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Abstract
We study change-points tests based onU -statistics for absolutely regular observations.
Ourmethod avoids some technical assumptions on the data and the kernel. The asymp-
totic properties of the U -statistics are studied under the null hypothesis, under fixed
alternatives and under a sequence of local alternatives. The asymptotic distributions
of the test statistics under the null hypothesis and under the local alternatives are given
explicitly and the tests are shown to be consistent. A small set of simulations is done
for evaluating the performance of the tests in detecting changes in the mean, variance
and autocorrelation of some simple time series.

Mathematics Subject Classification 60F17 · 62F03 · 62M10

1 Introduction

We are interested in detecting possible differences between the distributions of real-
valued random variables X1, X2, . . . , Xn . In practice, this issue can be of primary
importance for data from industrial quality control, financial markets, medical diag-
nostics, hydrology, climatology etc.

This statistical matter is known as change-points problemwhose theory, well devel-
oped for independent data, has considerably been studied in the literature both from
parametric and non-parametric point of view. Since Page (1954), so many tests have
been proposed for testing changes in the distribution of iid data. Among others, Cher-
noff andZacks (1964) propose test statistics for detecting shifts in themean of a normal
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distribution function. Their results are generalized to exponential family by Kander
and Zacks (1966), Gardner (1969) and MacNeill (1974). Matthews et al. (1985) study
maximal score statistics to test for constant hazard against a change-point alternative.
Haccou et al. (1988) propose a likelihood ratio test for a change-point in a sequence of
independent exponentially distributed random variables. They prove their test is opti-
mal in the sense of Bahadur. Yao and Davis (1986) consider the asymptotic behavior
of the likelihood ratio statistic for testing a shift in mean in a sequence of independent
Gaussian random variables. Csörgő and Horváth (1987) propose statistics based on
processes of linear rank statistics with quantile scores. A review on non-parametric
procedures is given by Wolfe and Schechtman (1984), who summarize among others,
pioneer works on change-points as Page (1954, 1955), Bhattacharya and Zhou (2017),
Sen and Srivastava (1975) and Pettitt (1979).

These last years there is a growing interest in change-points study in time series
data.Most of the techniques and approaches used aremainly based either on testing for
the existence of changes or for their locations, or on estimating the locations. Some rel-
evant references on change-points estimation are Härdle and Tsybakov (1997), Härdle
et al. (1998), Bardet andWintenberger (2009), Döring (2010, 2011), Ciuperca (2011),
Bardet and Kengne (2014), Amano (2012), Horváth and Hušková (2005), Yang and
Song (2014), Mohr and Selk (2020) and Yang et al. (2020). A non-exhaustive list
of references on testing approaches are, among others, Kengne (2012), Chen et al.
(2011), Dehling et al. (2013), Dehling et al. (2015), Wang and Phillips (2012), Francq
and Zakoïan (2012), Bardet et al. (2012), Zhou (2014), Fotopoulos et al. (2009), Huh
(2010), Enikeeva et al. (2018), Gombay (2008), Gombay and Serban (2009), Hlávka
et al. (2020) and Ma et al. (2020) which uses both estimation and testing. Meintanis
(2016) gives an interesting survey of testing procedures based on the empirical char-
acteristic function. We would also like to mention the interesting and related work of
Rackauskas and Wendler (2020) who deal with a robust test based on the Wilcoxon
statistic for detecting epidemic changes. While the asymptotic behavior of the test
statistic is studied under the null hypothesis, with techniques close to ours, its consis-
tency is only discussed.

In almost all the existing testing papers, except perhaps Fotopoulos et al. (2009),
Khakhubia (1987), Bhattacharyya and Johnson (1968), Dehling et al. (2013), Dehling
et al. (2017a) and Dehling et al. (2017b), the local power is rarely studied. This issue
is considered in this paper where the tests studied are derived from basic processes of
the general form

Z∗
n(λ) = n−3/2

[nλ]∑

i=1

n∑

j=[nλ]+1

h(Xi , X j ), 0 ≤ λ ≤ 1,

with h : R2 → R a kernel function.
The asymptotic distribution of a related process has been studied in a Hölder space

by Rackauskas and Wendler (2020) for stationary mixing data and antisymmetric
h, while this process has been studied in a Skorohod space for instance by Csörgő
and Horváth (1988) for iid data, and by Dehling et al. (2015) for data assumed to
be functions of mixing random variables satisfying some other conditions such as1-
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Tests for change-points detection 289

approximating functional, 1-sided functional, bounded density function, with kernels
h being 1-continuous. These conditions are avoided here by our mixing assump-
tion on the data, and our study is done in a Skorohod space. Furthermore, besides
the Kolmogorov-Smirnov (KS) type test usually studied in the literature, we study a
Cramer-von Mises (CM) version which has the advantage that its theoretical limiting
distribution under the null hypothesis can be approximated for any kernel h.We restrict
our study to the classical case of one change-point detection. But our results can be
generalized to multi-change-points detection which we postpone to a future paper.

The paper is organized as follows. In Sect. 2, we define useful quantities such as
the test statistics, and we list some assumptions. In Sect. 3 we study the asymptotic
properties of our tests statistics under the null hypothesis, under a sequence of local
alternatives and under fixed alternatives. Practical considerations are presented and
discussed in Sect. 4, while the last section contains the proofs of the main results.

2 General definitions and assumptions

For cumulative distribution functions Q and R, denote by θ(Q, R) the following real
number

θ(Q, R) =
∫ ∫

h(x, y)dQ(x)dR(y).

