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Abstract
A centered L2-norm based test statistic is used for testing if a high-dimensional mean
vector equals zero where the data dimension may be much larger than the sample
size. Inspired by the fact that under some regularity conditions the asymptotic null
distributions of the proposed test are the same as the limiting distributions of a chi-
square-mixture, a three-cumulant matched chi-square-approximation is suggested to
approximate this null distribution. The asymptotic power of the proposed test under
a local alternative is established and the effect of data non-normality is discussed. A
simulation study under various settings demonstrates that in terms of size control, the
proposed test performs significantly better than some existing competitors. Several
real data examples are presented to illustrate the wide applicability of the proposed
test to a variety of high-dimensional data analysis problems, including the one-sample
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problem, paired two-sample problem, and MANOVA for correlated samples or inde-
pendent samples.

Keywords High-dimensional data · Matrix variate data · One-sample problem ·
Two-sample problem · MANOVA · Linear hypothesis · Chi-square-type mixtures ·
Three-cumulant matched chi-square-approximation

1 Introduction

In this paper, we are interested in the one-sample problem for high-dimensional data.
Here “high dimension” means “the data dimension is close to or evenmuch larger than
the sample size”. High-dimensional data are encountered when many measurements
are taken on only a few subjects. For example, in DNA microarray data, thousands
of gene expression levels are often measured on a relatively few subjects. With rapid
development of data collecting technologies, high-dimensional data become rather
common and attractmany research efforts nowadays.Many newmethods are proposed
for high-dimensional hypothesis testing problems about mean vectors or covariance
matrices in recent years, see, for example, Li et al. (2020), Bai et al. (2021), Zhang
et al. (2021), and Silva et al. (2021) among others. The canonical one-sample problem
aims to test if the population mean vector of a sample is a zero vector, and many
interesting and more complicated hypotheses can be converted to it by some simple
transformations, such as in the one group repeat measurement designs (Ahmad et al.
2008), in the mean matrix structure of transposable data (Touloumis et al. 2015), the
two-sample problem (Chen and Qin 2010), and the multi-sample problem (Schott
2007).

The classical solution to themultivariate one-sample problem is Hotelling’s T 2 test.
However, Hotelling’s T 2 test does not apply to high-dimensional data when the data
dimension is larger than the sample size because in this case the sample covariance
matrix is not invertible. To overcome this problem, many alternative tests are then
proposed to test the one-sample hypothesis in high-dimensional settings. Srivastava
and Du (2008) proposed a scale-invariant test. Park and Ayyala (2013) proposed a
leaving-one-out scale-invariant test. Wang et al. (2015) proposed a nonparametric
one-sample test based on the multivariate spatial sign transformation for elliptically
distributed data. Feng and Sun (2016) proposed a scale-invariant nonparametric test
basedon spatial ranks and inner standardizationwhich can also take the scale difference
of variables into account. Some other tests include the random permutation based test
proposed by Shen and Lin (2015), the randomization test proposed by Wang and Xu
(2019), block diagonal test by Zhao (2017), the diagonal likelihood ratio test by Hu
et al. (2019), the sign test by Paindaveine and Verdebout (2016), the composite T 2

test by Feng et al. (2017), shrinkage-based regularization tests by Chen et al. (2011),
Shen et al. (2011) and Dong et al. (2016), and the empirical likelihood test by Peng
et al. (2014) among others.

Many existing tests, such as the tests by Srivastava and Du (2008) and Wang et al.
(2015), use normal approximation to approximate their null distributions. However,
for most tests, normal approximation is only valid under very strong conditions on
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Testing high-dimensional mean vector with applications 1107

the underlying covariance matrix as noted by Katayama et al. (2013). One of the key
conditions requires that the high-dimensional data are less or nearly not correlated.
To relax the assumptions on the underlying covariance matrix, Zhang and Xu (2009)
proposed an L2-norm one-sample test for normal data based on the two-cumulant (2-c)
matched Welch–Satterthwaite χ2-approximation. For one-group normally distributed
repeated measures designs, Ahmad et al. (2008) proposed a test with the 2-c matched
χ2-approximation, and Pauly et al. (2015) proposed a test with the three-cumulant
(3-c) matched χ2-approximation of Zhang (2005).

In this paper, we propose and study a normal reference test with the 3-cmatchedχ2-
approximation for a general one-sample problem with non-normal high-dimensional
data. We show that under some regularity conditions, when the null hypothesis is true,
the proposed test statistic and a χ2-type mixture have the same normal or non-normal
limit distributions. It is then justifiable to approximate the null distribution of the test
statistic using that of the χ2-type mixture. The distribution of the χ2-type mixture
which has both positive and negative unknown coefficients can be well approximated
by a 3-c matched χ2-approximation with the approximation parameters consistently
estimated from the data. Since the χ2-type mixture is obtained from the test statistic
when the null hypothesis holds andwhen the data are normally distributed, the resulting
test is termed as a normal reference test with 3-c matched χ2-approximation.

The proposed test has a close relationship with the test proposed by Pauly et al.
(2015) but the two tests have several different aspects as listed below. First of all, our
test is investigated for general non-normal data and one-sample testswith other types of
data can be reduced to our one-sample test via some simple transformations while their
test is studied only for normally distributed repeated measure designs. Second, the test
proposed by Pauly et al. (2015) is based on a nonnegative squared L2-norm statistic
and their approximation essentially follows Hall (1983) bymatching the third moment
of normalized variables. On the other hand, our statistic is a centered squared L2-norm
statistic and our approximation is formulated as in Zhang (2005) for a χ2-mixture with
both positive and negative coefficients. Third, our approximation parameter estimators
are constructed directly without using U-statistics and are ratio-consistent under the
null or any alternative hypotheses while their approximation parameter estimators
are constructed using U-statistics which are often time and space consuming and are
ratio-consistent only under the null hypothesis. In practice, one does not know if the
null hypothesis holds. Fourth, the asymptotic power of our test is established, the
effect of the data non-normality on our test is discussed, and a sufficient and necessary
condition is found for the asymptotic normality of our test. These are not discussed in
Pauly et al. (2015).

The rest of the paper is organized as follows. Our main results are presented in
Sect. 2. A simulation study is presented in Sect. 3. Applications of our test to one-
sample problems with other types of data are presented in Sect. 4. Some concluding
remarks are given in Sect. 5. The technical proofs of the main results are outlined in
the Appendix.
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2 Main results

Our study is motivated by a multivariate analysis of variance (MANOVA) problem
for dependent samples. Suppose we have n independent, identically distributed (i.i.d.)
q × k matrix variate observations X i = (xi1, . . . , xik), i = 1, . . . , n. The k columns
of the observation matrix X i correspond to matched multivariate observations from
k different samples. Unlike the usual MANOVA problem for independent samples,
we assume the observations of the k samples are matched, and allow possible depen-
dence between matched observations from different samples. Besides, as frequently
encountered in many practical problems, such as in the time profiles analysis (Ahmad
et al. 2008; Pauly et al. 2015), we allow k (or q) to be large, even be proportional to the
sample size n. The interested problem is whether the mean vectors of the k samples
are the same, i.e., to test

H0 : E(x11) = · · · = E(x1k) versus H1 : H0 is not true. (1)

In this paper, instead of trying to solve above specific problem directly, we treat it
as a special case of the following one-sample problem. Suppose we have one high-
dimensional sample:

y1, . . . , yn are i.i.d. p -dimensional random vectors, (2)

with E( y1) = μ and Cov( y1) = Σ where the dimension p is big, and may be much
larger than the sample size n. Consider the following hypotheses:

H0 : μ = 0 versus H1 : μ �= 0. (3)

In many situations, one may be interested in testing the hypotheses: H0 : μ = μ0
versus H1 : μ �= μ0 for some known constant vector μ0. This general one-sample
problem can be reduced to the one-sample problem (3) based on the induced sample
yi −μ0, i = 1, . . . , n and with μ replaced by μ−μ0. To see the connection between
hypotheses (3) and (1) , let P = Ik − k−1 Jk , where Ik is a k × k identity matrix and
Jk is a k×k matrix of ones. The hypothesis H0 in (1) is equivalent to vec[E(X1)P] =
E[vec(X1P)] = 0, where vec denotes the matrix vectorization by column operator, so
to test the hypothesis H0 in (1) for the original sample X i , i = 1, . . . , n, we can just
test the hypothesis H0 in (3) for the induced sample yi = vec(X i P), i = 1, . . . , n.

2.1 Asymptotic null distribution

Let

ȳ = n−1
n∑

i=1

yi , and Σ̂ = (n − 1)−1
n∑

i=1

( yi − ȳ)( yi − ȳ)� (4)

denote the sample mean vector and covariance matrix, respectively. Inspired by the
two-sample test of Bai and Saranadasa (1996), the test statistic for testing the one-
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Testing high-dimensional mean vector with applications 1109

sample problem (3) can be constructed as

Tn,p = n‖ ȳ‖2 − tr(Σ̂), (5)

where ‖ · ‖ denotes the usual L2-norm of a vector. We can write

Tn,p = Tn,p,0 + 2Sn,p + n‖μ‖2, (6)

where

Tn,p,0 = n‖ ȳ − μ‖2 − tr(Σ̂), Sn,p = nμ�( ȳ − μ). (7)

Note that Tn,p,0 has the same distribution as Tn,p under the null hypothesis.
When the sample (2) is normally distributed, it is easy to see that for any given

n and p, the distribution of Tn,p,0 has the same distribution as that of the following
χ2-type mixture

T ∗
n,p,0 =

p∑

r=1

λp,r [Ar − Br/(n − 1)], Ar
i.i.d.∼ χ2

1 , Br
i.i.d.∼ χ2

n−1, (8)

whereχ2
v denotes a central chi-square distributionwithv degrees of freedom,λp,r , r =

1, . . . , p are the eigenvalues of the covariance matrix Σ . The first three cumulants of
T ∗
n,p,0 are given as E(T ∗

n,p,0) = 0,

Var(T ∗
n,p,0) = 2n

n − 1
tr(Σ2), and E(T ∗3

n,p,0) = 8n(n − 2)

(n − 1)2
tr(Σ3). (9)

Now we study the asymptotic property of Tn when both n and p tend to infinity.
Although the situation described by this kind of high-dimensional asymptotics never
happens in reality, the high-dimensional property of Tn gives a hint how it behaves in
the practical scenario that when both sample size and data dimension are large, orwhen
the data dimension is comparable to the sample size. More importantly, the limiting
behavior of Tn provides a guidance for properly approximating its null distribution
and the p value of the corresponding test when both n and p are large.

