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Abstract
Strong orthogonal arrays were recently introduced as a new class of space-filling
designs for computer experiments due to their better stratifications than orthogonal
arrays. To further improve the space-filling properties in low dimensions while pos-
sessing the column orthogonality, we propose column-orthogonal strong orthogonal
arrays of strength two star and three. Construction methods and characterizations of
such designs are provided. The resulting strong orthogonal arrays, with the numbers of
levels being increased, have their space-filling properties in one and two dimensions
being strengthened. They can accommodate comparable or even larger numbers of
factors than those in the existing literature, enjoy flexible run sizes, and possess the
column orthogonality. The construction methods are convenient and flexible, and the
resulting designs are good choices for computer experiments.

Keywords Computer experiment · Nonregular design · Saturated design ·
Space-filling property

1 Introduction

Computer experiments are becoming increasingly popular and powerful to investigate
complex phenomena and systems in engineering and sciences (Fang et al. 2006; Sant-
ner et al. 2013). The most popular statistical approach to computer experiments is to fit
a krigingmodel to data generated by a computer simulation. Space-filling designs (that
spread points uniformly over the design space) have been shown to be good choices
for fitting such models. In some settings, space-filling designs that retain space-filling
properties when projected onto subspaces are attractive. To be specific, consider a
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computer experiment with output y that is a function of m inputs x1, x2, . . . , xm from
the design space. When m is large, fitting kriging models to data can become com-
putationally challenging. In some cases, the first step in the analysis is to perform a
sensitivity analysis. If the output is found to be insensitive to certain inputs over the
design space, those inputs are ignored and a krigingmodel is fit to the remaining inputs.
Space-filling designs that are also space-filling when projected onto the subspace of
these remaining inputs are thus attractive.

Space-filling designs are appropriate as one-stage designs for fitting a krigingmodel
to data from a computer experiment. For space-filling designs to be appropriate, we
assume no prior knowledge about the correlation structure of the kriging model and
that the goal is good overall fit of the kriging model, where space-filling designs
that spread points uniformly over the design space implicitly assume the correlation
structure for the kriging model is isotropic. Vazquez and Bect (2011) provided some
theoretical justification for space-filling designs. By analyzing the limiting properties
of the prediction variance, they show that no design will outperform (in terms of the
rate at which the maximum of the mean square prediction error decreases) designs
that become dense in the design space as the number of runs tends to infinity. This also
helps clarify the notion of space-filling in that it suggests that a method for generating
designs is space-filling if as the sample size tends to infinity, the points in the design
become dense in the design space.

Three types of commonly used space-filling designs are Latin hypercube designs
(McKay et al. 1979), uniform designs (Fang et al. 2018) and maximin/minimax dis-
tance designs (Johnson et al. 1990). A Latin hypercube design is a design with the
run size being equal to the number of levels for each factor and the levels being set to
be equally spaced. Latin hypercube designs only achieve the one-dimensional space-
filling property. Furthermore, randomized orthogonal arrays (OAs) (Owen 1992) and
orthogonal array-based Latin hypercube designs (Tang 1993) employ OAs of strength
t to realize the t-dimensional space-filling property. The main idea of uniform designs
is to scatter the design points uniformly over the experimental domain. Many criteria
have been proposed to measure the uniformity, where the centered L2-discrepancy
(Hickernell 1998) is the most popular one. However, space-filling designs based on
somediscrepancyor distance criterion usually need algorithmic searches. Suchdesigns
with large run sizes are often prohibitive to obtain due to their computational com-
plexity. To construct space-filling designs, some systematic construction methods are
desirable.

Recently, He and Tang (2013) introduced the concept of strong orthogonal arrays
(SOAs). These arrays of strength t have better space-filling properties than ordinary
OAs in less than t dimensions and they perform the same in t dimensions. However,
SOAs, to enjoy more attractive space-filling properties than OAs, must have strength
3 or higher. He and Tang (2014) examined the characterization of SOAs of strength
3. Given the number of runs, the number of factors for an SOA of strength 3 is very
small. Hence, He et al. (2018) proposed a new class of arrays, called SOAs of strength
2+, which have more factors with the same two-dimensional space-filling property
retained.

However, the SOAs of strength 3 (He and Tang 2014; Shi and Tang 2020) and SOAs
of strength 2+ (He et al. 2018) have no column orthogonality. Column orthogonality
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plays a vital role in computer experiments. The advantage of this property in computer
experiments is that column-orthogonal designs are often space-filling. More specif-
ically, column orthogonality, viewed as a stepping stone, helps finding space-filling
designs whenGaussian process models are considered (Bingham et al. 2009). Besides,
column orthogonality makes the estimates of the main effects uncorrelated when lin-
ear models are considered. Many researchers have discussed column orthogonality
of Latin hypercube designs including Ye (1998), Steinberg and Lin (2006), Sun et al.
(2009), Lin et al. (2009), and so on. Liu and Liu (2015) constructed column-orthogonal
strong orthogonal arrays (OSOAs) of strength t based on OAs of strength t while their
column sizes are very small. Zhou and Tang (2019) further constructed OSOAs of
strength 2+. We note that the number of levels for an SOA of strength 2+ is only s2

