): MSE
for n = 500 up to 2000 and
MC = 50

n 500 1000 2000

Contrast

0.0049 0.0029 0.0014

EKF

0.0074 0.0049 0.0042

SAEM

nbIter=100 0.0073 0.0061 0.0051

nbIter=400 0.0062 0.0032 0.0026

The number of particles for the SAEM is 50

We observe from Table 2 that the EKF gives worse results than the two other
approaches, in terms of MSE. This result was expected and in accordance with the
properties of the EKF when the model is not linear. The contrast gives better results
than the SAEM method, whatever the number of observations and the number of
iterations considered in the EM step. From Table 2, we can see that the results for
SAEM tend to be better and closer to the contrast when we increase the number of
iterations (nbIter=100 to nbIter=400). Indeed, the results of SAEMdepend strongly on
the initial condition for θ and the number of iterations that control the convergence of
the algorithm. We voluntarily tested different thresholds for the number of iterations
since, for nbIter=100, the convergence did not take place for the drift parameter φ. On
the other hand, the SAEM results do not depend on the number of particles chosen
since a conditional filter has been used with an ancestral resampling step, which
allows the use of a reasonable number of particles in terms of computation time (see
Lindsten (2013) for more details). Contrary to the SAEM, our approach does not
require parameter calibration and gives good results, even in a nonlinear framework,
whatever the initial condition.
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5 Application on the ex-ante real interest rate

Ex-ante real interest rate is important in finance and economics because it provides
a measure of the real return on an asset between now and the future. It is a fruitful
indicator of themonetary policy direction of central banks.Nevertheless, it is important
to make a distinction between the ex-post real rate, which is the observed series,
and the ex-ante real rate, which is unobserved. While the ex-post real rate is simply
the difference between the observed nominal interest rate and the observed actual
inflation, the ex-ante real rate is defined as the difference between the nominal rate
and the unobserved expected inflation rate. Since monetary policy makers cannot
observe inflation within the period, they must establish their interest rate decisions on
the expected inflation rate. Hence, the ex-ante real rate is probably a better indicator
of the monetary policy orientation.

There are two different strategies for the estimation of the ex-ante real rate. The
first consists of using a proxy variable for the ex-ante real rate (see, e.g., Holston
et al. (2017) for the US region and more recently in Laubach and Williams (2003) for
Canada, theEuroArea and theUK). The second strategy consists of treating the ex-ante
real rate as an unknown variable using a latent factor model (see, e.g., Burmeister et al.
(1986) and Hamilton (1994b, a)). Our procedure is in line with this second strategy in
which the factor model is specified as follows:

{
Yt = α + Xt + εt

Xt = φXt−1 + ηt ,
(12)

where Yt is the observed ex-post real interest rate, Xt is the latent ex-ante real interest
rate adjusted by a parameter α, φ is a parameter of persistence and εt (resp. ηt ) is a
centered Gaussian random variables with variance σ 2

ε (resp. σ 2
η ).

This model is derived from the fact that if we denote by Y e
t , the ex-ante real interest

rate, we have that Y e
t = Rt −Ie

t withRt the observed nominal interest rate and Ie
t the

expected inflation rate. So, the unobserved part ofY e
t comes from the expected inflation

rate. Furthermore, the ex-post real interest rate Yt is obtained from Yt = Rt − It with
It the observed actual inflation rate. As a result, expanding these expressions to allow
for expected inflation rate Ie

t gives

Yt = Rt − Ie
t + Ie

t − It = Y e
t + εt ,

where εt = Ie
t − It is the random variable for inflation expectation. If people do not

make systematic errors in forecasting inflation, εt can be assumed to be a Gaussian
white noise with variance denoted by σ 2

ε . This assumption is known as the Rational
Expectation Hypothesis (REH). Thus, the REH lends itself very naturally to a state-
space representation (see, e.g., Burmeister andWall (1982)), and defining Xt = Y e

t −α

as the ex-ante real interest rate adjusted by its population mean, α, yields the mod-
elization (12).

The dataset was split into in and out-of-sample monthly data sets. The in-sample
contained 75% (it ranges from 1 January 1962 to 1 March 1973) of the total dataset
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(a) (b)

Fig. 7 a Observed ex-post real rate. b Observed actual inflation rate

and the out-of-sample contained the remaining 25% (from 1 April 1973 to 1 March
1975, i.e., for a horizon of two years). This places us in the period of great inflation for
the US region.More precisely, the ex-post real interest rates, Yt (depicted in Fig. 7a), is
calculated as the difference between the logarithm annualized nominal funds rate and
the logarithm annualized percentage inflation rate, It (depicted in Fig. 7b), obtained
from the consumer price index for all urban consumers. The data are available from
the Federal Reserve Economic Data and for them, we consider two of the models
previously studied, the Gaussian AR model and the SV model.

