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Abstract
It is nowwidely accepted that, tomodel the dynamics of daily financial returns, volatil-
ity models have to incorporate the so-called leverage effect. We derive the asymptotic
behaviour of the squared residuals autocovariances for the class of asymmetric power
GARCH model when the power is unknown and is jointly estimated with the model’s
parameters. We then deduce a portmanteau adequacy test based on the autocovari-
ances of the squared residuals. These asymptotic results are illustrated by Monte
Carlo experiments. An application to real financial data is also proposed.

Keywords Asymmetric power GARCH models · Goodness-of-fit test · Portmanteau
test · Residuals autocovariances · Threshold models · Validation

Mathematics Subject Classification Primary 62M10 · 62F03 · 62F05 · secondary
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1 Introduction

The autoregressive conditional heteroscedastic (ARCH) model introduced by Engle
(1982) expresses the conditional variance (volatility) of the process as a linear func-
tional of the squared past values. This model has a lot of extensions. For instance,
Bollerslev (1986) generalized the ARCH (GARCH) model by adding the past realiza-
tions of the volatility. The volatility function of a GARCH process is a linear function
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756 Y. Boubacar Maïnassara et al.

of products of squared past innovations. Thus, by construction, the conditional vari-
ance only depends on the modulus of the past variables: past positive and negative
innovations have the same effect on the current volatility. This property is in contra-
diction with many empirical studies on series of stocks, showing a negative correlation
between the squared current innovation and the past innovations. For instance, Black
(1976) showed that the past negative returns seem to have more impact on the current
volatility than the past positive returns. Numerous financial series present this styl-
ized fact, known as the leverage effect. Since 1993, a lot of extensions are made to
consider the leverage effect. Among the various asymmetric GARCH processes intro-
duced in the econometric literature, themore general is the asymmetric powerGARCH
(APGARCH for short) model of Ding et al. (1993). For some positive constant δ0, it
is defined by

⎧
⎪⎪⎨

⎪⎪⎩

εt = ζtηt

ζ
δ0
t = ω0 +

q∑

i=1

α+
0i

(
ε+
t−i

)δ0 + α−
0i

(−ε−
t−i

)δ0 +
p∑

j=1

β0 jζ
δ0
t− j ,

(1)

where x+ = max(0, x) and x− = min(0, x). It is assumed that
A0: (ηt ) is a sequence of independent and identically distributed (iid, for short)

random variables with E|ηt |r < ∞ for some r > 0.
In the sequel, the vector of parameter of interest (the true parameter) is denoted

ϑ0 =
(
ω0, α

+
01, . . . , α

+
0q , α

−
01, . . . , α

−
0q , β01, . . . , β0p, δ0

)′

and satisfies the positivity constraints ϑ0 ∈]0,∞[×[0,∞[2q+p×]0,∞[. The repre-
sentation (1) includes various GARCH time series models: the standard GARCH
of Engle (1982) and Bollerslev (1986) obtained for δ0 = 2 and α+

0i = α−
0i for

i = 1, . . . , q; the threshold ARCH (TARCH) model of Rabemananjara and Zakoïan
(1993) for δ0 = 1 and the GJR model of Glosten et al. (1993) for δ0 = 2.

After identification and estimation of the GARCH processes, the next important
step in the GARCHmodelling consists in checking if the estimated model fits the data
satisfactorily. This adequacy checking step allows to validate or invalidate the choice of
the orders p and q. Thus it is important to check the validity of a GARCH(p, q)model,
for given orders p and q. This paper is devoted to the problem of the validation step
of APGARCH(p, q) representations (1) processes, when the power δ0 is estimated.
Based on the residual empirical autocorrelations, Box and Pierce (1970) derived a
goodness-of-fit test, the portmanteau test, for univariate strong autoregressivemoving-
average (ARMA) models (i.e. under the assumption that the error term is iid). Ljung
and Box (1978) proposed a modified portmanteau test which is nowadays one of
the most popular diagnostic checking tool in ARMA modelling of time series. Since
the articles by Ljung and Box (1978) and McLeod (1978), portmanteau tests have
been important tools in time series analysis, in particular for testing the adequacy of
an estimated ARMA(p, q) model. See also Wai (2004), for a reference book on the
portmanteau tests.
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The intuition behind these portmanteau tests is that if a given time series model with
iid innovation ηt is appropriate for the data at hand, the autocorrelations of the residuals
η̂t should be close to zero, which is the theoretical value of the autocorrelations of ηt .
The standard portmanteau tests thus consists in rejecting the adequacy of the model
for large values of some quadratic form of the residual autocorrelations.

Li and Mak (1994) and Shiqing and Wai (19978) studied a portmanteau test based
on the autocorrelations of the squared residuals. Indeed the test based on the autocor-
relations is irrelevant because the process such that this use to define a GARCHmodel
(η̂t = εt/σ̂t ) with σ̂t independent of σ {ηu, u < t}, is a martingale difference and
thus is uncorrelated. Concerning the GARCH class model, Berkes et al. (2003) devel-
oped an asymptotic theory of portmanteau tests in the standard GARCH framework.
Leucht et al. (2015) suggest a consistent specification test for GARCH(1, 1) model.
This test is based on a test statistic of Cramér–Von Mises type. Recently, Dolores
et al. (2020) proposed goodness-of-fit test for certain parametrizations of condition-
ally heteroscedastic time series with unobserved components. Francq et al. (2018) also
proposed a portmanteau test for the Log-GARCHmodel and the exponential GARCH
(EGARCH) model. Carbon and Francq (2011) work on the APARCHmodel when the
power δ0 is known and suggest a portmanteau test for this class of models. However,
in term of power performance, the authors have showed that: these portmanteau tests
are more disappointing since they fail to detect alternatives of the form δ0 > 2 when
the null is δ0 = 2 (see the right array in Table 1 of Carbon and Francq (2011)). Also,
in practice the power δ0 is unknown and thus can be estimated. To circumvent the
problems, we propose in this work to adopt these portmanteau tests to the case of
APGARCH model when the power δ0 is unknown and is jointly estimated with the
model’s parameters. Consequently, under the null hypothesis of an APGARCH(p, q)

model, we shown that the asymptotic distribution of the proposed statistic is a chi-
squared distribution as in Carbon and Francq (2011). To obtain this result, we need
the following technical (but not restrictive) assumption:

A1 the support of (ηt ) contains at least eleven positive values or eleven negative
values.

Notice that Carbon and Francq (2011) need that the support of (ηt ) contains at least
three positive values or three negative values only. This is due to the fact that δ0 was
known in their work.

In Sect. 2, we recall the results on the quasi-maximum likelihood estimator (QMLE)
asymptotic distribution obtained by Hamadeh and Zakoïan (2011) when the power
δ0 is unknown. Section 3 presents our main aim, which is to complete the work of
Carbon and Francq (2011) and to extend the asymptotic theory to the wide class of
APGARCH models (1) when the power δ0 is estimated with the other parameters. In
Sect. 4, we test the null assumption of an APGARCH(0, 1) and an APGARCH(1, 1)
model for different values of δ0 ∈ {0.5, 1, 1.5, 2, 2.5, 3}. The empirical power are also
investigated. Section 5 illustrates the portmanteau test for APGARCH(p, q) models,
with varying p and q, applied to exchange rates. To obtain these results, we use the
asymptotic properties of the QMLE obtained by Hamadeh and Zakoïan (2011) for the
APGARCH model (1).
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2 Quasi-maximum likelihood estimation when the power ı0 is
unknown

Let the parameter space Δ ⊆]0,∞[×[0,∞[2q+p×]0,∞[.
For all ϑ = (ω, α+

1 , . . . , α+
q , α−

1 , . . . , α−
q , β1, . . . , βp, δ)

′ ∈ Δ, we assume that
ζt (ϑ) is the strictly stationary and non-anticipative solution of

ζt (ϑ) =
⎛

⎝ω +
q∑

i=1

α+
i

(
ε+
t−i

)δ + α−
i

(−ε−
t−i

)δ +
p∑

j=1

β jζ
δ
t− j (ϑ)

⎞

⎠

1/δ

, (2)

whereϑ is equal to an unknown valueϑ0 belonging toΔ. In the sequel, we let ζt (ϑ0) =
ζt . Given the realizations ε1, . . . , εn (of length n) satisfying the APGARCH(p, q)

representation (1), the variable ζt (ϑ) can be approximated by ζ̃t (ϑ) defined recursively
by

ζ̃t (ϑ) =
⎛

⎝ω +
q∑

i=1

α+
i

(
ε+
t−i

)δ + α−
i

(−ε−
t−i

)δ +
p∑

j=1

β j ζ̃
δ
t− j (ϑ)

⎞

⎠

1/δ

, for t ≥ 1,

conditional to the initial values ε0, . . . , ε1−q , ζ̃0(ϑ) ≥ 0, . . . , ζ̃1−p(ϑ) ≥ 0. The
quasi-maximum likelihood (QML) method is particularly relevant for GARCH mod-
els because it provides consistent and asymptotically normal estimators for strictly
stationary GARCH processes under mild regularity conditions (but with no moment
assumptions on the observed process). The QMLE is obtained by the standard esti-
mation procedure for GARCH class models. Thus a QMLE of ϑ0 of the model (1) is
defined as any measurable solution ϑ̂n of

ϑ̂n = argmin
ϑ∈Δ

1

n

n∑

t=1

l̃t (ϑ), where l̃t (ϑ) = ε2t

ζ̃ 2
t (ϑ)

+ log
(
ζ̃ 2
t (ϑ)

)
. (3)

To ensure the asymptotic properties of the QMLE (for the model (1)) obtained by
Hamadeh and Zakoïan (2011), we need the following assumptions:

A2 ϑ0 ∈ Δ and Δ is compact.
A3 ∀ϑ ∈ Δ,

∑p
j=1 β j < 1 and γ (C0) < 0 where

γ (C0) := inf
t∈N∗

1

t
E (log ‖C0tC0t−1 . . .C01‖) = lim

t→∞
1

t
log ‖C0tC0t−1 . . .C01‖ a.s.
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is called the top Lyapunov exponent of the sequence of matrix C0 = {C0t ,t ∈ Z}. The
matrix C0t is defined by

C0t =

⎛

⎜
⎜
⎝

κ(ηt ) β0p α[2:q−1] α[q:q]
Ip−1 0(p−1)×1 0(p−1)×2(q−2) 0(p−1)×2
η
t

02×1 02×2(q−2) 02×2

02(q−2)×(p−1) 02(q−2)×1 I2(q−2) 02(q−2)×2

⎞

⎟
⎟
⎠ ,

where Ik denotes the identity matrix of size k and

κ(ηt ) =
(
β01 + α+

01(η
+
t )δ0 + α−

01

(−η−
t

)δ0 , β01, . . . , β0p−1

)
,

α[i : j] =
(
α+
0i , α

−
0i , . . . , α

+
0 j , α

−
0 j

)
, f or i ≤ j, η

t
=
(

(η+
t )δ0 01×(p−1)

(−η−
t )δ0 01×(p−2)

)

.

A4 If p > 0,Bϑ0(z) = 1 − ∑p
j=1 β0 j z j has non common root with A+

ϑ0
(z) =

∑q
i=1 α+

0i z
i and A−

ϑ0
(z) = ∑q

i=1 α−
0i z

i . Moreover A+
ϑ0

(1) + A−
ϑ0

(1) �= 0 and α+
0q +

α−
0q + β0p �= 0.

A5 E[η2t ] = 1 and ηt has a positive density on some neighborhood of zero.

A6 ϑ0 ∈ ◦
Δ, where

◦
Δ denotes the interior of Δ.

To ensure the strong consistency of the QMLE, a compactness assumption is
required (i.eA2). The assumptionA3makes reference to the condition of strict station-
arity for themodel (1). AssumptionsA4 andA5 aremade for identifiability reasons and
Assumption A6 precludes the situation where certain components of ϑ0 are equal to
zero. Then under the assumptions A0, A2–A6, Hamadeh and Zakoïan (2011) showed
that ϑ̂n → ϑ0 a.s. as n → ∞ and

√
n(ϑ̂n − ϑ0) is asymptotically normal with mean

0 and covariance matrix (κη − 1)J−1, where

J := Eϑ0

[
∂2lt (ϑ0)

∂ϑ∂ϑ ′

]

= Eϑ0

[
∂ log(ζ 2

t (ϑ0))

∂ϑ

∂ log(ζ 2
t (ϑ0))

∂ϑ ′

]

,

with lt (ϑ) = ε2t

ζ 2
t (ϑ)

+ log(ζ 2
t (ϑ))

where κη := E[η4t ] < ∞ by A0 and ζt (ϑ) is given by (2).

3 Portmanteau test

To check the adequacy of a given time series model, for instance an ARMA(p, q)

model, it is common practice to test the significance of the residuals autocorrelations.
In the GARCH framework this approach is not relevant because the process ηt = εt/ζt
is always a white noise (possibly a martingale difference) even when the volatility is
misspecified. To check the adequacy of a volatility model, under the nullhypothesis
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H0 : the process(εt )satisfies the model (1),

it is much more fruitful to look at the squared residuals autocovariances

r̂h = 1

n

n∑

t=|h|+1

(
η̂2t − 1

) (
η̂2t−|h| − 1

)
, with η̂2t = ε2t

ζ̂ 2
t

,

for |h| < n and where ζ̂t = ζ̃t (ϑ̂n) is the quasi-maximum likelihood residuals. For
a fixed integer m ≥ 1, we consider the vector of the first m sample autocovariances
defined by

γ̂m = (r̂1, . . . , r̂m), such that 1 ≤ m < n.

The following theorem gives the asymptotic distribution of the autocovariances of the
squared residuals.

Theorem 1 Under the assumptions A0–A6, if (εt ) is the non-anticipative and station-
ary solution of the APGARCH(p, q) model (1), we have

√
nγ̂m

d−−−→
n→∞ N (0, D) where D = (κη − 1)2 Im − (κη − 1)Cm J−1C ′

m

is nonsingular and where the matrix Cm is given by (17) in the proof of Theorem 1.