For any i = 1, 2, . . . , n, let Fi be the cumulative distribution function of Xi . We aim
to check possible differences between the Fi ’s. We restrict ourselves to checking if
there exists only one index i0 for which Fi0 and Fi0+1 are different. We study this
problem by testing the hypothesisH0 against the alternativeH1, defined respectively
by

H0 : F1(x) = F2(x) = . . . = Fn(x), x ∈ R

H1 : ∃ λ0 ∈ (0, 1) such that F1(x) = F2(x) = . . . = F[nλ0](x) = F(x), x ∈ R and

F[nλ0]+1(x) = . . . = Fn(x) = G(x), x ∈ R, and θ(F, F) �= θ(F,G).

Figure 1 exhibits the chronograms of some time series each of size 200, owning a
change-point at t = 100. The first graphic in the first row shows a change in the mean
of a shifted Gaussian white noise, while the one at its right shows a change in its
variance. The first graphic in the second row shows a change in both the mean and
the variance of a shifted Gaussian white noise, and the second shows a change in the
autocorrelation of a Gaussian AR(1) model.
In order to evaluate the capacity of the tests to detect weak changes, we also consider
the local alternatives H1,n of the form

H1,n : ∃ λ0 ∈ (0, 1) such that F1(x) = F2(x) = . . . = F[nλ0](x) = F(x), and

F[nλ0]+1(x) = . . . = Fn(x) = G(n)(x), x ∈ R, and

θ(F,G(n)) = θ(F, F) + n−1/2[A + o(1)], for some γ ∈ R
∗.
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290 J. Ngatchou-Wandji et al.

Remark 1 Particular examples of local alternatives H1,n are those for which there
exists a constant γ such that G(n)(x) = F(x + n−1/2γ ) and the kernel function h is
twice differentiable with finite integral

∫ ∫
(∂h(x, y)/∂ y)dF(x)dF(y) and bounded

second-order derivatives ∂2h(x, y)/∂2y. This can be checked easily by a suitable
application of the Taylor-Young formula. With this example, one finds

A = −γ

∫ ∫
∂h

∂u
(x, u)dF(x)dF(u).

In the purpose of solving our testing problem, the tests we are going to use are based
on the following KS and CM statistics

T1,n = max
1≤k≤n−1

∣∣∣∣∣∣
n−3/2

k∑

i=1

n∑

j=k+1

{
h(Xi , X j ) − θ(F̂, F̂)

}
∣∣∣∣∣∣

(1)

T2,n = 1

n

∑

1≤k≤n−1

⎧
⎨

⎩n−3/2
k∑

i=1

n∑

j=k+1

[
h(Xi , X j ) − θ(F̂, F̂)

]
⎫
⎬

⎭

2

, (2)

where F̂ stands for any consistent estimator of F , a simple example being the empirical
cumulative distribution function.
Denote by [x] the integer part of any real number x . Noting that for any k ∈ {1, . . . , n−
1}, there exists λ∗ ∈ [0, 1] such that k = [λ∗n], one can write, asymptotically,

T1,n = sup
λ∈[0,1]

|Zn(λ)|

T2,n =
∫ 1

0
Z2
n(λ)dλ,

where Zn stands for the following stochastic process

Zn(λ) = n−3/2
[nλ]∑

i=1

n∑

j=[nλ]+1

[
h(Xi , X j ) − θ(F, F)

]
, 0 ≤ λ ≤ 1. (3)

Define the following U -statistic Un with kernel h, and the following functions

Un = 2

n(n − 1)

∑

1≤i< j≤n

h(Xi , X j )

hF,1(x) =
∫

h(x, y)dF(y) − θ(F, F)

hF,2(y) =
∫

h(x, y)dF(x) − θ(F, F)
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hG,1(x) =
∫

h(x, y)dG(y) − θ(F,G)

hG,2(y) =
∫

h(x, y)dF(x) − θ(F,G)

gF (x, y) = h(x, y) − hF,1(x) − hF,2(y) + θ(F, F)

gG(x, y) = h(x, y) − hG,1(x) − hG,2(y) + θ(F,G).

Consider the Hoeffding decomposition of Un under H0

Un = θ(F, F) +U (1)
n,1 +U (1)

n,2 +U (2)
n , (4)

where

U (1)
n,1 = n−1

n∑

i=1

hF,1(Xi )

U (1)
n,2 = n−1

n∑

i=1

hF,2(Xi )

U (2)
n = 2

n(n − 1)

∑

1≤i< j≤n

[
h(Xi , X j ) − hF,1(Xi ) − hF,2(X j )

]− θ(F, F).

Also, define the following numbers

σkl = E
[
hF,k(X1)hF,l(X1)

]+ 2
∞∑

j=1

Cov
(
hF,k(X1), hF,l(X1+ j )

)
, k, l = 1, 2.

We make the following assumptions :

(A1) The sequence {Xi }i∈N is absolutely regular with the rate

β(k) = O(τ k), 0 < τ < 1. (5)

(A2) {Xi }i∈N is stationary.
(A3) We consider (Yi )1≤i≤n a sequence of stationary and absolute regular random

variables with rate (5). We assume the cumulative distribution function of the
Yi ’s is G.

(A4) We consider (Yni )1≤i≤n,n≥1 a sequence of stationary and absolute regular ran-

dom variables with cumulative distribution function G(n)(x) = F(x + ηn− 1
2 ).