Let us denote θ = (α, φ, σ 2
η ) the vector of unknown parameters to be estimated.

We estimate the unknown parameter vector θ on the in-sample in two stages: first,
we minimize the contrast introduced in this paper to estimate the unknown parameter
vector θ on the in-sample. The second step is devoted to the ex-ante real rate forecasts
and the expected inflation rate forecasts on the out-of-sample by plugging θ̂ obtained
from the in-sample set in the first stage by running a Kalman filter. So all forecasts are
computed using the pseudo out-of-sample method.

The value of the estimation obtained in the first step is as follows: α̂AR = 1.5699,
α̂SV = 2.1895, φ̂AR = 0.5750, φ̂SV = 0.8500, σ̂ 2

AR = 4.4048 and σ̂ 2
SV = 3.1756 and

the forecasts obtained from the out-of-sample are shown in Fig. 8. A first examination
of our results reveals that our forecasts expected inflation series is plausible for the
two models. Nevertheless, the results are better for the SV model: the Mean Squared
Forecast Error is divided by a factor 10 for the SV model. The Lilliefors test Lilliefors
(1967), a variant of the Kolmogorov-Smirnov test when certain parameters of the
distributions must be estimated which is the case here, suggests that during the great
inflation period the data are no longer Gaussian and exhibit more like a distribution
with heavy tails. The null hypothesis is rejected at level α = 0.05. This result may
explain why the SV model is significantly better than the AR model. The mean of the
forecast error êt = It − Îe

t is sufficiently close to zero and the Ljung box test accepts
the null hypothesis, meaning that the forecast errors are not correlated for the two
models. The correlograms for the two models are given in Fig. 9. These results are
consistent with the rational expectation hypothesis. If one compares the results of the
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(a) (b)

Fig. 8 a Ex-post real rate forecasts. b Expected inflation rate forecasts

(a) (b)

Fig. 9 a Correlogram of êt for AR model. b Correlogram of êt for SV model

parameters estimation for the two models, one can see that the persistence parameter
φ is higher for the SV model than the AR model. On the other hand, the variance
is lower. Therefore, the variance of Îe

t is smaller than that of It for the SV model.
These results are consistent with the economically intuitive notion that expectations
are smoother than realizations. Most importantly, these results corroborate those of
the thorough analysis in Stock and Watson (2007) and Pivetta and Reis (2007), whose
findings show that the persistence parameter is high and close to one for this period
of study.

Conclusion

In this paper, we propose a new parametric estimation strategy for non-linear and non-
Gaussian HMM models inspired by Lacour (2008b). We also provide an analytical
expression of the asymptotic variance matrix �(θ̂n) which allows us to consider the
construction of confidence intervals. This methodology makes it possible to bypass
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the MLE estimate known to be difficult to calculate for these models. Our approach
is not based on MC methods (MCMC or particle filtering methods), which avoids the
instability problems of most of the proposed methods when minimizing the criterion
following MC errors (see Doucet et al. (2001)). The parameter estimation step in
HMMmodels is very important since it is shown in El Kolei and Patras (2018) that the
bias in the parameters propagates in the estimation of the latent variable. This cannot
be overlooked in models where the latent variable to be predicted is used to make
political decisions. In this paper, for example, we looked at the prediction of ex-ante
interest rates and found that during periods of high inflation, the annualized inflation
rate has a distribution with heavy tails. Thus, in this context, the SV model seems
more appropriate and gives better results. Nevertheless, since this model is no longer
Gaussian, it seems important to study estimators other than the MLE that cannot be
calculated by the Kalman filter. In this context, we provide a new and simple way
to estimate the parameters in a Gaussian and non-Gaussian setting. This provides an
alternative estimation method to those proposed in the literature that are largely based
on MC methods.

6 Proofs

6.1 Proofs of Theorem 3.1

For the reader’s convenience, we split the proof of Theorem 3.1 into three parts: in
Sect. 6.1.1, we give the proof of the existence of our contrast estimator defined in (3).
In Sect. 6.1.2, we prove consistency, that is, the first part of Theorem 3.1. Then, we
prove the asymptotic normality of our estimator in Sect. 6.1.3, that is, the second part
of Theorem 3.1. Section 6.2 is devoted to Corollary 3.1.

6.1.1 Existence of the M-estimator

By assumption, the function mθ (yi ) = Q�2
θ
(yi ) − 2V�θ (yi ) is continuous w.r.t. θ .