The proof of this result is postponed to Sect. 7.
The standard portmanteau test for checking that the data is a realization of a strong

white noise introduced by Box and Pierce (1970) or Ljung and Box (1978) is based
on the residuals autocorrelations ρ̂(h) and is defined by

Qbp
m = n

m∑

h=1

ρ̂2(h) and Qlb
m = n(n + 2)

m∑

h=1

ρ̂2(h)

n − h
, (4)

where n is the length of the series andm is a fixed integer. Under the assumption that the
noise sequence is iid, the standard test procedure consists in rejecting the strong white
noise hypothesis if the statistics (4) are larger than a certain quantile of a chi-squared
distribution. These tests are not robust to conditional heteroscedasticity or other pro-
cesses displaying a second order dependence. Indeed such nonlinearities may arise
for instance when the observed process (εt ) follows a GARCH representation. Other
situations where the standard tests are not robust can be found for instance in Relvas
and Paula (2016), Cao et al. (2010), Francq et al. (2005) or Yacouba and Abdoulkarim
(2018), Yacouba and Bruno (2018), Boubacar (2011). Nevertheless our main goal is
to propose a more robust portmanteau statistics in the APGARCH framework.

In order to state our second result, we also need further notations. Let κ̂η, Ĵ and Ĉm

be weakly consistent estimators of κη, J and Cm involved in the asymptotic normality
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of
√
nγ̂m (see Theorem 1). For instance, κη and J can be estimated by their empirical

or observable counterparts given by

κ̂η = 1

n

n∑

t=1

ε4t

ζ̃ 4
t (ϑ̂n)

and Ĵ = 1

n

n∑

t=1

∂ log ζ̃ 2
t (ϑ̂n)

∂ϑ

∂ log ζ̃ 2
t (ϑ̂n)

∂ϑ ′ .

We can write the vector of parameters ϑ := (θ ′, δ)′ where θ = (ω, α+
1 , . . . , α+

q ,

α−
1 , . . . , α−

q , β1, . . . , βp)
′ ∈ R

2q+p+1 corresponds to the vector of parameters when
the power δ is known. The parameter of interest becomes ϑ0 := (θ ′

0, δ0)
′, where

θ0 =
(
ω0, α

+
01, . . . , α

+
0q , α

−
01, . . . , α

−
0q , β01, . . . , β0p

)′
.

With the previous notation, for all ϑ = (θ ′, δ)′ ∈ Δ, the derivatives in the expression
of Ĵ can be recursively computed for t > 0 by

∂ζ̃ δ
t (ϑ)

∂θ
= c̃t (ϑ) +

p∑

j=1

β j
∂ζ̃ δ

t− j (ϑ)

∂θ
,

∂ζ̃ δ
t (ϑ)

∂δ
=

q∑

i=1

α+
i log

(
ε+
t−i

) (
ε+
t−i

)δ + α−
i log

(−ε−
t−i

) (−ε−
t−i

)δ +
p∑

j=1

β j
∂ζ̃ δ

t− j (ϑ)

∂δ
,

with the initial values ∂ζ̃t (ϑ)/∂ϑ = 0, for all t = 0, . . . , 1 − p and

c̃t (ϑ) =
(
1,
(
ε+
t−1

)δ
, . . . ,

(
ε+
t−q

)δ
,
(−ε−

t−1

)δ
, . . . ,

(−ε−
t−q

)δ
, ζ̃ δ

t−1(ϑ), . . . , ζ̃ δ
t−p(ϑ)

)′
.

(5)
By convention we let log(ε+

t ) = 0 if εt ≤ 0 and respectively log(−ε−
t ) = 0 if εt ≥ 0.

We define the matrix Ĉm of size m × (2q + p + 2) and we take

Ĉm(h, k) = − 1

n

n∑

t=h+1

(η̂2t−h −1)
1

ζ̃ 2
t (ϑ̂n)

∂ζ̃ 2
t (ϑ̂n)

∂ϑk
for 1 ≤ h ≤ m and 1 ≤ k ≤ 2q+ p+2,

(6)
where Ĉm(h, k) denotes the (h, k) element of the matrix Ĉm . Let D̂ = (κ̂η − 1)2 Im −
(κ̂η − 1)Ĉm Ĵ−1Ĉ ′

m be a weakly consistent estimator of the matrix D. The following
result gives the asymptotic distribution for quadratic forms of autocovariances of
squared residuals and is established in the case where the power is unknown and is
estimated with the others parameters.

Theorem 2 Under Assumptions of Theorem 1 and H0, we have

nγ̂ ′
m D̂

−1γ̂m
d−−−→

n→∞ χ2
m .

123



762 Y. Boubacar Maïnassara et al.

The proof of this result is postponed to Sect. 7. The adequacy of the APGARCH(p, q)

model (1) is then rejected at the asymptotic level α when

nγ̂ ′
m D̂

−1γ̂m > χ2
m(1 − α),

where χ2
m(1 − α) represents the (1 − α)−quantile of the chi-square distribution with

m degrees of freedom.

Remark 1 If we focuse on the following alternative hypothesis

H1 : the process(εt ) does not admit the representation (1) with parameterϑ0,

at least one r0h = E[(η2t (ϑ0) − 1)(η2t−h(ϑ0) − 1)] �= 0 under H1. One may prove that
under H1

γ̂ ′
m D̂

−1γ̂m
P−−−→

n→∞ γ 0
m

′
D−1γ 0

m

where the vector γ 0
m = (r01 , . . . , r0m)′. Therefore the test statistic nγ̂ ′

m D̂
−1γ̂m is con-

sistent in detecting H1.

The proof of this remark is also postponed to Sect. 7.

4 Numerical illustration

By means of Monte Carlo experiments, we investigate the finite sample properties
of the test introduced in this paper. The numerical illustrations of this section are
made with the free statistical R software (see https://www.r-project.org/). First, we
simulated N = 1, 000 independent replications of size n = 500 and n = 2000 of an
APGARCH(0, 1) model

εt =
(
0.2 + 0.4

(
ε+
t−1

)δ0 + 0.1
(−ε−

t−1

)δ0
)1/δ0

ηt (7)

for different values of δ0 ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Second, we also simulated N =
1000 independent replications of size n = 2000 and n = 5000 of an APGARCH(1, 1)
model

εt =
(
0.009 + 0.036

(
ε+
t−1

)δ0 + 0.074
(−ε−

t−1

)δ0 + 0.879ζ δ0
t−1

)1/δ0
ηt (8)

for different values of δ0 ∈ {1, 1.5, 2, 2.5, 3}. Three distributions of (ηt ) are considered
for each model:

(a) a symmetric distribution namely a standard N (0, 1),
(b) a centered and standardized two-components Gaussian mixture distribution

(0.1N (−2, 2) + 0.9N (2, 0.16)) to obtain E(η2t ) = 1, which is highly leptokurtic
since κη = 10.53 (see Hamadeh and Zakoïan (2011)),
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(c) a standardized Student’s distribution with ν degrees of freedom (tν) where ν = 3
and ν = 9, such that E(η2t ) = 1. Contrary to ν = 9 it should be noted that
for ν = 3, the asymptotic distribution of autocovariances of squared residuals
obtained in Theorem 1 is not valid since κη = ∞.

For each of these N replications we use the QMLE method to estimate the cor-
responding coefficient ϑ0 for the APGARCH(0, 1) (resp. the APGARCH(1, 1))
model considered. After estimating the APGARCH(0, 1) (resp. the APGARCH(1, 1))
model we apply portmanteau test to the squared residuals for different values of
m ∈ {1, . . . , 12}, where m is the number of autocorrelations used in the portman-
teau test statistic.

Tables 1, 2, 3 and 4 (resp. Tables 5, 6, 7 and 8) display the empirical relative frequen-
cies of rejection over the N independent replications for the 3 nominal levels α = 1%,
5%and10%,when the data generating process (DGP for short) is theAPGARCH(0, 1)
(resp. the APGARCH(1, 1)) model. For these nominal levels, the empirical rel-
ative frequency of rejection size over the N = 1, 000 independent replications
should vary respectively within the confidences intervals [0.3%, 1.7%], [3.6%, 6.4%]
and [8.1%, 11.9%] with probability 95% and [0.3%, 1.9%], [3.3%, 6.9%] and
[7.6%, 12.5%] with probability 99% under the assumption that the true probabili-
ties of rejection are respectively α = 1%, α = 5% and α = 10%. As expected,
Tables 1, 2, 3 and 4 (resp. Tables 5, 6, 7 and 8) show that the error of first kind is better
controlled (most of the rejection frequencies are within the 99% significant limits,
except for Model APGARCH(0, 1) when δ0 = 2) when n = 2000 (resp. n = 5, 000)
than when n = 500 (resp. n = 2000) when the DGP follows an APGARCH(0, 1)
(resp. anAPGARCH(1, 1)) model. Note also that even in the casewhere (ηt ) have infi-
nite fourth moments, namely, when ηt ∼ t3 the proposed test performs well for Model
APGARCH(0, 1). The opposite conclusion is obtained for Model APGARCH(1, 1)
since the rejection frequencies are globally outside the 99% significant limits.

Consequently the proposed testwell controls the error of first kind for the candidates
models when the number of observations is large, which could correspond in practice
to the length for daily financial series or higher-frequency data.

We now repeat the same experiments to examine the empirical power of the test: first
for the null hypothesis of an APGARCH(0, 1) against an APGARCH(1, 1) alternative
given by (8). Second for the null hypothesis of an APGARCH(1, 1)) against the
following APGARCH(2, 1) alternative defined by

εt =
(
0.2 + 0.07

(
ε+
t−1

)δ0 + 0.03
(
ε+
t−2

)δ0

+ 0.051
(−ε−

t−1

)δ0 + 0.18
(−ε−

t−2

)δ0 + 0.704ζ δ0
t−1

)1/δ0
ηt . (9)

Tables 9, 10, 11 and 12 (resp. Tables 13, 14 and 15) compare the empirical powers
of Model (8) (resp. of Model (9)) with different values of δ0 over the N independent
replications at different asymptotic levels α. In term of power performance we observe
that:

1. In the first case the powers of the test are quite satisfactory, except for δ0 = 0.5
and m = 1, when the null is an APGARCH(0, 1) model. Even for the sample size
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Table 1 Empirical size of the proposed test: relative frequencies (in %) of rejection of an APARCH(0, 1)
given by (7) with innovation a) (ηt ∼ N (0, 1))

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.2 1.4 1.1 1.5 1.1 1.1 1.2 1.2 1.1 1.2 1.0 0.9

0.5 500 5% 6.5 5.7 5.5 6.0 5.0 4.9 5.3 5.0 4.7 5.8 5.5 5.0

10% 11.7 11.7 11.2 10.8 9.9 9.6 9.4 9.2 9.2 9.2 9.6 9.0

1% 1.2 0.7 0.8 1.2 1.3 1.4 1.0 1.0 1.2 1.2 1.0 1.2

0.5 2000 5% 6.0 4.5 4.2 4.2 4.5 5.0 5.2 4.6 4.9 5.5 4.9 5.7

10% 10.0 11.2 8.9 9.1 9.4 9.8 9.7 9.6 9.4 9.8 10.1 10.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 2.2 1.6 1.4 1.4 1.4 1.5 1.5 1.7 2.0 2.2 2.2 2.1

1 500 5% 5.6 6.8 6.3 6.4 5.1 5.2 5.3 5.4 5.1 6.3 6.7 6.4

10% 10.8 10.8 11.2 12.2 11.0 10.0 9.9 10.1 10.4 10.6 10.2 10.2

1% 1.6 0.8 1.0 1.1 1.0 1.4 1.3 1.0 1.4 1.3 1.3 1.5

1 2000 5% 6.2 5.6 5.2 4.5 5.0 5.5 5.1 5.0 5.0 4.9 5.1 5.6

10% 10.8 11.6 10.0 10.2 10.3 10.5 10.1 9.6 9.4 10.0 10.3 10.7

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.7 2.3 2.1 1.8 1.8 1.9 1.7 1.7 2.3 2.2 2.3 2.0

1.5 500 5% 4.9 5.7 5.9 6.3 5.4 5.6 5.7 6.2 6.1 6.6 6.8 6.9

10% 10.3 10.1 9.7 10.9 9.7 9.8 10.2 10.3 10.7 10.4 10.9 10.8

1% 1.8 1.0 1.0 1.5 1.2 1.7 1.2 1.1 1.5 1.8 1.7 1.8

1.5 2000 5% 6.6 5.6 5.9 5.5 5.1 5.1 5.4 5.8 5.7 5.4 6.0 5.3

10% 12.4 12.5 10.8 9.9 10.8 10.0 9.8 9.3 9.5 10.7 10.4 10.4

1 2 3 4 5 6 7 8 9 10 11 12

1% 2.7 3.0 3.2 2.9 2.7 2.7 3.0 3.4 3.2 3.4 3.5 3.4

2 500 5% 8.0 7.7 7.3 8.1 7.0 6.9 6.8 7.6 8.1 9.6 8.9 9.7

10% 13.9 14.2 12.7 12.5 11.3 11.7 11.8 12.1 12.8 13.4 13.4 13.8

1% 4.8 5.0 4.3 4.5 3.6 3.2 2.9 2.8 2.8 3.1 2.9 2.7

2 2000 5% 12.2 11.7 10.7 10.5 9.4 8.5 8.5 7.8 7.2 7.8 8.3 8.0

10% 18.2 18.4 16.5 15.0 15.2 14.7 14.4 12.9 13.2 14.6 13.5 13.6

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.3 1.5 1.7 1.6 2.0 1.7 1.6 1.9 1.5 2.0 2.4 2.3

2.5 500 5% 5.8 5.9 5.9 5.3 5.5 5.9 6.0 6.3 6.1 6.2 6.2 6.4

10% 10.5 10.3 9.5 10.5 9.4 10.2 10.2 9.9 9.7 9.9 10.5 10.6

1% 2.5 1.8 1.5 1.4 1.7 1.4 1.2 1.5 1.5 1.3 1.2 1.5

2.5 2000 5% 7.3 6.8 5.7 5.9 5.9 5.8 5.3 5.4 6.3 6.0 5.7 6.1

10% 13.0 13.5 11.4 9.6 10.0 10.0 10.0 11.0 10.6 10.2 10.4 11.0

1 2 3 4 5 6 7 8 9 10 11 12
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Table 1 continued

δ0 Length n Level α Lag m

1% 1.3 1.7 1.5 1.3 2.2 2.0 2.4 2.4 2.3 2.5 2.7 2.6

3 500 5% 5.5 5.7 5.9 5.8 6.2 6.2 6.9 6.2 5.9 6.2 6.6 6.9

10% 10.1 10.7 10.4 11.1 10.4 10.7 10.5 10.7 10.6 10.9 10.3 10.5

1% 2.6 2.0 2.0 1.6 2.1 1.7 1.5 2.0 1.9 1.6 1.5 1.6

3 2000 5% 7.7 6.6 5.3 5.6 6.0 5.8 5.3 6.0 6.8 6.5 5.7 6.1

10% 12.1 12.4 11.5 9.9 9.6 10.2 9.9 10.4 10.7 10.4 10.4 11.1

n = 500, the test is able to clearly reject the APGARCH(0, 1) model when the
DGP follows Model (8) (see Tables 9, 10, 11, 12).

