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Abstract
In recent years, integer-valued time series attract the attention of researchers and
find their applications in data analysis. Among various models, the integer-valued
autoregressive (INAR) ones are of great popularity and are widely applied in practice.
This paper develops some portmanteau test statistics to check the adequacy of the fitted
model in a wide group of INAR processes, called generalized INAR. For this purpose,
the asymptotic distributions of the test statistics are obtained and, using Monte Carlo
simulation studies, their finite sample properties are derived. Besides, the results are
applied in analyzing a real data example

Keywords Integer-valued time series · Generalized INAR · Portmanteau tests ·
Asymptotic distribution

Mathematics Subject Classification 62M10 · 62E20

1 Introduction

When studying a set of time series observations, the first step is to find “whether the
data exhibit significant serial dependence or not”, Jung and Tremayne (2003) and
Jung and Tremayne (2006). If no serial dependence is observed, the standard methods
for analyzing independent observations should be applied. Otherwise, if existence of
significant serial correlation is confirmed, the researcher can go for identifying the type
of correlation structure and specifying the appropriate time series model for the data.
Based on the Box-Jenkins methodology, model identification, parameter estimation,
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diagnostic checking and forecasting are steps that must be taken through analyzing
any time series observations.

Goodness-of-fit tests is one of the most important tools for checking the adequacy
of the fitted model to a set of data. In the analysis of time series data, these tests are
commonly defined based on the characteristics of the residuals, Li (2003) and Box
et al. (2015). For example, in linear time series, the fitted model is considered to be
adequate if the plot of the autocorrelations of the residuals resembles the plot of the
autocorrelations of a noise sequence and, for this purpose, several test statistics have
been suggested by various researchers. For instance, Ljung-Box and McLeod-Li test
statistics were introduced based on sums of autocorrelations of residuals and squared
residuals, respectively, and have the asymptotic chi-square distribution; see (Ljung
and Box 1978) and McLeod and Li (1983) for more details. Peña and Rodríguez
(2002) proposed a portmanteau test based on the K -th root of the determinant of the
autocorrelation matrix of order K . Besides, in 2006, they presented a modification of
the test statistic using the logarithm of the determinant. They demonstrated that this
test is more powerful than the ones proposed by Ljung and Box (1978) and McLeod
and Li (1983).

Although the focus of proposed test statistics for goodness-of-fit tests in time series
analysis was mainly on i.i.d noise sequence, in 2005, Francq et al. considered tests for
lack of fit in ARMA models with dependent innovations. In their research, which is
one of the cornerstones of the present study, they derived the test statistic based on the
autocorrelations for residuals of ARMAmodels, when the underlying noise process is
assumed to be uncorrelated rather than independent or a martingale difference. Addi-
tionally, Katayama (2016) studied the portmanteau tests and the Lagrange multiplier
test for goodness of fit in ARMA models with uncorrelated errors.

In recent years, time series of counts become increasingly important in research
and applications. These time series, which are arising from counting certain objects or
events at specified times, can be studied from two aspects. In one aspect, if an integer-
valued time series has a big enough range, it can be approximated by a standard
continuous model and, in the other aspect, it is necessary to use integer-valued model
to fit and forecast the appropriate model for the series. Although different features of
integer-valued time series, such as model building and estimation of the parameters,
are studied by various researchers, the third step in Box-Jenkinsmethodology for these
kind of processes is still less developed. Based on the literature review, although there
are some publications attempting to address the goodness-of-fit and portmanteau tests
for count time series, they are mainly limited to specific models. In the following,
a brief literature review concerning the third step in Box-Jenkins methodology is
presented to clarify this gap.

In (2008), Bu and McCabe considered INAR(p) model with Poisson innovations.
Although the focus of this researchwas on themodel selection, estimation and forecast-
ing, they tested the adequacy of the fitted model to the real dataset using the estimated
Pearson residuals and Ljung-Box portmanteau tests. Their suggested method was to
propose p+1 sets of residuals and check “the existence of any dependence structure”
in these sets. Zhu andWang (2010) proposed five portmanteau test statistics, which can
be applied in checking the adequacy of a fitted integer-valued ARCHmodel. Park and
Kim (2012) proposed diagnostic checks for the samemodel as the one studied inBu and
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McCabe (2008) using two forms of expected residuals. In (2013), Fokianos and Neu-
mann studied non-parametric goodness-of-fit tests for the Poisson INGARCH(p, q)

models. Meintanis and Karlis (2014) proposed a goodness-of-fit test based on the
joint probability generating function for the distribution of innovations, when they
are from a general family of distributions called Poisson stopped-sum distributions.
They applied their method to INAR(1) model and suggested that their approach can be
applied to low order models and, as the order of the model increases, the test statistic
would become considerably complicated. Kim andWeiß (2015) presented some diag-
nostic tests for the binomial AR(1) model and Schweer (2016) proposed the empirical
joint probability generating function in order to test the adequacy of the fit of themodel
for a class of Markovian models. Finally, Weiß et al. (2019) tried to find solutions to
some concerns about the adequacy of the fit of the model using Pearson residuals.
For this purpose, they considered different types of “count time series models and
inadequacy scenarios” and tried to answer to raised questions using a “comprehensive
simulation study”.

Along with these studies, some searchers proposed goodness-of-fit tests for the
marginal distribution of the integer-valued time series. For example, Hudecová et al.
(2015) focused on goodness-of-fit tests for distributional assumptions on count time-
seriesmodels. Schweer andWeiß (2016) suggested a test to identify a Poisson INAR(1)
model from models with a different distribution of the innovations. As one of the last
studies in this area, Weiß (2018) discussed the use of the Pearson test statistic to check
the marginal distribution of count time series, such as CLAR(1), INAR(p), discrete
ARMA and Hidden-Markov models. Although the focus of this paper was on the tests
for the marginal distribution, but it also accounted for the selection of the order of
the model. Based on the simulation studies, it was suggested that in practice, if the
researcher is in doubt about the order of the mode, it is better to choose a model with
higher order.

This paper tries to present some portmanteau test statistics for the class of general-
ized integer-valued autoregressive processes. These processes, which are introduced
by Latour (1998), are formed by extending the idea of binomial thinning operator
and include Binomial, Geometric, Poisson, new geometric (Ristić et al. 2009), depen-
dent Bernoulli (Ristić et al. 2013) and ρ-binomial (Borges et al. 2016) integer-valued
autoregressive processes. The portmanteau test statistics, which are studied in this
paper, possess two advantages compared to their competitor. First, as pointed out in
the previous paragraphs, most of the previous studies in this area concentrated on
some specific models for count time series, mainly with binomial thinning opera-
tors. However, the proposed test statistics in this study can be applied to a wide class
of integer-valued processes as GINAR(p) models covering a wide range of thinning
operators and marginal distributions. In fact, these two components of integer-valued
time series, which are of great importance in the studies that have been done so far,
do not affect the performance of presented test statistics. Secondly, as mentioned in
Park and Kim (2012), the thinning operators make residuals unobservable, and it is
the main difficulty in developing diagnostic tools for integer-valued time series. Some
researchers tried to overcome this challenge by substituting residuals by other forms,
such as expected residuals, Park andKim (2012) or Pearson residuals (Weiß 2018). The
portmanteau tests presented in this paper are based on residuals, which are obtained

123



1166 M. Forughi et al.

by transforming integer-valued processes to real-valued time series with uncorrelated
error terms and are easily feasible. Although these test statistics resemble the clas-
sic ones mentioned above, their asymptotic distributions are different because of the
uncorrelatedness of the error terms.