Hence, the function Pnmθ = 1
n

∑n
i=1 mθ (Yi ) is continuous w.r.t. θ belonging to the

compact subset �. So, there exists θ̃ belongs to � such that infθ∈� Pnmθ = Pnm θ̃ . ��

6.1.2 Consistency

For the consistency of our estimator, we need to use the uniform convergence given
in the following Lemma. In this regard, let us consider the following quantities:

Pnhθ = 1

n

n∑
i=1

hθ (Yi ); Pn Sθ = 1

n

n∑
i=1

∇θ hθ (Yi ), Pn Hθ = 1

n

n∑
i=1

∇2
θ hθ (Yi ),

where hθ (y) is a real function from � × Y with value in R.

Lemma 6.1 Uniform Law of Large Numbers (see Newey and McFadden (1994a) for
the proof). Let (Yi )i≥1 be an ergodic stationary process and suppose that:
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1. hθ (y) is continuous in θ for all y and measurable in y for all θ in the compact
subset �.

2. There exists a function s(y) (called the dominating function) such that |hθ (y)| ≤
s(y) for all θ ∈ � and E[s(Y1)] < ∞. Then

sup
θ∈�

|Pnhθ − Phθ | → 0 in probability as n → ∞.

Moreover, Phθ is a continuous function of θ .

By assumption �θ is continuous w.r.t. θ for any x and measurable w.r.t. x for all
θ which implies the continuity and the measurability of the function Pnmθ on the
compact subset �. Furthermore, the local dominance assumption A3(i) implies that
E
[
supθ∈� |mθ (Yi )|

]
is finite. Indeed, by assumption A3(i), we have

|mθ (yi )| =
∣∣∣Q�2

θ
(yi ) − 2V�θ (yi )

∣∣∣ ≤
∣∣∣Q�2

θ
(yi )

∣∣∣ + 2
∣∣V�θ (yi )

∣∣ < ∞.

Lemma 6.1 gives the uniform convergence in probability of the contrast function:
for any ε > 0, we have

lim
n→∞P

(
sup
θ∈�

|Pnmθ − Pmθ | ≤ ε

)
= 1.

Combining the uniform convergence with (Newey and McFadden 1994b, Theorem
2.1 p. 2121 chapter 36) yields the weak (convergence in probability) consistency of
the estimator. ��

6.1.3 Asymptotic normality

For the CLT, we need to define the α-mixing property of a process (we refer the reader
to Doukhan (1994) for a complete review of mixing processes).

Definition 6.1 (α-mixing (strongly mixing process)) Let Y := (Yi )i denote a gen-
eral sequence of random variables on a probability space (�,F ,Pθ ) and let Fm

k =
σ(Yk, . . . , Ym). The sequence Y is said to be α-mixing if α(n) → 0 as n → ∞, where

α(n) := sup
k≥1

sup
A∈F k

1 ,B∈F∞
k+n

|Pθ (A ∩ B) − Pθ (A)Pθ (B)|.

The proof of the CLT is based on the following Lemma.

Lemma 6.2 Suppose that the conditions of the consistency hold. Suppose further that:

(i) (Yi )i is α-mixing.
(ii) (Moment condition): for some δ > 0 and for each j ∈ {1, . . . , r}

E

[∣∣∣∣∂mθ (Y1)

∂θ j

∣∣∣∣
2+δ

]
< ∞.
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(iii) (Hessian Local condition): for some neighborhood U of θ0 and for j, k ∈
{1, . . . , r}:

E

[
sup
θ∈U

∣∣∣∣∂
2mθ (Y1)

∂θ j∂θk

∣∣∣∣
]

< ∞.

Then, θ̂n defined in (4) is asymptotically normal with asymptotic covariance matrix
given by

�(θ0) = V−1
θ0

�(θ0)V−1
θ0

,

where Vθ0 is the Hessian of the mapping Pmθ given in (3).

Proof The proof follows from Hayashi (2000) (Proposition 7.8, p. 472) and Jones
(2004), and by using the fact that, by regularity assumptions A1(i) and the Lebesgue
Differentiation Theorem, we have E[∇2

θ mθ (Y1)] = ∇2
θE[mθ (Y1)]. ��

It just remains to check that the conditions (ii) and (iii) of Lemma 6.2 hold under
our assumptions A3(ii) and A(iii).
(ii): As the function �θ is twice continuously differentiable w.r.t. θ , ∀yi ∈ R

2 and so
also �2

θ , the mapping mθ (yi ) : θ ∈ � �→ mθ (yi ) = Q�2
θ
(yi ) − 2V�θ (yi ) is twice

continuously differentiable ∀θ ∈ � and its first derivatives are given by

∇θmθ (yi ) = ∇θ Q�2
θ
(yi ) − 2∇θ V�θ (yi ).