Set ρp,r = λp,r/
√
tr(Σ2), r = 1, . . . , p. The following conditions are convenient

for the theoretical study:

C1 We have yi = μ + Γ zi , i = 1, . . . , n, where Γ is a p × p matrix such that
Γ Γ � = Σ and zi ’s are i.i.d. p-vectors with E(zi ) = 0 and Cov(zi ) = I p, the
p × p identity matrix.

C2 We have E(z4ir ) = 3+ Δ < ∞ where zir is the r -th component of zi , Δ is some
constant, and E(zα1ir1 · · · zαqirq ) = E(zα1ir1) · · ·E(z

αq
irq

) for a positive integer q such

that
∑q

r=1 αr ≤ 8 and r1 �= · · · �= rq .
C3 Wehave lim p→∞ ρp,r = ρr , r = 1, 2, . . ., uniformly and lim p→∞

∑p
r=1 ρp,r =∑∞

r=1 ρr < ∞.
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C4 As n, p → ∞, we have p/n2 −→ 0.
C5 As p → ∞, we have ρp,max → 0 where ρp,max = maxpr=1 ρp,r .

Conditions C1 and C2 are also imposed by Bai and Saranadasa (1996) and Chen
and Qin (2010), respectively. They specify a factor model for high-dimensional data
analysis. Condition C3 is also imposed by Zhang et al. (2020), it ensures the existence
of the limits of λp,r as p → ∞ and the exchangeability of the limit and sum-
mation operations in the expression lim p→∞

∑p
r=1 ρp,r . Condition C3 implies that∑p

r=q+1 ρp,r −→ ∑∞
r=q+1 ρr as p → ∞ for any fixed q < p, and

∑∞
r=q+1 ρr −→ 0

as q → ∞. It is used to ensure that the limiting distributions of the normalized versions
of Tn,p,0 and T ∗

n,p,0, namely,

T̃n,p,0 = Tn,p,0√
2n

(n−1) tr(Σ
2)

, and T̃ ∗
n,p,0 = T ∗

n,p,0√
2n

(n−1) tr(Σ
2)

, (10)

are non-normal. Condition C4 is needed by Lemma 1 presented in the Appendix which
proves the ratio-consistency of the estimator (20) of tr(Σ3). It is also needed by The-
orems 4 and 5 . This condition is weaker than the condition “p/n −→ c ∈ (0,∞)

as n, p → ∞” imposed by Bai and Saranadasa (1996). It allows p/n −→ ∞ as
n, p → ∞ but only allows p to diverge in a slower rate than n2. Condition C5 is also
imposed by Bai and Saranadasa (1996) and it is used to ensure that the limiting distri-
butions of T̃n,p,0 and T̃ ∗

n,p,0 are normal. Conditions C3 and C5 impose two exclusive
constraints on the eigenvalues of the covariance matrix Σ so that the limiting distri-
butions of T̃n,p,0 and T̃ ∗

n,p,0 are non-normal and normal, respectively. Theoretically
speaking, when the eigenvalues of Σ are in the same order (e.g., under a non-spiked
covariance model where no eigenvalues of Σ can dominate the other eigenvalues),
Condition C5 is satisfied so that T̃n,p,0 and T̃ ∗

n,p,0 will be asymptotically normally
distributed and when the sequence of decreasingly ordered eigenvalues of Σ tends
to 0 quickly (e.g., under a spiked covariance model where a finite number of eigen-
values dominate the remaining eigenvalues asymptotically) such that tr2(Σ)/ tr(Σ2)

tends to a finite limit, Condition C3 is satisfied. In real data analysis, largely speaking,
when the p-components of an observation are nearly uncorrelated, Condition C5 is
approximately satisfied and when they are moderately or highly correlated, Condition

C3 is approximately satisfied. Let
d= denote equality in distribution and

L−→ denote
convergence in distribution. We have the following useful theorem.

Theorem 1 (a) Under Conditions C1, C2 and C3, as n, p → ∞, we have

T̃n,p,0
L−→ ζ, and T̃ ∗

n,p,0
L−→ ζ, (11)

where ζ
d= ∑∞

r=1 ρr (Ar − 1)/
√
2, Ar

i.i.d.∼ χ2
1 .

(b) Under Conditions C1, C2 and C5, as n, p → ∞, we have

T̃n,p,0
L−→ N(0, 1), and T̃ ∗

n,p,0
L−→ N(0, 1). (12)
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Testing high-dimensional mean vector with applications 1111

Then under the conditions of (a) or (b), we always have

sup
x

|Pr(Tn,p,0 ≤ x) − Pr(T ∗
n,p,0 ≤ x)| −→ 0. (13)

In one-sample test for normally distributed repeated measures designs, a theorem
comparable with Theorem 1 has been proved by Pauly et al. (2015). However, the
authors failed to extend it to non-normal repeated measures designs in their paper.
Theorem 1 provides a theoretical justification for us to use the distribution of T ∗

n,p,0
to approximate the distribution of Tn,p,0. Notice that T ∗

n,p,0 is obtained when the data
(2) are normally distributed. Thus, we term the distribution of T ∗

n,p,0 as the normal-
reference distribution of Tn,p,0.

2.2 Implementation

To implement the proposed test, we approximate the null distribution of Tn,p using
that of T ∗

n,p,0. Different from the L2-norm test studied in Zhang and Xu (2009), whose

null distribution is the same as a χ2-type mixture with only positive coefficients, the
distribution of T ∗

n,p,0 is the same as a χ2-type mixture with both positive and negative

coefficients. For such a χ2-type mixture, Zhang (2013) showed, with some simulation
studies, that the 2-c matched χ2-approximation method (Welch 1947; Satterthwaite
1946; Box 1954) adopted by Zhang and Xu (2009) should not be used to approximate
the distribution of T ∗

n,p,0. Rather, the 3-c matched χ2-approximation method of Zhang
(2005) should be used.

One obvious advantage of the 3-c χ2-approximation method for approximating the
distribution of T ∗

n,p,0 over the normal approximation suggested by Bai and Saranadasa

(1996), and the 2-c matched χ2-approximation method used by Zhang and Xu (2009),
is that the former matches the first three cumulants while the latter two only matches
the first two cumulants. So it is expected that in terms of size control the 3-c χ2-
approximation should be more accurate than the normal approximation and the 2-c
matched χ2-approximation. In fact, Zhang (2005) showed, theoretically in terms of
upper density approximation error bound and via simulation studies, that the 3-c
matched χ2-approximation has amuch better accuracy than the normal approximation
even when the normal approximation is adequate.

By the 3-c matched χ2-approximation method of Zhang (2005), we approximate
the distribution of T ∗

n,p,0 using the distribution of the random variable

R = β0 + β1χ
2
d , (14)

where the parameters β0, β1 and d are determined via matching the first three cumu-
lants of T ∗

n,p,0 and R. The first three cumulants of T ∗
n,p,0 are given in (9) while by (14),

the first three cumulants of R are given by β0 + β1d, 2β2
1d, and 8β3

1d, respectively.
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Matching the first three cumulants of T ∗
n,p,0 and R then leads to

β0 = − n tr2(Σ2)

(n − 2) tr(Σ3)
, β1 = (n − 2) tr(Σ3)

(n − 1) tr(Σ2)
, d = n(n − 1)

(n − 2)2
tr3(Σ2)

tr2(Σ3)
. (15)

The parameter d is usually called as the approximate degrees of freedom of the 3-c
matched χ2-approximation to T ∗

n,p,0. Note that since Σ is always nonnegative, we

always have β0 < 0, β1 > 0, and d > 0. This is reasonable since T ∗
n,p,0 is a χ2-

type mixture with both positive and negative coefficients. Using d defined above, the
skewness of T ∗

n,p,0 is given by

E(T ∗3
n,p,0)/Var

3/2(T ∗
n,p,0) = (8/d)1/2 . (16)

To implement the proposed test in real data analysis, we need estimate tr(Σ2) and
tr(Σ3) consistently. Let their ratio-consistent estimators be denoted respectively as
̂tr(Σ2) and ̂tr(Σ3). Then the ratio-consistent estimators ofβ0, β1 and d are respectively
given by

β̂0 = − n[ ̂tr(Σ2)]2
(n − 2) ̂tr(Σ3)

, β̂1 = (n − 2) ̂tr(Σ3)

(n − 1) ̂tr(Σ2)

, d̂ = n(n − 1)

(n − 2)2
[ ̂tr(Σ2)]3
[ ̂tr(Σ3)]2

. (17)

For any nominal significance level α > 0, let χ2
v (α) denote the upper 100α percentile

of χ2
v . Then by (17), the proposed test for the one-sample problem (3) using Tn,p

with the 3-c matched χ2-approximation is then conducted via using the approximate

critical value β̂0 + β̂1χ
2
d̂
(α) or the approximate p value Pr

[
χ2
d̂

≥ (Tn,p − β̂0)/β̂1

]
.