We assume the cumulative distribution functions G(n)
i j and G∗(n)

i j of the
(Yni ,Ynj )’s and (Xi ,Ynj )’s respectively satisfy

lim
n→∞G(n)

i j (x, y) = Fi j (x, y) and lim
n→∞G∗(n)

i j (x, y) = Fi j (x, y), 1 ≤ i < j ≤ n,

where Fi j is the cumulative distribution function of (Xi , X j ).
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Fig. 1 First row : change in the mean and change in the variance of a shifted white noise. Second row :
change in both the mean and the variance of a shifted white noise, and change in the autocorrelation of an
AR(1) model. The red lines represent the mean. The green, is the chronogram before the change occurred,
and the blue is that after the change occurred

• We recall from Harel and Puri (1994) that a non-necessarily stationary trian-
gular sequence {Vni , 1 ≤ i ≤ n, n ≥ 1} is absolutely regular if β(k) −→ 0,
as k → ∞, where

β(k) = sup
n∈N

sup
k≤n

max
1≤ j≤n−k

E

⎛

⎝ sup
A∈A∞

n, j+k

∣∣∣P(A | A j
n,0) − P(A)

∣∣∣

⎞

⎠ ,

with A j
n,i standing for the σ -algebra generated by Vni , . . . ,Vnj , i, j ∈ N ∪

{∞}. It will be said to be strong mixing or α-mixing if α(k) −→ 0 as k → ∞,
where

α(k) = sup
n∈N

max
1≤ j≤n−k

sup
A∈A∞

n, j+k ,B∈A j
n,0

|P(A ∩ B) − P(A)P(B)| .

• Note that a β-mixing sequence of random variables is also α-mixing.

Remark 2 Weassume a geometricalmixing rate by convenience.Webelieve our results
can be established as well for arithmetical mixing rates to be found.
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3 Asymptotics

In this section, we state all our theoretical results. Most of the proofs are postponed to
the last section.

Theorem 1 Assume that the assumptions (A1)–(A3) hold. Then, under H0, if
max{supi, j E

[|h(Xi , X j )|2+δ
]
,
∫ ∫

R2 |h(x, y)|2+δdF(x)dF(y)} < ∞ for some δ >

0 and the absolute regularity condition (5) is satisfied, then for any k, l = 1, 2,
σkl < ∞.

If in addition σkl > 0, 1 ≤ k, l ≤ 2, then the sequence of processes of {Zn(λ); 0 ≤
λ ≤ 1}n∈N converges in distribution towards a zero-mean Gaussian process with
representation

Z(λ) = (1 − λ)W1(λ) + λ(W2(1) − W2(λ)), 0 ≤ λ ≤ 1,

where {W1(λ),W2(λ)}0≤λ≤1 is a two-dimensional zero-mean Brownian motion with
covariance kernel matrix with entriesCov(Wk(s),Wl(t)) = min(s, t)σkl , k, l = 1, 2.

Proof See Appendix.

Remark 3 The covariance kernel of the Gaussian process Z defined in Theorem 1 is
given for all s, t ∈ [0, 1] by

Δ(s, t) = Cov(Z(s), Z(t))

= σ11(1 − s)(1 − t)min(s, t) + σ22st[1 − s − t + min(s, t)]
+σ12{t(1 − s)[s − min(s, t)] + s(1 − t)[t − min(s, t)]}. (6)

Theorem 2 Assume (A1), (A2) and (A4) hold, h is twice differentiable with bounded
second-order derivatives ∂2h(x, y)/∂x∂ y, and the integral

∫ ∫
(∂h(x, y)/∂ y)dF(x)dF(y)

is finite. Then, under H1,n, if

sup
1≤i, j≤n

E

[
|h(Xi , X j )|2+δ

]
, sup

n≥1
sup
i, j

E

[
|h(Yni ,Ynj )|2+δ

]
,

sup
n≥1

sup
1≤i, j≤n

E

[
|h(Xi ,Ynj )|2+δ

]
,

∫ ∫

R2
|h(x, y)|2+δdF(x)dF(y),

sup
n≥1

∫ ∫

R2
|h(x, y)|2+δdG(n)(x)dG(n)(y), sup

n≥1

∫ ∫

R2
|h(x, y)|2+δdF(x)dG(n)(y)

are finite for some δ > 0, if for any k, l = 1, 2, σkl > 0, then the sequence of processes
{Zn(λ); 0 ≤ λ ≤ 1}n∈N converges in distribution towards a Gaussian process Z̃ with
mean (1 − λ)λA and representation

Z̃(λ) = (1 − λ)λA + Z(λ), 0 ≤ λ ≤ 1,

where {Z(λ)}0≤λ≤1 is the zero-mean Gaussian process defined in Theorem 1.
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Proof See Appendix. �
Theorem 3 Assume (A1)–(A3) hold and that under H1, the integrability conditions
in Theorem 2 hold. Then,

n−1/2Z∗
n(t)

a.s.−→n→∞
{

θ(F, F)t(λ0 − t) + θ(F,G)t(1 − λ0), 0 ≤ t ≤ λ0
θ(G,G)(t − λ0)(1 − t) + θ(F,G)λ0(1 − t), λ0 ≤ t < 1.

(7)

Proof See Appendix.

Theorem 4 Assume that the assumptions of Theorem 2 hold. Let (Z(λ) : 0 ≤ λ ≤ 1)
be the limiting process defined in Theorems 1 and 2 , and Δ its covariance kernel.
Then

(i) UnderH0, as n tends to infinity, one has the following convergence in distribution,

T1,n −→ sup
λ∈[0,1]

|Z(λ)|

T2,n −→
∑

j≥1

ζ jχ
2
j ,

where the χ2
j ’s are iid chi-square random variables with one degree of freedom

and the ζ j ’s are standing for the eigenvalues of the linear integral operator ∇
defined for any square integrable function τ on [0, 1] by

∇[τ(·)] =
∫ 1

0
Δ(·, s)τ (s)ds. (8)

(ii) Under H1,n, as n tends to infinity, one has the following convergence in distribu-
tion,

T1,n −→ sup
λ∈[0,1]

|(1 − λ)λA + Z(λ)|

T2,n −→
∑

j≥1

ζ jχ
∗2
j ,

where the χ∗2
j ’s are iid non-central chi-square random variables with one degree

of freedom and non-centrality parameters ρ2
j ζ

−1
j with the e j ’s standing for the

eigenvectors of the integral operator ∇, associated with the eigen-value ζ j , and

ρ j = A
∫ 1

0
λ(1 − λ)e j (λ)dλ.