2. In the second experiment it is seen that the proposed test have high power in the case
of an APGARCH(1, 1) when the DGP follows Model (9) (Tables 13, 14 and 15).
Note thatwhenηt ∼ t3 we do not reported here the empirical power of the proposed
test which is hardly interpretable, because we have already seen in Table 7 that the
test do not well control the error of first kind in this APGARCH(1, 1) framework.

3. The empirical power of the test in the two experiments is in general decreasing
when m increases and is increasing when δ0 increases.

5 Adequacy of APGARCHmodels for real datasets

We consider the daily return of four exchange rates EUR/USD (Euros Dollar),
EUR/JPY (Euros Yen), EUR/GBP (Euros Pounds) and EUR/CAD (Euros Canadian
dollar). The observations covered the period from November 01, 1999 to April 28,
2017 which correspond to n = 4478 observations. The data were obtain from the
website of the National Bank of Belgium (https://www.nbb.be). It may seem surpris-
ing to investigate asymmetry models for exchange rate returns, while the conventional
view is that leverage is not relevant for such series. However, many empirical studies
(see for instance Harvey and Sucarrat (2014), Francq et al. (2018)), show that asym-
metry/leverage is relevant for exchange rates, especially when one currency is more
liquid or more attractive than the other. It may also be worth mentioning the sign of
the effect depends on which currency appears in the denominator of the exchange rate.

Table 16 displays the p−values for adequacy of the APGARCH(p, q) models
for daily returns of exchange rates based on m squared residuals autocovariances,
as well as the estimated power denoted δ̂. To summarize our empirical investiga-
tions, Table 16 shows that the APGARCH(0, q) models (even with large order q)
are generally rejected, whereas the APGARCH(0, 5) and APGARCH(0, 6) models
seem to be relevant for the EUR/USD and EUR/CAD series. The APGARCH(0, q)

model assumption is rejected and is not adapted to EUR/GBP and EUR/JPY series,
whereas the APGARCH(p, q) models seem the most appropriate for these exchange
rates (EUR/GBP and EUR/JPY). This table only concerns the daily exchange rates,
but similar conclusions hold for the weekly log returns (see for instance Francq and
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Table 2 Empirical size of the proposed test: relative frequencies (in %) of rejection of an APARCH(0, 1)
given by (7) with innovation b) (ηt ∼ 0.1N (−2, 2) + 0.9N (2, 0.16))

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.1 1.1 0.7 1.2 1.0 1.0 0.6 1.1 1.1 1.2 0.9 1.0

0.5 500 5% 5.4 5.5 4.8 4.4 5.4 5.2 4.7 5.1 4.6 4.6 4.3 5.3

10% 11.2 9.9 9.4 9.6 8.6 9.1 9.5 9.4 9.7 10.0 9.0 9.3

1% 0.9 0.7 0.5 0.6 0.5 0.4 0.5 0.3 0.4 0.5 0.7 0.6

0.5 2000 5% 5.4 4.5 5.0 4.7 4.5 4.2 3.8 2.8 3.8 4.2 4.9 4.3

10% 10.7 10.1 10.3 9.1 9.1 9.3 8.6 8.6 8.2 9.6 9.2 8.6

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.8 1.1 1.1 1.4 1.4 1.5 1.3 1.6 1.4 1.5 1.3 1.6

1 500 5% 5.3 5.1 5.3 5.5 6.0 5.5 5.2 5.2 5.3 5.3 5.1 5.9

10% 11.3 10.4 8.9 9.9 9.4 9.6 9.7 9.5 9.6 9.9 9.6 9.6

1% 1.1 0.9 0.5 0.4 0.4 0.4 0.3 0.4 0.5 0.5 0.8 0.5

1 2000 5% 5.3 4.9 4.8 5.0 4.2 4.8 3.6 3.8 4.3 4.9 5.0 4.9

10% 10.7 9.9 9.9 9.5 9.0 8.6 8.8 8.8 9.4 9.8 10.1 9.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.7 1.6 1.5 1.6 1.6 1.6 1.5 1.5 1.8 1.7 1.5 1.8

1.5 500 5% 6.4 5.6 5.1 6.0 5.8 6.1 5.4 5.6 5.5 5.3 5.4 5.9

10% 12.7 9.1 8.8 9.3 9.5 9.8 9.6 10.6 9.8 10.0 10.0 9.9

1% 0.7 1.4 1.0 0.9 0.8 0.7 0.7 0.4 0.6 0.7 0.8 0.6

1.5 2000 5% 5.7 4.9 4.7 4.7 4.4 4.7 3.8 3.8 4.6 4.8 5.5 5.5

10% 11.2 10.7 10.6 9.2 8.9 8.7 9.5 10.1 9.6 9.5 11.2 10.3

1 2 3 4 5 6 7 8 9 10 11 12

1% 2.5 3.0 2.4 2.2 2.2 2.3 2.2 2.8 3.1 3.4 2.4 3.3

2 500 5% 8.0 7.7 7.0 7.2 7.4 7.2 6.9 7.3 7.9 8.1 8.1 8.0

10% 13.4 12.2 11.0 11.8 11.5 11.8 11.7 12.2 11.5 12.2 12.2 13.0

1% 4.3 4.7 4.0 3.0 2.6 2.0 1.6 1.9 2.1 1.9 2.7 1.9

2 2000 5% 11.1 11.5 9.8 9.1 9.0 8.0 7.3 7.6 7.4 7.7 7.9 8.0

10% 17.5 19.1 17.3 16.0 15.0 14.3 14.2 13.1 13.1 13.7 14.7 13.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.7 1.6 1.7 1.6 1.8 1.7 1.6 2.2 2.5 2.9 2.2 2.1

2.5 500 5% 5.8 5.5 4.7 6.1 5.9 5.8 6.3 5.8 6.1 6.2 5.6 6.1

10% 10.9 9.4 9.1 9.4 8.9 9.2 10.3 10.3 10.5 10.4 9.8 10.4

1% 1.0 1.1 1.4 0.9 1.0 0.9 0.6 0.8 0.8 1.0 1.5 0.7

2.5 2000 5% 6.9 6.5 5.3 4.4 4.7 4.9 4.1 4.7 5.1 5.1 6.0 5.3

10% 12.4 11.9 11.4 10.8 9.5 9.0 10.0 9.1 9.4 9.9 10.4 10.3

1 2 3 4 5 6 7 8 9 10 11 12
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Table 2 continued

δ0 Length n Level α Lag m

1% 1.5 1.8 1.6 2.0 2.0 1.7 1.6 2.0 2.4 2.3 1.9 1.9

3 500 5% 5.0 5.5 4.8 4.9 5.6 5.3 5.7 5.9 5.5 6.2 5.4 6.0

10% 10.2 9.4 8.6 9.1 8.4 9.3 10.1 9.5 9.8 9.7 9.4 9.8

1% 1.6 1.1 1.3 1.1 1.4 1.1 0.8 1.0 1.3 1.3 1.5 1.1

3 2000 5% 6.4 6.6 5.7 5.4 4.7 4.7 4.5 4.9 5.4 5.4 6.0 5.3

10% 11.8 12.3 11.8 10.8 10.1 9.3 9.8 9.2 9.4 10.1 10.8 10.3

Zakoïan (2019)). From the two last columns of Table 16, we can also see that the
estimated power δ̂ is not necessary equal to 1 or 2 and is different for each series. The
p−values of the corresponding QMLE, δ̂, are given in parentheses. The last column
then presents the confidence interval at the asymptotic level α = 5% for the parameter
δ̂.

6 Concluding remarks

Three distributions of (ηt ) have been considered in this paper. We remark that, as
expected because the asymptotic distribution of autocovariances of squared residuals
obtained in Theorem 1 is not valid since κη = ∞, the test does not control the error
of first kind in the GARCH case. The other distributions yield good results.

Concerning the parameter δ0, the proposed test is recommended for any values.
The portmanteau test is thus an important tool in the validation process. From the

empirical results and the simulation experiments, we draw the conclusion that the
proposed portmanteau test based on squared residuals of an APGARCH(p, q) (when
the power is unknown and is jointly estimated with the model’s parameters) controls
well the error of first kind at different asymptotic level α and is efficient to detect a
misspecification of the order (p, q).

7 Proofs

We recall that for all ϑ ∈ Δ, ζt (ϑ) is the strictly stationary and non-anticipative
solution of (2).

The matrix J can be rewritten as

J = Eϑ0

[
1

ζ 4
t (ϑ0)

∂ζ 2
t (ϑ0)

∂ϑ

∂ζ 2
t (ϑ0)

∂ϑ ′

]

.

First, we shall need some technical results which are essentially contained in Hamadeh
and Zakoïan (2011). Let K and ρ be generic constants, whose values will be modified
along the proofs, such that K > 0 and ρ ∈]0, 1[.
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Table 3 Empirical size of the proposed test: relative frequencies (in %) of rejection of an APARCH(0, 1)
given by (7) with innovation c) (ηt ∼ t3)

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.9 1.9 2.4 2.1 2.7 3.6 4.0 4.4 4.8 4.5 4.2 4.5

0.5 500 5% 2.5 3.5 4.5 4.6 5.4 5.4 6.0 6.3 6.8 6.9 7.3 7.3

10% 4.0 5.3 6.3 6.4 6.9 7.6 7.7 8.2 8.3 8.9 9.2 9.0

1% 1.4 2.2 3.0 2.8 3.2 3.9 4.4 4.9 5.2 5.6 5.7 6.3

0.5 2000 5% 3.2 3.4 5.2 5.2 5.2 5.3 5.9 6.5 7.1 7.7 8.3 8.5

10% 4.7 4.8 6.0 6.3 6.8 7.1 8.2 8.2 8.8 8.8 9.9 10.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.7 2.9 3.3 3.2 3.3 4.1 4.2 4.1 4.4 4.4 4.5 4.7

1 500 5% 4.1 4.6 5.2 5.1 6.0 6.5 6.6 6.7 7.1 7.0 7.3 7.7

10% 6.6 7.1 6.8 6.6 7.8 8.3 7.9 8.4 8.6 9.0 9.5 9.1

1% 1.6 2.3 3.2 2.8 3.0 3.3 3.8 4.6 4.8 5.3 5.4 5.9

1 2000 5% 3.4 3.7 5.1 4.9 5.3 5.4 6.1 6.5 7.0 7.3 8.0 8.3

10% 4.9 5.1 6.3 6.3 6.5 7.2 7.9 8.1 8.8 8.6 10.3 10.6

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.8 3.1 3.1 2.7 3.0 3.9 4.3 3.6 3.5 3.6 4.0 3.8

1.5 500 5% 3.9 4.5 5.3 5.3 5.7 6.0 5.7 5.4 5.2 6.0 6.2 5.8

10% 6.0 6.5 7.0 6.4 7.4 7.7 7.8 7.7 6.9 7.3 7.2 7.7

1% 1.3 1.9 3.1 2.7 2.9 3.2 3.8 4.6 5.0 5.3 5.7 5.8

1.5 2000 5% 3.2 3.8 5.2 4.8 4.9 4.8 5.2 6.0 6.5 6.7 7.8 8.0

10% 5.6 5.0 6.1 6.7 6.9 6.7 7.5 7.5 7.6 8.2 9.2 9.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 2.1 3.0 3.2 2.9 2.7 3.4 4.0 4.4 4.5 4.1 4.4 4.0

2 500 5% 5.2 5.7 5.7 5.4 5.3 5.7 6.3 5.7 5.9 6.2 6.5 7.0

10% 7.4 7.5 7.8 7.0 7.5 8.1 8.0 8.2 8.0 7.7 7.6 8.5

1% 2.1 2.8 3.5 2.8 2.8 3.1 3.5 4.3 4.2 4.6 4.8 5.3

2 2000 5% 3.8 4.8 6.1 5.6 5.7 5.2 5.5 6.0 6.3 6.2 7.3 8.1

10% 6.1 5.5 7.5 7.3 7.1 7.2 7.7 8.0 8.5 7.8 9.2 9.4

1 2 3 4 5 6 7 8 9 10 11 12

1% 2.2 2.9 3.0 3.4 3.5 3.8 3.9 3.3 3.3 3.7 3.8 3.4

2.5 500 5% 4.1 4.5 5.2 5.1 5.4 5.4 6.0 5.6 5.4 5.8 6.2 6.2

10% 6.6 6.6 6.5 6.4 6.9 7.4 7.9 7.3 7.1 7.7 7.5 7.6

1% 1.8 2.0 2.9 2.7 3.0 2.9 3.4 3.9 4.3 4.5 4.6 4.8

2.5 2000 5% 4.2 4.1 5.2 4.9 4.9 4.2 4.8 5.6 5.8 6.4 6.8 7.2

10% 6.0 5.5 6.5 6.2 6.6 6.1 6.6 6.8 6.8 7.3 8.3 8.6

1 2 3 4 5 6 7 8 9 10 11 12

123



Portmanteau test for the asymmetric power… 769

Table 3 continued

δ0 Length n Level α Lag m

1% 1.8 2.3 2.7 2.7 3.0 3.4 3.3 3.2 3.7 4.0 4.0 4.0

3 500 5% 3.6 4.0 4.4 4.6 4.8 5.2 5.2 5.5 5.6 5.4 6.0 6.1

10% 6.3 5.9 6.2 5.8 6.4 6.5 6.8 7.1 6.9 7.2 7.0 7.1

1% 1.7 1.9 2.8 2.7 3.0 3.1 3.7 4.1 4.2 4.3 4.6 4.8

3 2000 5% 3.7 3.9 4.6 4.2 4.8 4.3 4.6 5.3 5.7 6.3 6.7 7.0

10% 5.8 5.0 6.2 5.7 5.8 5.9 6.7 6.6 6.5 6.8 7.9 8.3

7.1 Reminder on technical issues on quasi likelihoodmethod for APGARCH
models

The starting point is the asymptotic irrelevance of the initial values. UnderA0,A2–A6,
Hamadeh and Zakoïan (2011) show that:

sup
ϑ∈Δ

|ζ δ
t (ϑ) − ζ̃ δ

t (ϑ)| ≤ Kρt . (10)

Similar properties also hold for the derivatives with respect to ϑ of ζ δ
t (ϑ) − ζ̃ δ

t (ϑ).
We sum up the properties that we shall need in the sequel. We refer to Hamadeh and
Zakoïan (2011) for a more detailed treatment. For some s ∈]0, 1[, we have