This paper is in two parts. In the first part, which is consisted of Sects. 2 and 3,
the theoretical structure of generalized integer-valued autoregressive models are intro-
duced and their relationwith real-valued autoregressivemodels are presented. Besides,
the empirical autocovariance and autocorrelation functions of autoregressive models
with uncorrelated error terms and their properties are studied. Moreover, different
forms of portmanteau tests for generalized integer-valued autoregressive models and
their asymptotic distributions are derived. In the second part, Sects. 4 and 5, the finite
sample properties of the test statistics are compared through Monte Carlo simulations
and a real-data example is illustrated.

2 Generalized integer-valued autoregressivemodels of order p

In the study of integer-valued time series, various models have been presented by
different researchers in this field, which are mainly based on thinning operators. Bino-
mial thinning operator or the Steutel and van Harn operator, Steutel and Van Harn
(1979), is one of the first operators of this kind. This operator is applied by Al-Osh
and Alzaid (1987) and Du and Li (1991), and, in a slightly more general form by Dion
et al. (1995) in defining integer-valued time series models.

Definition 1 Let
{
Y j

}
j∈N be a sequence of independent and identically distributed

(i.i.d.) Bernoulli random variables with mean θ and independent of X , which is a
non-negative integer-valued random variable. The binomial thinning operator in the
analysis of integer-valued time series, is denoted by θ◦ and is defined as

θ ◦ X =
{∑X

j=1 Y j X > 0
0 X = 0

. (1)

The sequence
{
Y j

}
j∈N is a counting series and, obviously, θ ◦ X ∼ B (X , θ) .

Based on the binomial thinning operator, Du and Li (1991) defined the integer-
valued autoregressive model of order p, INAR(p) in abbreviation, as

Xt =
p∑

j=1

θ j ◦ Xt− j + εt , t ∈ Z, (2)

where {εt }t∈Z is an i.i.d. sequence of non-negative integer-valued random variables

with mean με and variance σ 2
ε and

(
θ1, . . . , θp, με, σ

2
ε

)T
is the vector of parameters,

where T stands for the transpose.
In 1998,Latour tried tomodify the idea of binomial thinningoperator by substituting

any non-negative integer-valued random variable with finite mean θ j and variance β j

123



Portmanteau tests for generalized... 1167

for the counting series involved in the operator θ j ◦ . The new thinning operator, that
he called it ”generalized thinning operator”, is defined as:

θ • X :=
X∑

j=1

Y j , θ ∈ (0, 1) , β > 0, (3)

where the counting seriesY j is allowed to have the range {0, 1, 2, . . .} instead of {0, 1} .

Consequently, the generalized INAR(p), GINAR(p) in abbreviation, is defined as:

Xt =
p∑

j=1

θ j • Xt− j + εt , t ∈ Z, (4)

and {εt }t∈Z is defined similarly as in Eq. (2) and it is independent of the counting
series involved in the thinning operators. Let us assume that {Xt }t∈Z has a constant
mean. Consequently, taking expectations on both sides of (4) leads to

E (Xt ) = με

⎛

⎝1 −
p∑

j=1

θ j

⎞

⎠

−1

.

Since θ j ≥ 0, j = 1, . . . , p − 1, θp > 0, με > 0 and E (Xt ) > 0, we must have∑p
j=1 θ j < 1.

Assumption 1.
∑p

j=1 θ j < 1.
To show the importance of Assumption 1, set θ (Z) = 1 − θ1Z − · · · − θp Z p. Using
Rouche’s theorem, Assumption 1 implies that θ (Z) has all its 0’s inside the unit
circle. Besides, Du and Li (1991) proved that if the roots of θ (Z) are inside the unit
circle, the process is second-order stationary. Therefore, Assumption 1 guarantees the
stationarity of {Xt }t∈Z .

Moreover, by considering the innovation process {εt }t∈Z to be a sequence of i.i.d.
non-negative integer-valued randomvariables, it can be proved that the process {Xt }t∈Z
is not only second-order stationary but also it is strictly stationary, Latour (1997).
Ergodicity is another characteristic of {Xt }t∈Z . To demonstrate this property, note
that sigma-field generated by

{
X j

}
j≤t , denoted as F (Xt , Xt−1, . . .) , is a subset of

the sigma-field generated by
{
ε j

}
j≤t and the related counting series. On the other

hand, by independence of
{
ε j

}
and the counting series and Kolmogorove’s 0-1 law,

the tail sigma-field of the latter contains only the measurable sets with probability 0 or
1, and consequently, the same is true for any event in

⋂−∞
t=0 F (Xt , Xt−1, . . .) , which

results in the ergodicity of {Xt }t∈Z , (Du and Li 1991).
The mixing notion is useful for derivation of the asymptotic distribution of estima-

tors and holds for awild class of processes, Pham (1986). The strongmixing coefficient
of a stationary process {Xt ; t ∈ Z} is the number αX (k) introduced as αX (k) :=
supA∈F0−∞, B∈F∞

k
|P (A ∩ B) − P (A) P (B)| , k = 1, 2, . . . , where the sub-σ -fields
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F0−∞ and F∞
k are defined as F0−∞ = σ {Xt ; t ≤ 0} and F∞

k = σ {Xt ; t ≥ k} ,

k ≥ 1, respectively. The stationary process {Xt ; t ∈ Z} is called strong mixing if
αX (k) → 0, as k goes to infinity.

In the following, we will make some assumptions on the moments and the strong
mixing coefficients of {Xt } , which will be applied in the subsequent sections.

Assumption 2. For the GINAR(p) process {Xt } , E |Xt |4+2ν < ∞ and, for some
ν > 0,

∑∞
k=0 αX (k)v/v+2 < ∞.

Consider a sequence of GINAR(p) process, {Xt }t∈Z , following Eq. (4). As can
obviously be seen, this equation resembles the standard equation of the ARmodel. By
setting εt = Xt −E (Xt |Ft−1) ,which is amartingale difference, a GINAR(p) process
can be transformed to a commonAR(p) process, Latour (1998). This transformation is
stated in the following corollary and relaxes restrictive assumptions on the type of the
thinning operator and the marginal distributions in GINAR(p) models. This approach
will be beneficial when dealing with order selection and diagnostic checking for a
model. However, moving to the forecasting step in the Box-Jenkins methodology and
based on the structure of the data, it will be required to clarify the type of these two
elements.

Corollary 1 (Latour 1998)Let {Xt }t∈Z be aGINAR(p) process satisfyingEq. (4). Then,
{Xt }t∈Z can be written as an AR(p) process,

Xt − E (Xt ) =
p∑

j=1

θ j
(
Xt− j − E (Xt )

) + εt , (5)

where εt is a white noise process with σ 2
ε := var (εt ) = σ 2

ε + E (Xt )
∑p

i=1 σ 2
i , where

σ 2
i is the variance of the counting variables, Yi, j , i = 1, . . . , p, j = 1, . . . , Xt−i ,

which are involved in the i th thinning operator, i = 1, . . . , p.

By substituting Xt − E (Xt ) with Wt , Eq. (5) can be rewritten as:

Wt =
p∑

j=1

θ jWt− j + εt . (6)

Consider θθθ0 = (
θ01, . . . , θ0p

)T be the true values of θθθ = (
θ1, . . . , θp

)T in model

(6). Throughout the paper, the random variable θ̂θθ =
(
θ̂1, . . . , θ̂p

)T
denotes the

least-square estimator (LSE) of θθθ, where θ̂θθ is the minimizing value of Qn (θθθ) =
1
n

∑n
t=1 et

2 (θθθ) and et (θθθ) is the estimation of the error term based on a sequence of
observations of length n. Based on Francq et al. (2005), it can be proved that, under
Assumptions 1 and 2 , θ̂θθ is a strongly consistent and asymptotically normal estimator
of θθθ; i.e.,

θ̂θθ
a.s.−−→ θθθ0, (7)
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and

√
n

(
θ̂θθ − θθθ0

)
d−−→ Np

(
0, J−1IJ−1

)
, (8)

where J := J (θθθ0) and I := I (θθθ0) are defined as J = limn→∞ ∂2

∂θθθ∂θθθT
Qn (θθθ)

∣∣∣
θθθ=θθθ0

and

I = limn→∞ Var
(√

n ∂
∂θθθ

Qn (θθθ)
)∣∣

θθθ=θθθ0
, respectively.