(iii) UnderH1, as n tends to infinity, one has the following convergence in probability,

T1,n −→ ∞, T2,n −→ ∞.
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Proof (i) From Theorem 1 and the continuous mapping theorem, T1,n and T2,n con-
verge in distribution respectively to supλ∈[0,1] |Z(λ)| and ∫ 1

0 Z2(λ)dλ.

Now, we show that
∫ 1
0 Z2(λ)dλ has the same distribution as a sum of weighted

iid chi-square distribution with one degree of freedom. Noting that Δ is a Mercer
kernel (it is easy to prove), it follows from Riesz and Nagy (1972) that the integral
operator defined by (8) admits eigenvalues ζ1 ≥ ζ2 ≥ . . . ≥ 0 with associated
eigenfunctions e1, e2, . . . forming an orthonormal basis of L2[0, 1], the set of square
integrable functions on [0, 1]. From this result, it is an easy matter that the zero-mean
Gaussian process Z as a function in L2[0, 1], has the Karhunen-Loève representation

Z(λ) =
∑

j≥1

N je j (λ), λ ∈ [0, 1],

with the independent random variables’ N j ’s defined as N j = ∫
[0,1] Z(λ)e j (λ)dλ ∼

N (0, ζ j ). One easily deduces from this that in distribution

∫ 1

0
Z2(λ)dλ =

∑

j≥1

ζ jχ
2
j ,

where the χ2
j ’s are iid chi-square random variables with one degree of freedom.

(ii) From Theorem 2 and the continuous the mapping theorem, T1,n and T2,n converge
in distribution respectively to supλ∈[0,1] |(1− λ)λA+ Z(λ)| and ∫ 1

0 |(1− λ)λA+
Z(λ)|2dλ.
For the same reasons as above, one has the decomposition

(1 − λ)λA + Z(λ) =
∑

j≥1

Ñ j e j (λ), λ ∈ [0, 1],

with the independent random variables Ñ j ’s defined as Ñ j = ∫ 1
0 Z(λ)e j (λ)dλ ∼

N (ρ j , ζ j ).
It follows from this that, in distribution,

∫ 1

0
|(1 − λ)λA + Z(λ)|2dλ =

∑

j≥1

ζ jχ
∗2
j ,

where the χ∗2
j ’s are non-central iid chi-square random variables with one degree

of freedom and non-centrality parameter ρ2
j ζ

−1
j .

(iii) The last part is an easy consequence of Theorem 3.

�
Define σ 2 by

σ 2 = Var(hF,1(X1)) + 2
∑

j=1

Cov(hF,1(X1), hF,1(X1+ j )).
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Corollary 1 Assume that the assumptions of Theorem 2 hold, and that h is such that
its associated hF,1 and hF,2 satisfy hF,1(x) = −hF,2(x). Then

(i) Under H0, as n tends to infinity, one has the following convergences in distribution

T1,n −→ σ sup
λ∈[0,1]

∣∣∣W 0(λ)

∣∣∣

T2,n −→ σ 2
∑

j≥1

1

j2π2χ2
j .

(ii) Under H1,n, as n tends to infinity, one has the following convergences in distribu-
tion

T1,n −→ sup
λ∈[0,1]

∣∣∣(1 − λ)λA + σW 0(λ)

∣∣∣

T2,n −→
∑

j≥1

1

j2π2χ∗2
j ,

where W 0 is the Brownian bridge on [0, 1], the χ2
j ’s and χ∗2

j ’s are as in Theorem 4

but the non-centrality parameters are 2A2
{
2[1 − (−1) j ]/ jπ}2 σ−2.

Proof i- If h is such that its associated hF,1 and hF,2 satisfy hF,1(x) = −hF,2(x),
then from the proof of Theorem 1 one sees that W1(λ) = −W2(λ). Whence, the
representation of the limit process Z in that theorem reduces to

Z(λ) = W1(λ) − λW1(1), λ ∈ [0, 1],

where for any λ ∈ [0, 1], W1(λ) = σW 0(λ) with W 0(λ) standing for the Brow-
nian bridge on [0, 1]. Thus, again, from the continuous mapping theorem, one has
that T1,n and T2,n converge in distribution respectively to supλ∈[0,1] |σW 0(λ)| and
σ 2

∫ 1
0 |W 0(λ)|2dλ. Using the Karhunen-Loève expansion of the Brownian bridge

given e.g. in Shorack and Wellner (1986) or Pycke (2001), one has ζ j = 1
j2π2 and

e j (λ) = √
2 sin( jπλ), j ≥ 1, and the convergence in distribution of T2,n stated in the

theorem follows by elementary computations.
i i- From Theorem 4, T1,n and T2,n converge in distribution respectively to
supλ∈[0,1] |(1 − λ)λA + σW 0(λ)| and ∫ 1

0 |(1 − λ)λA + σW 0(λ)|2dλ.
The convergence result stated for T2,n in the corollary results from the Karhunen-

Loève expansion of the Gaussian process (1−λ)λA+σW 0(λ), as sketched in Sect. 4,
and for which more details can be found in Ngatchou-Wandji (2009).

Remark 4 It is easy to check that anti-symmetric kernels h are such that their associated
hF,1 and hF,2(x) satisfy the property hF,1(x) = −hF,2(x).