By assumption, for each j ∈ {1, . . . , r}, ∂�θ

∂θ j
and

∂�2
θ

∂θ j
belong to L1(A), therefore

one can apply the Lebesgue Differentiation Theorem and Fubini Theorem to obtain

∇θ mθ (yi ) =
[

Q∇θ�2
θ
(yi ) − 2V∇θ�θ (yi )

]
. (13)

Then, for some δ > 0, by the moment assumption A3(ii), we have

|∇θmθ (yi )|2+δ =
∣∣∣Q∇θ�2

θ
(yi ) − 2V∇θ�θ (yi )

∣∣∣2+δ

≤ C1

∣∣∣Q∇θ�2
θ
(yi )

∣∣∣2+δ + C2
∣∣V∇θ�θ (yi )

∣∣2+δ
< ∞,

where C1 and C2 denote two positive constants.

(iii) For j, k ∈ {1, . . . , r}, ∂2�θ

∂θ j ∂θk
and

∂2�2
θ

∂θ j ∂θk
belong to L1(A), the Lebesgue Differen-

tiation Theorem gives

∇2
θ mθ (yi ) =

[
Q∇2

θ �2
θ
(yi ) − 2V∇2

θ �θ
(yi )

]
,

and, for some neighborhood U of θ0, by the local dominance assumption A3(iii),

E

[
sup
θ∈U

∥∥∥∇2
θ mθ (Yi )

∥∥∥
]

≤ E

[
sup
θ∈U

∥∥∥Q∇2
θ �2

θ
(Yi )

∥∥∥
]

+ 2E

[
sup
θ∈U

∥∥∥V∇2
θ �θ

(Yi )

∥∥∥
]

< ∞.
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This ends the proof of Theorem 3.1. ��

6.2 Proof of Corollary 3.1

By replacing ∇θ mθ (Y1) by its expression (13), we have, for j = 1,

�1(θ) = Var
[

Q∇θ �2
θ
(Y1) − 2V∇θ �θ (Y1)

]

= Var
(

Q∇θ �2
θ
(Y1)

)
+ 4Var

(
V∇θ �θ (Y1)

) − 4Cov
(

Q∇θ �2
θ
(Y1), V∇θ �θ (Y1)

)
.

Owing to Lemma 3.1, we obtain

Var
(

Q∇θ�2
θ
(Y1)

)
= E[Q∇θ�2

θ
(Y1)

2] − E[Q∇θ�2
θ
(Y1)]2

= E[Q∇θ�2
θ
(Y1)

2] − E[
∫

∇θ�
2
θ (X1, y)dy]2.

In a similar manner, using again Lemma 3.1, we have

Var
(
V∇θ�θ (Y1)

) = E[V∇θ�θ (Y1)
2] − E[V∇θ�θ (Y1)]2

= E[V∇θ�θ (Y1)
2] − E[∇θ�θ (X1)]2

and

Cov
(

Q∇θ�2
θ
(Y1), V∇θ�θ (Y1)

)
= E[Q∇θ�2

θ
(Y1)V∇θ�θ (Y1)]

− E[
∫

∇θ�
2
θ (X1, y)dy]E[∇θ�θ (X1)].

Hence

�1(θ) = Var (∇θ mθ (Y1))

= E[Q∇θ�2
θ
(Y1)

2] + 4E[V∇θ�θ (Y1)
2] − 4E[Q∇θ�2

θ
(Y1)V∇θ�θ (Y1)]

−
(
4E[∇θ�θ (X1)]2 + E[

∫
∇θ�

2
θ (X1, y)dy]2

−4E[
∫

∇θ�
2
θ (X1, y)dy]E[∇θ�θ (X1)]

)
.

For j = 2, we have

�2(θ) = Cov (∇θ mθ (Y1),∇θ mθ (Y2))

= Cov
(

Q∇θ�2
θ
(Y1), Q∇θ�2

θ
(Y2)

)
− 2Cov

(
Q∇θ�2

θ
(Y1), V∇θ�θ (Y2)

)

− 2Cov
(

Q∇θ�2
θ
(Y2), V∇θ�θ (Y1)

)
+ 4Cov

(
V∇θ�θ (Y1), V∇θ�θ (Y2)

)
,
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where the different terms are obtained from Lemma 3.1. Thus

Cov
(

Q∇θ �2
θ
(Y1), Q∇θ �2

θ
(Y2)

)
= E

[∫
∇θ�

2
θ (X1, y)dy

∫
∇θ�

2
θ (X2, y)dy

]

− E

[∫
∇θ�

2
θ (X1, y)dy

]
E

[∫
∇θ�

2
θ (X2, y)dy

]
.