with the stratifications on s2 × s and s × s2 grids in any two dimensions.
In this paper,weproposeOSOAsof strengths 2∗ and3, andprovide someconvenient

and flexible construction methods. The resulting OSOAs not only possess the column
orthogonality and two-dimensional stratifications as those in Zhou and Tang (2019),
but also, with the numbers of levels being increased from s2 to s3, enjoy better one-
dimensional stratification and two-dimensional uniformity than the latter. The numbers
of factors for the OSOAs of strengths 2∗ and 3 are almost the same as those of the
OSOAs of strengths 2+ and 3− in Zhou and Tang (2019), respectively, and larger
than those of the OSOAs of strength 3 in Liu and Liu (2015). In addition, since the
proposed constructionmethods are based onOAs (regular or nonregular), the resulting
OSOAs have flexible run sizes. Furthermore, eight-level OSOAs of strength 3 share
the same stratifications as that of the SOAs of strength 3 in He and Tang (2014).
Bingham et al. (2009) discussed the rationale and usefulness for constructing column-
orthogonal designs that are not Latin hypercube designs but still have many levels.
The proposed OSOAs with many levels relax the restriction that the number of runs
equals the number of levels for each factor and then enjoy good stratifications.

The remainder of this paper is organized as follows. Section 2 introduces some
preliminaries and defines the SOA of strength 2∗. Section 3 is devoted to the con-
struction methods for eight-level OSOAs of strength 3 and OSOAs of strength 2∗.
Section 4 provides some comparisons between the constructedOSOAs and other types
of SOAs. Section 5 contains some concluding remarks. All the proofs are deferred to
the Appendix.

2 Definitions and preliminaries

Ann×mmatrixwith entries from {0, 1, . . . , s j−1} in the j th column is called anOAof
n runs,m factors and strength t if, in any n×t subarray, all possible level-combinations
occur equally often. We denote such an array by OA(n,m, s1 ×· · ·× sm, t). The array
is symmetric if s1 = · · · = sm = s, denoted by OA(n,m, s, t), and asymmetric
otherwise. For an OA(n,m, s, t), we have n = λst for some integer λ, which is called
the index of the OA. An n × m matrix with entries from {0, 1, . . . , st − 1} is called
an SOA of n runs, m factors, st levels and strength t if any g-column subarray with
1 ≤ g ≤ t can be collapsed into an OA(n, g, su1 × · · · × sug , g) for any positive
integers u1, . . . , ug with u1 + · · · + ug = t , where collapsing st levels into su j levels
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is according to �x/st−u j � for x = 0, 1, . . . , st − 1, and �x� is the largest integer
not exceeding x . Denote this array by SOA(n,m, st , t). Any SOA(n,m, st , t) can be
collapsed into an OA(n,m, s, t) so n = λst , where λ is also called the index of the
SOA. Consequently, any SOA(n,m, s3, 3) can achieve stratifications on s2 × s and
s × s2 grids in two dimensions and s × s × s grids in three dimensions. See He and
Tang (2013, 2014) for more details of SOAs.

An n×mmatrixwith entries from {0, 1, . . . , s2−1} is called an SOAof strength 2+
with n runs,m factors and s2 levels, denoted by SOA(n,m, s2, 2+), if any two-column
subarray can be collapsed into an OA(n, 2, s2 × s, 2) and an OA(n, 2, s × s2, 2).
An SOA(n,m, s2, 2+) enjoys the same two-dimensional stratifications as those of
an SOA(n,m∗, s3, 3), while the former can accommodate more factors. An n × m
matrix with entries from {0, 1, . . . , s2−1} is called an SOA of strength 3−, denoted by
SOA(n,m, s2, 3−), if any two-column subarray can be collapsed into anOA(n, 2, s2×
s, 2) and an OA(n, 2, s × s2, 2), and any three-column subarray can be collapsed into
an OA(n, 3, s, 3). We refer readers to Zhou and Tang (2019) for more details about
the SOAs of strength 3−.