Generally, portmanteau test statistics are designed based on the empirical auto-
covariance function (ACVF) or empirical autocorrelation function (ACF). So, to
construct the portmanteau test statistic for GINAR(p) models, it seems desirable to
survey the properties of the empirical ACVFs of the uncorrelated error terms, εt , in
model (6).

2.1 Empirical ACVF and ACF of the uncorrelated error terms: properties and
asymptotic distributions

Let γγγm = (γ (1) , γ (2) , . . . , γ (m))T be the vector of white noise ACVFs and , for
εt in (6), γ (l) is defined as:

γ (l) = 1

n

n−l∑

t=1

εtεt+l , l ≥ 0.

It can be proved that
∑∞

h=−∞
∣∣E

(
εtεt+lεt+hεt+h+l ′

)∣∣ < ∞ and

cov
(√

nγ (l) ,
√
nγ

(
l ′
)) = 1

n

n−l∑

t=1

n−l ′∑

t ′=1

E
(
εtεt+lεt ′εt ′+l ′

)

→
∞∑

h=−∞
E

(
εtεt+lεt+hεt+h+l ′

) := �
(
l, l ′

)
,

as n goes to infinity, see (Francq et al. 2005) for the detailed proofs.
Let ���m,m′ = (

�
(
l, l ′

))
1≤l≤m, 1≤l ′≤m′ . Additionally, let m = (λλλ1, . . . ,λλλm) ,

where λλλi =
(
−θ∗

i−1, . . . ,−θ∗
i−p

)T
and

θ∗
i =

⎧
⎪⎪⎨

⎪⎪⎩

0, if i < 0
1, if i = 0∑

0<k≤i θ0kθ
∗
i−k, if 0 < i < max {p, 1}∑

0<k≤p θ0kθ
∗
i−k, if i ≥ max {p, 1}

. (9)

The next theorem, which is a restatement of Theorem 1 in Francq et al. (2005) for
GINAR(p) processes, specifies the asymptotic joint distribution of θ̂θθ − θθθ0 and γγγm .
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Theorem 1 Assume that p > 0. Under Assumptions 1 and 2,
√
n

(
θ̂θθ − θθθ0,γγγm

)T
is

asymptotically distributed as Np+m

(
0, �

θ̂θθ,γγγm

)
, where

�
θ̂θθ,γγγm

=
(

�11 �12
�21 �22

)
,

and

�11 =
{
σ 2

ε ∞T∞
}−1

∞���∞,∞T∞
{
σ 2

ε ∞T∞
}−1

,

�12 = −
{
σ 2

ε ∞T∞
}−1

∞���∞,m,

�21 = −���m,∞∞
{
σ 2

ε ∞T∞
}−1

,

�22 = ���m,m .

Proof Assumption 1, which is stated for GINAR(p) processes, can be transformed to
equivalent assumption for AR(p) processes. In this case, the proof is a straightforward
consequence of Francq et al. (2005). �
Remark 1 Based on (8), �11 is equal to J−1IJ−1. Besides, it can be shown that
∞T∞ = ∑∞

i=1 λλλiλλλ
T
i , ∞���∞,∞T∞ = ∑∞

l,l ′ λλλl�
(
l, l ′

)
λλλl ′ and ���m,∞∞ =

∑∞
l ′=1

∑m
l=1 �

(
l, l ′

)
λλλT
l ′ .

Let W1,W2, . . . ,Wn be a realization of length n of the process {Wt }t∈Z in model
(6). The value of εt , 0 < t ≤ n, can be approximated by ε̂t (θθθ) , defined as ε̂t (θθθ) =
Wt − ∑p

i=1 θiWt−i , t = 1, . . . , n. We don’t consider the past of the process and set
the unknown starting values equal to zero, i.e.,

Wt = 0, t ≤ 0.

To study the adequacy of the model, a suitable statistic based on the noise empirical
ACVFs and ACFs is required. Therefore, as the first step towards introducing this test
statistic, the estimation of the noise empirical ACVFs are presented.

Consider γ̂γγm = (
γ̂ (1) , γ̂ (2) , . . . , γ̂ (m)

)T to be the estimation of the noise empir-
ical ACVFs γγγm, where

γ̂ (l) = 1

n

n−l∑

t=1

ε̂t (θ̂ )̂εt+l(θ̂),

and θ̂ is theLSestimator of θ .The estimation ofγ (l) canbe rewritten as γ̂ (l) = γ (l)+
E

(
εt

(
∂

∂θT
εt+l

))

θ=θ0

(
θ̂ − θ0

)
+Rn,where ∂

∂θT
εt+l stands for the vector ∂

∂θT
εt+l =

(
∂

∂θ1
εt+l , . . . ,

∂
∂θp

εt+l

)
and Rn = Op(

1
n ), (Francq et al. 2005). Following the same
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steps as in the proof of Theorem 1 of Francq et al. (2005), it can be demonstrated
that, ∂

∂θT
εt+l = ∑

i≥1 εt+l−iλλλ
T
i . Therefore, γ̂ (l) can be restated as γ̂ (l) = γ (l) +

σ 2
ε λλλT

l

(
θ̂ − θ0

)
+ Rn and, equivalently,

γ̂γγm = γγγm + σ 2
ε T

m

(
θ̂ − θ0

)
+ Op(

1

n
). (10)

Let p > 0. Under Assumption 1 and using Theorem 1, Slutsky’s Theorem and Eq.
(10), it can be shown that

√
nγ̂γγm is asymptotically distributed as Nm

(
0, �γ̂γγm

)
,where

�γ̂γγm
= σ 4

ε T
m�11m + σ 2

ε T
m�12 + σ 2

ε �21m + �22, (11)

and �11, �12, �21 and �22 are defined in Theorem 1.
Let us defined the noise empirical autocorrelation and its estimation as ρ (l) =

γ (l) /γ (0) and ρ̂ (l) = γ̂ (l) /γ̂ (0) , respectively, and let ρ̂ρρm stands for
(
ρ̂ (1) , ρ̂ (2) ,

. . . , ρ̂ (m)
)T

. As mentioned in Francq et al. (2005), it can be demonstrated that

ρ̂ρρm = γ̂γγm/σ 2
ε + Op(

1

n
). (12)

Consequently, for p > 0 and under Assumption 1, it can be proved that the asymptotic
distribution of

√
nρ̂ρρm is Nm

(
0, �ρ̂ρρm

)
, where

�ρ̂ρρm
= T

m�11m + T
m�12 + �21m + 1

σ 4
ε

�22. (13)

3 The portmanteau test statistics

Although various forms of portmanteau test statistics are introduced for real-valued
time series, these test statitics are not studied sufficiently in the analysis of integer-
valued time series. Here, we will bring two areas in the analysis of time series together
to bridge this gap. More precisely, in one hand, there are GINAR processes, which
covers a large class of INAR processes, and can be transformed to AR processes
by subtracting the mean and, on the other hand, we have portmanteau tests for AR
processes with uncorrelated error terms.