Cov
(

Q∇θ �2
θ
(Y1), V∇θ �θ (Y2)

)
= E

[(∫
∇θ�

2
θ (X1, y)dy

)
∇θ�θ (X2)

]

− E

[∫
∇θ�

2
θ (X1, y)dy

]
E [∇θ�(X2)] .

Cov
(

Q∇θ �2
θ
(Y2), V∇θ �θ (Y1)

)
= E[Q∇θ �2

θ
(Y2)V∇θ �θ (Y1)]

− E

[∫
∇θ�

2
θ (X2, y)dy

]
E [∇θ�(X1)] .

Cov
(
V∇θ �θ (Y1), V∇θ �θ (Y2)

) = E[V∇θ �θ (Y1)V∇θ �θ (Y2)] − E [∇θ�(X1)]E [∇θ�(X2)] .

Now, by using the stationarity assumption A1(iv) of (Xi )i≥1 we obtain that

�2(θ) =E

[∫
∇θ�

2
θ (X1, y)dy

∫
∇θ�

2
θ (X2, y)dy

]
− E

[∫
∇θ�

2
θ (X1, y)dy

]2

− 2

(
E

[(∫
∇θ�

2
θ (X1, y)dy

)
∇θ�θ (X2)

]
+ E[Q∇θ�2

θ
(Y2)V∇θ�θ (Y1)]

)

− 4

(
E

[∫
∇θ�

2
θ (X1, y)dy

]
E [∇θ�(X2)] + E [∇θ�(X1)]

2

−E
[
V∇θ�θ (Y1)V∇θ�θ (Y2)

])
.

Calculus of the covariance matrix of Corollary 3.1 for j > 2: By replacing
∇θmθ (Y1) by its expression (13), we have

� j (θ) = Cov
(∇θ mθ (Y1),∇θ mθ (Y j )

)
= E[∇θ mθ (Y1)∇θmθ (Y j )] − E[∇θmθ (Y1)]E[∇θmθ (Y j )].

It follows from Lemma 3.1 and the stationarity assumption A1(iv) of (Xi )i≥1 that

E[∇θ mθ (Y1)] = E[
∫

∇θ�
2
θ (X1, y)dy] − 2E[∇θ�θ (X1)].

Moreover

E[∇θ mθ (Y j )] = E[
∫

∇θ�
2
θ (X j )] − 2E[∇θ�θ (X j )].
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Hence

E[∇θmθ (Y1)]E[∇θmθ (Y j )] = E[
∫

∇θ�
2
θ (X1, y)dy]E[

∫
∇θ�

2
θ (X j , y)dy]

− 2E[
∫

∇θ�
2
θ (X1, y)dy]E[∇θ�θ (X j )]

− 2E[∇θ�θ (X1)]E[
∫

∇θ�
2
θ (X j , y)dy]

+ 4E[∇θ�θ (X1)]E[∇θ�θ (X j )].

On the other hand, we have

E[∇θ mθ (Y1)∇θ mθ (Y j )] = E

[
(Q∇θ �2

θ
(Y1) − 2V∇θ �θ (Y1))(Q∇θ �2

θ
(Y j ) − 2V∇θ �θ (Y j ))

]

= E[Q∇θ �2
θ
(Y1)Q∇θ �2

θ
(Y j )] − 2E[Q∇θ �2

θ
(Y1)V∇θ �θ (Y j )]

− 2E[V∇θ �θ (Y1)Q∇θ �2
θ
(Y j )] + 4E[V∇θ �θ (Y1)V∇θ �θ (Y j )].

Furthermore, conditioning by X1:n and using the Tower property, we obtain

E[Q∇θ�2
θ
(Y1)Q∇θ�2

θ
(Y j )] = E[

∫
∇θ�

2
θ (X1, y)dy

∫
∇θ�

2
θ (X j , y)dy].

Similarly, we have

E[V∇θ�θ (Y1)V∇θ�θ (Y j )] = E[∇θ�θ (X1)∇θ�θ (X j )].