For an n×m design D = (xik)with s levels {0, 1, . . . , s−1}, its (squared) centered
L2-discrepancy is defined as

CD(D) = 1

n2

n∑

i=1

n∑

j=1

m∏

k=1

(
1 + 1

2
|zik | + 1

2
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)

− 2
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m∏

k=1

(
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)
+

(
13

12

)m

,

where zik = (2xik − s + 1)/(2s). Since in practice two-factor interactions are usually
more important than three-factor or higher-order interactions, Sun et al. (2019) pro-
posed the uniform projection criterion focusing on all two-dimensional projections
for design D as follows:

φ(D) = 2

m(m − 1)

∑

|u|=2

CD(Du), (1)

where u is a subset of {1, 2, . . . ,m}, |u| denotes the cardinality of u and Du is the
projection of D onto dimensions indexed by the elements of u. The φ(D) in (1) is the
average CD values of all two-dimensional projections of D. A design with a low φ(D)

is preferred. Moreover, if D is an n × m design with entries from {0, 1, . . . , s − 1}
where the s levels appear equally often for each factor, then Sun et al. (2019) showed
that for any 2 ≤ k ≤ m,

1(m
k

)
∑

|u|=k

φ(Du) = φ(D). (2)

This shows that for any 2 ≤ k ≤ m, the average φ value of all k-factor projections is
equal to φ(D). A design achieving the minimum φ(D) value is a uniform projection
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design. Such a design tends to have small φ(Du)’s for all projections (Sun et al.
2019). In fact, Eq. (2) helps clarify the usefulness of uniformity measure φ(D) for
two dimensions. We will use φ(D) in (1) to measure the two-dimensional uniformity
of a design D.

A design D is called column-orthogonal if the inner product of any two columns
of the centered design is zero. For ease of presentation, the centering of a design
means that the s levels are equally spaced, centered, and labeled as in the set
�(s) = {−(s − 1)/2,−(s − 3)/2, . . . , (s − 3)/2, (s − 1)/2}. For example, the lev-
els are −1/2, 1/2 if s = 2 and −1, 0, 1 if s = 3. We denote a column-orthogonal
SOA(n,m, st , r) by an OSOA(n,m, st , r) with (t, r) = (3, 3), (2, 2+) and (2, 3−)

here. The OSOA(n,m, s2, 3−) can be constructed only for s = 2 in Zhou and Tang
(2019).

The definition of the SOA of strength 2∗ is as follows.

Definition 1 An n×m matrix with entries from {0, 1, . . . , s3 −1} is called an SOA of
strength 2∗ if any two-column subarray can be collapsed into an OA(n, 2, s2 × s, 2)
and an OA(n, 2, s × s2, 2). Denote this array by SOA(n,m, s3, 2∗). If such an array
is column-orthogonal, denote it by OSOA(n,m, s3, 2∗).

Compared with the OSOA(n,m, s2, 2+) defined in Zhou and Tang (2019),
OSOA(n, m, s3, 2∗) achieves the same stratifications on s2 × s and s × s2 grids
in two dimensions, in addition to the column orthogonality. The main difference lies
in the number of levels, i.e., the former has s2 levels, while the latter has s3 levels,
implying that the latter achieves a finer stratification in any one dimension and has less
repeated runs in any two dimensions. The latter also shares better two-dimensional
uniformity than the former.

An illustrative example is given below.

Example 1 Consider the two designs with 16 runs shown in Table 1. The first one is an
OSOA(16, 6, 8, 2∗) as defined above and the second one is an OSOA(16, 7, 4, 2+)

from Zhou and Tang (2019). Their stratification properties can be seen intuitively from
Figure 1, where d j stands for the j th column of each design. Both designs have (i)
column orthogonality and (ii) the stratifications on 4 × 2 and 2 × 4 grids for any two
columns. The difference is that the first design has 4 more levels than the second one.
This directly improves the stratification in any one dimension. For the uniformity of
the projections onto any two dimensions, we consider the uniform projection criterion
defined in (1). The φ values for the two designs are 0.063 and 0.111, respectively. This
indicates a better uniformity for the OSOA(16, 6, 8, 2∗).

3 Construction of OSOAs

This section studies the construction methods for OSOAs using OAs including regular
and nonregular designs. Section 3.1 provides a general framework for the construction
ofOSOAs,where the careful choices ofOAs play an important role in the construction.
In Sect. 3.2, eight-level OSOAs of strength 3 are constructed by choosing suitable two-
level OAs. In Sect. 3.3, s3-level OSOAs of strength 2∗ are constructed by selecting
general s-level OAs.

123



520 W. Li et al.

Table 1 The
OSOA(16, 6, 8, 2∗) and
OSOA(16, 7, 4, 2+) in
Example 1

OSOA(16, 6, 8, 2∗) OSOA(16, 7, 4, 2+)

0 1 0 1 0 1 0 0 0 0 0 0 0

6 0 6 0 6 0 2 2 2 2 2 2 2

1 7 6 0 1 7 0 0 3 0 3 3 3

7 6 0 1 7 6 2 2 1 2 1 1 1

0 1 1 7 7 6 0 3 0 3 0 3 3

6 0 7 6 1 7 2 1 2 1 2 1 1

1 7 7 6 6 0 0 3 3 3 3 0 0

7 6 1 7 0 1 2 1 1 1 1 2 2

5 4 5 4 5 4 3 0 0 3 3 0 3

3 5 3 5 3 5 1 2 2 1 1 2 1

4 2 3 5 4 2 3 0 3 3 0 3 0

2 3 5 4 2 3 1 2 1 1 2 1 2

5 4 4 2 2 3 3 3 0 0 3 3 0

3 5 2 3 4 2 1 1 2 2 1 1 2

4 2 2 3 3 5 3 3 3 0 0 0 3

2 3 4 2 5 4 1 1 1 2 2 2 1

d1

d2

d3

d4

d5

d6

(a) OSOA(16, 6, 8, 2∗)

d1

d2

d3

d4

d5

d6

d7

(b) OSOA(16, 7, 4, 2+)

Fig. 1 Bivariate projections of OSOAs with s = 2 in Example 1

3.1 General constructionmethod

We now present the general framework for the construction of OSOAs.