In practice, one often uses the following normalized version of Tn,p:

T̃n,p = Tn,p√
2n
n−1

̂tr(Σ2)

. (18)

Then to approximate the distribution of Tn,p using that of β̂0 + β̂1χ
2
d̂
is equivalent

to approximate the distribution of T̃n,p using that of (χ2
d̂

− d̂)/
√
2d̂. In this case,

the proposed test for the one-sample problem (3) using T̃n,p with the 3-c matched
χ2-approximation can also be conducted via using the approximate critical value

[χ2
d̂
(α) − d̂]/

√
2d̂ or the approximate p value Pr

(
χ2
d̂

≥ d̂ +
√
2d̂ T̃n,p

)
.

We now consider the ratio-consistent estimators of tr(Σ2) and tr(Σ3). By Lemma
S.3 of Zhang et al. (2020), a ratio-consistent estimator of tr(Σ2) is given by

̂tr(Σ2) = (n − 1)2

(n − 2)(n + 1)

[
tr(Σ̂

2
) − tr2(Σ̂)

n − 1

]
, (19)
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where Σ̂ is the sample covariance estimator ofΣ as given in (4). When the data (2) are
normally distributed, we have Σ̂ ∼ Wp(n−1,Σ/(n−1)), aWishart distribution with
n − 1 degrees of freedom and covariance matrix Σ/(n − 1). Then under Condition
C4, by Lemma 1 given in the Appendix, an unbiased and ratio-consistent estimator of
tr(Σ3) is given by

̂tr(Σ3) = (n − 1)4

(n2 + n − 6)(n2 − 2n − 3)

[
tr(Σ̂

3
) − 3 tr(Σ̂) tr(Σ̂

2
)

(n − 1)
+ 2 tr3(Σ̂)

(n − 1)2

]
. (20)

We conjecture that when Conditions C1, C2 and C4 are satisfied, ̂tr(Σ3) is also ratio-
consistent for tr(Σ3) for non-normal data. This is partially confirmed by the simulation
results presented in Sect. 3 and in the Supplementary Material where the proposed test
works well in terms of size control regardless of whether the data are nearly uncorre-
lated, moderately correlated or highly correlated and whether the data are normally or

non-normally distributed. A theoretical justification of the ratio-consistency of ̂tr(Σ3)

without the normality assumption, like the one given in Lemma 1 for normal data, is
theoretically interesting and mathematically possible but expectedly rather laborious

because the evaluation of the mean and variance of ̂tr(Σ3) for non-normal data will be
much more complicated than those in the proof of Lemma 1 for normal data. Further
research in this direction is interesting and warranted. It is worthwhile to mention
that a U-statistic based estimator of tr(Σ3) is given by Pauly et al. (2015) (Theorem
8.2). However, this estimator is often time-consuming, especially when both n and
p are large. Further, its ratio-consistency is proved under the null hypothesis and the
normality assumption as well.

2.3 Asymptotic power

In this subsection, we investigate the asymptotic power of Tn,p. By (6), we have the

expansionTn,p
d= Tn,p,0+2Sn,p+n‖μ‖2 whereTn,p,0 has the samedistribution asTn,p

under the null hypothesis and Var(Sn,p) = nμ�Σμ. Following Bai and Saranadasa
(1996), let’s consider the power of Tn,p under the following local alternative:

as n, p → ∞, nμ�Σμ = o[tr(Σ2)]. (21)

This is the case when Var(Sn,p) = o[Var(Tn,p,0)] so that Tn,p = Tn,p,0 + n‖μ‖2 +
op

[√
Var(Tn,p,0)

]
since E(Sn,p) = 0.

Theorem 2 Assume that β̂0, β̂1 and d̂ are the ratio-consistent estimators of β0, β1 and
d as n, p → ∞, respectively. Then, (a) Under Conditions C1, C2, C3, and the local
alternative (21), as n, p → ∞, we have

Pr
[
Tn,p > β̂0 + β̂1χ

2
d̂
(α)

]
= Pr

[
ζ ≥ χ2

d (α) − d√
2d

− n‖μ‖2√
2 tr(Σ2)

]
[1 + o(1)],
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where ζ is defined in Theorem 1(a).
(b) Under Conditions C1, C2, C4, C5 and the local alternative (21), as n, p → ∞,

we have

Pr
[
Tn,p > β̂0 + β̂1χ

2
d̂
(α)

]
= Φ

[
−zα + n‖μ‖2√

2 tr(Σ2)

]
[1 + o(1)],

where zα denotes the upper 100α-percentile ofN(0, 1) and Φ(·) denotes the cumula-
tive distribution function of N(0, 1).

For any d ≥ 1 and a small α, it is easy to check that we always have zα <

[χ2
d (α) − d]/√2d. This shows that under Conditions C1–C3 and the local alternative

(21), the asymptotic size and power of the proposed test with the normal approximation
are expected to be “artificially” larger than those of the proposed test with the 3-c χ2-
approximation. This is consistent with what we observe from the simulation results
presented in Sect. 3.

2.4 Effect of data non-normality

The validness of the proposed normal reference test is guaranteed byTheorem1. In this
subsection, we aim to further investigate the effect of the data non-normality onto the
proposed test. That is, how does the data non-normality affect the performance of the
proposed test? To answer this question, we study how to approximate the distribution
of Tn,p,0 directly using the 3-c matched χ2-approximation. To this end, we compute
the first three cumulants of Tn,p,0 as in the following theorem.

Theorem 3 The first three cumulants of Tn,p,0 are given by E(Tn,p,0) = 0,

Var(Tn,p,0) = 2n

n − 1
tr(Σ2), and E(T 3

n,p,0) = 8n(n − 2)

(n − 1)2
tr(Σ3) + 4nΥ

(n − 1)2
,

where Υ = E[( y1 − μ)�( y2 − μ)]3.
It is seen from Theorem 3 that the data non-normality affects the third moment

of Tn,p,0 only. To approximate the distribution of Tn,p,0 directly using that of W =
b0 + b1χ2

f via matching the first three cumulants of Tn,p,0 and W , the parameters
b0, b1 and f are obtained as

b0 = β0/δ, b1 = β1δ, and f = d/δ2, where δ = 1 + Υ /[2(n − 2) tr(Σ3)],
(22)

and β0, β1 and d are given in (15). Note that the skewness of Tn,p,0 is given by

E(T 3
n,p,0)/Var

3/2(Tn,p,0) = (8/ f )1/2 . (23)

The quantity Υ can be seen as a non-invariant measure of multivariate normality
based on skewness (See, e.g., Sect. 3.1 ofHenze 2002).When the data (2) are normal, it
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is easy to show that Υ = 0 so that δ = 1, b0 = β0, b1 = β1, f = d and the skewness
(23) of Tn,p,0 reduces to the skewness (16) of T ∗

n,p,0 as expected. However, when
the data (2) are non-normal, we may not have Υ = 0 and hence the approximation
parameters b0, b1, f , and the skewness of Tn,p,0 are all affected by the data non-
normality. Fortunately, we can show the following result.

Theorem 4 (a)UnderConditionsC1andC2,wehaveΥ ≤ (Δ2+6Δ+9)3/4 tr3/2(Σ2)

where Δ is given in Condition C2; and (b) Under either Conditions C1, C2 and C3
or Conditions C1, C2 and C4, we have δ = 1 + o(1) as n, p → ∞.

Theorem 4 says that under Conditions C1, C2 and C3 or Conditions C1, C2 and
C4, the data non-normality on the proposed normal reference test can be ignorable
asymptotically so that we have b0 = β0[1 + o(1)], b1 = β1[1 + o(1)], f = d[1 +
o(1)] and the skewness of Tn,p,0 and that of T ∗

n,p,0 are also asymptotically equal.
The following theorem gives a sufficient and necessary condition for the asymptotic
normality of T̃n,p,0.

Theorem 5 Under Conditions C1, C2 and C4, as n, p → ∞, T̃n,p,0
L−→ N(0, 1) if

and only if d −→ ∞ where d is given in (15).

Theorem 5 indicates that when d is small, the normal approximation to the distri-
bution of T̃n,p,0 is unlikely to be adequate.

3 Simulation study

In this section, we conduct a simulation study to compare the proposed normal ref-
erence test with the 3-c matched χ2-approximation (denoted as Tnew), against the
L2-norm based test with the 2-c matched χ2-approximation proposed by Zhang and
Xu (2009) (denoted as TZX ), and the tests proposed by Bai and Saranadasa (1996),
Chen and Qin (2010) and Srivastava and Du (2008) (dented as TBS, TCQ and TSD ,
respectively). The original TBS and TCQ are two-sample tests and the corresponding
one-sample tests adopted here are respectively given by (1.2) and (1.5) of Zhou et al.
(2019). Note that the null distributions of TBS , TCQ and TSD are all computed using
the normal approximation.

In each run, we generate the high-dimensional data (2) using yi = μ+Σ1/2zi , i =
1, . . . , n where μ = δh with the components of zi i.i.d. generated from the following
three models:

– Model 1: zir , r = 1, . . . , p
i.i.d.∼ N(0, 1).

– Model 2: zir = wir/
√
2, r = 1, . . . , p with wir , r = 1, . . . , p

i.i.d.∼ t4.

– Model 3: zik = (wir − 1)/
√
2, r = 1, . . . , p with wir , r = 1, . . . , p

i.i.d.∼ χ2
1 .