Remark 5 In the context of Corollary 1, underH0, the asymptotic distributions of T1,n
and T2,n can be approximated, as done in Sect. 4. Under H1,n it is not easy to do this
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for the asymptotic distribution of T1,n . This is a great disadvantage over T2,n whose
asymptotic distribution underH0 as well as underH1,n can be approximated, even for
more general kernel h, by using Theorem 4, and proceeding in a way fully described
in Ngatchou-Wandji (2009).

4 Practical considerations

4.1 Numerical simulations

Here, we apply our results to detecting a change in the mean and/or in the vari-
ance and/or in the correlation of data from some simple models. Concretely, we
check the difference between the distributions of the observations only by check-
ing the differences between their means and/or variances and/or autocorrelations. In
this purpose, we consider the kernels h(x, y) = 1l(x < y) and h(x, y) = x − y. For
h(x, y) = 1l(x < y), from simple computations one shows that θ(F, F) = 1/2 and
hF,1(x) = 1/2 − F(x) = −hF,2(x). For h(x, y) = x − y, it is a trivial matter that
θ(F, F) = 0 and that by Remark 4, hF,1(x) = −hF,2(x) as h is anti-symmetric.
Consequently, Corollary 1 holds for these two kernels whose corresponding σ 2 are
respectively

σ 2
1 = σ 2 = Var [F(X1)] + 2

∑

j≥1

Cov(F(X1), F(X1+ j ))

and

σ 2
2 = σ 2 = Var (X1) + 2

∑

j≥1

Cov(X1, X1+ j ).

We sampled 1000 sets of n = 200 data X1, X2, . . . , Xn from the model

Xi =
{

εi i = 1, . . . , 100
μ + ρXi−1 + ωεi i = 101, . . . , 200,

(9)

where μ is a real number, ω is a positive number, the εi ’s are iid and for all i =
1, . . . , 200, εi ∼ N (0, 1), or εi ∼ T (3) (Student distribution with 3 degrees of
freedom), or εi = Ei −1with Ei ∼ E(1) (E(1) exponential distribution with parameter
1).

We first apply our Kolmogorov-Smirnov and Cramér-vonMises type tests to testing
μ = 0 against μ �= 0 for ω = 1 and ρ = 0 (testing a change in the mean of a shifted
white noise). Next, we apply the two tests to testing ω = 1 against ω �= 1 for μ = 0
and ρ = 0 (testing change in the variance of awhite noise). Finally, we consider testing
ρ = 0 against ρ �= 0 for μ = 0 and ω = 1 (testing a change in the autocorrelation of
an AR(1) model).

For j = 1, 2 let cα j be the critical value at level of significance α ∈ [0, 1], of the
test based on Tj,n . Then the empirical power of the test can be computed as the ratio
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of the number of samples for which Tj,n > cα j over the number of replications (taken
here to be 1000). However, the critical values of our tests are difficult to compute. For
this reason, as in Ngatchou-Wandji (2009), we use the p-value method as follows :
instead of counting the number of samples for which Tj,n > cα j , we rather count the
number of samples for which the p-value is less than α. Denoting by σ̂ j an estimator
of σ j when this number is unknown, from Corollary 1, the p-values of our tests are
given respectively by

p1 = P

(
sup

λ∈[0,1]
|W 0(λ)| >

T1,n
σ̂1

)

and

p2 = P

⎛

⎝
∑

j≥1

1

j2π2χ2
j >

T2,n
σ̂ 2
2

⎞

⎠ ,

wherewe recall thatW 0 is the Brownian bridge on [0, 1] and theχ2
j ’s are iid chi-square

random variables with one degree of freedom. Note that for iid Xi ’s the covariance
terms in the expressions of σ 2 vanish, so that under H0, for h(x, y) = 1l(x < y),
σ 2 = Var[F(X1)] = 1/12 and needs not be estimated, while for h(x, y) = x − y,
σ 2 = Var(X1) which can be estimated by the sample variance as done in the trials.
From Billingsley (1999) p. 103, one has

p1 = −2
∞∑

| j |=0

(−1) j exp

[
−2 j2

(
T1,n
σ̂1

)2
]

.

Truncating the sum to the most significant terms yields an approximation for p1. Also,
truncating the sum in the expression of p2, many well known results can be used for
approximating p2. Here, we use those of Imhof (1961).

On any of the graphics below, the green color represents the level of significance
of the test. On Fig. 2, the blue color represents the empirical power of the test based
on T1,n while the red one represents that of the test based on T2,n . The upper graphics
in Fig. 2 display the empirical power functions of both tests as functions of μ ∈
{0, 0.1, 0.2, . . . , 1.1}, for observations from (9) with ρ = 0, ω = 1 and standard
Gaussian noises. The first graphic corresponds to the kernel h(x, y) = 1l(x < y),
while the second corresponds to the kernel h(x, y) = x − y. On both graphics, one
can observe that at μ = 0 the test based on T2,n estimates the nominal level of the
test more accurately than the one based on T1,n . More over, it has a larger power for
smaller values of the mean.

The lower graphics on Fig. 2 are respectively the power functions for the same
kernels, for data from (9) with ρ = 0, ω = 1 with Student noises with 3 degrees of
freedom, and centered exponential noises (from exponential distribution with param-
eter 1). One can see on these graphics that the powers grow a bit more slowly than
those in the upper graphics.
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The upper graphics in Fig. 3 present the power functions of both tests as functions
of ω2 ∈ {1, 1.2, 1.4, . . . , 2, 2.2, . . . , 2.8}, for observations from (9) with μ = 0 and
ρ = 0. From these graphics, one sees that for the kernel h(x, y) = 1l(x < y) both
tests are not sensitive to any change in the variance, while they are for h(x, y) = x− y.
Here, in contrast to the previous situations, the test based on T1,n does better than the
one based on T2,n .