Construction 1

Step 1. Let A = (a1, . . . , am) and B = (b1, . . . , bm) be two n×m OAs with entries
from {0, 1, . . . , s − 1}.
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Step 2. Let p = �m/2� andC = (C1, . . . ,Cp),whereC j = (a2 j−1, b2 j−1, a2 j , b2 j )
for j = 1, . . . , p.

Step 3. For j = 1, . . . , p, letC∗
j = C j−(s−1)/2 such that the s levels {0, 1, . . . , s−

1} are transformed into �(s). Define

D∗ = (D∗
1 , . . . , D

∗
p), (3)

where D∗
j = C∗

j V for j = 1, . . . , p, and

V =
(

s2 s 1 0
−1 0 s2 s

)T

, (4)

where T denotes the transpose of a matrix.
Step 4. Let

D = D∗ + (s3 − 1)/2, (5)

which transforms the levels of D∗ from �(s3) into {0, 1, . . . , s3 − 1}.
Throughout this paper, let m′ = 2�m/2�, which equals m for an even m and m − 1

for an odd m. From Construction 1, a theoretical property of the proposed design D
in (5) can be stated as follows.

Theorem 2 If both A = (a1, . . . , am) and B = (b1, . . . , bm) are OA(n,m, s, 2)’s
such that (ai , a j , b j ) is an OA of strength 3 for any i �= j , then the design D in (5) is
an OSOA(n,m′, s3, 2∗).

In Construction 1, design C is not required to have strength 3, but if it is, an OSOA
of strength 3 can be constructed. Dropping this requirement of strength 3 for design C
is regarded as a stepping stone to the construction of the proposed OSOAs. Thus the
constructed designs can accommodate more columns than OSOAs of strength 3 from
Liu and Liu (2015) because they are based on OAs of strengths 2 and 3, respectively.

Moreover, we can allow the design D in Theorem 2 to achieve stratifications on
s × s × s grids in three dimensions provided that A has strength 3. This is based on
the fact that, from the proof of Theorem 2, �D/s2� becomes the first m′ columns of
A. Then we have the following result.

Theorem 3 If A is anOA(n,m, s, 3) and B is anOA(n,m, s, 2) such that (ai , a j , b j )

is anOA of strength 3 for any i �= j , then the design D in (5) is anOSOA(n,m′, s3, 3).

Theorem 3 presents a convenient and useful way to construct OSOA(n,m′, s3, 3)’s.
In the next two subsections, we investigate how to construct OSOA(n,m′, s3, 3)’s

with s = 2 and OSOA(n,m′, s3, 2∗)’s with s ≥ 3 by choosing suitable A and B in
Theorems 2 and 3. These choices of A and B are based on OAs including regular and
nonregular designs.
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3.2 Eight-level OSOAs of strength 3

This subsection examines the construction of eight-level OSOAs of strength 3 with
flexible runs based on two-level OAs.

Let X be a two-level saturated OA(m,m − 1, 2, 2), and further let

A =
(

X
1 + X

)
and B =

(
X
X

)
, (6)

where 1 + X is the matrix obtained by adding 1 (mod 2) to all the entries of X .
Clearly, both A and B are OA(2m,m − 1, 2, 2)’s. By applying the A and B in (6) to
Construction 1, we have the following result.

Theorem 4 Let X be an OA(m,m − 1, 2, 2). Then an OSOA(2m,m − 2, 8, 3) can be
constructed from the A and B in (6) via Construction 1.

Theorem 4 shows that from any saturated design X , we can obtain an eight-level
OSOA of strength 3. Since a two-level saturated OA (regular or nonregular) can be
obtained by omitting the first column of a normalized Hadamardmatrix (Hedayat et al.
1999, Chap. 7), Theorem 4 can yield a series of eight-level OSOAs of strength 3 with
flexible run sizes. The following is an illustrative example.

Example 2 A Hadamard matrix of order 8 produces an OA(8, 7, 2, 2), then an
OSOA(16, 6, 8, 3) can be constructed, which is shown as the OSOA(16, 6, 8, 2∗)

in Table 1. Similarly, we can derive an OSOA(24, 10, 8, 3) from a Hadamard matrix
of order 12, an OSOA(32, 14, 8, 3) from a Hadamard matrix of order 16, and so on.