In the following, we will present four portmanteau test statistics for GINAR pro-
cesses to test if the data follows an assumed model. In other words, we are going to
test the null hypothesis that Xt satisfies a GINAR(p) model versus the alternative
hypothesis that Xt does not admit a GINAR representation, or admits a GINAR

(
p′)

with p′ > p.
Although, we apply ρ̂ρρm to formulate the portmanteau test statistics, by (12), it can

be concluded that the test statistics can either be presented based on the empirical
autocovariance or autocorrelation functions. The following test statistics are adopted
from the analysis of real-valued time series with independent errors and we use the
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authors’ initials to discriminate them. For example, the statistic QL := nρ̂ρρT
m�̂−1

ρ̂ρρm
ρ̂ρρm

is defined by Li (2003, 1992) for the analysis of non-linear time series with inde-

pendent errors. Besides, QBP := nρ̂ρρT
mρ̂ρρm, QLB := n (n + 2)

∑m
l=1

ρ2(l)
n−l and

QLM := nρ̂ρρT
mρ̂ρρm + m(m+1)

2n , are introduced, respectively, by Box and Pierce (1970);
Ljung andBox (1978) and Li andMcLeod (1981), in real-valued time series. In the fol-
lowing, the asymptotic distribution of these test statistics are presented for GINAR(p)
processes.

• Li test statistic: If �̂ρ̂ρρm
is an invertible matrix and Assumption 1 holds, then,

QL := nρ̂ρρT
m�̂−1

ρ̂ρρm
ρ̂ρρm converges in distribution to χ2

m .

The portmanteau test statistic QL is designed directly using the results mentioned in
previous sections and its asymptotic distribution is chi-square. The assumption of the
invertibility of �̂ρ̂ρρm

may be restrictive. Therefore, if �̂ρ̂ρρm
is singular or, equivalently,

not invertible, the generalized inverse or {2}-inverse can be applied, which results
in a test statistic with asymptotic chi-square distribution as well. However, the range
of application of these test statistics is limited, Duchesne and Francq (2008), and
consequently, this test statistic is not considered in the simulation studies.

The constraint imposed by the invertability assumption leads to defining a test
statistic which can be applied if �̂ρ̂ρρm

is invertible or non-invertible. The suggested test
statistic resembles the one defined byBox andPierce (1970) and it can be proved that its
asymptotic distribution is a weighted sum of chi-square variables and , consequently,
the critical values are found using Imhof’s algorithm (1961). In this case, the weights
are eigenvalues of �ρ̂ρρm

. This case is studied by Francq et al. (2005) and is stated as
follows:

• Box and Pierce test statistic: If Assumption 1 holds, then, QBP := nρ̂ρρT
mρ̂ρρm con-

verges in distribution to
∑m

i=1 ηi,m Z2
i , where

(
η1,m, . . . , ηmm

)T is the vector of
eigenvalues of �ρ̂ρρm

and Z1, . . . , Zm are independent standard normal variables.

This test statistic can be modified following the same approach as Ljung and Box
(1978) and Li and McLeod (1981).

• Ljung and Box test statistic: Under Assumption 1, QLB := n (n + 2)
∑m

l=1
ρ2(l)
n−l

converges in distribution to
∑m

i=1 ηi,m Z2
i , where

(
η1,m, . . . , ηmm

)T is the vector
of eigenvalues of�ρ̂ρρm

and Z1, . . . , Zm are independent standard normal variables.

• Li and McLeod test statistic: If Assumption 1 holds, QLM := nρ̂ρρT
mρ̂ρρm + m(m+1)

2n

converges in distribution to
∑m

i=1 ηi,m Z2
i , where

(
η1,m, . . . , ηmm

)T is the vector
of eigenvalues of�ρ̂ρρm

and Z1, . . . , Zm are independent standard normal variables.

As can be expected, the last three statistics have the same performance for large sample.
However, as will be seen in the simulation studies, the significance level of QBP is
lower than QLB and QLM even for moderate sample sizes.
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Table 1 Labels of the considered hypotheses in empirical size simulation studies

Thinning operator GINAR(1) GINAR(2)
Poisson error Geometric error Poisson error Geometric error

Binomial M1 M3 M5 M7

Negative-binomial M2 M4 M6 M8

4 Simulation study

In this section, we conduct a comparative study of the empirical size and power of the
portmanteau test statistics QBP , QLB and QLM . The size and power of the statistics
have been obtained by using the weighted sum of chi-square distributions and the
critical values are found using Imhof’s (1961) algorithm. As mentioned in Sect. 3,
because of its limited applications, the test statistic QL is not studied here.

For the statistics, we consider different values of m, m = 2, 3, 4, 8, 12, and the
sample size n = 200, 500, 1000 and each entry for the tables is based on N = 1000
independent replications.

4.1 Empirical size

To analyze the size of the test in finite samples, we present the results for some different
versions of model (4). We consider GINAR(1) and GINAR(2), with binomial and
negative-binomial thinning operators and Poisson and geometric error terms, with
different parameter values. These models are labeled as in Table 6. The results of
empirical sizes of the portmanteau tests at the nominal level α0 = 5% are summarized
in Tables 2, 3, 4 and 5.

Considering each replication in the simulation study as a Bernoulli trial, we can
apply the test statistic Q = (

α̂ − α0
)
/
√

α0 (1 − α0) /N with asymptotic normal dis-
tribution to decide if the actual level coincides with nominal one or not. If the actual
level agrees with the nominal level, the empirical size over the N = 1000 independent
replications should belong to the interval [3.65%, 6.35%] with probability 95%, and
to the interval [3.23%, 6.77%] with probability 99%, Carbon and Francq (2011) and
Mainassara et al. (2021).

ForGINAR(1) processes,we consider three parameter values, θ = 0.1, 0.5 and0.8.
As can be seen, for models M1–M4, the performance of the test statistics improve by
increasing the number of samples and the value of parameter θ. Besides, the empirical
size of QLB is closer to the nominal value 5% and, by increasing n, all the three
statistics perform almost the same. Moreover, If we consider the empirical size to be
a function of m, the decreasing nature of this function can be observed from Tables 2
and 3. Although this behavior is obvious for small values of n, the difference between
the empirical size for m = 2 and m = 12 decreases as n increases.

For GINAR(2) processes, modelsM5–M8, are defined using three sets of parameter
values, (θ1, θ2) = (0.1, 0.5), (0.4, 0.4) and (0.5, 0.1). As can be seen from Tables 4
and 5, increasing number of observations, improve the performance of the test. Besides
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Table 2 Empirical size (in %) under models M1 and M2 with α = 5%