E|ε0|2s < ∞, E sup
ϑ∈Δ

|ζ 2s
t | < ∞, E sup

ϑ∈Δ

|ζ̃ 2s
t | < ∞. (11)

Moreover, from (10), the mean-value theorem implies that

sup
ϑ∈Δ

|ζ 2
t (ϑ) − ζ̃ 2

t (ϑ)| ≤ Kρt sup
ϑ∈Δ

max{ζ 2
t (ϑ), ζ̃ 2

t (ϑ)}. (12)

For all d ≥ 1

E

∥
∥
∥
∥sup

ϑ∈Δ

1

ζ δ
t (ϑ)

∂ζ δ
t (ϑ)

∂ϑ

∥
∥
∥
∥

d

< ∞, E

∥
∥
∥
∥sup

ϑ∈Δ

1

ζ δ
t (ϑ)

∂2ζ δ
t (ϑ)

∂ϑ∂ϑ ′

∥
∥
∥
∥

d

< ∞. (13)

There exists a neighborhoodV(ϑ0) ofϑ0 such that for all ξ > 0 and a = 1−(δ0/δ)(1−
s) > 0

sup
ϑ∈V(ϑ0)

(
ζ 2
t (ϑ0)

ζ 2
t (ϑ)

)

≤
(

K + K
q∑

i=1

∞∑

k=0

(1 + ξ)kρak |εt−i−k |2δ
)2/δ

,

and it holds that

E

∣
∣
∣
∣
∣

sup
ϑ∈V(ϑ0)

(
ζ 2
t (ϑ0)

ζ 2
t (ϑ)

)∣∣
∣
∣
∣
< ∞. (14)

123



770 Y. Boubacar Maïnassara et al.

Table 4 Empirical size of the proposed test: relative frequencies (in %) of rejection of an APARCH(0, 1)
given by (7) with innovation c) (ηt ∼ t9)

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.5 2.3 2.2 2.3 2.7 2.6 2.0 2.2 2.2 2.1 1.8 1.6

0.5 500 5% 4.5 4.9 5.8 6.0 5.7 5.4 5.3 5.7 5.7 6.4 6.0 6.1

10% 8.9 8.5 8.5 9.7 8.8 9.4 8.7 9.1 9.5 9.3 9.3 10.1

1% 1.4 1.3 1.3 1.8 2.1 1.9 2.0 1.9 2.1 2.0 1.9 2.1

0.5 2000 5% 4.6 4.2 4.6 5.1 4.7 4.8 5.5 5.3 5.9 5.6 5.4 5.6

10% 8.9 8.4 8.1 8.7 9.3 9.0 9.6 9.7 9.3 9.8 8.9 8.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.9 2.5 2.6 3.2 3.1 3.1 2.8 2.9 2.4 2.3 2.4 2.6

1 500 5% 5.4 5.4 6.1 6.8 6.2 6.8 6.4 7.0 8.2 8.0 7.6 7.7

10% 9.9 9.7 9.7 10.3 10.4 9.7 10.2 11.2 11.3 10.9 11.3 11.6

1% 1.7 1.5 1.5 2.0 2.1 2.0 1.8 2.1 2.2 2.3 1.8 1.9

1 2000 5% 5.4 5.1 5.3 5.8 5.2 5.3 6.3 6.2 6.5 7.0 6.9 6.4

10% 10.7 8.4 10.2 9.8 9.3 9.6 10.2 10.8 11.1 10.5 10.4 10.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.2 1.3 2.0 2.2 2.4 2.5 2.3 2.0 2.0 2.0 1.9 2.3

1.5 500 5% 5.1 4.7 5.1 5.4 5.2 5.4 5.8 6.0 6.7 6.8 6.8 6.6

10% 10.0 8.2 8.3 9.0 9.9 8.5 8.4 9.6 9.9 9.8 10.0 10.3

1% 1.8 1.8 1.6 2.3 2.0 2.0 1.7 2.0 2.3 2.4 1.7 2.1

1.5 2000 5% 5.3 5.4 5.7 5.9 5.5 5.9 6.0 6.4 6.9 6.4 6.3 6.3

10% 10.9 9.0 9.8 9.9 8.9 9.2 10.1 10.8 10.5 10.3 10.4 10.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 2.3 2.0 2.5 2.2 2.3 2.5 3.0 2.6 2.6 2.3 2.7 3.1

2 500 5% 7.4 7.6 7.2 7.3 6.9 6.8 6.4 6.6 7.4 7.2 7.1 7.6

10% 10.9 10.4 10.8 10.6 11.1 10.0 9.4 10.8 11.7 11.2 11.2 11.4

1% 2.9 3.5 2.9 3.2 3.2 2.8 2.9 3.1 3.4 3.6 3.0 3.0

2 2000 5% 8.5 8.4 8.2 7.6 7.8 7.9 8.2 8.1 8.0 8.2 7.5 7.5

10% 13.4 13.8 13.6 13.6 12.2 11.9 12.9 13.2 13.1 13.4 11.9 12.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.8 1.7 1.5 2.0 2.0 2.2 2.0 2.3 2.5 2.4 2.3 2.5

2.5 500 5% 5.4 5.0 5.1 5.2 4.9 4.9 5.6 6.1 6.4 6.4 6.4 6.4

10% 8.8 8.7 8.8 8.1 9.2 7.8 7.8 9.4 10.3 10.3 9.9 9.8

The matrix J is invertible and

√
n(ϑ̂n − ϑ0) = J−1 1√

n

n∑

t=1

st
1

ζ 2
t

∂ζ 2
t (ϑ0)

∂ϑ
+ oP(1), with st = η2t − 1. (15)
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Table 4 continued

δ0 Length n Level α Lag m

1% 1.9 2.2 1.9 2.0 2.4 2.1 2.6 2.4 2.5 2.6 2.5 2.1

2.5 2000 5% 6.1 6.6 6.0 6.1 6.4 6.1 6.7 7.1 7.0 7.2 7.1 6.6

10% 10.7 9.9 11.1 12.0 10.3 10.3 11.2 12.2 11.7 11.8 10.6 11.0

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.7 1.3 1.7 2.0 2.0 2.5 2.0 2.1 2.1 2.1 2.3 1.9

3 500 5% 4.5 4.2 4.6 4.9 4.9 5.0 5.1 5.8 5.9 6.2 6.0 5.2

10% 8.4 8.0 7.4 7.4 8.5 7.5 8.0 9.3 9.7 9.5 9.1 9.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 2.3 2.4 1.7 1.9 2.6 2.3 2.6 2.3 2.4 2.5 2.5 2.5

3 2000 5% 6.3 6.2 6.5 6.7 6.3 6.1 6.7 6.7 7.1 7.2 6.6 6.3

10% 10.2 10.1 10.6 11.4 10.5 10.4 11.3 11.9 11.6 11.8 10.6 10.8

7.2 Proof of Theorem 1

The proof of Theorem 1 is close to the proof of Carbon and Francq (2011). Only the
invertibility of the matrix D needs to be adapted. But, to understand the proofs and to
have its own autonomy, we rewrite all the proof. We also decompose this proof in 3
following steps.

(i) Asymptotic impact of the unknown initial values on the statistic γ̂m .
(ii) Asymptotic distribution of

√
nγ̂m .

(iii) Invertibility of the matrix D.

We now introduce the vector of m autocovariances γm = (r1, . . . , rm)′ where the
h-th element is define as

rh = 1

n

n∑

t=h+1

st st−h , with st = η2t − 1 and 0 < h < n.

Let st (ϑ) = η2t (ϑ) − 1 with ηt (ϑ) = εt/ζt (ϑ) and s̃t (ϑ) = η̃2t (ϑ) − 1 with
η̃t (ϑ) = εt/ζ̃t (ϑ). Let rh(ϑ) obtained by replacing ηt by ηt (ϑ) in rh and r̃h(ϑ)

by replacing ηt by η̃t (ϑ) in rh . The vectors γm(ϑ) = (r1(ϑ), . . . , rm(ϑ))′ and
γ̃m(ϑ) = (r̃1(ϑ), . . . , r̃m(ϑ))′ are such that γm = γm(θ0), γ̃m = γ̃m(θ0) and
γ̂m = γ̃m(ϑ̂n).

7.2.1 Asymptotic impact of the unknown initial values on the statistic �̂m

We have st (ϑ)st−h(ϑ) − s̃t (ϑ)s̃t−h(ϑ) = at + bt with at = {st (ϑ) − s̃t (ϑ)}st−h(ϑ)

and bt = s̃t (ϑ){st−h(ϑ) − s̃t−h(ϑ)}. Using (12) and infϑ∈Δ ζ̃ 2
t ≥ infϑ∈Δ ω2/δ > 0,

we have
|at | + |bt | ≤ Kρtε2t (ε

2
t−h + 1) sup

ϑ∈Δ

max{ζ̃ 2
t , ζ 2

t } .
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Table 5 Empirical size of the proposed test: relative frequencies (in %) of rejection of an APARCH(1, 1)
given by (8) with innovation a) (ηt ∼ N (0, 1))

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.2 1.6 1.8 2.0 2.9 3.1 3.6 4.0 3.6 4.4 4.4 4.2

1 2000 5% 4.0 4.5 5.4 5.9 6.9 6.9 7.3 7.5 7.5 7.8 7.8 8.5

10% 6.9 8.0 9.3 9.9 11.0 11.1 11.1 11.8 11.2 12.1 12.0 11.7

1% 1.0 1.8 1.5 1.9 1.7 1.6 1.4 1.4 1.0 1.1 1.3 1.4

1 5000 5% 4.2 6.0 6.9 7.3 7.6 6.6 6.1 5.7 5.1 5.7 5.1 5.6

10% 7.3 9.0 9.9 11.0 11.7 10.7 10.1 9.6 9.3 9.5 9.6 9.3

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.6 2.0 2.3 2.6 3.7 3.9 4.2 4.4 4.5 5.1 5.2 5.8

1.5 2000 5% 4.8 6.1 7.3 7.6 7.6 7.8 8.0 8.5 8.2 8.7 9.6 11.0

10% 8.8 10.3 12.2 12.4 12.2 11.6 13.0 12.9 13.2 14.0 13.9 14.3

1% 0.7 1.7 1.8 1.5 1.8 1.7 1.7 1.6 1.4 1.5 1.8 1.7

1.5 5000 5% 5.7 6.0 6.8 7.1 7.8 8.3 6.8 6.4 5.8 6.2 6.4 6.5

10% 9.4 11.5 12.0 13.1 13.4 14.1 13.9 11.9 11.6 10.9 11.7 11.2

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.7 2.1 2.4 2.8 3.5 3.8 3.8 3.9 4.4 5.0 4.4 5.4

2 2000 5% 5.9 6.5 6.9 6.6 7.4 8.2 8.3 8.1 7.7 8.8 8.8 9.7

10% 10.5 11.2 12.0 11.2 11.6 11.4 11.7 11.8 12.3 13.1 13.2 14.5

1% 0.7 1.7 1.3 1.2 1.1 1.5 1.4 1.5 1.4 1.2 1.3 1.5

2 5000 5% 6.0 5.0 5.9 6.2 6.5 6.3 5.4 5.3 4.7 5.4 5.7 5.6

10% 10.2 10.9 10.9 10.4 11.4 12.0 12.0 11.4 9.3 10.0 9.6 9.6

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.0 1.6 2.1 2.5 2.5 2.7 2.5 2.4 2.1 2.3 2.5 2.7

2.5 2000 5% 4.3 5.4 5.8 5.9 5.7 5.6 4.8 4.8 5.5 5.7 5.7 5.8

10% 9.4 9.5 10.0 10.5 10.4 9.6 8.6 9.1 8.9 10.0 10.4 11.6

1% 0.8 1.5 1.7 0.8 1.2 0.9 1.0 1.0 0.8 0.9 1.0 1.1

2.5 5000 5% 5.2 5.1 6.2 5.5 5.4 5.4 4.4 4.5 4.0 4.4 4.7 4.9

10% 10.8 9.6 10.0 10.5 10.1 10.3 10.9 10.0 8.7 8.7 8.6 8.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.3 1.5 2.0 2.4 3.2 3.3 3.3 3.5 3.8 3.7 3.8 3.8

3 2000 5% 5.4 5.9 5.3 5.3 6.3 7.0 7.7 7.9 8.1 8.4 8.5 8.9

10% 9.3 10.6 10.1 10.2 10.5 10.9 11.5 11.9 11.5 12.6 12.9 13.3

1% 0.8 1.4 1.4 0.9 1.1 0.9 0.9 0.7 0.7 0.7 0.7 1.0

3 5000 5% 5.2 4.3 5.5 4.9 5.5 5.5 4.4 4.0 3.6 4.2 4.1 4.8

10% 10.5 10.0 10.0 10.1 9.5 9.9 10.3 9.6 8.5 8.7 8.6 8.4
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Table 6 Empirical size of the proposed test: relative frequencies (in %) of rejection of an APARCH(1, 1)
given by (8) with innovation b) (ηt ∼ 0.1N (−2, 2) + 0.9N (2, 0.16))

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.5 2.2 2.2 2.3 3.3 3.1 3.6 3.4 4.0 3.8 4.2 4.4

1 2000 5% 3.6 5.0 6.3 6.6 7.6 6.8 7.2 7.9 8.3 8.3 8.2 8.6

10% 6.3 8.8 9.8 11.0 11.2 11.5 11.9 11.4 10.7 11.8 11.7 12.3

1% 1.0 1.5 2.1 1.8 1.9 2.3 1.8 2.0 2.3 2.3 2.4 2.2

1 5000 5% 4.4 5.4 6.6 7.1 6.6 6.7 6.3 6.6 5.6 5.4 5.8 6.4

10% 7.7 9.0 9.7 11.2 11.4 11.1 9.6 9.9 9.9 10.2 9.8 10.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.8 3.1 3.2 3.8 4.5 4.4 5.2 5.1 5.4 5.4 5.4 6.0