3.3 OSOAs of strength 2∗

This subsection concentrates on the construction of OSOA(n,m, s3, 2∗)’s with s ≥ 3
via regular or nonregular designs. We first consider the construction using s-level
regular designs with n = sk runs for k ≥ 3, where s is a prime power. Let GF(s) =
{α0 = 0, α1 = 1, . . . , αs−1} be a Galois field of order s, which is simplified as
{0, 1, . . . , s − 1} if s is a prime. Let e1, . . . , ek be the k independent columns, and all
their possible interaction columns u1e1 + · · · + ukek can be denoted by eu11 · · · eukk ,
where u j ∈ {0, 1, . . . , s − 1} are not all zeros. Then a saturated regular design
OA(sk, (sk −1)/(s−1), s, 2) can be formed by combining all the columns eu11 · · · eukk
with the first nonzero entry u j in the vector (u1, . . . , uk) being equal to one. The
construction for OSOAs of strength 2∗ can be carried out as follows.

For the k independent columns e1, . . . , ek−1, ek , let B = (b1, . . . , bm) be an n×m
s-level regular designwith n = sk andm = (sk−1−1)/(s−1), whose columns consist
of e1, . . . , ek−1 and all their possible interaction columns. Define A = (a1, . . . , am)

such that a j = b j ek for j = 1, . . . ,m. Replace the s levels {α0, α1, . . . , αs−1} of A
and B by {0, 1, . . . , s − 1} if s is a prime power. Then, based on Construction 1, we
have the following result.

Theorem 5 For any prime power s ≥ 3 and k ≥ 3, an OSOA(sk,m′, s3, 2∗) can be
constructed from the above A and B via Construction 1where m = (sk−1−1)/(s−1).
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The resulting design D in Construction 1 is also an OSOA(sk,m′, s3, 2∗) if each
term ek for array A is replaced by elk , for any l = 2, . . . , s−1, in the above construction.
For k = 3, an OSOA(s3, 2�(s+1)/2�, s3, 2∗) can be constructed. This means that we
can derive an OSOA(s3, s + 1, s3, 2∗) at almost no cost. This array shares the same
two-dimensional stratifications as an SOA(s3, s + 1, s3, 3) in He and Tang (2014),
while the latter has no column orthogonality.

Example 3 For s = 5 and k = 3, let B = (e1, e2, e1e2, e1e22, e1e
3
2, e1e

4
2) and

A = (e1e3, e2e3, e1e2e3, e1e22e3, e1e
3
2e3, e1e

4
2e3). Then Theorem 5 can produce an

OSOA(125, 6, 125, 2∗). This design achieves stratifications on 25 × 5 and 5 × 25
grids in two dimensions and the maximum stratification in any one dimension. This
means that the OSOA(125, 6, 125, 2∗) is an orthogonal Latin hypercube design with
a good two-dimensional space-filling property.

Theorem 5 gives a construction of OSOAs via s-level regular designs. Next, we
can construct OSOAs via general s-level (regular or nonregular) OAs. Let C0 be an
OA(n,m, s, 2). Define two sn × m matrices

A = (CT
0 , 1 + CT

0 , . . . , s − 1 + CT
0 )T (mod s) and B = (CT

0 , . . . ,CT
0 )T . (7)

Clearly, both A and B are OA(sm,m, s, 2)’s. Write A = (a1, . . . , am) and B =
(b1, . . . , bm). From the structures of A and B, we can see that the array (ai , a j , b j )

is an OA of strength 3 for any i �= j . According to Construction 1 and Theorem 2,
OSOAs of strength 2∗ can then be obtained.

Theorem 6 Let C0 be an OA(n,m, s, 2). Then an OSOA(sn,m′, s3, 2∗) can be con-
structed from the A and B in (7) via Construction 1.

Theorem 6 provides a straightforward and powerful method to construct OSOAs of
strength 2∗ according to flexible choices of OAs. Unlike the methods in He and Tang
(2013, 2014), the newly proposed method requires no use of generalized orthogonal
arrays and semi-embeddable orthogonal arrays of strength 3. In addition, for any s,
whether it is a prime power or not, an OSOA(sn,m′, s3, 2∗) can be generated by
any OA(n,m, s, 2). To illustrate this generality, let us see three applications of the
proposed method.

Application 1 An OA(m,m − 1, 2, 2) can be derived by deleting the first column
of the normalized Hadamard matrix of order m. Then Theorem 6 can produce an
OSOA(2m,m − 2, 8, 2∗), which is in fact the OSOA(2m,m − 2, 8, 3) obtained in
Theorem 4. Note that a library of Hadamard matrices can be found from Dr. N. J. A.
Sloane’s website, http://neilsloane.com/hadamard/.