Based on the above three models, the resulting data are normal, symmetric but non-
normal, and skewed and non-normal, respectively. The covariance matrix is specified
as Σ = σ 2

[
(1 − ρ)I p + ρ J p

]
. Some additional simulation results with different

covariance structures are presented in the SupplementaryMaterial and the conclusions
are similar to those presented in this section.
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Note that the tuning parameters δ, h and ρ are used to control the mean vector
and the data correlation, respectively. Note also that the power of a test will increase
with increasing the value of δ and the data correlation will increase with increasing
the value of ρ. For simplicity, without loss of generality, we set h = u/‖u‖ with
u = (1, . . . , p)� and set σ 2 = 1. To compare the performance of the tests under
consideration with various settings, we consider three cases of dimension with p =
50, 500, 1000, three cases of sample sizes with n = 30, 60, 120, and three cases of
data correlation with ρ = 0.1, 0.5 and 0.9.

In the simulations, empirical size and power of a test are calculated as the propor-
tions of the number of rejections (i.e., number of runs when calculated p values of
the associated test is smaller than nominal level α = 5%) out of 10, 000 runs. The
empirical sizes are calculated with δ = 0 so that the null hypothesis H0 in (3) is true,
and the empirical powers are calculated with δ > 0. Different values of δ (see Table
2) are carefully selected for different combinations of n and p so that all the tests
largely have non-trivial powers when ρ = 0.1, 0.5 and 0.9, respectively. To assess the
performance of a test in maintaining the type I error, we define the average relative
error as ARE = 100M−1 ∑M

j=1 |α̂ j − α|/α, where α is the nominal size (5% here)
and α̂ j , j = 1, . . . , M denote the empirical sizes under consideration. A smaller
ARE value indicates an overall better performance of the associated test in terms of
maintaining the nominal size.

Table 1 displays the empirical sizes of the tests under various settings with the
last row presenting the ARE values of the tests for three values of ρ. It is seen that
under each setting, the empirical size of Tnew is generally much closer to 5% than
those of other tests. This shows that in terms of size control, our new test significantly
outperforms other tests. This conclusion is also seen from the ARE values of the tests.
In fact, from the last row of the table, it is seen that the ARE values of Tnew are much
smaller than those of other tests for ρ = 0.1, 0.5 and 0.9, respectively. From Table 1,
we also see that in terms of size control, (a) TZX generally outperforms TBS, TCQ and
TSD; (b) TBS and TSD are generally comparable and they are generally very liberal
with most of their empirical sizes close to 7%; and (c) TSD performs quite well for
Models 1 and 2 for ρ = 0.1 but it is very conservative for ρ = 0.5 and 0.9 with most
of its empirical sizes much smaller than 5%. This implies that TSD cannot work well
for highly skewed or correlated high-dimensional data.

Table 2 displays the empirical powers of the tests under various settings. First of all,
it is seen that Tnew and TZX have comparable empirical powers, with TZX ’s empirical
powers slightly bigger than those of Tnew’s. This is possibly due to the fact that as
shown in Table 1, the empirical sizes of TZX are generally bigger than those of Tnew.
This observation is consistent with the conclusion drawn from Theorem 2. Second,
TBS and TCQ have comparable empirical powers which are slightly bigger than those
of Tnew and TZX . This is also because the former tests generally have bigger empirical
sizes than the latter tests. Third, TSD has comparable empirical powers with other tests
when ρ = 0.1 and under Models 1 and 2. It has lower empirical powers than other
tests when ρ = 0.5, 0.9 or under Model 3. This again shows that TSD does not work
well for highly skewed or highly correlated high-dimensional data. Finally, we can
see that under various settings, the empirical powers of all the tests are getting smaller
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Table 3 Estimated degrees of freedoms of Tnew , TZX under various settings

Model p n ρ = 0.1 ρ = 0.5 ρ = 0.9

Tnew TZX Tnew TZX Tnew TZX

1 50 30 13.47 35.11 1.45 4.30 1.35 1.26

60 9.78 34.33 1.24 4.01 1.16 1.25

120 8.28 33.86 1.14 3.89 1.08 1.24

500 30 2.45 99.62 1.36 4.62 1.34 1.27

60 1.91 90.85 1.17 4.26 1.16 1.25

120 1.71 87.18 1.08 4.11 1.08 1.24

1000 30 1.83 112.09 1.35 4.60 1.34 1.27

60 1.51 100.47 1.16 4.26 1.16 1.25

120 1.38 95.73 1.08 4.13 1.08 1.24

2 50 30 11.29 30.03 1.47 4.20 1.35 1.26

60 8.96 30.97 1.25 3.98 1.16 1.24

120 8.02 31.88 1.15 3.87 1.08 1.24

500 30 2.79 90.98 1.36 4.56 1.34 1.27

60 2.07 87.20 1.17 4.25 1.16 1.25

120 1.79 84.89 1.09 4.11 1.08 1.24

1000 30 2.04 105.61 1.35 4.58 1.34 1.27

60 1.60 97.70 1.17 4.27 1.16 1.25

120 1.42 94.58 1.08 4.11 1.08 1.24

3 50 30 12.05 28.73 1.47 4.22 1.35 1.26

60 9.53 30.64 1.25 3.99 1.16 1.24

120 8.33 31.90 1.15 3.87 1.08 1.24

500 30 2.83 92.82 1.36 4.59 1.34 1.27

60 2.06 88.31 1.17 4.26 1.16 1.25

120 1.78 86.00 1.09 4.12 1.08 1.24

1000 30 2.01 107.86 1.35 4.62 1.34 1.27

60 1.58 99.41 1.17 4.28 1.16 1.25

120 1.41 94.95 1.08 4.12 1.08 1.24

with increasing the value of ρ. This is reasonable since with increasing the value of
ρ, the data variations are also increasing.

Table 3 displays the estimated approximate degrees of freedom of Tnew and TZX
under various settings. First of all, it is seen that under the same setting, the estimated
approximate degrees of freedom of Tnew is smaller than TZX in most cases. Secondly,
it is seen that with increasing the values of ρ, the estimated approximate degrees of
freedom of Tnew and TZX become smaller. This shows that with increasing the data
correlation, the normal approximation becomes less adequate. This explains why in
terms of size control, TBS and TCQ performworse with increasing the data correlation.

In summary, the simulation results presented in this section show that in terms of
size control, Tnew outperforms other tests significantly; TZX outperforms TBS, TCQ

123



1122 J.-T. Zhang et al.

Table 4 Results for testing if the
mean gene expression levels of
the normal colon issues and the
tumor colon tissues are the same

Method Statistic p value d̂

Tnew 1.51 × 109 1.34 × 10−5 4.69

TZX 1.93 × 109 6.15 × 10−7 10.87

TBS 8.10 2.78 × 10−16 –

TCQ 8.60 3.83 × 10−18 –

TSD 1.30 0.096 –

and TSD; TBS and TSD are generally comparable and are generally liberal; and TSD
performs well for symmetric and less correlated high-dimensional data but it is very
conservative when the high-dimensional data are highly skewed or highly correlated.

4 Some interesting applications

4.1 Paired two-sample problem

One important application of the one-sample test considered in this paper is testing
the mean difference for two paired samples. Suppose we have n paired observations
(x11, x12), . . . , (xn1, xn2) which are i.i.d., we are interested in testing the following
hypotheses

H0 : E(x11) = E(x12), versus H1 : E(x11) �= E(x12). (24)

Then testing (24) is equivalent to testing (3) based on the induced i.i.d. sample yi =
xi1− xi2, i = 1, . . . , n and withμ = E( y1). Therefore, the one-sample test discussed
previously can be used to test the hypothesis (24).

As a real data example, we consider the colon dataset provided byAlon et al. (1999).
The colon dataset contains 22 normal colon tissues and 40 tumor colon tissues from
40 colon-cancer patients, with each observation consisting of 2000 gene expressions.
It is of interest to check whether the mean gene expression levels of the normal and
tumor colon tissues are the same. For simplicity, we remove the unpaired colon tissues
and keep n = 22 paired colon tissues only.

As an application, we apply the tests Tnew, TZX , TBS , TCQ and TSD to the colon
dataset to test whether the normal colon tissues and the tumor colon tissues have
significantly different mean gene expression levels.

Table 4 presents the results based on the 22 paired colon issues only. It is seen that
all the tests except TSD strongly reject the null hypothesis. The estimated degrees of
freedom of Tnew and TZX are small, showing that the normal approximation used in
TBS, TCQ and TSD is not adequate to the respective null distributions. Therefore, the
p values of TBS , TCQ and TSD are less liable. The p value of TSD indicates that TSD
failed to detect the difference between the gene expression levels of the normal colon
tissues and the tumor colon tissues at the 5% significance level, showing that TSD is
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conservative in this example. This result is consistent with what we observed from the
simulation results presented in Sect. 3.