Model n m θ = 0.1 θ = 0.5 θ = 0.8
QBP QLB QLM QBP QLB QLM QBP QLB QLM

M1 200 2 4.4 4.7 4.4 4.4 4.5 4.4 3.4 3.5 3.4

3 3.9 4.2 3.9 2.7 3.1 2.7 3.6 3.9 3.8

4 2.4 3.0 2.5 2.4 2.7 2.4 2.8 3.5 2.9

8 2.0 2.6 2.2 1.6 2.4 1.8 1.5 2.0 1.5

12 0.8 1.5 0.9 1.3 1.5 1.4 1.4 1.8 1.6

500 2 4.2 4.3 4.2 5.1 5.2 5.1 3.2 3.3 3.2

3 4.0 4.0 4.0 4.7 4.9 4.8 3.5 3.6 3.6

4 3.7 3.8 3.7 4.3 4.5 4.4 3.4 3.5 3.4

8 4.1 4.2 4.2 3.3 3.5 3.4 2.3 2.6 2.5

12 3.1 3.2 3.1 2.6 2.9 2.8 2.3 2.5 2.4

1000 2 5.7 5.7 5.7 4.3 4.3 4.3 4.2 4.2 4.2

3 5.0 5.1 5.0 4.4 4.4 4.4 4.4 4.5 4.4

4 6.1 6.2 6.2 4.5 4.6 4.6 4.6 4.6 4.6

8 4.4 4.5 4.4 3.4 3.5 3.4 4.5 4.6 4.6

12 3.2 3.6 3.3 3.8 3.9 3.8 4.0 4.2 4.1

M2 200 2 4.4 4.6 4.4 4.0 4.2 4.2 3.2 3.3 3.2

3 3.2 3.4 3.2 3.6 3.7 3.6 3.9 4.0 3.9

4 2.7 2.7 2.7 2.5 2.7 2.5 2.6 3.0 2.8

8 1.4 1.6 1.6 1.5 1.7 1.7 1.1 1.4 1.2

12 1.1 1.2 1.1 0.6 0.9 0.7 0.5 0.7 0.6

500 2 4.9 5.1 5.0 6.2 6.3 6.3 4.6 4.6 4.6

3 3.7 3.8 3.8 5.4 5.5 5.4 3.4 3.5 3.4

4 3.6 3.7 3.6 3.8 4.0 3.8 3.2 3.4 3.2

8 3.2 4.0 3.6 3.5 3.7 3.7 3.2 3.4 3.2

12 3.5 3.8 3.7 3.0 3.5 3.2 2.2 2.4 2.3

1000 2 5.4 5.5 5.4 4.6 4.6 4.6 4.5 4.6 4.6

3 3.9 4.0 3.9 5.3 5.3 5.3 3.5 3.6 3.5

4 4.0 4.0 4.0 5.9 5.9 5.9 3.2 3.2 3.2

8 4.2 4.2 4.2 4.9 5.2 5.0 4.2 4.3 4.3

12 4.1 4.3 4.2 4.4 4.6 4.4 3.2 3.4 3.3

for small values of n, the test statistic QLB has a better performance compared to the
other two statistics and they have almost similar performance for large values of n.

Remark 2 Concerning the value of m, the simulation studies of the empirical size
demonstrate that, for small sample sizes, the value of m should preferably be taken as
3 or 4, to keep the nominal level, but for large sample sizes, this range can be extended
up to 12.
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Table 3 Empirical size (in %) under models M3 and M4 with α = 5%

Model n m θ = 0.1 θ = 0.5 θ = 0.8
QBP QLB QLM QBP QLB QLM QBP QLB QLM

M3 200 2 3.5 3.7 3.5 4.4 4.5 4.5 2.8 3.0 2.8

3 2.6 2.8 2.6 2.9 3.4 3.0 3.0 3.1 3.0

4 1.9 2.1 2 1.8 2.0 1.8 2.0 2.3 2.1

8 1.1 1.2 1.1 0.9 1.3 1.0 1.1 1.3 1.2

12 0.8 1.0 1.0 0.8 1.1 0.9 0.8 1.4 1.0

500 2 3.6 3.6 3.6 2.9 3.1 3.0 4.1 4.2 4.1

3 3.8 3.9 3.8 3.1 3.1 3.1 3.4 3.7 3.6

4 3.3 3.5 3.4 2.9 3.2 3.1 3.5 3.6 3.6

8 2.1 2.3 2.2 2.2 2.3 2.2 3.0 3.1 3.1

12 2.2 2.3 2.3 2.0 2.4 2.2 2.4 2.9 2.6

1000 2 4.4 4.4 4.4 5.4 5.5 5.5 4.7 4.7 4.7

3 3.9 4.0 3.9 4.9 4.9 4.9 4.3 4.4 4.3

4 4.4 4.5 4.5 4.7 4.7 4.7 3.4 3.4 3.4

8 3.7 3.8 3.8 3.5 3.5 3.5 3.7 3.7 3.7

12 3.3 3.7 3.4 2.4 2.4 2.4 2.5 3.1 2.7

M4 200 2 4.3 4.5 4.3 3.7 5.1 4.6 2.6 2.7 2.7

3 4.0 4.5 4.0 3.6 3.5 3.0 2.4 2.5 2.4

4 3.1 3.4 3.1 4.1 2.4 2.4 1.7 1.8 1.7

8 1.5 1.9 1.7 3.5 1.4 1.1 0.6 0.9 0.6

12 1.0 1.3 1.2 3.7 1.1 0.9 0.3 0.5 0.5

500 2 4.3 4.3 4.3 3.8 4.0 3.8 3.4 3.6 3.4

3 4.1 4.2 4.1 2.8 2.8 2.8 2.7 2.8 2.7

4 3.1 3.3 3.1 2.2 2.3 2.3 2.9 2.9 2.9

8 2.9 3.4 3.3 2.5 2.6 2.5 2.4 2.4 2.4

12 2.8 3.1 3.0 2.1 2.5 2.1 1.3 1.7 1.5

1000 2 3.8 3.9 3.9 3.7 3.7 3.7 4.5 4.5 4.5

3 4.2 4.2 4.2 3.6 3.6 3.6 3.3 3.4 3.3

4 4.2 4.2 4.2 4.1 4.1 4.1 2.9 2.9 2.9

8 3.1 3.2 3.2 3.3 3.5 3.4 3.0 3.1 3.0

12 1.9 2.4 2.1 2.6 3.7 2.6 2.8 2.9 2.9

4.2 Empirical power

Asmentioned in Sect. 3, in the portmanteau test, which is studied in this paper, the null
hypothesis is that Xt satisfies a GINAR(p) model and the alternative hypothesis is
that Xt does not admit a GINAR representation, or admits a GINAR

(
p′)with p′ > p.

To investigate the power of the tests we simplify the testing procedure as follows:
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Table 4 Empirical size (in %) under models M5 and M6 with α = 5%

Model n m (θ1, θ2) = (0.1, 0.5) (θ1, θ2) = (0.4, 0.4) (θ1, θ2) = (0.5, 0.1)
QBP QLB QLM QBP QLB QLM QBP QLB QLM

M5 200 2 3.1 3.1 3.1 3.0 3.0 3.0 4.3 4.5 4.5

3 3.1 3.2 3.1 2.3 2.8 2.4 4.6 5.0 4.7

4 2.8 3.3 2.9 2.5 2.8 2.7 3.6 4.0 3.8

8 2.0 2.2 2.2 1.6 1.8 1.6 2.5 3.2 2.7

12 0.8 1.3 1.1 0.8 0.9 0.8 1.6 1.9 1.6

500 2 3.9 3.9 3.9 4.0 4.1 4.0 4.2 4.3 4.3

3 3.9 4.2 3.9 4.8 4.8 4.8 3.7 3.9 3.7

4 4.3 4.4 4.3 3.8 4.2 3.8 4.7 4.9 4.7

8 4.2 4.5 4.5 3.9 4.1 3.9 4.1 4.4 4.2

12 3.1 3.6 3.4 3.6 3.9 3.9 3.6 3.8 3.7

1000 2 4.2 4.3 4.3 5.2 5.3 5.2 4.8 4.8 4.8

3 5.1 5.2 5.1 5.7 5.9 5.8 4.6 4.7 4.6

4 4.8 4.8 4.8 5.8 5.8 5.8 4.3 4.3 4.3

8 4.6 4.8 4.8 4.4 4.5 4.5 5.3 5.4 5.3

12 3.2 3.3 3.3 4.3 4.6 4.5 4.1 4.7 4.4

M6 200 2 3.7 4.0 3.8 3.3 3.6 3.3 3.9 4.2 4.1

3 2.8 3.0 2.8 3.2 3.5 3.3 3.9 4.2 4.0

4 2.7 2.9 2.9 3.5 3.7 3.7 3.3 3.4 3.3

8 1.9 2.4 2.2 1.3 2.3 1.8 2.7 3.1 2.7

12 1.4 1.8 1.4 0.7 1.3 0.9 1.6 2.5 2.0

500 2 4.4 4.4 4.4 5.2 5.3 5.3 4.5 4.6 4.6

3 4.7 4.7 4.7 5.4 5.8 5.7 4.6 4.7 4.6

4 4.5 5.1 4.6 4.5 4.6 4.6 4.6 4.8 4.6

8 3.4 3.7 3.5 3.7 3.9 3.8 3.3 3.6 3.5

12 2.4 3.3 2.6 2.3 3.0 2.7 3.3 3.7 3.6

1000 2 4.7 4.7 4.7 5.3 5.4 5.3 5.4 5.5 5.5

3 5.1 5.1 5.1 4.9 4.9 4.9 5.3 5.3 5.3

4 4.6 4.7 4.6 4.6 4.8 4.7 5.3 5.3 5.3

8 4.5 4.6 4.5 4.2 4.2 4.2 4.2 4.2 4.2

12 3.8 3.9 3.8 3.4 3.6 3.5 2.8 3.3 3.1

{
H0 : Xt follows a GINAR(p) process
H1 : Xt follows a GINAR(p + 1) process

, (14)

for p = 1, 2. In other words, we will generate processes from GINAR(p+1) and fit a
GINAR(p) model and conducted the tests to a 5% significance level. The considered
testing procedures are labeled as in Table 6.
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Table 5 Empirical size (in %) under models M7 and M8 with α = 5%