Application 2 For a prime power s, the Rao-Hamming construction (Hedayat et al.
1999, Chap. 3.4) gives a saturated OA(sk−1,m, s, 2) with m = (sk−1 − 1)/(s − 1).
Based on such an OA, Theorem 6 gives an OSOA(sk,m′, s3, 2∗). This gives
another approach to constructing the OSOA with the parameters in Theorem 5.
For s = 3, we can obtain an OSOA(27, 4, 27, 2∗), an OSOA(81, 12, 27, 2∗), an
OSOA(243, 40, 27, 2∗), and so on.
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Application 3 For an odd prime power s, the Addelman-Kempthorne construction
(Hedayat et al. 1999, Chap. 3.3) gives an OA(2sk−1,m, s, 2) with m = 2(sk−1 −
1)/(s − 1) − 1. By Theorem 6, one can obtain an OSOA(2sk,m′, s3, 2∗), which
cannot be constructed from Theorem 5. For example, taking s = k = 3, we can
obtain an OSOA(54, 6, 27, 2∗) from an OA(18, 7, 3, 2). Similarly, we can obtain an
OSOA(162, 24, 27, 2∗), an OSOA(250, 10, 125, 2∗), and so on.

Remark 1 The above three applications can generate a rich class of OSOAs of strength
2∗. When the original OA C0 has index unity, the resulting design D is an orthogonal
Latin hypercube design. By Theorem 6, any OSOA(s3,m′, s3, 2∗) is an orthogonal
Latin hypercube design for s = 3, 4, 5, 7, 8, 9, . . . . If the index of the C0 is two
or more, the proposed method still can generate a column-orthogonal design with
many levels. For example, Theorem 6 can produce an OSOA(λsk,m′, s3, 2∗) if an
OA(λsk−1,m, s, 2) exists (see the examples in Application 3). Because of this, the
proposed method can generate OSOAs with flexible indices.

4 Comparisons with existing SOAs

This section provides some comparisons between the constructed OSOAs and the
existing SOAs in He and Tang (2014), Liu and Liu (2015) and Zhou and Tang (2019).
Let us first see their differences through the following example.

Example 4 For s = 3 and k = 3, Application 2 can generate an OSOA(27, 4, 27, 2∗),
which is also an orthogonal Latin hypercube design. Based on an OA(27, 4, 3, 3),
the OSOA(27, 2, 27, 3) constructed in Liu and Liu (2015) only has two columns.
The SOA(27, 4, 27, 3) constructed in He and Tang (2014) and the newly constructed
design can accommodate four columns, while the former has no column orthogo-
nality. Table 2 presents the OSOA(27, 4, 27, 2∗) constructed in this paper and the
OSOA(27, 4, 9, 2+) constructed by Zhou and Tang (2019), and Figure 2 intuitively
shows the stratification properties by their bivariate projections, where d1, d2, d3 and
d4 stand for four columns of each design. Both of them achieve stratifications on 9×3
and 3 × 9 grids in two dimensions, but the OSOA(27, 4, 27, 2∗) achieves the max-
imum one-dimensional stratification that is larger than the OSOA(27, 4, 9, 2+). For
the uniform projection criterion defined in (1), the OSOA(27, 4, 27, 2∗) has a smaller
φ value than the OSOA(27, 4, 9, 2+) (0.024 vs 0.049). This implies that the former
has a better two-dimensional uniformity.

The proposed methods can produce many eight-level OSOAs of strength 3 and
OSOAs of strength 2∗ based on the above three applications. For the run sizes n ≤ 300,
some of the resulting designs are shown in Table 3 and many others, which can be
obtained similarly, are omitted.

Table 3 shows some comparisons among the four kinds of designs, including the
SOA(n,m, s3, 3) from He and Tang (2014), OSOA(n,m, s3, 3) from Liu and Liu
(2015), OSOA(n,m, s2, p1) from Zhou and Tang (2019) and OSOA(n,m, s3, p2)
from the proposed methods. For simplicity, we denote these designs by SOA(3),
OSOA(3), OSOA(s2, p1) and OSOA(s3, p2), respectively.
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Table 2 The
OSOA(27, 4, 27, 2∗) and
OSOA(27, 4, 9, 2+) in
Example 4

OSOA(27, 4, 27, 2∗) OSOA(27, 4, 9, 2+)