4.2 One-sample problem for transposable data

Inmany applications,measurements of a subject can be naturally organized in amatrix,
especially when the rows and columns correspond to two different sets of variables.
Such a kind of data is called transposable data in Allen and Tibshirani (2010). Given
n i.i.d. transposable q × k random matrices X1, . . . , Xn , Touloumis et al. (2015)
considered the following testing problem on the structure of the mean matrix:

H0 : M =
(
μ11

�
k1 , . . . ,μg1

�
kg

)
, versus H1 : M �=

(
μ11

�
k1 , . . . ,μg1

�
kg

)
, (25)

where M = E(X1), k1, . . . , kg are positive integers such that
∑g

i=1 ki = k with at
least one ki ≥ 2, μ1, . . . ,μg are g unknown q × 1 vectors. For each i = 1, . . . , g,
set Pki = Iki − Jki /ki as a centering matrix of size ki × ki . Note that the MANOVA
hypothesis (1) for dependent samples can be seen as a special case of (25). Set P =
diag(Pk1 , . . . , Pkg ), a k × k block diagonal matrix. Then testing the null hypothesis
in (25) is equivalent to testing vec(MP) = 0. Set

yi = vec(X i P), i = 1, . . . , n, (26)

which are i.i.d. (qk) × 1 random vectors. Then testing (25) based on the i.i.d. random
matrices X1, . . . , Xn is equivalent to testing (3) with the induced i.i.d. random vectors
(26) and with μ = E( y1) = vec(MP). Therefore, our normal reference one-sample
test described in Sect. 2 can then be applied to test (25) via applying it to the induced
i.i.d. random vectors (26). Similar structural hypotheses on the rows of the mean
matrix can also be tested accordingly. Besides, the technical Conditions C1–C5 can
be easily adapted to the original transposable data as in Touloumis et al. (2015), so
asymptotic results derived in Sect. 2 also apply here. To test (25), Touloumis et al.
(2015) constructed a test using U-statistics as in TCQ of Chen and Qin (2010). Like
TCQ , their test requires some strong assumptions so that a normal approximation to
the null distribution of the test statistic is valid.

As a real data example, we consider the followingmeanmatrix structure hypothesis
studied by Touloumis et al. (2015) on the glioblastoma (GB) transposable dataset
provided by Sottoriva et al. (2013):

H0 : M = (μ1,μ2,μ31
�
5 ), versus H1 : H0 is not true, (27)

where the columns of M represent themean gene expression patterns of different brain
compartments, withμ1 corresponding to the tumormargin (MA),μ2 corresponding to
the sub-ventricular zone (SVZ, normal brain tissue that surrounds the tumormass), and
μ3, . . . ,μ7 corresponding to 5 different fragments in the tumor mass such that earlier
fragments are closer to MA and later fragments closer to SVZ. The null hypothesis in
(27) corresponds to the biological hypothesis of the conservation of the mean vectors
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Table 5 Testing the null hypotheses in (27) and (28) for mean gene expression levels of the glioblastoma
data

Hypothesis (27) (28)

Method Statistic p value d̂ Statistic p value d̂

Tnew −149.96 0.5774 33.00 8.74 × 103 2.38 × 10−26 136.82

TZX 3447 0.5893 96.80 1.34 × 104 1.08 × 10−29 151.98

TBS −0.2717 0.6071 – 15.38 1.11 × 10−53 –

TCQ −0.2782 0.6096 – 14.03 4.79 × 10−45 –

TTT M −0.2818 0.6110 – 15.24 9.22 × 10−53 –

TSD 0.0392 0.4843 – 4.429 4.74 × 10−6 –

of gene expression levels across the tumor mass. The GB dataset consists of n = 8
patients for k = 7 mRNA samples (column variables), with each sample having
q = 16, 810 (row variables) gene expression levels measured. We apply the test
TTT M proposed by Touloumis et al. (2015), and Tnew, TZX , TBS , TCQ and TSD to the
transformed data (26) to test the null hypothesis in (27). The associated p values are
given in the left panel of Table 5. It is seen that all the p values are comparable and
they suggest that there is not enough evidence to reject the null hypothesis in (27).
Because we do not reject the null hypothesis in (27), it is of interest to further test the
following hypotheses:

H0 : M = (μ11
�
2 ,μ21

�
5 ), versus H1 : H0 is not true, (28)

where the null hypothesis corresponds to the biological hypothesis that MA and SVZ
have a common mean gene expression pattern and the 5 different fragments in the
tumor mass also have a common mean gene expression pattern. The testing results are
given in the right panel of Table 5. It is seen that all the tests reject the null hypothesis
in (28). From Table 5, it is seen that the estimated degrees of freedom’s of Tnew and
TZX are quite large, showing that the normal approximation to the respective null
distributions of TBS, TCQ, TTT M and TSD may be adequate.

4.3 Two-sample problem andMANOVA

In this subsection, we show how to use the proposed one-sample test to solve problems
with two or more independent samples, e.g., the two-sample problem and MANOVA,
by transforming them into a one-sample problem. There is abundant literature in the
high-dimensional two-sample problem and MANOVA, see Dempster (1958), Bai and
Saranadasa (1996), Srivastava and Du (2008), Chen and Qin (2010), Schott (2007),
Yamada and Himeno (2015), Hu et al. (2017) and references therein. One of the
advantages of using the transformation method to solve k-sample problems as a one-
sample problem is that heteroscedasticity can be automatically overcome so there is
no need to assume a common covariance matrix for different samples (Zhang and Xu
2009, Nishiyama et al. 2013).
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Given k independent normal samples xi j , i = 1, . . . , n j
i.i.d.∼ N(μ j ,Σ j ); j =

1, . . . , k, where suppose n1 ≤ · · · ≤ nk , we firstly consider testing the simple linear
hypotheses

H0 :
k∑

j=1

c jμ j = 0, versus H1 :
k∑

j=1

c jμ j �= 0, (29)

where c1, . . . , ck are some given scalars. To apply the proposed one-sample test to
the above problem, we can transform the k samples into one sample by the following
transformation (Anderson 2003, Sect. 5.5): for i = 1, . . . , n1,

yi = c1xi1 +
k∑

j=2

c j (n1/n j )
1/2

[
xi j − n−1

1

n1∑


=1

x
 j + (n1n j )
−1/2

n j∑


=1

x
 j

]
. (30)

Then we have y1, . . . , yn1
i.i.d.∼ N(

∑k
i=1 ciμi ,

∑k
i=1 c

2
i n1n

−1
i Σ i ). Applying the pro-

posed one-sample test to the induced sample we can test the hypotheses (29). In
particular, let k = 2 and c1 = 1, c2 = −1, hypotheses (29) reduce to the two-
sample problem studied in Chen and Qin (2010), and the transformation (30) reduces
to the multivariate Scheffé (1943)’s transformation, also known as Bennett (1950)’s
transformation.

For the MANOVA problem, i.e., testing

H0 : μ1 = · · · = μk, versus H1 : H0 is not true, (31)

where k ≥ 3,we can use the “dimension stacking” trick described byAnderson (1963).
By applying the transformation (30) k − 1 times, where in the j-th time, set c1 = 1,
c j = −1 other coefficients zero, we get k − 1 samples yi j , i = 1, . . . , n1; j =
1, . . . , (k − 1). By stacking (k − 1) observations from different samples into a single
observation, i.e., define yi = ( y�

i1, . . . , y
�
i(k−1))

�, i = 1, . . . , n1, the original k

samples are transformed into one samplewithmean vector (μ�
1 −μ�

2 , . . . ,μ�
1 −μ�

k )�,
and the MANOVA problem (31) for the original k samples is also converted to the
one-sample problem for the induced sample. See also Zhang and Xu (2009) for more
details of this approach.

As a real data example,we consider the peripheral bloodmononuclear cells (PBMC)
data provided by Burczynski et al. (2006), which is a microarray data contains 22,283
gene expression levels of 42 normal, 26 ulcerative colitis (UC), and 59 Crohn’s disease
(CD) tissues. We apply different one-sample tests based on the transformation method
to check whether the three PBMC tissues have the same mean expression levels. The
testing results are given in Table 6, where all tests reject the null hypothesis that the
mean gene expression levels of the three PBMC tissues are the same. This result is
consistent with the result reported in Table 7 of Zhang et al. (2017), and the testing
result given by the one-sample test TZX is very similar to the result given by the
MANOVA test proposed by Zhang et al. (2017). It is seen that the estimated degrees
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Table 6 Testing if the mean
gene expression levels of the
three PBMC tissues are the same

Method Statistic p value d̂

Tnew 5.62 × 109 1.77 × 10−7 3.59

TZX 6.74 × 109 1.06 × 10−10 11.99

TBS 12.07 7.95 × 10−34 –

TCQ 12.37 2.01 × 10−35 –

TSD 3.99 3.30 × 10−5 –

of freedom’s of Tnew and TZX are quite small, indicating that the normal approximation
to the respective null distributions of TBS , TCQ and TSD is not adequate.

4.4 One-sample problem for heavy tailed data

Direct applications of Tnew, TZX , TBS , TCQ and TSD to one-sample problem for heavy
tailed high-dimensional data are often less powerful. To overcome this difficulty, one
may apply these tests to the inducedone sample yielded from the followingmultivariate
spatial sign transformation:

ui = U ( yi ) =
{

yi|| yi || , yi �= 0,

0, yi = 0.
, i = 1, . . . , n. (32)

For example, Wang et al. (2015) and Zhou et al. (2019) successfully apply TCQ and
TZX to the induced sample (32) for elliptically distributed high-dimensional data,
respectively.

To compare the performance of Tnew, TZX , TBS, TCQ and TSD on the induced
one sample (32) for heavy tailed high-dimensional data, we conduct the following
simulation study. We generate a heavy tailed high-dimensional sample using yi =
μ + Σ1/2zi , i = 1, . . . , n where μ and Σ are specified as in Sect. 3 and zi , i =
1, . . . , n are generated using the following two models:

– Model 4: zir , r = 1, . . . , p i.i.d. followaGaussianmixture 0.9N(0, 1) + 0.1N(0, 9).
– Model 5: zi = wi/

√
0.3, with wi following a p-dimensional multivariate t-

distribution with 3 degrees of freedom, mean 0 and covariance matrix I p.