Model n m (θ1, θ2) = (0.1, 0.5) (θ1, θ2) = (0.4, 0.4) (θ1, θ2) = (0.5, 0.1)
QBP QLB QLM QBP QLB QLM QBP QLB QLM

M7 200 2 2.8 2.8 2.8 3.0 3.2 3.0 4.2 4.6 4.3

3 3.7 4.0 3.8 2.7 3.0 2.8 4.4 4.8 4.6

4 2.2 2.4 2.2 2.2 2.6 2.4 3.1 3.6 3.3

8 1.6 1.9 1.7 0.9 1.3 1.0 1.0 1.2 1.0

12 0.5 0.7 0.6 0.3 0.4 0.3 0.9 1.0 1.0

500 2 4.4 4.5 4.5 2.9 3.0 3.0 4.5 4.7 4.5

3 5.3 5.3 5.3 3.7 3.9 3.7 6.2 6.6 6.4

4 4.1 4.4 4.1 3.3 3.4 3.4 5.1 5.2 5.1

8 3.2 3.5 3.4 2.3 2.4 2.3 3.7 4.0 3.9

12 2.0 2.1 2.1 2.0 2.2 2.1 2.5 2.8 2.6

1000 2 5.2 5.2 5.2 4.0 4.1 4.1 4.1 4.2 4.2

3 4.3 4.4 4.3 4.2 4.3 4.2 4.9 4.9 4.9

4 4.5 4.5 4.5 3.5 3.7 3.7 4.3 4.5 4.3

8 3.1 3.1 3.1 3.0 3.1 3.0 4.0 4.1 4.0

12 3.2 3.5 3.3 2.3 2.4 2.4 3.7 4.0 3.8

M8 200 2 3.5 3.6 3.8 3.5 3.6 3.6 4.5 4.7 4.7

3 2.5 3.0 2.5 3.1 3.2 3.1 2.8 2.9 2.8

4 1.9 2.3 2.0 2.3 2.3 2.3 2.4 2.5 2.5

8 0.8 1.4 1.0 1.1 1.1 1.1 1.0 2 1.3

12 0.1 0.3 0.1 0.2 0.3 0.2 0.5 0.7 0.7

500 2 7.3 7.4 7.3 5.2 5.3 5.2 6.8 6.9 6.9

3 5.7 6.0 5.9 4.3 4.6 4.3 4.7 4.8 4.7

4 4.5 4.8 4.7 2.8 2.9 2.9 3.9 4.1 3.9

8 3.1 3.5 3.3 1.7 1.8 1.8 1.7 2.0 1.7

12 2.3 2.6 2.3 1.0 1.5 1.2 1.3 1.6 1.5

1000 2 9.5 9.7 9.7 6.2 6.5 6.2 8.5 8.5 8.5

3 7.5 7.6 7.5 6.5 6.6 6.5 5.4 5.4 5.4

4 5.7 5.8 5.7 4.8 5.0 4.9 5.5 5.5 5.5

8 4.1 4.2 4.1 3.9 4.2 3.9 4.0 4.2 4.2

12 3.7 3.9 3.8 3.2 3.5 3.4 3.5 3.6 3.5

Table 6 Labels of the considered models in empirical power simulation studies

Thinning operator GINAR(1) verus GINAR(2) GINAR(2) versus GINAR(3)
Poisson error Geometric error Poisson error Geometric error

Binomial T1 T3 T5 T7

Negative-binomial T2 T4 T6 T8
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The results of the simulation studies are summarized in Tables 7, 8, 9 and
10. For testing T1–T4, three sets of parameters are considered, (θ1, θ2) =
(0.1, 0.5), (0.4, 0.4) and (0.5, 0.1). As expected, the models with (θ1, θ2) =
(0.5, 0.1), have the smallest values of empirical power. For all cases, by increasing
n, the power improves. The test statistic QLB has the highest empirical power among
the test statistics studied in this paper. Besides, the empirical power is a decreasing
function of m and, increasing the sample size, results in the same performance for all
test statistics.

For testing T5–T8, the parameters are defined as (θ1, θ2, θ3) = (0.1, 0.1, 0.5),
(0.1, 0.5, 0.1) and (0.5, 0.1, 0.1). The models with parameters (0.1, 0.1, 0.5) have
the highest powers and it generally reaches 100% as the sample size increases.

Remark 3 As mentioned previously, the advantage of transformation (5) is to coun-
teract the effect of thinning operator and the marginal distributions. Therefore, the
value of empirical size and power do not depend on these features and just rely on the
sample sizes and parameter values.

Remark 4 An important point in performing portmanteau tests is determining the opti-
mal value of m. This issue has been studied by different researchers for real-valued
time series. For example, considering Ljung-Box statistics, this value ranges between
3 and 50, depending on different factors such as the sample size and nominal size of the
test, Ljung (1986); Tsay (2005); Shumway and Stoffer (2000), Hyndman and Athana-
sopoulos (2018) and Hassani and Yeganegi (2020). For integer-valued time series,
although this issue has not been comprehensively studied yet, it has been partially
explored by Kim and Weiß (2015). Their findings indicated that, for their considered
model, the empirical size and the power of Box-Pierce and Ljung-Box test statistics
decrease asm increases, consequently, smaller values ofm were reported to be prefer-
able. In the present study, as pointed out in Remark 2, the suggested value for m
ranges between 3 and 12, depending on the sample size. Putting all together, it seems
that determining the optimal value of m such “the actual size of the test does not
exceed the nominal size” and the power of the test is at an acceptable level, Hassani
and Yeganegi (2020), needs some different simulation process and it will be the focus
of future studies.

5 Illustrative example

In the following, we investigate a real example to illustrate the application of the test
statistics given in Sect. 3. The example is concerned with the daily download count of
the program CWTeXpert from June 1, 2006, to February 28, 2007 (267 observations).
This data has already been analyzed by Weiß (2008); Zhu and Wang (2010) and Li
et al. (2016).