0 2 0 2 0 0 0 0

1 14 14 25 0 4 4 8

2 26 25 12 0 8 8 4

12 1 13 13 4 0 4 4

13 13 24 0 4 4 8 0

14 25 2 26 4 8 0 8

24 0 26 24 8 0 8 8

25 12 1 14 8 4 0 4

26 24 12 1 8 8 4 0

10 10 10 10 1 1 1 1

11 22 21 6 1 5 5 6

9 7 8 23 1 6 6 5

22 9 23 21 5 1 5 5

23 21 7 11 5 5 6 1

21 6 9 7 5 6 1 6

7 11 6 8 6 1 6 6

8 23 11 22 6 5 1 5

6 8 22 9 6 6 5 1

20 18 20 18 2 2 2 2

18 3 4 17 2 3 3 7

19 15 15 4 2 7 7 3

5 20 3 5 3 2 3 3

3 5 17 19 3 3 7 2

4 17 19 15 3 7 2 7

17 19 16 16 7 2 7 7

15 4 18 3 7 3 2 3

16 16 5 20 7 7 3 2

We summarize the following observations from Table 3. All the four kinds of SOAs
achieve the same stratifications on s2 × s and s × s2 grids, and SOA(3), OSOA(3),
OSOA(s2, 3−) and OSOA(s3, 3) achieve stratifications on s× s× s grids. Compared
with the SOA(3), the newly obtained design OSOA(s3, p2) has the additional col-
umn orthogonality. Compared with the OSOA(3), if it is available, the OSOA(s3, p2)
can accommodate much more columns with column orthogonality, in addition to
the same two-dimensional stratifications, although the three-dimensional stratifica-
tions for the OSOA(s3, 2∗) with s ≥ 3 cannot be guaranteed. Compared with the
OSOA(s2, p1), the new design OSOA(s3, p2) achieves a finer stratification in any
one dimension. The smaller φ(D) values (seen from Table 3) show that, compared
with the OSOA(s2, p1), the OSOA(s3, p2) has a better two-dimensional uniformity.
Compared with the SOA(3) and OSOA(3) based on OAs of strength 3, which do not
exist for many parameters n and m, the OSOA(s2, p1) and OSOA(s3, p2) based on
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d1

d2

d3

d4

(a) OSOA(27, 4, 27, 2∗)

d1

d2

d3

d4

(b) OSOA(27, 4, 9, 2+)

Fig. 2 Bivariate projections of OSOAs with s = 3 in Example 4

OAs of strength 2 gain column orthogonality and/or more columns with the same
two-dimensional stratifications. For example, if the run size n = 243 is fixed, the
SOA(3), OSOA(3), OSOA(s2, p1) and OSOA(s3, p2) can accommodate 19, 10, 40
and 40 factors, respectively.

At the end of this section, we first consider the comparison of the column sizes
between the OSOA(s2, p1) and OSOA(s3, p2) with the same numbers of run sizes.
Table 3 shows that the number of column sizes of the OSOA(s3, p2) is the same as
or one less than that of the OSOA(s2, p1), while the OSOA(s3, p2) has better one-
dimensional projections.We next consider the comparison of the run sizes and column
sizes between the OSOA(s2, p1) and OSOA(s3, p2) with the same numbers of lev-
els. From an OA(64, 9, 8, 2), the OSOA(s2, p1) becomes an OSOA(512, 9, 64, 2+),
while, from an OA(64, 21, 4, 2), the OSOA(s3, p2) becomes an OSOA(256, 20, 64,
2∗). Both SOAs have the same 64 levels for each factor. Note that the former achieves
stratifications on 64×8 and 8×64 grids in two dimensions and the newly constructed
design (the latter) achieves stratifications on 16×4 and 4×16 grids in two dimensions.
Although the former enjoys better property of stratifications, the latter can use less
runs (512 vs 256) to accommodate muchmore factors (9 vs 20). This provides us more
design choices for practical applications.

5 Concluding remarks

This paper proposes column-orthogonal strong orthogonal arrays (OSOAs) of
strengths 2∗ and 3, and provides some construction methods. The OSOAs of strength
2∗ enjoy the same two-dimensional space-filling property as the SOAs of strength
3 and the additional column orthogonality. Compared with the OSOAs of strength
2+ in Zhou and Tang (2019), the proposed OSOAs of strength 2∗ achieve finer one-
dimensional stratifications and have better two-dimensional uniformities, while they
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still accommodate comparable numbers of factors. Furthermore, the newly constructed
eight-level OSOAs of strength 3 enjoy the same stratifications in three dimensions as
the SOAs of strength 3 and four-level OSOAs of strength 3−.

The proposed OSOAs of strength 2∗ are based on orthogonal arrays (regular or
nonregular) and hence share flexible run sizes. The corresponding construction meth-
ods are convenient and powerful. The resulting designs are particularly useful for
computer experiments.

Compared with the OSOAs in Zhou and Tang (2019), the proposed OSOAs in this
paper increase the numbers of levels from s2 to s3 such that the numbers of levels s3

with s ≥ 2 is moderate, which is beneficial to fit response surfaces that have multiple
extrema in the context of computer experiments.