1.5 2000 5% 4.6 6.8 7.7 8.7 9.2 9.5 9.3 10.2 10.0 9.8 10.3 10.6

10% 8.0 9.9 13.0 14.0 14.3 13.4 14.1 14.2 14.0 15.5 13.8 14.4

1% 0.6 1.2 1.7 1.8 2.1 1.9 1.7 1.9 2.1 2.1 1.8 1.8

1.5 5000 5% 4.5 4.8 5.9 7.2 7.5 7.6 7.6 8.2 6.9 7.4 7.6 8.1

10% 9.0 10.2 12.0 12.3 12.1 13.2 12.6 12.7 13.0 12.5 12.8 12.7

1 2 3 4 5 6 7 8 9 10 11 12

1% 2.0 2.2 2.5 2.8 4.1 3.9 4.4 4.5 4.8 5.1 4.8 4.9

2 2000 5% 5.2 5.7 7.3 7.4 7.6 8.1 8.2 8.4 8.9 9.4 10.0 10.8

10% 10.6 10.5 11.8 12.5 12.8 12.7 13.0 13.5 13.4 14.3 14.3 14.5

1% 1.1 1.3 1.1 1.0 1.2 1.2 1.5 1.2 1.6 1.6 1.6 1.6

2 5000 5% 4.9 5.6 5.7 5.4 5.4 6.2 6.1 6.0 5.9 6.7 6.8 6.6

10% 10.5 10.2 11.1 11.2 10.8 10.6 11.3 11.7 12.1 11.2 11.8 12.2

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.2 1.4 1.5 1.7 1.6 2.0 2.5 2.2 2.1 2.3 2.7 2.6

2.5 2000 5% 4.8 5.8 5.8 5.3 5.2 6.2 6.1 6.1 5.7 7.1 6.6 7.4

10% 8.8 9.6 10.7 9.8 10.6 10.2 10.1 11.4 10.5 11.5 11.4 11.4

1% 1.0 1.1 0.8 0.8 0.8 0.8 0.8 0.9 1.3 1.1 1.0 1.0

2.5 5000 5% 5.2 5.5 5.6 4.4 4.2 4.7 3.8 4.9 4.5 4.4 4.9 4.9

10% 10.0 10.1 10.3 10.9 8.7 9.3 9.0 9.7 9.6 9.8 10.2 10.4

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.1 1.1 0.6 0.8 0.7 0.8 1.0 0.8 1.0 1.3 1.6 1.7

3 2000 5% 4.7 4.7 4.7 4.3 4.4 4.9 5.1 4.8 4.9 5.8 5.9 5.9

10% 9.8 9.1 9.8 9.1 9.6 9.3 9.3 10.4 9.9 10.5 10.8 10.8

1% 0.9 1.1 0.9 0.9 0.7 0.5 0.6 0.9 1.0 1.1 1.0 1.1

3 5000 5% 5.6 5.0 5.6 4.7 4.5 5.0 3.9 4.3 4.3 4.4 4.3 4.9

10% 9.5 9.3 10.0 9.8 8.5 9.2 9.0 9.5 9.7 9.3 10.4 9.9
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Table 7 Empirical size of the proposed test: relative frequencies (in %) of rejection of an APARCH(1, 1)
given by (8) with innovation c) (ηt ∼ t3)

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.3 0.5 0.7 1.2 1.6 2.1 2.4 2.8 3.0 3.0 3.3 3.7

1 2000 5% 0.8 0.8 1.4 1.8 2.1 2.8 3.1 3.6 3.9 4.0 4.3 4.7

10% 1.8 1.5 1.9 2.8 2.7 3.7 3.9 4.4 4.4 4.7 5.2 5.7

1% 0.1 0.3 0.7 0.7 0.9 1.5 1.6 2.2 2.3 2.5 2.5 2.5

1 5000 5% 0.5 0.4 1.2 1.7 1.9 2.5 2.8 3.2 3.4 3.4 3.7 3.5

10% 1.1 0.8 1.8 2.1 2.6 3.0 3.3 3.8 4.2 4.6 5.0 4.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.2 0.8 1.0 2.0 2.1 2.5 2.6 3.3 3.6 3.3 3.8 4.0

1.5 2000 5% 0.5 1.6 2.3 3.3 3.7 3.7 4.3 5.2 5.1 5.1 5.3 5.7

10% 1.2 2.4 2.9 4.5 4.6 4.8 5.1 6.4 6.8 6.3 6.5 6.7

1% 0.2 0.3 0.6 0.8 1.1 1.5 2.0 2.4 2.7 2.9 2.8 2.8

1.5 5000 5% 0.9 0.9 1.2 1.4 2.0 2.4 2.8 3.4 4.1 4.0 4.2 3.9

10% 1.9 1.6 1.9 2.6 3.2 3.2 3.4 4.1 5.0 5.4 5.1 5.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.4 0.7 1.3 1.8 1.9 2.2 2.3 2.9 3.0 3.4 3.4 3.9

2 2000 5% 1.0 1.6 2.0 2.5 2.8 3.4 4.0 4.2 4.9 4.8 5.2 5.2

10% 1.5 2.5 2.9 3.8 3.6 4.6 5.3 5.4 5.9 6.0 6.4 6.6

1% 0.2 0.5 0.7 0.9 1.1 1.4 1.6 1.6 1.7 1.9 2.0 2.0

2 5000 5% 1.0 0.9 1.3 1.8 1.5 2.1 2.4 2.6 3.0 2.8 3.2 3.3

10% 1.7 1.5 1.8 2.2 2.6 2.9 2.9 3.7 4.2 3.7 3.8 4.3

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.8 1.4 1.2 1.6 2.1 2.2 2.3 2.4 2.6 3.0 3.2 3.2

2.5 2000 5% 1.4 2.1 2.2 3.0 3.3 3.8 3.8 4.3 4.6 5.2 4.9 5.3

10% 2.5 2.8 3.1 4.0 4.4 5.3 5.1 5.5 6.0 5.8 6.5 6.7

1% 0.8 1.5 1.5 1.9 1.8 2.4 2.3 2.3 2.4 2.3 2.5 2.5

2.5 5000 5% 1.4 2.3 2.6 2.7 3.1 3.1 3.3 3.4 3.7 3.8 3.9 3.9

10% 2.6 2.9 3.4 3.8 3.7 3.8 4.6 4.2 4.5 4.5 4.8 4.9

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.8 1.8 1.7 2.2 1.9 1.8 1.9 2.2 2.3 2.4 2.5 2.7

3 2000 5% 1.5 2.7 2.7 3.3 3.0 3.2 3.3 3.6 3.8 3.7 3.6 4.0

10% 2.5 3.4 3.4 4.2 4.5 4.6 4.5 4.8 5.0 5.1 5.0 4.9

1% 0.9 1.8 1.8 2.2 2.2 3.0 2.9 3.0 3.2 3.2 3.3 3.3

3 5000 5% 1.7 2.3 3.0 3.3 3.4 3.9 4.0 4.5 5.0 5.0 4.6 4.9

10% 3.2 3.2 3.8 4.3 4.2 4.4 5.0 5.1 5.5 5.8 5.9 6.1
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Table 8 Empirical size of the proposed test: relative frequencies (in %) of rejection of an APARCH(1, 1)
given by (8) with innovation c) (ηt ∼ t9)

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.2 1.6 1.8 2.0 2.9 3.1 3.6 4.0 3.6 4.4 4.4 4.2

1 2000 5% 4.0 4.5 5.4 5.9 6.9 6.9 7.3 7.5 7.5 7.8 7.8 8.5

10% 6.9 8.0 9.3 9.9 11.0 11.1 11.1 11.8 11.2 12.1 12.0 11.7

1% 1.5 1.2 1.4 1.8 1.2 1.3 1.4 1.2 1.5 2.0 1.7 1.7

1 5, 000 5% 3.9 5.5 6.4 5.9 5.8 5.6 6.2 5.5 4.8 5.9 5.6 5.4

10% 8.4 9.3 10.0 11.1 10.5 10.0 9.9 9.6 9.7 9.5 10.1 9.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.6 1.3 1.6 3.0 3.8 3.9 3.7 3.9 4.2 4.1 4.4 4.3

1.5 2000 5% 5.3 5.5 6.0 6.3 6.9 7.8 8.5 8.2 8.0 8.3 9.4 9.5

10% 10.7 9.8 10.6 10.9 10.8 12.0 12.2 12.0 12.7 13.8 14.5 14.3

1% 1.0 0.7 1.4 1.3 1.0 1.7 2.2 1.9 1.4 1.9 1.9 1.9

1.5 5, 000 5% 4.3 4.8 5.7 6.1 6.1 5.7 6.3 5.8 6.1 6.2 6.2 6.0

10% 9.2 9.6 11.1 12.1 12.2 11.4 11.4 11.3 11.4 11.7 12.1 11.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.9 1.3 2.4 3.1 3.8 4.2 4.1 4.2 4.4 4.5 4.6 4.8

2 2000 5% 4.8 4.1 5.6 6.3 6.7 7.4 7.8 7.7 8.0 8.1 8.5 8.9

10% 10.1 8.9 9.5 10.1 9.9 10.9 11.5 12.5 12.9 12.9 13.0 13.9

1% 0.9 0.9 1.0 0.9 0.5 1.0 1.8 1.7 1.5 1.6 1.4 1.3

2 5, 000 5% 4.2 3.8 4.5 5.0 4.5 4.9 5.1 4.7 4.8 5.3 6.0 6.1

10% 9.1 8.5 9.0 9.1 9.4 8.6 10.0 10.2 9.4 10.7 10.4 10.3

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.8 1.7 2.2 2.6 2.2 2.3 2.5 2.7 2.8 2.7 2.7 2.8

2.5 2000 5% 4.1 3.7 4.9 5.2 4.7 5.6 5.6 5.9 5.6 5.0 4.8 5.3

10% 9.8 7.5 8.9 8.9 8.1 9.1 9.8 9.5 10.2 9.4 9.3 9.7

1% 1.0 1.0 1.3 1.0 0.9 1.2 1.5 1.5 1.2 1.4 1.2 1.1

2.5 5, 000 5% 4.2 4.2 3.6 4.1 4.3 4.5 4.7 4.5 4.1 4.8 5.2 5.6

10% 9.6 7.6 7.9 8.5 7.8 7.5 8.2 8.8 9.2 9.2 9.2 9.3

1 2 3 4 5 6 7 8 9 10 11 12

1% 1.0 1.2 1.7 1.9 1.5 1.7 1.8 1.7 1.4 1.7 1.7 1.9

3 2000 5% 4.0 3.4 4.5 5.0 4.5 4.6 4.8 5.1 4.6 4.3 4.5 5.1

10% 9.3 7.4 7.4 7.8 8.1 8.5 9.8 8.6 9.1 8.4 8.0 8.2

1% 1.0 1.1 1.3 1.1 1.0 1.0 1.3 1.2 1.1 1.4 1.1 0.9

3 5, 000 5% 4.8 4.0 3.7 4.0 4.2 4.3 4.6 4.4 4.2 4.9 4.9 5.1

10% 9.4 8.5 7.0 8.1 7.5 7.8 8.1 8.3 8.0 8.8 8.9 8.8
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Table 9 Empirical power (in %) of the proposed test for the null hypothesis of an APARCH(0, 1) against
an APARCH(1, 1) given by (8) with innovation a) (ηt ∼ N (0, 1))

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.7 4.4 8.5 9.6 11.4 12.8 13.4 13.1 13.1 13.6 13.0 12.9

0.5 500 5% 2.6 10.0 15.1 17.7 19.5 20.7 21.0 20.7 19.6 20.7 20.4 20.7

10% 4.0 14.6 19.6 23.3 24.6 25.7 26.6 25.5 25.4 25.6 26.2 26.2

1% 0.9 24.9 41.3 50.1 54.9 58.8 60.5 61.6 61.2 61.7 62.1 61.8

0.5 2000 5% 2.3 38.5 53.0 60.4 62.9 65.2 66.9 67.0 67.5 67.8 67.8 67.9

10% 3.9 45.6 59.0 65.3 66.5 67.6 68.9 69.6 70.0 69.7 69.5 69.4

1 2 3 4 5 6 7 8 9 10 11 12

1% 6.6 10.7 13.7 15.8 17.4 17.7 18.0 18.5 17.8 16.7 16.2 16.7

1 500 5% 11.0 19.7 24.7 27.1 28.2 28.4 28.6 28.7 28.9 28.5 26.9 26.9

10% 15.1 24.7 32.1 36.0 35.4 36.9 37.9 36.3 35.9 35.2 34.3 34.0

1% 9.4 28.1 45.3 55.4 62.6 66.8 68.8 69.6 69.9 70.3 68.9 69.5

1 2000 5% 14.0 45.2 63.1 72.3 77.0 80.0 80.1 80.6 80.5 80.1 79.5 79.8

10% 16.2 54.7 70.9 79.9 83.5 85.2 85.2 85.4 84.8 84.9 84.3 84.2

1 2 3 4 5 6 7 8 9 10 11 12

1% 12.3 16.1 20.2 21.7 21.7 22.1 22.3 21.5 19.6 18.8 18.0 18.0

1.5 500 5% 18.8 26.5 30.9 32.9 33.4 32.2 32.1 31.9 29.4 27.8 26.9 26.8

10% 23.9 32.8 39.4 41.4 39.7 39.2 39.1 39.3 36.9 35.4 33.8 32.8

1% 17.5 42.9 58.4 67.2 68.1 66.1 64.7 62.1 60.5 59.0 56.2 55.1

1.5 2000 5% 27.5 59.4 73.8 78.2 78.5 74.8 71.7 69.5 68.1 66.4 63.8 63.1

10% 34.3 67.6 81.1 83.4 82.5 77.6 74.4 73.1 71.0 70.0 67.1 65.9

1 2 3 4 5 6 7 8 9 10 11 12

1% 9.7 17.7 21.9 25.1 26.5 28.0 27.6 27.9 26.2 24.6 23.8 23.1

2 500 5% 16.5 27.0 34.0 37.6 37.8 37.8 37.8 37.6 35.1 33.4 32.9 32.8

10% 21.2 32.6 41.7 45.8 43.7 44.3 45.5 45.0 42.2 40.8 39.5 38.9

1% 17.2 54.2 70.9 74.3 73.2 71.4 67.3 65.4 62.8 61.1 57.5 55.9

2 2000 5% 28.4 69.4 81.1 82.2 78.7 75.7 71.4 68.8 66.0 64.2 61.4 58.8

10% 35.2 76.4 85.4 85.3 81.6 77.9 74.3 70.6 67.9 65.7 62.7 60.2

1 2 3 4 5 6 7 8 9 10 11 12

1% 15.0 27.0 35.7 42.3 41.2 39.9 38.5 36.1 33.9 34.4 32.5 32.0

2.5 500 5% 23.0 40.3 48.9 53.4 49.9 49.8 47.5 45.5 44.5 43.3 42.3 41.1

10% 29.3 48.2 57.7 59.8 57.0 56.6 53.4 51.6 49.7 48.7 47.1 46.5

1% 20.7 77.1 86.6 82.0 72.0 64.4 54.8 47.7 43.5 39.0 34.4 31.9

2.5 2000 5% 32.0 87.3 91.2 84.4 74.4 65.9 56.1 49.0 44.7 40.4 36.4 34.1

10% 38.3 90.7 92.8 85.5 75.1 66.3 56.4 49.9 45.7 41.1 37.1 34.6

1 2 3 4 5 6 7 8 9 10 11 12

1% 8.7 28.1 42.4 47.5 45.9 43.7 40.5 38.9 36.9 35.3 33.5 33.7
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Table 9 continued

δ0 Length n Level α Lag m

3 500 5% 17.5 42.9 55.3 58.0 56.4 54.0 50.6 47.8 45.5 44.1 42.7 42.2

10% 24.9 49.6 62.0 62.6 60.5 57.1 53.6 51.8 49.2 47.2 46.2 46.0

1% 23.4 83.1 92.8 87.8 74.9 61.7 46.6 39.0 32.2 27.9 25.5 23.5

3 2000 5% 36.3 90.0 94.5 88.5 75.2 62.1 47.1 39.1 33.2 28.6 25.9 24.1

10% 45.6 92.0 95.1 88.5 75.4 62.1 47.2 39.4 33.5 28.9 26.5 24.7

Using the inequality (a+ b)s ≤ as + bs , for a, b ≥ 0 and s ∈]0, 1[, (11) and Hölder’s
inequality, we have for some s∗ ∈]0, 1[ sufficiently small

E

∣
∣
∣
∣
∣

1√
n

n∑

t=1

sup
ϑ∈Δ

|at |
∣
∣
∣
∣
∣

s∗

≤ K
1

ns∗/2

n∑

t=1

ρts∗ −→
n→∞ 0.