The lower graphics in Fig. 3 exhibit the power functions of both tests as functions
of ρ ∈ {0, .05, .1, .2, .3, .4, .5, .6, .7, .8, .85, .9, .95}, for observations from (9) with
μ = 0 and ω = 1. One can see that for the kernels h(x, y) = 1l(x < y) and
h(x, y) = x − y, both tests are able to detect change in the autocorrelation. In the
vicinity of the null hypothesis the test based on T2,n does better than the one based on
T1,n , while far from this hypothesis, the test based on T1,n does better than that based
on T2,n .

We did a lot of trials. In particular, we studied the detection of a change in the mean
of a shifted Student white noise with 3, 4 and 5 degrees of freedom (T ( j), j = 3, 4, 5)
associated with h(x, y) = x − y. Our tests did not detect a mean change in the T (3)
case. This is likely due to the fact that with this kernel, the theoretical results assume
the existence of moment of order larger than 2, which is not the case for T (3). For the
T (4) and T (5) cases, a mean change was detected. We do not present the results as
they were very similar to those presented.

4.2 Concluding remarks

The main theoretical results in this paper are the same as those of Dehling et al.
(2015). But they are established for more general kernels. In addition to the traditional
Kolmogorov-Smirnov (KS) type test used for change-point detection, a Cramér-von
Mises (CM) type test is studied. For the kernels and the data considered, the CM test
seems to have better power properties than the KS test for detecting small changes in
the mean of a shifted Gaussian white noise. For the kernel h(x, y) = 1l(x < y), both
test are not sensitive to change in the variance of the observations studied. This may
be explained by the fact that this function involves the rank of the observations rather
than the observations themselves. Furthermore, the corresponding tests are associated
with uniform random variables (F(X j ) ∼ U[0, 1]) through σ 2. This is not the case
for the tests based on h(x, y) = x − y which involves directly the observation and
are related to their variances through σ 2 and for which change in the variance can be
detected by the tests studied here (with a favor to KS). Our study also shows that for
each of these kernels, our tests are able to detect changes in the autocorrelation of an
AR(1) model. The KS test does better far from the null hypothesis, while the CM does
better in the vicinity of the null hypothesis. However, the results seem to show that
they are more adapted to detect changes in the mean than changes in the variance or
autocorrelation. Indeed, in testing the mean, the power of the tests grow quickly to 1,
as one moves away from the null hypothesis.
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Fig. 2 Empirical power of CM test (red color). Empirical power of KS test blue color. Nominal level
5% green color. First row : change in the mean of a shifted Gaussian white noise respectively with the
"indicator" and "difference" kernels. Second row : change in the mean of a shifted Student white noise
with the "indicator" kernel, and change in the mean of a shifted centered exponential white noise with the
"difference" kernel

5 Appendix: proofs of the results

5.1 Preliminary results

In this subsection, we prove some preliminary results necessary to the proofs of The-
orems 1 and 2 .

Proposition 1 Under the conditions of Theorem 1, we have, in probability

n−3/2 sup
0≤λ≤1

∣∣∣∣
[nλ]∑

i=1

n∑

j=[nλ]+1

gF (Xi , X j )

∣∣∣∣ −→n→∞ 0.

Under the conditions of Theorem 2, we have, in probability

n−3/2 sup
0≤λ≤1

∣∣∣∣
[nλ]∑

i=1

n∑

j=[nλ]+1

gG(n) (Xi ,Ynj )

∣∣∣∣ −→n→∞ 0.

123



Tests for change-points detection 301

1.0 1.5 2.0 2.5

0.
02

0.
06

0.
10

Indicator − Gaussian

variance

po
w
er

1.0 1.5 2.0 2.5

0.
2

0.
6

1.
0

Difference − Gaussian

variance

po
w
er

0.0 0.2 0.4 0.6 0.8

0.
2

0.
6

1.
0

Indicator − AR(1)

correlation

po
w
er

0.0 0.2 0.4 0.6 0.8

0.
2

0.
6

Difference − AR(1)

correlation

po
w
er

Fig. 3 Empirical power of CM test (red color). Empirical power of KS test blue color. Nominal level
5% green color. First row : change in the variance of a shifted Gaussian white noise respectively with
the "indicator" and the "difference" kernels. Second row : change in the correlation of an AR(1) model
respectively with the "indicator" and the "difference" kernels

Proof We only prove the first part. This needs two lemmas that we first state and prove.

Lemma 1 Under the conditions of Theorem 1, there exists a Constant Cst > 0 such
that

E

⎧
⎪⎨

⎪⎩

⎡

⎣
[nλ]∑

i=1

n∑

j=[nλ]+1

gF (Xi , X j )

⎤

⎦
2
⎫
⎪⎬

⎪⎭
≤ Cst[nλ](n − [nλ]).

Proof of Lemma 1 We can write

E

⎧
⎪⎨

⎪⎩

⎡

⎣
[nλ]∑

i=1

n∑

j=[nλ]+1

gF (Xi , X j )

⎤

⎦
2
⎫
⎪⎬

⎪⎭
≤

[nλ]∑

i=1

n∑

j=[nλ]+1

E

{[
gF (Xi , X j )

]2}

+2
∑

1≤i1<i2≤[nλ]

∑

[nλ]+1≤ j1< j2≤n

H [(i1, j1), (i2, j2)]

= An(λ) + 2Bn(λ).

123



302 J. Ngatchou-Wandji et al.

where

H [(i1, j1), (i2, j2)] = E

{ [
gF (Xi1,X j1) − hF,1(Xi1) − hF,2(X j1) + θ(F, F)

]

× [
gF (Xi2X j2) − hF,1(Xi2) − hF,2(X j2) + θ(F, F)

] }
.