When the number of runs n is equal to the number of levels s3 (s ≥ 2), the
proposed OSOA(n,m, s3, p2) becomes a Latin hypercube design. In such a case,
no repeated observation occurs when a design is projected onto lower dimensions.
When n = λs3 (s ≥ 2) with λ ≥ 2, one solution is to perform level expansions
on the proposed OSOA(n,m, s3, p2) such that the resulting design becomes a Latin
hypercube design by, for each column, replacing the λ entries for level j by any
permutation of {λ j, λ j + 1, . . . , λ( j + 1) − 1} for j = 0, . . . , s3 − 1. Xiao and Xu
(2018) showed that designs generated fromorthogonal arrays via level expansions tend
to have attractive space-filling properties. According toConstruction 1, the constructed
OSOAs via level expansions tend to have attractive space-filling properties because
these OSOAs are also based on orthogonal arrays of strength two.
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Appendix: Proofs of theorems

Proof of Theorem 2 From (3) and (4), we have D∗ = C∗R, whereC∗ = (C∗
1 , . . . ,C

∗
p)

and R = diag{V , . . . , V } with V repeating p times. Since (ai , a j , b j ) is an OA of
strength 3 for any i �= j , C∗ is an OA of strength 2 with levels from �(s). By noting
that R is column-orthogonal, we have D∗T D∗ = (C∗R)TC∗R = RT (C∗TC∗)R =
c1RT R = c2 I2p, where c1 and c2 are two constants, and I2p is the identity matrix of
order 2p. This shows that D∗ in (3) is column-orthogonal. So is D in (5).

Before showing the stratifications of D, we first derive the form of any column d of
D in (5). Let a∗

i = ai − (s−1)/2 and b∗
i = bi − (s−1)/2 for i = 1, . . . ,m. Note that

the column d∗ of D∗ in (3) corresponding to d has the form d∗ = c∗
1s

2 + c∗
2s ± c∗

3,

where (c∗
1, c

∗
2, c

∗
3) is a copy of some (a∗

j , b
∗
j , a

∗
i ) with i �= j . From (5), the column d

of D has the form
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d = d∗ + (s3 − 1)/2

= c∗
1s

2 + c∗
2s ± c∗

3 + (s3 − 1)/2

= r1s
2 + r2s + r3,

where r1 = c∗
1 + (s − 1)/2, r2 = c∗

2 + (s − 1)/2 and r3 = ±c∗
3 + (s − 1)/2. Since

(c∗
1, c

∗
2, c

∗
3) is a copy of some (a∗

j , b
∗
j , a

∗
i ) with i �= j , then (r1, r2, r3) is a copy

of (a j , b j , ai ) or (a j , b j , s − 1 − ai ). Thus, all entries of (r1, r2, r3) take values in
{0, 1, . . . , s − 1} × {0, 1, . . . , s − 1} × {0, 1, . . . , s − 1}. Therefore, we have that for
i �= j , any column d of D in (5) has the form d = a j s2 + b j s + a where a = ai or
a = s − 1 − ai .

We now show the stratifications of D. For any two columns di = ai s2 + bi s + ai ′
and d j = a j s2 + b j s + a j ′ , let us show that the array (di , d j ) can be collapsed into
an OA(n, 2, s2 × s, 2) and an OA(n, 2, s × s2, 2), that is to say, (�di/s�, �d j/s2�) =
(ai s + bi , a j ) and (�di/s2�, �d j/s�) = (ai , a j s + b j ) are an OA(n, 2, s2 × s, 2) and
an OA(n, 2, s × s2, 2), respectively. In fact, this is true by noting the following three
facts: (i) (ai , a j , b j ) is an OA(n, 3, s, 3) for any i �= j ; (ii) x1s + x2 establishes a
one-to-one correspondence between the s2 levels in {0, 1, . . . , s2 −1} and the s2 pairs
(x1, x2), where x1, x2 ∈ {0, 1, . . . , s − 1}; (iii) x1s2 + x2s + x3 establishes a one-
to-one correspondence between the s3 levels in {0, 1, . . . , s3 − 1} and the s3 pairs
(x1, x2, x3), where x1, x2, x3 ∈ {0, 1, . . . , s − 1}. Therefore, D satisfies the property
of stratifications in Definition 1. This completes the proof. 
�
Proof of Theorem 4 From the definition of two-level OA andConstruction 1,mmust be
a multiple of 4 and p = �(m − 1)/2� = (m − 2)/2. Therefore the number of columns
for the constructed OSOA ism−2. According to the structures of A and B in (6), A is
an OA(2m,m−1, 2, 3) and B is an OA(2m,m−1, 2, 2). Since b j is orthogonal to the
interaction column aia j for any i �= j , (ai , a j , b j ) is an OA(2m, 3, 2, 3). Then from
Theorem 3, the resulting design is an OSOA(2m,m−2, 8, 3). The proof is completed.


�
Proof of Theorem 5 Note that A = (a1, . . . , am) and B = (b1, . . . , bm) with m =
(sk−1)/(s−1). FromTheorem 2,we only need to show (ai , a j , b j ) is anOA(n, 3, s, 3)
for any i �= j . To do so, we assume that b j is the interaction column of ai and a j , i.e.,

aia
l
j = btj (8)

holds for some l, t ∈ {1, . . . , s − 1}. Note that ai = bi ek and a j = b j ek . So Equation
(8) is possible to hold only when l = s − 1. However, if l = s − 1, Equation (8)
implies that bib

s−1
j = btj for some t ∈ {1, . . . , s − 1}. This is impossible because bi

and b j are two different columns of B. This completes the proof. 
�
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