Noting that for j > 2 the stationarity of (Xi )i≥1 implies thatE[Q∇θ�2
θ
(Y1)V∇θ�θ (Y j )]

= E[Q∇θ�2
θ
(Y j )V∇θ�θ (Y1)]. Hence,

E[∇θ mθ (Y1)∇θ mθ (Y j )] = E[
∫

∇θ�
2
θ (X1, y)dy

∫
∇θ�

2
θ (X j , y)dy]

+ 4E[∇θ�θ (X1)∇θ�θ (X j )] − 4E[Q∇θ �2
θ
(Y1)V∇θ �θ (Y j )].

By using Lemma 3.1, the last term is equal to

E[Q∇θ�2
θ
(Y1)V∇θ�θ (Y j )] = E[

∫
∇θ�

2
θ (X1, y)dy∇θ�θ (X j )].

Therefore, the covariance matrix is given by

� j (θ) = Cov
(∇θmθ (Y1),∇θ mθ (Y j )

)
= E[

∫
∇θ�

2
θ (X1, y)dy

∫
∇θ�

2
θ (X j , y)dy]

− E[
∫

∇θ�
2
θ (X1, y)dy]E[

∫
∇θ�

2
θ (X j , y)dy]
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+ 4E[∇θ�θ (X1)∇θ�θ (X j )] − 4E[∇θ�θ (X1)]E[∇θ�θ (X j )]
− 4E[

∫
∇θ�

2
θ (X1, y)dy∇θ�θ (X j )] + 4E[

∫
∇θ�

2
θ (X1, y)]E[∇θ�θ (X j )].

Thus

Cov
(∇θ mθ (Y1),∇θ mθ (Y j )

) = Cov

(∫
∇θ�

2
θ (X1, y)dy,

∫
∇θ�

2
θ (X j , y)dy

)

+ 4

(
Cov

(∇θ�θ (X1),∇θ�θ (X j )
)

− Cov

(∫
∇θ�

2
θ (X1, y)dy,∇θ�θ (X j )

))
.

Expression of the Hessian matrix Vθ : We have

Pmθ = ‖�θ‖2A − 2
〈
�θ,�θ0

〉
A .

Under A1(i), ∀θ in �, the mapping θ �→ Pmθ is twice differentiable w.r.t. θ on the
compact subset �. For j ∈ {1, . . . , r}, at the point θ = θ0, we have

∂Pm

∂θ j
(θ) = 2

〈
∂�θ

∂θ j
,�θ

〉
− 2

〈
∂�θ

∂θ j
,�θ0

〉
= 2

〈
∂�θ

∂θ j
,�θ − �θ0

〉
= 0

and for j, k ∈ {1, . . . , r}:
∂2Pm

∂θ j∂θk
(θ) = 2

(〈
∂2�θ

∂θ jθk
,�θ − �θ0

〉
+

〈
∂�θ

∂θk
,
∂�θ

∂θ j

〉)
j,k

= 2

(〈
∂�θ

∂θk
,
∂�θ

∂θ j

〉)
j,k

.

The proof of Corollary 3.1 is completed. ��

6.3 Contrast and checking assumptions for the simulations

Contrasts for the linear AR simulations To compute the several contrasts defined in
Proposition4.1, the followingquantities are essentially required: (�2

θ (x, 0))∗,�∗
θ (x, y)

and f ∗
ε (x). For the model defined in (8), the square of the transition density is also

Gaussian up to the parameter 1/(2
√

πσ 2
η ) with mean φx and variance σ 2

η /2. Hence,

we are interested in computing the following Fourier transform:

(�2
θ (x, 0))∗ =

∫
e−i xu

(∫
�2

θ (u, v)dv

)
du =

∫
e−i xu�̃θ (u)du

= (�̃θ (x))∗.

By integration of the Gaussian density, we have that �̃θ (x) = 1/
(
2
√

πσ 2
η

)
∀x , which

is integrable on L1(A). Nevertheless, for the cases 1 and 3 (super smooth noises),

123



1644 C. Chesneau et al.

Assumptions A 2 and A 3(i)–(iii) are not satisfied since x �→ (�̃θ (x))∗/ f ∗
ε (x) is not

integrable despite the fact that the numerator and denominator taken separately can
be integrated. In this case, we introduce a weight function ϕ belongs to S(R), where
S(R) is the Schwartz space of functions defined by S(R) = { f ∈ C∞(R), ∀α, N
there exists CN ,α s.t. |∇α

x f (x)| ≤ CN ,α(1 + |x |)−N }.
Hence, ∀ϕ ∈ S(R), we have

〈
ϕ, �̃∗

θ

〉
=

∫
ϕ(x)dx

∫
�̃θ (u)e−i xudu = 1

2
√

πσ 2
η

∫
ϕ(x)dx

∫
e−i xudu = 1

2
√

πσ 2
η

〈
ϕ, δ0

〉
,

where δx is the Dirac distribution at point x .
Hence, by taking ϕ : u �→ ϕ̃(u)eixu/ f ∗