From the integrability condition, we have

sup
i, j∈N

E

{[
gF (Xi , X j )

]2} ≤ Cst,

then

An(λ) ≤ Cst[nλ](n − [nλ]).

Since
∫

R

[
gF (x, y) − hF,1(x) − hF,2(y) + θ(F, F)

]
dF(x) = 0

so from Lemma 1 of Yoshihara (1976), we have the following inequalities:
(a) If 1 ≤ i1 < j1 ≤ [nλ], [nλ] + 1 ≤ i2 < j2 ≤ n and i2 − i1 ≥ j2 − j1, then

H [(i1, j1), (i2, j2)] ≤ Cstβ
δ

2+δ (i2 − i1).

Then we deduce

∑

1≤i1<i2≤[nλ]

∑

[nλ]+1≤ j1< j2≤n

H [(i1, j1), (i2, j2)] ≤ Cst[nλ](n − [nλ])
n∑

k=1

kβ
δ

2+δ (k)

Cst[nλ](n − [nλ])
n∑

k=1

kβ
δ

2+δ (k) ≤ Cst[nλ](n − [nλ]),

where k = j2 − i2.
Suppose k fixed, we have [nλ] ways to choose i1, once i1 is chosen we have one

way to choose i2 = i1 + k. For j1 we have n − [nλ] ways to choose j1 and then for
each j1, j2 need to be in the interval [ j1, j1 + k] and there are exactly k integers in
such interval.

(b) Similarly, if 1 ≤ i1 < j1 ≤ [nλ], [nλ]+1 ≤ i2 < j2 ≤ n and i2− i1 ≤ j2− j1,
then

H [(i1, j1), (i2, j2)] ≤ M0β
δ

2+δ ( j2 − j1).

Thus, we deduce that

Bn(λ) ≤ Cst[nλ](n − [nλ])
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and Lemma 1 is proved. �
We now define the process Gn(λ), 0 ≤ λ ≤ 1 by

Gn(λ) = n−3/2
[nλ]∑

i=1

n∑

j=[nλ]+1

gF (Xi , X j ), 0 ≤ λ ≤ 1.

Lemma 2 Under the conditions of Theorem 1, we have

E

(∣∣∣Gn(λ) − Gn(λ′)
∣∣∣
2) ≤ Cst

n
(λ − λ′), for all 0 ≤ λ′ ≤ λ ≤ 1.

Proof of Lemma 2 We can write

E
( ∣∣Gn(λ) − Gn(λ′)

∣∣2 ) ≤ 2n−3
E

⎧
⎪⎨

⎪⎩

⎡

⎣
[nλ′]∑

i=1

[nλ]∑

j=[nλ′]+1

gF (Xi , X j )

⎤

⎦
2
⎫
⎪⎬

⎪⎭

+2n−3
E

⎧
⎪⎨

⎪⎩

⎡

⎣
[nλ]∑

i=1+[nλ′]

n∑

j=[nλ]+1

gF (Xi , X j )

⎤

⎦
2
⎫
⎪⎬

⎪⎭
.

From Lemma 1, we deduce that

E

(∣∣Gn(λ) − Gn(λ′)
∣∣2
)

≤ Cst

n3
{[nλ′]([nλ] − [nλ′]) + ([nλ] − [nλ′])(n − [nλ′])}

×Cst

n
(λ − λ′)

and Lemma 2 is proved. �
From Lemma 2, we deduce that

P
(∣∣Gn(λ) − Gn(λ′)

∣∣ ≥ ε
) ≤ Cst

ε2n
(λ − λ′)

for all ε > 0. It implies for 0 ≤ l1 ≤ l2 ≤ n with l1, l2, n ∈ N,

P

(∣∣∣∣Gn
( l2
n

)
− Gn

( l1
n

)∣∣∣∣ ≥ ε

)
≤ Cst

ε2n
(l2 − l1) ≤ Cst

ε2n
5
3

(l2 − l1)
4
3 .

Consider the partial sum process defined by S0 = 0 and Si = ∑i
j=1 A j where

A j = Gn( j
n ) − Gn( j−1

n ) if 1 ≤ j ≤ n − 1 and 0 otherwise. It results that Si = Gn( in ).
The last inequality is equivalent to

P
( ∣∣Sl2 − Sl1

∣∣ ≥ ε
) ≤ Cst

ε2

(
l2 − l1

n
5
4

) 4
3

.
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From Theorem 10.2 of Billingsley (1999), we easily deduce that

P

(
max

1≤i≤n−1
|Si | ≥ ε

)
≤ Cst

ε2

(
l2 − l1

n
5
4

) 4
3 ≤ Cst

ε2n
1
3

which implies that, in probability,

n−3/2 sup
0≤λ≤1

∣∣∣∣
[nλ]∑

i=1

n∑

j=[nλ]+1

gF (Xi , X j )

∣∣∣∣ −→n→∞ 0.

This completes the proof of Proposition 1. �
We need the following result proved by Oodaira and Yoshihara (1972).
Let ξ1, ξ2, . . . , ξn, . . . be a strictly stationary sequence of zero-mean random vari-

ables, and let

σ 2∗ = E(ξ21 ) + 2
∞∑

i=1

E (ξ1ξi+1) .

Proposition 2 Assume E
(|ξi |2+δ

)
< ∞ for some positive δ and ξ1, ξ2, . . . , ξn, . . . is

α-mixing with α-rate satisfying

∞∑

i=1

[α(i)] δ
2+δ < ∞.

Then σ 2∗ < ∞.

If σ∗ > 0, then the sequence of processes

Sn(λ) = 1

σ∗
√
n

[nλ]∑

i=1

ξi , λ ∈ [0, 1]

converges weakly to a Wiener measure on (D,D), where D is the σ -fields of Borel
sets for the Skorohod topology.