Tables 7, 8 and 9 present the empirical sizes, powers of the tests and estimated
degrees of freedoms of Tnew and TZX , respectively. As expected, the conclusions
drawn from these three tables are similar to those drawn from Tables 1, 2 and 3 in
Sect. 3. In particular, in terms of size control, Tnew again outperforms other tests
significantly.

5 Concluding remarks

In this paper, we propose and study a normal reference test with three-cumulant
matched χ2-approximation for the one-sample problem for high-dimensional data. A
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Table 9 Estimated approximate degrees of freedom when δ = 0 for heavy tailed distributions

Model p n ρ = 0.1 ρ = 0.5 ρ = 0.9

Tnew TZX Tnew TZX Tnew TZX

4 50 30 20.08 40.43 1.79 8.47 1.40 2.31

60 14.26 38.70 1.47 7.95 1.19 2.24

120 12.16 37.93 1.33 7.72 1.10 2.19

500 30 3.28 127.71 1.47 9.67 1.38 2.35

60 2.37 116.35 1.22 8.93 1.17 2.28

120 2.06 111.84 1.12 8.61 1.08 2.23

1000 30 2.32 148.12 1.45 9.70 1.38 2.35

60 1.76 132.86 1.21 9.00 1.17 2.27

120 1.55 125.52 1.11 8.67 1.08 2.24

5 50 30 19.93 40.29 1.80 8.53 1.40 2.31

60 14.25 38.69 1.47 7.97 1.19 2.23

120 12.16 37.94 1.33 7.72 1.10 2.20

500 30 3.30 128.35 1.47 9.68 1.38 2.36

60 2.37 116.61 1.22 8.93 1.17 2.27

120 2.05 111.42 1.12 8.63 1.08 2.23

1000 30 2.31 147.56 1.45 9.71 1.38 2.36

60 1.76 131.70 1.21 8.99 1.17 2.28

120 1.55 125.54 1.11 8.67 1.08 2.24

simulation study shows that in terms of size control, the proposed test outperforms sev-
eral existing competitors. The proposed test can also be applied for testing one-sample
problems with other types of data via some simple transformations. When the data
are normally distributed, it is known that the estimated approximation parameters are
ratio-consistent. However, whether they are also ratio-consistent for non-normal high-
dimensional data is interesting and warranted. Since the normal reference test with
the 3-c matched χ2-approximation for one-sample problems for high-dimensional
data has much better size control than several existing tests, it is also interesting and
warranted to extend this normal reference test to other high-dimensional hypothesis
testing problems.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-021-01270-z.

Appendix: Technical proofs

We first prove the following useful lemma.
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Lemma 1 Let W ∼ Wp(v,Σ/v) denote a Wishart distribution with v degrees of
freedom and a covariance matrix Σ/v. Assume that p/v2 −→ 0 as v, p → ∞. Then
the unbiased and ratio-consistent estimator of tr(Σ3) is given by

̂tr(Σ3) = v4

(v − 1)(v + 4)(v2 − 4)

[
tr(W3) − 3

v
tr(W) tr(W2) + 2

v2
tr3(W)

]
. (A.33)

Proof of Lemma 1. Let V = vW . Then V ∼ Wp(v,Σ). To show (A.33) is equivalent
to show

̂tr(Σ3) = v

(v − 1)(v + 4)(v2 − 4)

[
tr(V3) − 3

v
tr(V ) tr(V2) + 2

v2
tr3(V )

]
(A.34)

is unbiased and ratio consistent for tr(Σ3). By the proof of Theorem 2.1 of Srivastava

and Yanagihara (2010), we can express the above expression as ̂tr(Σ3) = I1 + I2 +
I3 + I4, where

I1 = 1
v(v+2)(v+4)

∑p
i=1 λ3i w

3
i i ,

I2 = 3
(v−1)(v+2)(v+4)

∑
i �= j λ

2
i λ j

(
wi iw

2
i j − v−1w2

i iw j j

)
,

I3 = v
(v−1)(v+4)(v2−4)

∑
i �= j �=k λiλ jλk

(
wi jw jkwki − v−2wi iw j jwkk

)
,

I4 = −3
(v−1)(v+4)(v2−4)

∑
i �= j �=k λiλ jλk

(
wi jw

2
jk − v−1wi iw j jwkk

)
,

where wi j = u�
i u j , i, j = 1, . . . , p and u1, . . . , up

i.i.d.∼ Nv(0, Iv). By Lemma 6.2
(a) and (e) of Srivastava and Yanagihara (2010), we have E(w3

i i ) = v(v + 2)(v + 4)
and Var(w3

i i ) = 6v(v + 2)(v + 4)(3v2 + 30v + 80). Therefore,

E(I1) = 1
v(v+2)(v+4)

∑p
i=1 λ3i E(w3

i i ) = tr(Σ3),

Var(I1) = [ 1
v(v+2)(v+4) ]2

∑p
i=1 λ6i Var(w

3
i i ) = v−1 tr(Σ6)[1 + o(1)].

Noting that

tr(Ar )/ trr (A) ≤ 1, r = 1, 2, . . . (A.35)

hold for any nonnegative matrix A, we have Var[I1/ tr(Σ3)] < v−1[1 + o(1)]. It
follows that I1/ tr(Σ3) −→ 1 as v → ∞.

Following the proof of Theorem 2.1 of Srivastava and Yanagihara (2010) closely,
let ri j = wi iw

2
i j − v−1w2

i iw j j . Then we have E(ri j ) = 0 and Cov(ri j , rkl) = 0 where
(i �= j), (k �= l) and (i, j) �= (k, l). In addition, by Lemma 6.2 (f), (g) and (h) of
Srivastava and Yanagihara (2010), we have

Var(ri j ) = E
(
wi iw

2
i j − v−1w2

i iw j j

)2 = E
(
w2
i iw

4
i j − 2v−1w3

i iw
2
i jw j j + v−2w4

i iw
2
j j

)

= O(v4) − O(v−1v5) + O(v−2v6) = O(v4).
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It follows that E(I2) = 0 and

Var(I2) = 9 [(v − 1)(v + 2)(v + 4)]−2 ∑
i �= j λ

4
i λ

2
j Var(ri j )

≤ 9v−2 tr(Σ4) tr(Σ2)[1 + o(1)].

It follows from (A.35) that Var
[
I2/ tr(Σ3)

] ≤ [tr(Σ4)(9κ)]/[tr2(Σ2)v2][1+o(1)] ≤
9κ/v2[1 + o(1)], where

κ = tr3(Σ2)

tr2(Σ3)
. (A.36)

By Theorem 5 of Zhang et al. (2020), we have κ/p ≤ 1. Since p/v2 −→ 0 as v, p →
∞, we have κ/v2 −→ 0 as v, p → ∞. Therefore, we have that I2 = op[tr(Σ3)].

Similarly, we have E(I3) = 0, E(I4) = 0 and

Var[I3/ tr(Σ3)] ≤ κv−3[1 + o(1)] −→ 0, Var[I4/ tr(Σ3)] ≤ κv−4[1 + o(1)] −→ 0,

showing that I3 = op[tr(Σ3)] and I4 = op[tr(Σ3)]. It follows that ̂tr(Σ3) is an
unbiased and ratio-consistent estimator of tr(Σ3). The lemma is then proved. 
�

We now prove the main results.

Proof of Theorem 1 We first prove (a). We shall use the characteristic function
(ψX (t) = E(eit X ) for a random variable X ) method. Set xi = yi − μ, i = 1, . . . , n
and hence x̄ = ȳ − μ. Set wn,p = √

n x̄. By (10), we have

T̃n,p,0 =
[
‖wn,p‖2 − tr(Σ)

]
/

√
2 tr(Σ2)[1 + o(1)], (A.37)

since tr(Σ̂)/ tr(Σ) −→ 1 as n, p → ∞ (See Proof of Theorem9 in Zhang et al. 2020).
Further, we have E(wn,p) = 0 and Cov(wn,p) = Σ . Write wn,p = ∑p

r=1 ξn,p,rup,r ,
where ξn,p,r = w�

n,pup,r , and up,1, . . . , up,p denote the eigenvectors associated with
the eigenvalues λp,1, . . . , λp,p of Σ in the descending order. We have E(ξn,p,r ) = 0,
and Var(ξn,p,r ) = λp,r , r = 1, 2, . . ., and ξn,p,r , r = 1, . . . , p, are uncorrelated.

By Lemma S.4 of Zhang et al. (2020), we have

Var(ξ2n,p,r ) = 2λ2p,r + [E(x�
1 up,r )

4 − 3λ2p,r ]/n.

Under Conditions C1 and C2, by some simple algebra, we have E(x�
1 up,r )

4 ≤ (3 +
Δ)λ2p,r . Thus, we have

Var(ξ2n,p,r ) ≤ (2 + Δ/n)λ2p,r , r = 1, 2, . . . . (A.38)

It follows from (A.37) that

T̃n,p,0 =
p∑

r=1

(ξ2n,p,r − λp,r )/

√
2 tr(Σ2)[1 + o(1)].
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Set T̃ (q)
n,p,0 = ∑q

r=1(ξ
2
n,p,r − λp,r )/

√
2 tr(Σ2) where q < p. Then

E
(
T̃n,p,0 − T̃ (q)

n,p,0

)2 = E

[ p∑

r=q+1

(ξ2n,p,r − λp,r )/

√
2 tr(Σ2)

]2
[1 + o(1)]

= Var

( p∑

r=q+1

ξ2n,p,r

)
/
[
2 tr(Σ2)

]
[1 + o(1)]

≤
[ p∑

r=q+1

√
Var(ξ2n,p,r )

]2
/
[
2 tr(Σ2)

]
[1 + o(1)].