We deduce that n−1/2∑n
t=1 supϑ∈Δ |at | = oP(1). We have the same convergence for

bt , and for the derivatives of at and bt . Consequently, we obtain

√
n‖γm − γ̃m‖ = oP(1), sup

ϑ∈Δ

∥
∥
∥
∥
∂γm

∂ϑ
− ∂γ̃m

∂ϑ

∥
∥
∥
∥ = oP(1), as n → ∞. (16)

The unknown initial values have no asymptotic impact on the statistic γ̂m .

7.2.2 Asymptotic distribution of
√
n�̂m

We now show that the asymptotic distribution of
√
nγ̂m is deduced from the joint

distribution of
√
nγm and of the QMLE. Using (16) and a Taylor expansion of γm(·)

around ϑ̂n and ϑ0, we obtain

√
nγ̂m = √

nγ̃m(ϑ0) + ∂γ̃m(ϑ∗)
∂ϑ

√
n(ϑ̂n − ϑ0)

= √
nγm + ∂γm(ϑ∗)

∂ϑ

√
n(ϑ̂n − ϑ0) + oP(1),

for some ϑ∗
i , i = 1, . . . , 2q + p + 2 between ϑ̂n and ϑ0. In view of (14), there exists

a neighborhood V(ϑ0) of ϑ0 such that

E sup
ϑ∈V(ϑ0)

∥
∥
∥
∥
∂2st−h(ϑ)st (ϑ)

∂ϑ∂ϑ ′

∥
∥
∥
∥ < ∞.

For a fixed rh , using these inequalities, (13) and AssumptionA0 (κη < ∞), the almost
sure convergence of ϑ∗ to ϑ0, a second Taylor expansion and the ergodic theorem, we
obtain
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Table 10 Empirical power (in %) of the proposed test for the null hypothesis of an APARCH(0, 1) against
an APARCH(1, 1) given by (8) with innovation b) (ηt ∼ 0.1N (−2, 2) + 0.9N (2, 0.16))

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.7 6.4 8.9 10.8 12.8 13.2 13.8 14.3 13.9 13.4 14.0 13.4

0.5 500 5% 2.6 10.7 15.6 18.8 20.0 21.6 21.8 22.8 22.0 22.6 22.9 22.2

10% 4.2 14.0 20.9 23.9 25.9 25.9 26.2 27.4 27.2 26.5 27.0 26.6

1% 0.6 24.6 44.0 52.6 56.9 59.7 61.2 61.9 63.1 63.8 63.9 63.9

0.5 2000 5% 2.3 40.1 56.0 62.5 65.1 67.1 67.0 68.1 68.7 68.9 68.8 68.9

10% 3.7 47.1 60.9 66.1 68.2 69.5 69.6 70.2 70.4 70.6 70.4 70.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 8.2 12.6 16.2 18.2 19.5 20.2 20.5 19.8 19.8 21.1 21.2 20.9

1 500 5% 11.2 19.7 25.6 29.1 31.3 32.8 32.8 32.5 32.1 31.2 31.3 30.7

10% 15.3 25.4 33.4 38.1 39.3 40.3 40.6 40.9 39.4 40.5 39.4 37.9

1% 10.3 30.0 47.7 59.9 65.1 68.8 70.1 71.1 71.1 71.8 69.8 69.3

1 2000 5% 15.0 48.1 66.5 75.7 79.4 81.3 81.6 81.8 81.2 81.3 80.7 80.0

10% 17.3 57.1 74.5 81.6 85.2 86.4 85.9 85.6 85.6 85.7 84.8 84.0

1 2 3 4 5 6 7 8 9 10 11 12

1% 11.7 16.5 19.7 21.6 22.0 20.8 20.9 20.4 20.1 20.6 21.2 19.0

1.5 500 5% 18.7 24.9 30.4 32.6 32.3 31.2 29.5 31.2 30.4 30.3 30.0 28.4

10% 22.8 31.1 37.9 39.6 38.3 38.1 36.7 36.9 37.5 37.2 37.0 34.4

1% 17.0 41.8 60.5 67.5 68.5 66.8 64.5 62.4 60.5 59.3 57.8 57.1

1.5 2000 5% 27.7 59.2 75.8 79.2 78.3 75.6 72.8 69.7 68.1 66.5 64.5 63.8

10% 35.6 67.3 82.0 84.3 82.7 78.9 75.8 72.5 70.5 69.3 67.4 67.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 8.7 15.5 20.9 24.9 26.1 25.5 25.4 27.6 26.3 26.7 26.0 23.6

2 500 5% 15.9 24.9 33.1 38.2 37.4 37.1 36.8 38.4 36.2 35.9 34.8 32.0

10% 20.6 32.1 40.7 43.1 43.6 44.4 44.4 44.0 41.8 41.5 40.1 38.0

1% 16.2 53.6 73.3 78.7 77.7 73.0 68.9 67.2 62.9 60.0 57.2 54.6

2 2000 5% 27.6 69.2 84.0 85.5 82.6 77.1 72.3 69.9 65.4 62.6 60.0 58.2

10% 33.8 76.7 87.2 87.7 84.1 78.9 74.3 71.6 66.5 63.9 61.1 59.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 16.5 29.6 39.3 42.2 41.1 38.3 38.4 37.9 33.8 33.0 32.0 30.8

2.5 500 5% 25.1 43.7 51.7 52.9 51.7 49.5 48.1 48.0 43.4 41.4 40.2 40.2

10% 31.6 51.3 58.6 59.7 57.2 55.3 54.4 52.3 47.5 46.5 45.6 45.3

1% 19.5 75.4 89.2 84.9 73.5 62.5 54.6 47.8 42.7 38.9 35.1 32.6

2.5 2000 5% 30.1 87.0 93.1 86.5 75.2 63.9 55.5 48.7 43.7 39.8 36.2 33.7
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Table 10 continued

δ0 Length n Level α Lag m

10% 37.3 90.7 94.2 87.1 75.5 64.4 55.9 49.3 44.0 39.9 36.9 34.6

1 2 3 4 5 6 7 8 9 10 11 12

1% 8.8 26.4 39.0 43.1 42.6 42.8 41.4 39.6 38.1 36.5 35.0 35.4

3 500 5% 15.9 38.8 49.6 53.5 52.3 51.8 49.3 47.1 45.5 43.7 42.7 43.0

10% 21.9 45.1 55.5 59.4 57.1 56.0 53.6 51.6 49.7 48.0 47.2 47.1

1% 20.9 81.8 92.5 87.7 77.4 63.0 48.8 40.8 33.1 28.7 24.8 21.8

3 2000 5% 36.4 88.6 93.3 88.1 77.9 63.6 49.2 41.4 33.6 29.5 25.8 23.0

10% 44.2 91.2 94.0 88.4 77.9 63.6 49.3 41.6 33.8 29.6 25.9 23.1

∂rh(ϑ∗)
∂ϑ

= ∂rh(ϑ0)

∂ϑ
+ oP(1) −→

n→∞ ch := E

[

st−h(ϑ0)
∂st (ϑ0)

∂ϑ

]

= −E

[

st−h
1

ζ 2
t (ϑ0)

∂ζ 2
t (ϑ0)

∂ϑ

]

by the fact E[st (ϑ0)∂st−h(ϑ0)/∂ϑ] = 0. Note that, ch is the almost sure limit of the
row h of the matrix Ĉm . Consequently we have

∂γm(ϑ0)

∂ϑ
−→
n→∞ Cm :=

⎛

⎜
⎝

c′
1
...

c′
m

⎞

⎟
⎠ . (17)

It follows that √
nγ̂m = √

nγm + Cm
√
n(ϑ̂n − ϑ0) + oP(1). (18)

Denote
√
nγm = n−1/2∑n

t=1 st St−1:t−m , where St−1:t−m = (st−1, . . . , st−m)′. We
nowderive the asymptotic distribution of

√
n(ϑ̂ ′

n−ϑ ′
0, γ

′
m)′. In view of (15), the central

limit theorem of Billingsley (1961) applied to the martingale difference process

{

ϒt =
(

st J
−1 1

ζ 2
t (ϑ0)

∂ζ 2
t (ϑ0)

∂ϑ ′ , st S
′
t−1:t−m

)′
; σ(ηu, u ≤ t)

}

,

shows that

√
n(ϑ̂ ′

n − ϑ ′
0, γ

′
m)′ = 1√

n

n∑

t=1

ϒt + oP(1)
d−−−→

n→∞ N (
0,E[ϒtϒ

′
t ]
)
, (19)

where

E
[
ϒtϒ

′
t

] = (κη − 1)

(
J−1 −J−1C ′

m
−Cm J−1 (κη − 1)Im

)

.

Using (18) and (19) we obtain the distribution of
√
nγ̂m .
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Table 11 Empirical power (in %) of the proposed test for the null hypothesis of an APARCH(0, 1) against
an APARCH(1, 1) given by (8) with innovation c) (ηt ∼ t3)

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.0 0.9 1.9 2.6 3.0 3.6 3.9 4.6 4.3 4.4 4.4 4.5

0.5 500 5% 1.0 2.2 3.9 4.7 5.2 5.8 6.7 6.8 6.9 7.5 7.7 8.2

10% 2.1 3.5 5.4 6.0 7.1 7.4 7.5 8.3 8.8 9.4 9.1 9.5

1% 0.4 1.9 3.9 6.1 7.2 8.4 8.6 8.5 9.0 9.5 9.6 10.1

0.5 2000 5% 0.4 3.5 5.7 7.8 10.1 11.3 11.9 12.3 12.7 12.8 13.2 14.0

10% 1.7 4.4 7.0 9.6 11.6 12.6 13.7 14.2 14.8 15.1 15.4 16.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 6.1 7.1 7.5 8.4 9.2 10.1 9.7 9.8 11.1 11.6 11.5 11.4

1 500 5% 9.8 11.3 12.5 13.0 14.3 14.1 14.4 14.8 15.8 16.1 16.2 15.6

10% 12.7 14.9 15.8 16.4 17.5 17.1 17.8 17.8 19.1 19.0 19.0 18.4

1% 7.3 9.3 12.1 14.5 16.8 17.9 18.8 19.1 19.9 19.1 19.6 19.7

1 2000 5% 13.0 15.2 18.0 18.6 20.7 21.7 23.3 23.9 25.1 25.3 25.2 26.2

10% 17.0 19.7 22.6 22.6 24.5 24.0 25.2 26.1 28.1 28.2 28.5 29.4

1 2 3 4 5 6 7 8 9 10 11 12

1% 5.0 7.4 9.8 11.5 11.9 12.5 13.1 14.3 15.2 14.8 14.4 14.2

1.5 500 5% 9.4 11.6 13.0 15.2 17.1 17.7 18.0 17.8 18.8 19.0 19.3 18.5

10% 12.5 15.1 17.9 18.7 19.7 20.0 21.1 21.4 22.7 21.9 21.4 21.5

1% 5.0 10.7 15.4 18.5 21.7 23.1 24.3 24.9 26.3 26.6 27.6 28.0

1.5 2000 5% 8.9 16.0 21.8 25.4 28.1 30.0 30.9 31.6 32.6 34.2 33.8 34.9

10% 11.9 18.5 25.2 30.9 32.3 34.1 34.9 36.1 36.9 37.9 38.6 39.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 4.0 7.4 11.1 14.1 15.9 16.6 17.5 18.1 19.1 19.1 19.6 20.8

2 500 5% 8.1 12.8 17.8 20.3 22.2 22.9 23.4 24.4 25.4 26.0 26.1 26.5

10% 11.3 17.5 23.0 24.0 26.5 27.0 27.7 27.9 29.5 30.2 30.1 30.9

1% 4.3 17.1 25.5 33.4 37.1 41.2 42.9 44.6 45.6 47.1 48.8 49.0

2 2000 5% 8.4 23.6 34.5 41.0 46.4 49.7 50.6 53.1 54.5 56.6 57.5 57.4

10% 12.9 29.0 40.3 46.7 50.9 54.1 55.3 57.4 57.1 59.7 61.3 61.2

1 2 3 4 5 6 7 8 9 10 11 12

1% 2.8 12.2 18.7 23.2 25.6 26.3 28.4 28.9 30.0 30.1 30.8 30.0

2.5 500 5% 6.8 18.5 26.3 30.6 32.4 33.4 35.6 36.3 37.7 37.8 38.5 38.3

10% 10.5 22.3 31.3 35.3 37.0 38.1 40.7 39.8 40.4 42.0 43.3 42.8

1% 2.3 24.5 42.1 50.9 57.5 64.1 67.0 68.6 69.7 70.8 71.9 72.6

2.5 2000 5% 4.7 33.9 53.4 61.2 65.7 70.1 72.2 74.3 76.2 76.2 76.9 77.0

10% 9.2 40.8 58.7 66.6 70.3 73.3 74.6 76.1 77.5 78.6 78.9 78.8

1 2 3 4 5 6 7 8 9 10 11 12
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Table 11 continued

δ0 Length n Level α Lag m

1% 2.3 14.1 25.0 31.4 35.2 39.1 43.0 43.3 43.9 45.1 45.7 45.5

3 500 5% 5.1 20.9 33.7 39.5 44.3 47.9 50.2 50.8 50.8 51.7 51.6 51.7

10% 7.7 25.4 37.9 46.0 50.3 51.8 53.9 54.3 54.6 56.1 56.0 55.7

1% 1.1 33.8 57.9 70.3 75.9 80.0 82.3 83.5 84.7 84.9 84.2 84.2

3 2000 5% 3.3 44.5 67.2 77.2 81.2 83.6 85.1 86.2 87.0 86.7 85.8 85.9

10% 7.0 50.5 71.6 79.8 82.7 86.0 86.9 87.8 88.5 88.2 87.4 86.8

7.2.3 Invertibility of the matrix D

We now show that D is invertible. Assumption A5 entails that the law of η2t is non
degenerated, therefore κη > 1. Thus study the invertibility of the matrix D is similar
to study the invertibility of (κη − 1)Im − Cm J−1C ′

m . Let

V = St−1:t−m+Cm J−1 1

ζ 2
t (ϑ0)

∂ζ 2
t (ϑ0)

∂ϑ
such that E

[
VV ′] = (κη−1)Im−Cm J−1C ′

m .