ε (−u) ∈ S(R) with ϕ̃ : u �→ 2πe−σ 2
ε u2 , we

obtain the operator Q as follows

Q�2
θ
(x) = 1

2π

∫
eixu ϕ̃(u)�̃∗

θ (u)

f ∗
ε (−u)

du =
〈
ϕ, �̃∗

θ

〉
= 1

2
√

πσ 2
η

〈
ϕ, δ0

〉
= 1

2
√

πσ 2
η

ϕ(0),

where ϕ(0) = 1 for all cases in Sect. 4. Here, we take ϕ̃ dependent of σ 2
ε since we

assume that this variance is known but one can take any function ϕ̃ such that ϕ̃/ f ∗
ε is

in S.
For �∗

θ (x, y) we make the same analogy, that is let �u,θ (v) the function v �→
�θ(u, v) ∀u. For the Gaussian transition density �θ we have ∀u,

(�u,θ (y))∗ =
∫

e−iyv�θ (u, v)dv =
∫

e−iyv 1√
2πσ 2

η

e
− (v−φu)2

2σ2η dv = e(−iφuy− σ2η
2 y2).

Let �y,θ (u) be the function u �→ (�u,θ (y))∗ ∀y. Then, we have ∀ϕ ∈ S and ∀y

〈
ϕ,�y,θ

〉
=

∫
ϕ(x)dx

∫
e−i xu(�u,θ (y))∗du

=
∫

ϕ(x)dx
∫

e−i xue−iφuy− σ2η
2 y2du

= e− σ2η
2 y2

∫
ϕ(z − φy)dx

∫
e−iuzdu

= e− σ2η
2 y2

〈
ϕ(. − φy), 1∗

〉

= e− σ2η
2 y2

〈
ϕ(. − φy), δ0

〉
= e− σ2η

2 y2ϕ(−φy).

Hence, the operator V�θ is obtained as follows for the case 1, i.e.,
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V�θ (x, y) = 1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)ei(xu+yv) �∗

θ (u, v)

f ∗
ε (−u) f ∗

ε (−v)
dudv

= 1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)

f ∗
ε (−u) f ∗

ε (−v)
ei(xu+yv)

(∫
e−iwu(�w,θ (v))∗dw

)
dudv

= 1

4π2

∫
ϕ̃2(v)

f ∗
ε (−v)

eiyv

(∫
ϕ̃1(u)

f ∗
ε (−u)

eixu
(∫

e−iwu−iφwv− σ2η
2 v2dw

)
du

)
dv

= 1

4π2

∫
ϕ̃2(v)

f ∗
ε (−v)

eiyv− σ2η
2 v2

(∫
ϕ̃1(u)

f ∗
ε (−u)

eixu
(∫

e−iw(u+φv)dw

)
du

)
dv

= 1

4π2

∫
ϕ̃2(v)

f ∗
ε (−v)

eiyv− σ2η
2 v2

(∫
ϕ̃1(z − φv)

f ∗
ε (φv − z)

eix(z−φv)

(∫
e−iwzdw

)
dz

)
dv

= 1

2π

∫
ϕ̃2(v)

f ∗
ε (−v)

eiyv− σ2η
2 v2

(〈
ϕ(. − φv), 1∗

〉)
dv

= 1

2π

∫
ϕ̃2(v)

f ∗
ε (−v)

eiyv− σ2η
2 v2ϕ(−φv)dv

= 1

2π

∫
e−ivy

(
eiv(y−φx)−(σ 2

η −σ 2
ε (1+φ2)) v2

2

)
dv

= 1

2π

∫
eivy

(
e−iv(y−φx)−(σ 2

η −σ 2
ε (1+φ2)) v2

2

)
dv

= 1√
2π(σ 2

η − σ 2
ε (1 + φ2))

exp

(
− (y − φx)2

2(σ 2
η − σ 2

ε (1 + φ2))

)
,

where ϕ : u �→ eixu ϕ̃1(u)/ f ∗
ε (−u) with ϕ̃1 : u �→ 2πe−σ 2

ε u2 and ϕ̃2 : v �→
e−ivy−σ 2

ε v2 and such that ϕ, ϕ1 and ϕ2 ∈ S. For the cases 2 and 3, one can make
the same computations by replacing f ∗

ε by its expression given in Sect. 4.