By (A.38), we have

[ p∑

r=q+1

√
Var(ξ2n,p,r )

]2
/
[
2 tr(Σ2)

]
≤ (1 + Δ/n)

( p∑

r=q+1

ρp,r

)2

.

It follows that

|ψT̃n,p,0
(t) − ψ

T̃ (q)
n,p,0

(t)| ≤ |t |[E(T̃n,p,0 − T̃ (q)
n,p,0)

2
]1/2

≤ |t | (1 + Δ/n)1/2
( ∑p

r=q+1 ρp,r

)
[1 + o(1)].

(A.39)

Set ζ (q) = ∑q
r=1 ρr (Ar − 1)/

√
2, we have

∣∣ψT̃n,p,0
(t) − ψζ (t)

∣∣ ≤ ∣∣ψT̃n,p,0
(t) − ψ

T̃ (q)
n,p,0

(t)
∣∣ + ∣∣ψ

T̃ (q)
n,p,0

(t) − ψ
T̃ (q)
p,0

(t)
∣∣

+∣∣ψ
T̃ (q)
p,0

(t) − ψζ(q) (t)
∣∣ + ∣∣ψζ(q) (t) − ψζ (t)

∣∣.

By similar arguments in Proof of Theorem 2 of Zhang et al. (2020), we can show under
Conditions C1–C3 all the four terms on the right hand side of the previous inequality
converge to zero as n, p → ∞, so the first expression of (11) follows. In particular,
the convergence of the first term can be derived from (A.39) and Condition C3, the
convergence of the second term is ensured by the standard central limit theorem, and
the convergence of the last two terms is due to Condition C3.

Notice that when the data (2) are normally distributed, Conditions C1–C2 are auto-
matically satisfied so that under Condition C3, the second expression of (11) follows

immediately since under the normality assumption, we have Tn,p,0
d= T ∗

n,p,0.
We now prove (b). By Lemma 8.1 of Pauly et al. (2015), Condition C5 is equiv-

alent to the condition “tr(Σ4)/ tr2(Σ2) = o(1)” imposed by Chen and Qin (2010).
Therefore, under Conditions C1, C2 and C5, the proofs of the asymptotic normality
of T̃n,p,0 and T̃ ∗

n,p,0 are along the same lines as the one given by Chen and Qin (2010)
for the asymptotic normality of their test statistic.
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Finally, we prove (13). We have supx
∣∣Pr(Tn,p,0 ≤ x) − Pr(T ∗

n,p,0 ≤ x)
∣∣ ≤

supx
∣∣ Pr(T̃n,p,0 ≤ x̃) − Pr(ζ ≤ x̃)

∣∣ + supx
∣∣ Pr(T̃ ∗

n,p,0 ≤ x̃) − Pr(ζ ≤ x̃)
∣∣, where

x̃ = [x − tr(Σ̂)]/
√

2n
(n−1) tr(Σ

2). Under the conditions of (a), the two terms on the

right hand side of previous inequality both converge to zero because both T̃n,p,0 and
T̃ ∗
n,p,0 converge to ζ in distribution. Under the conditions of (b), the proof of (13) are

along the same lines as the above and hence are omitted for space saving. 
�

Proof of Theorem 2 Under the local alternative (21), Tn,p = (
Tn,p,0 + n‖μ‖2) [1 +

op(1)]. In addition, under the given conditions, we have β̂0/β0
P−→ 1, β̂1/β1

P−→
1 and d̂/d

P−→ 1 as n, p → ∞. We first prove (a). Under Conditions C1,
C2 and C3, Theorem 1(a) indicates that as n, p → ∞, we have T̃n,p,0 =
Tn,p,0/

√
2n

(n−1) tr(Σ
2)

L−→ ζ . It follows that as n, p → ∞, we have

Pr
[
Tn,p ≥ β̂0 + β̂1χ

2
d̂
(α)

]
= Pr

[
T̃n,p,0 ≥ β0+β1χ

2
d (α)√

2n
(n−1) tr(Σ

2)
− n‖μ‖2√

2n
(n−1) tr(Σ

2)

]
[1 + o(1)]

= Pr

[
ζ ≥ χ2

d (α)−d√
2d

− n‖μ‖2√
2 tr(Σ2)

]
[1 + o(1)].

(A.40)

We now prove (b). Under the given conditions, Theorem 1(b) indicates that as

n → ∞, we have T̃n,p,0
L−→ N(0, 1) and by Theorem 5, as n, p → ∞, we have

d −→ ∞ and [χ2
d (α)− d]/√2d −→ zα where zα denotes the upper 100α-percentile

of N(0, 1). Then by (A.40), as n, p → ∞, we have

Pr
[
Tn,p ≥ β̂0 + β̂1χ

2
d̂
(α)

]
= Pr

[
T̃n,p,0 ≥ β0+β1χ

2
d (α)√

2n
(n−1) tr(Σ

2)
− n‖μ‖2√

2n
(n−1) tr(Σ

2)

]
[1 + o(1)]

= Φ

[
−zα + n‖μ‖2√

2 tr(Σ2)

]
[1 + o(1)],

where Φ(·) denotes the cumulative distribution function of N(0, 1). The proof is
complete. 
�

Proof of Theorem 3 Let xi = yi − μ, i = 1, . . . , n. Then xi , i = 1, . . . , n are
i.i.d. with E(xi ) = 0 and Cov(xi ) = Σ . It is easy to verify that Tn,p,0 = 2(n −
1)−1 ∑

i< j x
�
i x j . It follows that E(Tn,p,0) = 0 and

Var(Tn,p,0) = E(T 2
n,p,0) = 4(n − 1)−2

∑

i< j

E(x�
i x j )

2 = 2n

(n − 1)
tr(Σ2).
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Furthermore, we have

E(T 3
n,p,0) = 8(n − 1)−3 E

⎡

⎣
∑

i< j

(x�
i x j )

⎤

⎦
3

= 8(n − 1)−3 E

⎡

⎣
∑

i< j

(x�
i x j )

3 + 3
∑

∗
(x�

i x j )
2(x�

u xv)

+6
∑

∗∗
(x�

i x j )(x
�
u xv)(x�

α xβ)

]

= 8(n − 1)−3
{
n(n − 1)

2
E(x�

1 x2)
3 + n(n − 1)(n − 2)E[(x�

1 x2)(x
�
2 x3)(x

�
3 x1)]

}

= 8n(n − 2)

(n − 1)2
tr(Σ3) + 4nΥ

(n − 1)2
,

where Υ = E(x�
1 x2)

3 = E[( y1 − μ)�( y2 − μ)]3, ∗ means “i < j, u < v” and
“(i, j) �= (u, v)” while ∗∗ means “i < j, u < v, α < β” and “(i, j), (u, v), (α, β)

are not mutually equal to each other.” The proof is complete. 
�
Proof of Theorem 4 Wefirst show (a).UnderConditionC1,wehave yi = μ+Γ zi , i =
1, . . . , n where zi , i = 1, . . . , n are i.i.d. with E(zi ) = 0 and Cov(zi ) = I p and
Σ = Γ Γ �. It follows that Υ = E[( y1 − μ)�( y2 − μ)]3 = E(z�1 Ω z2)3 where
Ω = Γ �Γ . By Jensen’s inequality, we have

Υ = E(z�1 Ω z2)3 ≤
[
E(z�1 Ω z2)4

]3/4
. (A.41)

Denote the (i, j)-th entry of Ω as wi j , i, j,= 1, . . . , p. Under Conditions C1 and
C2, from the proof of Lemma 6.2 of Srivastava and Kubokawa (2013) (p. 215), we
have

E
(
z�1 Ω z2

)4 = Δ2
p∑

i=1

p∑

j=1

w4
i j + 6Δ

p∑

i=1

⎛

⎝
p∑

j=1

w2
i j

⎞

⎠
2

+ 6 tr(Ω4) + 3 tr2(Ω2), (A.42)

where Δ is given in Condition C2. Notice that we have

∑p
i=1

∑p
j=1 w4

i j ≤
(∑p

i=1

∑p
j=1 w2

i j

)2 = tr2(Ω2),

∑p
i=1

(∑p
j=1 w2

i j

)2 ≤
(∑p

i=1

∑p
j=1 w2

i j

)2 = tr2(Ω2),

tr(Ω4) ≤ tr2(Ω2).

These, together with (A.42), imply that E
(
z�1 Ω z2

)4 ≤ (Δ2 + 6Δ + 9) tr2(Ω2). Then
by (A.41), we have

Υ ≤ (Δ2 + 6Δ + 9)3/4 tr3/2(Ω2) = (Δ2 + 6Δ + 9)3/4 tr3/2(Σ2), (A.43)
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where we use the fact that tr(Ω2) = tr(Γ �Γ Γ �Γ ) = tr(Γ Γ �Γ Γ �) = tr(Σ2).

We now show (b). First of all, under Conditions C1 and C2, by (22) and (A.43), we
have

δ ≤ 1 + (Δ2 + 6Δ + 9)3/4 tr3/2(Σ2)

2(n − 2) tr(Σ3)
= 1 + (Δ2 + 6Δ + 9)3/4

√
κ

2(n − 2)
,

(A.44)

where κ is given in (A.36). By Theorem 5 of Zhang et al. (2020), we have

1 ≤ κ ≤ tr2(Σ)

tr(Σ2)
≤ p. (A.45)

Under Condition C3, as p → ∞, we have tr2(Σ)/tr(Σ2) = (
∑p

r=1 ρp,r )
2 −→

(
∑∞

r=1 ρr )
2 < ∞. It follows that under Conditions C1, C2 and C3, κ is bounded as

p → ∞. This, together with (A.44), implies that under Conditions C1, C2 and C3, as
n, p → ∞, we have δ = 1 + o(1) as n, p → ∞.