If the matrixE
[
VV ′] is singular, then there exist a vector λ = (λ1, . . . , λm)′ not equal

to zero such that

λ′V = λ′St−1:t−m + λ′Cm J−1
(

1

ζ 2
t (ϑ0)

∂ζ 2
t (ϑ0)

∂θ
+ 1

ζ 2
t (ϑ0)

∂ζ 2
t (ϑ0)

∂δ

)

= 0, a.s.

(20)
since ϑ = (θ ′, δ)′. Using the fact that

1

ζ 2
t (ϑ0)

∂ζ 2
t (ϑ0)

∂θ
= 2

δ

1

ζ δ
t (ϑ0)

∂ζ δ
t (ϑ0)

∂θ
and

1

ζ 2
t (ϑ0)

∂ζ 2
t (ϑ0)

∂δ

= − 2

δ2
log(ζ δ

t (ϑ0)) + 2

δ

1

ζ δ
t (ϑ0)

∂ζ δ
t (ϑ0)

∂δ
,

we can rewrite the equation (20) as follow

λ′V = λ′St−1:t−m+μ′ 1

ζ δ
t (ϑ0)

(

δ
∂ζ δ

t (ϑ0)

∂θ
− ζ δ

t (ϑ0) log(ζ
δ
t (ϑ0)) + δ

∂ζ δ
t (ϑ0)

∂δ

)

= 0, a.s.

(21)
with μ′ = (2/δ2)λ′Cm J−1. We remark that μ �= 0. Otherwise λ′St−1:t−m = 0 a.s.,
which implies that there exists j ∈ {1, ...,m} such that st− j is measurable with respect
to the σ−field generated by sr for t−1 ≤ r ≤ t−m with r �= t− j . This is impossible
because the st ’s are independent and non degenerated.
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Table 12 Empirical power (in %) of the proposed test for the null hypothesis of an APARCH(0, 1) against
an APARCH(1, 1) given by (8) with innovation c) (ηt ∼ t9)

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 0.8 4.3 6.5 7.4 9.1 8.6 10.4 10.4 9.6 8.7 8.7 8.0

0.5 500 5% 2.6 8.7 12.1 13.5 14.7 16.7 17.3 16.5 16.4 16.0 14.6 13.7

10% 4.3 12.4 15.9 17.2 18.4 19.8 21.1 21.0 20.5 20.9 19.2 18.6

1% 1.4 15.8 26.7 33.8 38.1 42.0 43.4 45.0 45.9 46.4 46.5 45.9

0.5 2000 5% 4.4 26.8 38.4 46.2 50.7 53.9 55.8 56.8 57.0 57.4 57.6 56.2

10% 6.9 33.1 45.5 52.8 58.4 60.7 63.2 62.9 62.9 62.6 62.4 61.4

1 2 3 4 5 6 7 8 9 10 11 12

1% 14.2 17.7 19.6 19.9 20.5 22.4 22.5 21.2 21.7 20.4 19.8 19.0

1 500 5% 21.7 27.1 29.6 31.0 30.5 32.6 31.7 30.3 29.0 28.6 27.8 26.9

10% 25.1 33.2 37.9 37.9 37.8 39.0 38.4 36.2 35.8 35.0 34.2 33.9

1% 15.9 27.0 37.6 44.0 48.8 52.4 54.0 54.0 54.9 55.7 54.7 53.9

1 2000 5% 24.6 41.1 52.1 59.0 63.5 67.8 68.5 69.2 69.7 68.9 67.7 67.5

10% 28.0 49.0 61.3 67.7 71.7 74.6 75.8 76.5 76.2 75.8 74.6 74.6

1 2 3 4 5 6 7 8 9 10 11 12

1% 11.6 17.1 19.8 22.3 23.4 24.7 24.3 22.8 22.5 22.7 21.9 21.6

1.5 500 5% 19.1 25.7 29.1 31.5 31.6 33.0 33.5 32.7 31.2 30.4 29.5 29.8

10% 23.7 32.1 37.1 37.8 36.0 37.7 38.2 37.3 36.1 36.5 35.2 35.0

1% 18.9 36.3 47.2 55.5 61.7 63.9 63.6 62.3 61.7 60.4 58.9 57.4

1.5 2000 5% 30.3 51.8 63.0 69.0 72.7 74.5 73.8 73.1 72.3 70.9 68.5 67.5

10% 37.7 59.8 70.9 76.4 77.7 79.1 78.6 78.8 77.5 75.6 73.7 72.7

1 2 3 4 5 6 7 8 9 10 11 12

1% 9.1 16.9 21.7 24.8 25.0 27.0 26.7 26.0 24.5 25.7 24.4 24.5

2 500 5% 15.9 26.5 32.0 35.5 35.1 36.3 36.9 35.0 34.1 35.0 33.3 32.7

10% 19.8 31.0 37.5 40.9 41.8 42.2 42.3 41.5 40.5 40.3 39.9 39.7

1% 14.6 44.4 62.3 69.8 71.8 71.6 72.2 71.1 69.1 67.8 65.7 64.7

2 2000 5% 24.7 58.4 74.2 80.7 80.2 77.2 77.0 75.5 74.3 72.8 71.4 69.9

10% 32.2 64.9 79.8 83.4 83.8 79.6 79.0 77.5 75.8 74.4 73.0 71.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 10.7 26.1 33.6 38.8 39.2 40.2 39.5 38.5 36.8 35.6 34.0 33.6

2.5 500 5% 19.6 37.1 46.2 49.1 50.7 51.2 49.0 48.6 48.3 45.9 44.1 43.4

10% 25.6 43.6 53.1 55.8 56.7 57.1 54.3 54.4 53.8 52.1 49.8 48.8

1% 18.5 68.4 85.5 86.3 82.3 77.0 71.9 65.5 60.0 55.7 52.0 49.5

2.5 2000 5% 29.8 79.1 90.8 89.1 84.4 78.1 73.3 66.9 60.6 56.6 53.4 50.8

10% 38.6 85.0 93.1 90.2 85.0 79.1 74.2 67.6 61.5 57.5 53.9 51.4

1 2 3 4 5 6 7 8 9 10 11 12
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Table 12 continued

δ0 Length n Level α Lag m

1% 6.2 28.2 41.3 48.5 50.2 49.7 47.3 45.2 42.4 40.8 40.6 39.6

3 500 5% 13.2 38.6 52.3 57.4 59.2 57.6 53.9 51.5 49.9 48.0 47.6 45.6

10% 18.4 44.6 58.2 62.2 63.4 61.3 57.8 54.7 53.4 51.5 49.9 48.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 14.6 80.6 92.5 90.7 87.7 77.9 65.7 54.9 47.7 41.0 36.7 32.1

3 2000 5% 30.8 88.1 94.2 91.2 88.0 78.2 66.0 55.1 48.2 41.5 37.0 32.5

10% 40.6 90.6 94.2 91.9 88.2 78.2 66.2 55.4 48.4 41.5 37.2 32.7

Table 13 Empirical power (in %) of the proposed test for the null hypothesis of an APARCH(1, 1) against
an APARCH(2, 1) given by (9) with innovation a) (ηt ∼ N (0, 1))

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 88.5 82.8 77.2 73.6 69.7 66.1 63.0 61.0 58.6 57.1 54.2 52.2

1 5, 000 5% 97.1 93.4 90.4 88.5 86.3 83.0 81.4 79.1 76.6 75.8 73.1 72.0

10% 98.6 96.9 94.5 92.7 91.8 90.5 88.7 86.7 85.8 84.2 83.0 81.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 89.2 82.5 78.6 73.7 70.6 67.6 63.9 61.1 58.4 56.3 53.1 50.4

1.5 5000 5% 96.8 93.7 91.4 88.4 85.5 84.1 81.9 79.3 77.9 76.6 74.9 73.2

10% 98.9 97.1 95.1 93.9 92.4 90.2 88.2 87.3 85.6 84.8 82.9 81.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 90.6 84.6 79.8 76.4 72.2 69.3 65.8 63.3 61.0 58.5 54.6 53.4

2 5000 5% 97.6 94.9 92.0 89.5 87.0 85.7 83.0 81.5 80.0 79.0 77.2 75.4

10% 99.2 97.7 96.3 94.3 93.7 91.2 89.7 88.4 87.5 85.8 84.8 83.7

1 2 3 4 5 6 7 8 9 10 11 12

1% 93.2 88.0 83.0 79.0 76.4 72.9 69.3 66.6 64.7 62.1 58.9 57.6

2.5 5, 000 5% 98.8 96.1 94.5 91.7 90.1 87.0 85.9 85.0 83.8 82.1 80.1 79.1

10% 99.5 98.8 97.5 95.9 95.3 94.4 91.7 90.1 89.4 88.1 86.8 85.6

1 2 3 4 5 6 7 8 9 10 11 12

1% 93.6 89.7 86.4 81.8 78.6 75.9 73.4 71.0 69.0 66.8 62.4 61.0

3 5000 5% 99.0 96.8 94.8 93.4 92.5 90.6 88.2 87.2 85.8 84.2 82.2 81.2

10% 99.7 98.8 98.2 96.2 95.7 95.5 94.3 91.9 90.6 90.1 89.7 88.1

We denoteμ = (ν′
1, ν2)

′, where ν′
1 = (μ1, . . . , μ2q+p+1)

′ and ν2 = μ2q+p+2; and
we rewrite (21) as

λ′V = λ′St−1:t−m + ν′
1δ

1

ζ δ
t (ϑ0)

∂ζ δ
t (ϑ0)

∂θ

+ ν2
1

ζ δ
t (ϑ0)

(

−ζ δ
t (ϑ0) log(ζ

δ
t (ϑ0)) + δ

∂ζ δ
t (ϑ0)

∂δ

)

= 0, a.s.
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Table 14 Empirical power (in %) of the proposed test for the null hypothesis of an APARCH(1, 1) against
an APARCH(2, 1) given by (9) with innovation b) (ηt ∼ 0.1N (−2, 2) + 0.9N (2, 0.16))

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 92.0 85.1 79.7 74.4 71.2 67.9 65.6 62.3 58.5 55.9 52.9 50.0

1 5000 5% 97.1 95.4 93.6 90.4 87.4 85.2 82.9 79.9 78.8 77.0 75.2 73.5

10% 98.7 97.2 96.7 95.4 93.3 91.5 90.5 89.1 86.4 85.0 84.0 82.5

1 2 3 4 5 6 7 8 9 10 11 12

1% 91.0 85.1 81.4 76.3 71.1 67.9 64.4 61.6 58.7 55.3 52.9 50.3

1.5 5000 5% 97.6 95.4 93.9 90.2 88.3 85.8 83.7 80.0 79.0 76.2 73.8 72.7

10% 98.9 97.4 96.2 95.7 94.2 92.4 90.9 88.9 87.7 85.5 83.8 81.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 92.0 86.3 82.8 78.3 74.3 70.5 67.7 64.3 61.2 58.0 56.0 54.1

2 5000 5% 98.0 96.2 94.2 91.7 89.2 88.2 84.8 83.0 80.9 79.4 77.3 75.5

10% 99.2 98.1 96.6 95.4 93.8 92.8 91.2 90.2 88.6 87.4 86.2 83.9

1 2 3 4 5 6 7 8 9 10 11 12

1% 93.5 89.3 85.0 81.2 77.5 74.3 69.7 68.0 64.3 61.7 59.1 57.3

2.5 5000 5% 98.6 97.1 95.7 93.5 90.9 89.6 87.4 85.5 82.7 81.6 79.1 78.1

10% 99.5 98.9 97.5 96.5 95.4 94.8 93.5 92.3 90.7 89.2 87.5 87.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 95.5 91.9 87.3 84.5 80.4 77.1 75.3 72.1 69.2 65.8 63.0 61.0

3 5000 5% 98.8 98.1 96.4 95.2 92.8 91.3 90.2 88.5 86.7 84.5 82.6 80.9

10% 99.7 99.1 98.5 97.2 96.2 95.8 95.1 93.8 92.9 91.2 90.5 89.0

or equivalent,

λ′St−1:t−mζ δ
t (ϑ0) + ν′

1δ
∂ζ δ

t (ϑ0)

∂θ

+ ν2

(

−ζ δ
t (ϑ0) log(ζ

δ
t (ϑ0)) + δ

∂ζ δ
t (ϑ0)

∂δ

)

= 0, a.s. (22)

The derivatives involved in (22) are defined recursively by

∂ζ δ
t (ϑ)

∂θ
= ct (ϑ) +

p∑

j=1

β j
∂ζ δ

t− j (ϑ)

∂θ
,

∂ζ δ
t (ϑ)

∂δ
=

q∑

i=1

α+
i log(ε+

t−i )(ε
+
t−i )

δ + α−
i log(−ε−

t−i )(−ε−
t−i )

δ +
p∑

j=1

β j
∂ζ δ

t− j (ϑ)

∂δ
,

where ct (ϑ) is defined by replacing ζ̃ δ
t (ϑ) by ζ δ

t (ϑ) in c̃t (ϑ) (see (5)). We remind that
ε+
t = ζtη

+
t and ε−

t = ζtη
−
t and let Rt a random variable measurable with respect to
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Table 15 Empirical power (in %) of the proposed test for the null hypothesis of an APARCH(1, 1) against
an APARCH(2, 1) given by (9) with innovation a) (ηt ∼ t9)