This dataset is analyzed in two steps. In the first step, the order of the model is
determined using visual inspection of the data and the associated sample autocorre-
lation function (ACF) and partial autocorrelation function (PACF). Afterwards, the
suggested order is confirmed using the test statistics presented in Sect. 3. In the sec-
ond step, since the performed test specifies the order of the model not the associated
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Table 7 Empirical power (in %) under models T1 and T2 with α = 5%

Model n m (θ1, θ2) = (0.1, 0.5) (θ1, θ2) = (0.4, 0.4) (θ1, θ2) = (0.5, 0.1)
QBP QLB QLM QBP QLB QLM QBP QLB QLM

T1 200 2 97.7 97.8 97.7 98.5 98.7 98.5 12.8 13.4 12.9

3 95.2 95.9 95.2 97.2 97.7 97.3 9.3 9.9 9.3

4 92.0 92.5 92.0 96.2 96.8 96.3 7.6 7.8 7.8

8 83.4 84.7 83.6 89.0 89.9 89.1 3.6 4.0 3.6

12 70.5 73.0 71.7 75.4 77.9 76.5 2.3 2.5 2.3

500 2 100 100 100 100 100 100 40.9 41.5 41.1

3 100 100 100 100 100 100 36.3 36.8 36.5

4 100 100 100 100 100 100 30.6 30.6 30.6

8 100 100 100 100 100 100 21.0 21.6 21.2

12 99.7 99.7 99.7 100 100 100 15.3 16.5 16.0

1000 2 100 100 100 100 100 100 77.0 77.0 77.0

3 100 100 100 100 100 100 72.8 72.8 72.8

4 100 100 100 100 100 100 69.5 69.8 69.6

8 100 100 100 100 100 100 49.9 50.4 50.1

12 100 100 100 100 100 100 39.8 40.9 40.4

T2 200 2 96.6 96.8 96.6 97.5 97.7 97.5 13.5 14.1 13.7

3 93.2 93.9 93.2 95.9 96.1 95.9 9.7 10.3 9.7

4 90.2 91.1 90.2 94.1 94.3 94.1 7.4 7.9 7.4

8 79.5 81.4 79.6 85.7 87.4 85.9 5.1 5.7 5.2

12 70.6 72.4 70.8 69.3 72.2 70.9 3.0 4.1 3.3

500 2 100 100 100 100 100 100 41.5 41.9 41.6

3 100 100 100 100 100 100 37.6 38.1 37.6

4 100 100 100 99.9 99.9 99.9 33.2 34 33.5

8 99.9 99.9 99.9 99.9 99.9 99.9 19.7 20.1 19.9

12 99.5 99.5 99.5 100 100 100 13.5 14.7 13.8

1000 2 100 100 100 100 100 100 75.4 75.5 75.4

3 100 100 100 100 100 100 72.5 72.6 72.5

4 100 100 100 100 100 100 66.0 66.3 66.1

8 100 100 100 100 100 100 49.7 50.4 50

12 100 100 100 100 100 100 40.0 41.0 40.3

thinning operator and the distribution of the error term, we examine some different
integer-valued time series models to find the model with the best fit. This stage is
required since the final step in time series analysis is forecasting and, without a clear
picture about the structure of the model, this stage will remain obscure.

Figure 1 presents the data, its sample autocorrelation and partial autocorrelation
functions. As can be seen, the observations exhibit serial dependencies and, at the first
glance, because GINAR models are just AR models (from a second-order point of
view), it seems reasonable to model this series using a GINAR process of order 1.
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Table 8 Empirical power (in %) under models T3 and T4 with α = 5%

Model n m (θ1, θ2) = (0.1, 0.5) (θ1, θ2) = (0.4, 0.4) (θ1, θ2) = (0.5, 0.1)
QBP QLB QLM QBP QLB QLM QBP QLB QLM

T3 200 2 91.8 92.2 91.8 96.0 96.4 96.0 10.6 11.1 10.8

3 89.5 90.2 89.5 93.9 94.4 93.9 7.2 7.8 7.2

4 85.6 86.8 85.8 92.0 92.5 92.2 5.8 6.1 5.8

8 70.9 73.0 71.3 80.2 82.8 80.6 2.8 3.5 3.1

12 50.8 52.6 51.0 61.6 64.2 62.5 1.7 2.5 2.0

500 2 97.0 97.2 97.0 100 100 100 36.1 36.3 36.1

3 96.6 96.7 96.6 100 100 100 32.1 32.5 32.1

4 95.0 95.0 95.0 100 100 100 28.4 29.1 29.0

8 92.7 92.8 92.7 99.8 99.8 99.8 17.9 18.8 18.3

12 91.1 91.4 91.1 99.9 99.9 99.9 13.1 14.1 13.3

1000 2 100 100 100 100 100 100 70.3 70.5 70.3

3 100 100 100 100 100 100 66.4 66.6 66.4

4 100 100 100 100 100 100 62.3 62.8 62.4

8 100 100 100 100 100 100 46.4 46.8 46.8

12 100 100 100 100 100 100 39.7 40.4 40.0

T4 200 2 39.2 40.3 39.2 80.1 80.5 80.1 37.3 37.7 37.3

3 34.1 35.2 34.4 76.1 77.1 76.1 30.0 31.2 30.3

4 31.2 32.0 31.3 74.2 74.9 74.2 23.5 25.0 23.6

8 20.3 22.0 20.8 59.3 61.6 59.7 12.4 14.1 13.3

12 11.8 12.4 12.2 37.5 40.0 38.7 4.6 6.2 5.3

500 2 85.7 86.5 85.7 99.2 99.2 99.2 85.2 85.3 85.3

3 82.6 83.0 82.6 98.8 98.8 98.8 82.9 83.1 82.9

4 79.3 79.5 79.3 98.3 98.3 98.3 81.4 81.7 81.4

8 73.3 73.9 73.3 98.3 98.4 98.3 69.0 70.5 69.2

12 68.8 69.6 68.9 98.1 98.1 98.1 55.7 56.2 56.0

1000 2 99.0 99.0 99.0 100 100 100 99.6 99.6 99.6

3 98.5 98.5 98.5 100 100 100 99.2 99.2 99.2

4 98.1 98.1 98.1 100 100 100 99.2 99.3 99.3

8 95.9 96.0 95.9 100 100 100 98.8 98.8 98.8

12 94.5 94.6 94.5 100 100 100 96.8 96.9 96.9

To check the adequacy of a GINAR(1) model for this data set, the test statistics
QBP , QLB and QLM , are calculatedwithm = 2, 3, 4, 8, 12.TheP-values of these test
statistics are reported in Table 11, which indicate the appropriateness of the GINAR(1)
model.

Finally, to decide which GINAR(1) model has a better fit to the data, the Akaike’s
information criterion (AIC), corrected version of the AIC (AICc), Bayesian informa-
tion criterion (BIC) and root mean squares of differences of observations and predicted
values (RMS) for POISINAR(1), NBINAR(1) and GEINAR(1) are compared. These
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Table 9 Empirical power (in %) under models T5 and T6 with α = 5%

Model n m (θ1, θ2, θ3) = (0.1, 0.1, 0.5) (θ1, θ2, θ3) = (0.1, 0.5, 0.1) (θ1, θ2, θ3) = (0.5, 0.1, 0.1)
QBP QLB QLM QBP QLB QLM QBP QLB QLM