Under Conditions C1, C2 and C4, by (A.45), as n, p → ∞, we have
√

κ/[2(n −
2)] ≤ √

p/[2(n − 2)]2 = o(1). This, together with (A.44), implies that under Con-
ditions C1, C2 and C4, as n, p → ∞, we always have δ = 1 + o(1). The proof is
complete. 
�
Proof of Theorem 5 By (23), the skewness of Tn,p,0 is

√
8/ f where f is defined in

(22) and under Conditions C1, C2 and C4, by Theorem 4, we have f = d[1 + o(1)].
On the one hand, when T̃n,p,0

L−→ N(0, 1), the skewness of Tn,p,0 must tend to 0
as n, p → ∞, it follows that we must have d −→ ∞ as n, p → ∞. On the other
hand, by (15), as n → ∞, we have d = κ[1+ o(1)] where κ is defined in (A.36). We
have κ = tr3(Σ2)/tr2(Σ3) ≥ tr(Σ2)/λ2p,max where λp,max is the largest eigenvalue

of Σ . Therefore, as d → ∞, we have κ −→ ∞ and λ2p,max/tr(Σ
2) ≥ κ−1 −→ 0

as p → ∞. That is, Condition C5 holds. This, together with Conditions C1, C2 and

C4, implies that by Theorem 1(b), we have T̃n,p,0
L−→ N(0, 1). The proof is then

complete. 
�

References

AhmadMR,Werner C, Brunner E (2008) Analysis of high-dimensional repeated measures designs: the one
sample case. Comput Stat Data Anal 53(2):416–427

Allen GI, Tibshirani R (2010) Transposable regularized covariance models with an application to missing
data imputation. Ann Appl Stat 4(2):764–790

Alon U, Barkai N, Notterman D, Gish K, Ybarra S, Mack D, Levine A (1999) Broad patterns of gene
expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. Proc Natl Acad Sci 96(12):6745–6750

Anderson TW (1963) A test for equality of means when covariance matrices are unequal. Ann Math Stat
34(2):671–672

Anderson TW (2003) An introduction to multivariate statistical analysis. Wiley, New York
Bai ZD, Saranadasa H (1996) Effect of high dimension: by an example of a two sample problem. Stat Sin

6(2):311–329

123



1136 J.-T. Zhang et al.

Bai Z, Hu J, Wang C, Zhang C (2021) Test on the linear combinations of covariance matrices in high-
dimensional data. Stat Pap 62:701–719

Bennett BM (1950) Note on a solution of the generalized Behrens-Fisher problem. Ann Inst Stat Math
2(1):87–90

Box GE (1954) Some theorems on quadratic forms applied in the study of analysis of variance problems,
I. Effect of inequality of variance in the one-way classification. Ann Math Stat 25(2):290–302

Burczynski ME, Peterson RL, Twine NC, Zuberek KA, Brodeur BJ, Casciotti L, Maganti V, Reddy PS,
Strahs A, Immermann F, Spinelli W, Schwertschlag U, Slager AM, Cotreau MM, Dorner AJ (2006)
Molecular classification of Crohn’s disease and ulcerative colitis patients using transcriptional profiles
in peripheral blood mononuclear cells. J Mol Diagn 8(1):51–61

Chen SX, Qin YL (2010) A two-sample test for high-dimensional data with applications to gene-set testing.
Ann Stat 38(2):808–835

Chen LS, Paul D, Prentice RL, Wang P (2011) A regularized Hotelling’s T 2 test for pathway analysis in
proteomic studies. J Am Stat Assoc 106(496):1345–1360

Dempster AP (1958) A high dimensional two sample significance test. Ann Math Stat 29(4):995–1010
Dong K, Pang H, Tong T, Genton MG (2016) Shrinkage-based diagonal Hotelling’s tests for high-

dimensional small sample size data. J Multivar Anal 143:127–142
Feng L, Sun F (2016) Spatial-sign based high-dimensional location test. Electron J Stat 10(2):2420–2434
Feng L, Zou C,Wang Z, Zhu L (2017) Composite T 2 test for high-dimensional data. Stat Sin 27:1419–1436
Hall P (1983) Chi squared approximations to the distribution of a sum of independent random variables.

Ann Probab 11(4):1028–1036
Henze N (2002) Invariant tests for multivariate normality: a critical review. Stat Pap 43:467–506
Hu J, Bai Z, Wang C, Wang W (2017) On testing the equality of high dimensional mean vectors with

unequal covariance matrices. Ann Inst Stat Math 69:365–387
Hu Z, Tong T, Genton MG (2019) Diagonal likelihood ratio test for equality of mean vectors in high-

dimensional data. Biometrics 75:256–267
Katayama S, Kano Y, Srivastava MS (2013) Asymptotic distributions of some test criteria for the mean

vector with fewer observations than the dimension. J Multivar Anal 116:410–421
Li H, Aue A, Paul D (2020) High-dimensional general linear hypothesis tests via non-linear spectral shrink-

age. Bernoulli 26(4):2541–2571
Nishiyama T, Hyodo M, Seo T, Pavlenko T (2013) Testing linear hypotheses of mean vectors for high-

dimension data with unequal covariance matrices. J Stat Plann Inference 143(11):1898–1911
Paindaveine D, Verdebout T (2016) On high-dimensional sign tests. Bernoulli 22(3):1745–1769
Park J, Ayyala DN (2013) A test for the mean vector in large dimension and small samples. J Stat Plann

Inference 143(5):929–943
Pauly M, Ellenberger D, Brunner E (2015) Analysis of high-dimensional one group repeated measures

designs. Statistics 49(6):1243–1261
Peng L, Qi Y, Wang F (2014) Test for a mean vector with fixed or divergent dimension. Stat Sci 29(1):113–

127
Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biometrics Bull

2(6):110–114
Scheffé H (1943) On solutions of the Behrens-Fisher problem, based on the t-distribution. Ann Math Stat

14(1):35–44
Schott JR (2007) Some high-dimensional tests for a one-wayMANOVA. J Multivar Anal 98(9):1825–1839
Shen Y, Lin Z (2015) An adaptive test for the mean vector in large-p-small-n problems. Comput Stat Data

Anal 89:25–38
Shen Y, Lin Z, Zhu J (2011) Shrinkage-based regularization tests for high-dimensional data with application

to gene set analysis. Comput Stat Data Anal 55(7):2221–2233
Silva IR, Zhuang Y, da Silva Junior JCA (2021) Kronecker delta method for testing independence between

two vectors in high-dimension. Stat Pap (In Press)
Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavaré S

(2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc
Natl Acad Sci 110(10):4009–4014

Srivastava MS, Du M (2008) A test for the mean vector with fewer observations than the dimension. J
Multivar Anal 99(3):386–402

Srivastava MS, Kubokawa T (2013) Tests for multivariate analysis of variance in high dimension under
non-normality. J Multivar Anal 115:204–216

123



Testing high-dimensional mean vector with applications 1137

Srivastava MS, Yanagihara H (2010) Testing the equality of several covariance matrices with fewer obser-
vations than the dimension. J Multivar Anal 101(6):1319–1329

Touloumis A, Tavaré S, Marioni JC (2015) Testing the mean matrix in high-dimensional transposable data.
Biometrics 71(1):157–166

Wang R, Xu X (2019) A feasible high dimensional randomization test for the mean vector. J Stat Plann
Inference 199:160–178

Wang L, Peng B, Li R (2015) A high-dimensional nonparametric multivariate test for mean vector. J Am
Stat Assoc 110(512):1658–1669

Welch BL (1947) The generalization of ‘Student’s’ problem when several different population variances
are involved. Biometrika 34(1/2):28–35

Yamada T, Himeno T (2015) Testing homogeneity of mean vectors under heteroscedasticity in high-
dimension. J Multivar Anal 139:7–27

Zhang JT (2005) Approximate and asymptotic distributions of chi-squared-type mixtures with applications.
J Am Stat Assoc 100(469):273–285

Zhang JT (2013) Analysis of variance for functional data. CRC Press, Boca Raton
Zhang JT, Xu J (2009) On the k-sample Behrens-Fisher problem for high-dimensional data. Sci China Ser

A 52(6):1285–1304
Zhang JT, Guo J, Zhou B (2017) Linear hypothesis testing in high-dimensional one-way MANOVA. J

Multivar Anal 155:200–216
Zhang JT, Guo J, Zhou B, Cheng MY (2020) A simple two-sample test in high dimensions based on

L2-norm. J Am Stat Assoc 115(530):1011–1027
Zhang T, Wang Z, Wan Y (2021) Functional test for high-dimensional covariance matrix, with application

to mitochondrial calcium concentration. Stat Pap 62:1213–1230
Zhao J (2017) A new test for the mean vector in large dimension and small samples. Commun Stat-Simul

Comput 46(8):6115–6128
Zhou B, Guo J, Chen J, Zhang JT (2019) An adaptive spatial-sign-based test for mean vectors of elliptically

distributed high-dimensional data. Stat Interface 12:93–106

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Testing high-dimensional mean vector with applications
	A normal reference approach
	Abstract
	1 Introduction
	2 Main results
	2.1 Asymptotic null distribution
	2.2 Implementation
	2.3 Asymptotic power
	2.4 Effect of data non-normality

	3 Simulation study
	4 Some interesting applications
	4.1 Paired two-sample problem
	4.2 One-sample problem for transposable data
	4.3 Two-sample problem and MANOVA
	4.4 One-sample problem for heavy tailed data

	5 Concluding remarks
	Appendix: Technical proofs
	References