Checking assumptions A1–A3 By inspecting the function bθ0 : x �→ φ0x one can
easily see that regularity assumptions are well satisfied and, if φ0 satisfies |φ0| < 1,
the process is strictly stationary. It remains to check Assumptions A1(iv) and A2–A3.
The strict convexity of the function Pmθ implies that θ0 is a minimum andAssumption
A1(iv) also requires to compute the Hessian matrix belonging to S ym

2×2 (where S ym

represents the space of symmetricmatrix). The stationary density fθ0 is here a centered
Gaussian density with zero mean and variance σ 2

0,η/(1 − φ2
0), so the Hessian matrix

Vθ0 is given by

Vθ0 = 1

4
√

πσ 3
η

⎛
⎝− σ 2

0,η

−1+φ2
0
0

0 3
2

⎞
⎠ .

(see Corollary 3.1). Nevertheless, we assume here that fθ0 is unknown, so the Hessian
matrix is consistently estimated by

V
θ̂n

= 1

n

n−1∑
i=1

Q ∂2�2
θ

∂θ2

(Yi ) − 2V ∂2�θ

∂θ2

(Yi ).

The computation of thismatrix can be easily done forGaussianARprocesseswhatever
the noises since all derivatives of the Gaussian densities are explicit.
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As we have pointed out, the integrability Assumptions A2 and A3(i) and (iii) are
not satisfied for Gaussian AR processes with super smooth noises (cases 1 and 3),
hence the introduction in practice of a weight function ϕ belonging to the Swchartz
space S is then mandatory. On the other hand, for Laplace noises the convergence
towards zero of the modulus of the Fourier transform is polynomial and the func-
tions (�∗

θ / f ∗
ε ), (∂�θ/∂θ j )

∗/ f ∗
ε and (∂2�θ/∂θ j∂θl)

∗/ f ∗
ε have the following form

C1(θ)P(x) exp(−C2(θ)x2) (meaning that they are super smooth and so integrable)
where C1(θ) and C2(θ) are two constants well-defined in the compact parameter set
� and P(x) a polynomial function independent of θ . Hence, moment conditions and
local dominance are satisfied.
Contrasts for the nonlinear AR simulations Consider the nonlinear process in (11).
For this model the transition density is Gaussian with mean bθ0(x) = φ0 sin(x) and
variance σ 2

0,η. In the same manner the square of the transition density is also Gaussian

with the same mean bθ0(x) and variance σ 2
0,η/2 up to the constant of normalization

1/(2
√

πσ0,η). Hence, the computation of the operator Q�2
θ
remains unchanged, and

we have to compute the operator V�θ . Because of the nonlinearity of the drift function,
this operator does not admit an explicit form and is given by

V�θ (x, y) = 1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)ei(xu+yv) �∗

θ (u, v)

f ∗
ε (−u) f ∗

ε (−v)
dudv

= 1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)

f ∗
ε (−u) f ∗

ε (−v)
ei(xu+yv)

(∫
e−iwu(�w,θ (v))∗dw

)
dudv

= 1

4π2

∫
ϕ̃2(v)

f ∗
ε (−v)

eiyv

(∫
ϕ̃1(u)

f ∗
ε (−u)

eixu
(∫

e−iwu−ivbθ (w)− σ2η
2 v2dw

)
du

)
dv

= 1

4π2

∫∫
ϕ̃1(u)

f ∗
ε (−u)

eiu(x−w)

(∫
ϕ̃2(v)

f ∗
ε (−v)

eiyv−ibθ (w)v− σ2η
2 v2dv

)
dwdu

= 1

4π2

∫∫
ϕ̃1(u)

f ∗
ε (−u)

eiu(x−w)

(∫
eiyv(e−iv(y−bθ (w))− (σ2η +σ2ε )

2 v2 )dv

)
dwdu

= 1

4π2

∫∫
ϕ̃1(u)

f ∗
ε (−u)

eiu(x−w)

(
2π

1√
2π(σ 2

η + σ 2
ε )

e
− (y−bθ (w))2

2(σ2η +σ2ε )

)
dwdu

= 1

2π

1√
2π(σ 2

η + σ 2
ε )

∫
ϕ̃1(u)

f ∗
ε (−u)

eiux
(∫

e−iuwe
− (y−bθ (w))2

2(σ2η +σ2ε ) dw

)
du

=
∫

ϕ(u)

(∫
e−iuw 1√

2π(σ 2
η + σ 2

ε )
e
− (y−bθ (w))2

2(σ2η +σ2ε ) dw

)
du

where ϕ : u �→ 2πeixue−σ 2
ε u2/ f ∗

ε (−u) and ϕ̃2 : v �→ e−ivy−σ 2
ε v2 .
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