δ0 Length n Level α Lag m

1 2 3 4 5 6 7 8 9 10 11 12

1% 68.6 53.9 47.8 39.9 35.2 31.6 27.6 26.2 23.8 22.6 20.6 18.1

1 5000 5% 85.8 78.1 70.8 64.8 60.3 58.5 53.8 50.9 45.9 44.1 42.8 40.5

10% 91.6 85.6 80.3 76.2 71.7 68.3 66.3 62.9 60.2 59.3 55.9 54.3

1 2 3 4 5 6 7 8 9 10 11 12

1% 67.1 55.6 46.9 41.6 35.2 32.9 30.6 28.2 25.7 23.8 22.1 20.5

1.5 5000 5% 85.1 78.3 71.0 65.7 61.6 58.2 55.4 52.7 48.0 45.8 43.2 42.0

10% 91.3 86.0 81.4 77.3 73.2 69.5 67.5 63.3 61.2 59.1 58.2 55.1

1 2 3 4 5 6 7 8 9 10 11 12

1% 69.3 57.7 50.1 44.4 39.8 35.8 33.3 30.6 28.1 25.3 24.4 22.6

2 5000 5% 86.6 80.1 74.3 67.5 64.0 61.3 57.9 54.8 52.0 49.4 47.9 45.9

10% 92.1 87.1 83.5 79.2 75.5 71.6 69.0 66.6 64.2 62.3 61.2 58.8

1 2 3 4 5 6 7 8 9 10 11 12

1% 72.6 59.8 52.3 46.6 42.6 38.6 36.6 33.6 31.2 28.6 27.0 25.1

2.5 5000 5% 88.6 81.4 76.5 70.6 66.3 63.1 61.1 57.7 54.4 52.3 50.7 48.7

10% 93.0 88.6 85.6 80.6 77.7 73.7 71.3 69.2 67.7 65.4 63.1 61.4

1 2 3 4 5 6 7 8 9 10 11 12

1% 73.3 61.7 53.7 47.6 44.5 40.5 37.9 34.9 33.0 30.4 29.5 25.6

3 5000 5% 88.8 82.2 76.7 71.7 67.7 64.8 62.6 60.0 57.5 53.8 53.2 51.6

10% 93.6 89.2 86.1 82.3 78.4 74.5 72.5 69.8 69.4 67.5 66.0 63.7

σ {ηu, u ≤ t} whose value will be modified along the proof. We decompose (22) in
four terms and we have

ν′
1δ

∂ζ δ
t (ϑ0)

∂θ
= μ2δζ

δ
t−1(η

+
t−1)

δ + μq+2δζ
δ
t−1(−η−

t−1)
δ + Rt−2,

ζ δ
t = α+

1 ζ δ
t−1(η

+
t−1)

δ + α−
1 ζ δ

t−1(−η−
t−1)

δ + Rt−2,

−ν2ζ
δ
t (ϑ0) log(ζ

δ
t (ϑ0)) = −ν2

(
α+
1 ζ δ

t−1(η
+
t−1)

δ + α−
1 ζ δ

t−1(−η−
t−1)

δ + Rt−2
)

× log
(
α+
1 ζ δ

t−1(η
+
t−1)

δ + α−
1 ζ δ

t−1(−η−
t−1)

δ + Rt−2
)

λ′st−1:t−m = λ1η
2
t−1 + Rt−2,

that gives

λ′st−1:t−mζ δ
t = λ1ζ

δ
t−1

[
α+
1 (η+

t−1)
δ+2 + α−

1 (−η−
t−1)

δ+2
]

+ λ1η
2
t−1Rt−2 + Rt−2

+ [
(η+

t−1)
δ + (−η−

t−1)
δ
]
Rt−2,
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and

ν2δ
∂ζ δ

t (ϑ0)

∂δ
= ν2δα

+
1 log

(
ζt−1(η

+
t−1)

)
ζ δ
t−1(η

+
t−1)

δ

+ν2δα
−
1 log

(
ζt−1(−η−

t−1)
)
ζ δ
t−1(−η−

t−1)
δ

+Rt−2,

= ν2α
+
1 log

(
ζ δ
t−1(η

+
t−1)

δ
)
ζ δ
t−1(η

+
t−1)

δ

+ν2α
−
1 log

(
ζ δ
t−1(−η−

t−1)
δ
)
ζ δ
t−1(−η−

t−1)
δ + Rt−2.

Following these previous expressions, (21) entails that almost surely

λ′V = λ1ζ
δ
t−1

[
α+
1 (η+

t−1)
δ+2 + α−

1 (−η−
t−1)

δ+2
]

+ η2t−1Rt−2 + [
Rt−2 + ν2α

+
1 Rt−2 log(ζt−1(η

+
t−1))

]
(η+

t−1)
δ

+ [
Rt−2 + ν2α

−
1 Rt−2 log(ζt−1(−η−

t−1))
]
(−η−

t−1)
δRt−2

+ Rt−2 − ν2
(
α+
1 ζ δ

t−1(η
+
t−1)

δ + α−
1 ζ δ

t−1(−η−
t−1)

δ + Rt−2
)

log
(
α+
1 ζ δ

t−1(η
+
t−1)

δ + α−
1 ζ δ

t−1(−η−
t−1)

δ + Rt−2
) = 0,

or equivalent to the two equations

λ1ζ
δ
t−1α

+
1 (η+

t−1)
δ+2 − (

ν2α
+
1 ζ δ

t−1(η
+
t−1)

δ + Rt−2
)
log

(
α+
1 ζ δ

t−1(η
+
t−1)

δ + Rt−2
)

+ [
Rt−2 + ν2α

+
1 Rt−2 log(ζt−1(η

+
t−1))

]
(η+

t−1)
δ + η2t−1Rt−2 + Rt−2 = 0, a.s.(23)

λ1ζ
δ
t−1α

−
1 (−η+

t−1)
δ+2 − (

ν2α
−
1 ζ δ

t−1(−η−
t−1)

δ + Rt−2
)

log
(
α−
1 ζ δ

t−1(−η−
t−1)

δ + Rt−2
)+ [

Rt−2 + ν2α
−
1 Rt−2 log(ζt−1(−η−

t−1))
]

(−η−
t−1)

δ + η2t−1Rt−2 + Rt−2 = 0, a.s.. (24)

Note that an equation of the form

a|x |δ+2 + [b + c(|x |δ)] log[b + c(|x |δ)] + [d + e log(|x |)]|x |δ + f x2 + g = 0

cannot have more than 11 positive roots or more than 11 negative roots, except if
a = b = c = d = e = f = g = 0. By assumption A1, Eqs. (23) and (24) thus
imply that λ1(α

+
1 + α−

1 ) = 0 and ν2(α
+
1 + α−

1 ) = 0. If λ1 = 0 and ν2 = 0 then
λ′St−1:t−m := λ′

2:mSt−2:t−m . By (22), we can write that

[
α+
1 ζ δ

t−1(η
+
t−1)

δ + α−
1 ζ δ

t−1(−η−
t−1)

δ
]
λ′
2:mSt−2:t−m

= −μ2ζ
δ
t−1(η

+
t−1)

δ + μq+2ζ
δ
t−1(−η−

t−1)
δ + Rt−2,

which entails

α+
1 ζ δ

t−1(η
+
t−1)

δλ′
2:mSt−2:t−m = −μ2ζ

δ
t−1(η

+
t−1)

δ + Rt−2
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and a similar expression with (−η−
t−1)

δ can be obtained. Subtracting the conditional
expectation with respect toFt−2 = σ {η+

r , η−
r ; r ≤ t−2} in both sides of the previous

equation, we obtain

α+
1 ζ δ

t−1λ
′
2:mSt−2:t−m

[
(η+

t−1)
δ − E[(η+

t−1)
δ|Ft−2]

]

= μ2ζ
δ
t−1

[
E[(η+

t−1)
δ|Ft−2] − (η+

t−1)
δ
]
, a.s.

α+
1 ζ δ

t−1λ
′
2:mSt−2:t−m

[
(η+

t−1)
δ − E[(η+

t−1)
δ]]

= μ2ζ
δ
t−1

[
E[(η+

t−1)
δ] − (η+

t−1)
δ
]
, a.s..

Since the law of ηt is non degenerated, we have α+
1 = μ2 = 0 and symmetrically

α−
1 = μq+2 = 0. But for APGARCH(p, 1) models, it is impossible to have α+

1 =
α−
1 = 0 by the assumption A4. The invertibility of D is thus shown in this case.

For APGARCH(p, q) models, by iterating the previous arguments, we can show by
induction that (21) entails α+

1 +α−
1 = . . . = α+

q +α−
q = 0. Thus λ1 = · · · = λm = 0

which leads to a contradiction. The non-singularity of the matrix D follows. ��

7.3 Proof of Theorem 2

The almost sure convergence of D̂ to D as n goes to infinity is easy to show using the
consistency result. The matrix D can be rewritten as D = (κη − κ̂η)B + (κ̂η − 1)A,

where the matrices A and B are given by

A = (Cm − Ĉm)J−1C ′
m + Ĉm(J−1 − Ĵ−1)C ′

m + Ĉm Ĵ−1(C ′
m − Ĉ ′

m) + Â,

B = (A − Â) + (κη − κ̂η)Im + B̂,

with Â = Ĉm Ĵ−1Ĉ ′
m and B̂ = (κ̂η − 1)Im − Â. Finally, we have

D − D̂ = (κη − κ̂η)B + (κ̂η − 1)
[
(A − Â) + (κη − κ̂η)Im

]
.

For any multiplicative norm, we have

‖D − D̂‖ ≤ |κη − κ̂η|‖B‖ + |κ̂η − 1|
[
‖A − Â‖ + |κη − κ̂η|m

]

and

‖A − Â‖ ≤ ‖Cm − Ĉm‖‖J−1‖‖C ′
m‖ + ‖Ĉm‖‖J−1‖‖ Ĵ − J‖‖ Ĵ−1‖‖C ′

m‖
+‖Cm‖‖ Ĵ−1‖‖C ′

m − Ĉ ′
m‖.

In view of (13), we have ‖Cm‖ < ∞. Because the matrix J is nonsingular, we have
‖J−1‖ < ∞ and

‖ Ĵ−1 − J−1‖ −→
n→∞ 0, a.s.
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by consistency of ϑ̂n . UnderAssumptionA5, we have |κη−1| ≤ K . Using the previous
arguments and also the strong consistency of ϑ̂n , we have

|κη − κ̂η| −→
n→∞ 0, a.s. and ‖Cm − Ĉm‖ −→

n→∞ 0, a.s.

We then deduce that ‖B‖ ≤ K and the conclusion follows. Thus D̂ −→
n→∞ D almost

surely.
To conclude the proof of Theorem 2, it suffices to use Theorem 1 and the following

result: if
√
nγ̂m

d−−−→
n→∞ N (0, D), with D nonsingular, and if D̂ −→

n→∞ D in probability,

then nγ̂ ′
m D̂

−1γ̂m
d−−−→

n→∞ χ2
m . ��

7.4 Proof of Remark 1

We suppose thatH1 holds true. Onemay rewrite the above arguments in order to prove
that there exists a nonsingular matrix D∗ such that

√
n(γ̂m − γ 0

m)
d−−−→

n→∞ N (
0, D∗) . (25)

Thematrix D∗ is given by D∗ = �γ 0
m
+C∗

m(κη−1)J−1C∗
m

′+C∗
m�

ϑ̂n ,γ 0
m
+�′

ϑ̂n ,γ 0
m
C∗
m

′,
where the matrices �γ 0

m
and �

ϑ̂n ,γ 0
m
are obtained from the asymptotic distribution of

1√
n

n∑

t=1

ϒ∗
t := 1√

n

n∑

t=1

(

st J
−1 1

ζ 2
t (ϑ0)

∂ζ 2
t (ϑ0)

∂ϑ ′ , st S
′
t−1:t−m − γ 0

m
′
)′

d−−−→
n→∞ N (0,E

[
ϒ∗
t ϒ∗

t
′]
),

with

E
[
ϒ∗
t ϒ∗

t
′] =:

(
(κη − 1)J−1 �

ϑ̂n ,γ 0
m

�′
ϑ̂n ,γ 0

m
�γ 0

m

)

.

For h = 1, . . . ,m the row h of the matrix C∗
m is given by

c∗
h := E

[

st−h(ϑ0)
∂st (ϑ0)

∂ϑ
+ st (ϑ0)

∂st−h(ϑ0)

∂ϑ

]

= −E

[

st−h
1

ζ 2
t (ϑ0)

∂ζ 2
t (ϑ0)

∂ϑ
+ st

1

ζ 2
t−h(ϑ0)

∂ζ 2
t−h(ϑ0)

∂ϑ

]

.

Consequently we have

∂γm(ϑ0)

∂ϑ
−→
n→∞ C∗

m :=
⎛

⎜
⎝

c∗
1
′

...

c∗
m

′

⎞

⎟
⎠ .
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Now we write

√
nD̂−1/2γ̂m = D̂−1/2√n(γ̂m − γ 0

m) + D̂−1/2√nγ 0
m

= D−1/2√n(γ̂m − γ 0
m) + D−1/2√nγ 0

m + oP(1) .

Then it holds that

nγ̂ ′
m D̂

−1γ̂m = (√
nD̂−1/2γ̂m

)′ × (√
nD̂−1/2γ̂m

)

= n(γ̂m − γ 0
m)′D−1(γ̂m − γ 0

m) + 2n(γ̂m − γ 0
m)′D−1γ 0

m + nγ 0
m

′
D−1γ 0

m + oP(1)
(26)

By the ergodic theroem, (γ̂m − γ 0
m)′D−1γ 0

m = oP(1). By Van der Vaart (see [van der
Vaart (1998), Lemma 17.1]), the convergence (25) implies that

(γ̂m − γ 0
m)′D−1(γ̂m − γ 0

m)
d−−−→

n→∞

m∑

i=1

λi Z
2
i

where (Zi )1≤i≤m are i.i.d. with N (0, 1) laws and the λi ’s are the eigenvalues of the
matrix D−1/2D∗D−1/2. Reporting these convergences in (26), we deduce that

γ̂ ′
m D̂

−1γ̂m = γ̂m − γ 0
m)′D−1(γ̂m − γ 0

m) + 2(γ̂m − γ 0
m)′D−1γ 0

m + γ 0
m

′
D−1γ 0

m + oP(1)

= γ 0
m

′
D−1γ 0

m + oP(1)

and the remark is proved. ��
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