T5 200 2 43.4 42.8 42.9 2.0 2.1 2.1 3.3 3.4 3.4

3 96.5 97.0 96.5 8.3 8.9 8.4 9.8 10.8 10.0

4 96.4 96.7 96.4 6.0 6.4 6.1 7.8 8.5 8.0

8 97.4 97.4 97.4 3.0 3.6 3.1 3.8 4.8 4.2

12 96.6 96.7 96.6 2.0 2.5 2.2 1.7 2.2 1.9

500 2 82.0 82.2 82.1 10.1 10.4 10.3 14.2 14.4 14.2

3 100 100 100 34.2 34.8 34.4 31.6 31.9 31.8

4 100 100 100 28.9 29.2 29.0 28.2 29.0 28.3

8 99.9 99.9 99.9 19.3 19.6 19.4 17.9 19.1 18.2

12 99.8 99.8 99.8 13.6 14.6 14.0 13.3 14.5 13.8

1000 2 98.9 98.9 98.9 32.7 33.0 32.8 41.4 41.8 41.5

3 100 100 100 67.7 67.8 67.8 66.6 66.9 66.7

4 100 100 100 57.8 57.8 57.8 63.5 63.7 63.5

8 100 100 100 51.3 51.8 51.5 48.7 49.1 48.9

12 100 100 100 40.2 41.2 40.8 39.4 40.0 39.7

T6 200 2 39.3 39.8 39.5 1.7 1.8 1.7 2.9 3.0 2.9

3 93.8 94.2 93.8 9.7 10.6 10.1 9.4 10.0 9.4

4 94.3 94.7 94.3 6.5 7.2 6.5 7.6 8.1 7.7

8 95.9 96.0 96.0 3.3 3.8 3.4 4.3 4.3 4.3

12 93.4 93.4 93.4 2.1 3.0 2.5 2.2 3.0 2.4

500 2 100 100 100 9.1 9.1 9.1 14.4 14.4 14.4

3 100 100 100 31.6 32.1 31.6 32.7 33.1 32.7

4 100 100 100 25.8 26.4 26.0 30.1 30.6 30.2

8 99.7 99.8 99.7 17.7 18.5 17.9 18.9 19.2 19.0

12 99.6 99.6 99.6 13.7 14.3 14.0 15.2 15.9 15.3

1000 2 100 100 100 30.0 30.3 30.1 43.0 43.3 43.1

3 100 100 100 63.3 63.4 63.3 63.5 63.6 63.5

4 100 100 100 56.9 57.1 57.0 59.6 60.0 59.7

8 100 100 100 45.6 46.3 45.9 50.1 50.7 50.2

12 100 100 100 37.1 37.7 37.5 41.8 42.8 423

models, which are presented in brief in Table 12, are among the most popular models
based on the distribution of the error term, Aghababaei Jazi et al. (2012); Al-Osh and
Alzaid (1987) and Bisaglia and Gerolimetto (2019). The maximum likelihood estima-
tion of parameters, along with AIC, AICc, BIC and RMS are presented in Table 13.
As can be seen, since the ML estimation for r in the NBINAR(1) model is 0.83, the
values of AIC, AICc, BIC and RMS for GEINAR(1) and NBINAR(1) models are very
close. Besides, the difference between the AIC, AICc and BIC of these two models
and POISINAR(1) is not negligible. On the other hand, the values of RMS for three
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Table 10 Empirical power (in %) under models T7 and T8 with α = 5%

Model n m (θ1, θ2, θ3) = (0.1, 0.1, 0.5) (θ1, θ2, θ3) = (0.1, 0.5, 0.1) (θ1, θ2, θ3) = (0.5, 0.1, 0.1)
QBP QLB QLM QBP QLB QLM QBP QLB QLM

T7 200 2 33.4 34.4 33.6 1.5 1.5 1.5 3.1 3.2 3.1

3 89.2 90.0 89.2 7.2 8.0 7.3 8.1 8.8 8.3

4 88.5 88.6 88.5 5.1 5.6 5.4 7.0 7.3 7.1

8 87.8 88.0 87.8 2.8 3.2 2.9 2.9 3.8 3.3

12 77.9 78.0 77.9 1.5 1.9 1.7 1.4 1.9 1.6

500 2 78.7 79.2 78.7 6.6 6.8 6.6 13.5 13.7 13.5

3 99.9 99.9 99.9 23.9 24.6 24.1 29.3 30.3 29.4

4 99.9 99.9 99.9 18.5 19.0 18.6 26.5 27.1 26.6

8 99.6 99.6 99.6 13.1 13.6 13.3 16.9 17.2 17.0

12 99.0 99.1 99.0 10.6 11.2 10.8 11.8 12.6 12.0

1000 2 99.2 99.2 99.2 27.6 27.6 27.6 39.3 39.6 39.4

3 100 100 100 58.4 58.7 58.5 62.2 62.3 62.2

4 100 100 100 50.7 51.2 50.8 59.6 59.7 59.6

8 100 100 100 40.9 41.4 41.1 45.5 46.0 45.7

12 100 100 100 33.5 34.4 34.0 38.0 38.6 38.3

T8 200 2 41.2 42.0 41.2 5.8 5.8 5.8 8.5 9.5 8.8

3 59.2 60.1 59.3 12.4 13.0 12.4 13.7 14.5 13.8

4 56.2 57.4 56.4 9.7 10.5 9.79 12.3 13.3 12.6

8 46.4 48.2 47.1 5.4 5.9 5.4 5.0 5.6 5.3

12 29.2 31.2 29.6 2.0 2.6 2.2 2.9 3.5 3.1

500 2 92.4 92.5 92.5 27.4 27.9 27.5 42.8 43.2 42.8

3 91.6 91.8 91.6 47.4 47.7 47.4 53.5 53.7 53.5

4 90.2 90.6 90.2 40.6 41.0 40.7 48.2 49.0 48.2

8 84.1 84.8 84.1 34.5 35.7 34.5 38.8 39.5 39.0

12 84.3 84.6 84.3 27.0 28.1 27.5 30.6 32.3 31.1

1000 2 99.7 99.7 99.7 100 100 100 87.5 87.6 87.5

3 99.7 99.7 99.7 100 100 100 90.1 90.2 90.2

4 99.7 99.7 99.7 100 100 100 86.8 87.0 86.8

8 98.9 98.9 98.9 100 100 100 81.4 81.8 81.5

12 97.6 97.6 97.6 100 100 100 76.8 77.6 77.0

models are almost similar. Based on the value of the criteria considered for comparing
these models, the GEINAR(1) model, which is the model with the lowest AIC, AICc
and BIC is suggested as the model with the best fit to this data.
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Fig. 1 Top: The daily download count of the programCWTeXpert from June 1, 2006, to February 28, 2007,
Bottom-Left: The sample autocorrelation function, Bottom-Right: The partial autocorrelation function

Table 11 =P-value for the test
statistics for the download
counts series when
m = 2, 3, 4, 8, 12.

m 2 3 4 8 12

P-value of QBP 0.8 0.6 0.8 0.8 0.8

P-value of QLB 0.8 0.7 0.8 0.8 0.9

P-value of QLM 0.8 0.6 0.8 0.8 0.8

Table 12 The thinning operators and the distribution of the error terms of the considered models

Model Distribution of the error term Operator thinning

POISINAR(1) Poison with parameter λ (POIS( λ)) Binomial

NBINAR(1) Negative binomial with parameters r and p (NB(r , p)) Binomial

GEINAR(1) Geometric with parameter p (GE(p)) Binomial

Table 13 The maximum likelihood estimation of the parameters, AIC, AICc, BIC and RMS for the fitted
GINAR(1) models to the download counts series

Model MLE AIC AICc BIC RMS

POISINAR(1) (θ̂ ,λ̂)=(0.1743,1.9910) 1292.84852 1292.89398 1300.02302 2.61053

NBINAR(1) (θ̂ , p̂,r̂ )=(0.1545,0.2909,0.8349) 1092.09278 1092.18404 1102.85453 2.61515

GEINAR(1) (θ̂ , p̂)=(0.1362,0.3249) 1091.17377 1091.21923 1098.34827 2.62044

Conclusions

The aim of this paper is to introduce some portmanteau test statistics for a wide group
of INAR processes, which are one of the most widely applied integer-valued time
series models. To present the test statistics for this class of INAR processes, which is
abbreviated as GINAR, the process is transformed to its associated AR process with
uncorrelated error terms. The asymptotic distribution of some classical test statistics,
such as Box-Pierce, Ljung-Box and Li-McLeod, are obtained and their performance is
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tested using some simulation studies. It is worth mentioning that , as can be seen in the
simulation studies, the performance of the test statistics depends on the value of the
lag orderm.Here, we consider a predefined set of values form.However, it is valuable
to find an optimal value for m such that the actual size of the test does not exceed the
nominal size and the power of the test is higher than a threshold. Furthermore, there
exists other forms of portmanteau test statistics, which are defined for real-valued time
series with independent error terms. Extending these forms to uncorrelated error terms
and, afterwards, applying them in the study of GINAR processes opens up a a new
line of research in the diagnostic checkings of integer-valued time series.
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