Proof See the proof of Theorem 2 of Oodaira and Yoshihara (1972).

Proposition 3 Under the conditions of Theorem 1, we have

{
1√
n

[nλ]∑

i=1

(
hF,1(Xi )

hF,2(Xi )

)}

0≤λ≤1

−→n→∞
{(

W1(λ)

W2(λ)

)}

0≤λ≤1
. (10)

Under the conditions of Theorem 2, we have

{
1√
n

[nλ]∑

i=1

(
hF,1(Xi )

hG(n),2(Yni )

)}

0≤λ≤1

−→n→∞
{(

W1(λ)

W2(λ)

)}

0≤λ≤1
. (11)
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Proof We only prove (11). The part relating to (10) involves a series which is not a
triangular array. It is more easier to handle than (11).

For establishing (11), we need to establish a finite-dimensional convergence and a
tightness results.

Starting by the finite-dimensional convergence, by the Cramér-Wold device it suf-
fices to show that for any k ∈ N

∗, any a j,b j , λ j ∈ R, a1 < . . . < ak , b1 < . . . < bk ,
0 = λ0 < λ1 < . . . < λk = 1

k∑

j=1

1√
n

[nλ j ]∑

i=[nλ j−1]+1

[
a j hF,1(Xi ) + b j hG(n),2(Yni )

]

converges in distribution to a Gaussian random variable.

For that, we need the following lemma.

Lemma 3 (Harel and Puri 1989) Let {Xni } be a sequence of zero-mean absolutely
regular random variables (rv)’s with rates satisfying

∑

n≥

[
β(n)

]δ/(2+δ)
< ∞ for some δ > 0. (12)

Suppose that for any κ , there exists a sequence {Y κ
ni } of rv’s satisfying (12) such that

sup
n∈N

max
0≤i≤n

|Y κ
ni | ≤ Bκ < ∞, (13)

where Bκ is some positive constant

sup
n∈N

max
0≤i≤n

E
(|X∗

ni − Y κ
ni |2+δ

) −→ 0 as κ → ∞ (14)

1

n
E

[( n∑

i=1

X∗
ni

)2] −→ c as n → ∞, (15)

where c is some positive constant

1

n
E

[( n∑

i=1

Y κ
ni − E(Y κ

ni )
)2] −→ cκ as n → ∞, (16)

where cκ is some constant > 0

cκ −→ c as κ → ∞. (17)

Then

1

n

n∑

i=1

X∗
ni
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converges in distribution to the normal distribution with mean 0 and variance c.

Without loss of generality, we take k = 2 and 0 = λ0 < λ1 < λ2 = 1, a1 < a2,
b1 < b2.
The assumption (12) readily holds from (5).

Define, for j = 1, 2,

ψ
( j)
ni = a j hF,1(Xi ) + b j hG(n),2(Yni ).

For establishing (15), we need proving that, as n tends to infinity,

E

⎡

⎢⎣

⎛

⎝ 1√
n

⎧
⎨

⎩

[nλ1]∑

i=1

ψ
(1)
ni +

n∑

i=[nλ1]+1

ψ
(2)
ni

⎫
⎬

⎭

⎞

⎠
2
⎤

⎥⎦

tends to some positive constant c.
We have

E

⎧
⎪⎨

⎪⎩

⎡

⎣ 1√
n

⎛

⎝
[nλ1]∑

i=1

ψ
(1)
ni +

n∑

i=[nλ1]+1

ψ
(2)
ni

⎞

⎠

⎤

⎦
2
⎫
⎪⎬

⎪⎭
= 1

n

{
E

⎡

⎣
([nλ1]∑

i=1

ψ
(1)
ni

)2⎤

⎦

+E

⎡

⎣
([nλ1]∑

i=1

ψ
(1)
ni

)⎛

⎝
n∑

i=[nλ1]+1

ψ
(2)
ni

⎞

⎠

⎤

⎦+ E

⎡

⎢⎣

⎛

⎝
n∑

i=[nλ1]+1

ψ
(2)
ni

⎞

⎠
2
⎞

⎟⎠
}
.

Since the random variables ψ
(1)
ni and ψ

(2)
ni are centered, we obtain

E

[( [nλ1]∑

i=1

ψ
(1)
ni

)2
]

= [nλ1]E
[(

ψ
(1)
n1

)2]+ 2
[nλ1]∑

i=1

[nλ1]−i∑

j=1

E

[(
ψ

(1)
ni ψ

(1)
n,i+ j

)]
.

From the condition of Theorem2,we deduce thatE

[(
ψ

(1)
n1

)2+δ
]

< ∞, which implies

that

sup
n,i, j≥1

∣∣∣E
(
ψ

(1)
ni ψ

(1)
n,i+ j

)∣∣∣ ≤ β
δ

2+δ ( j)
{
E

(∣∣ψ(1)
ni

∣∣2+δ
) } 1

2+δ
{
E

(∣∣ψ(1)
n,i+ j

∣∣2+δ
) } 1

2+δ .

We get

E

[( [nλ1]∑

i=1

ψ
(1)
ni

)2
]

≤ [nλ1]E
[(

ψ
(1)
n1

)2]+ 2[nλ1]
[nλ1]∑

j=1

β
δ

2+δ ( j)M2,
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where M = supn≥1

{
E

[(
ψ

(1)
n1

)2+δ
]} 1

2+δ

.

It results that

lim
n→∞

1

n

{
[nλ1]E

[(
ψ

(1)
n1

)2]+ 2
[nλ1]∑

i=1

[nλ1]−i∑

j=1

∣∣∣E
(
ψ

(1)
ni ψ

(1)
n,i+ j

)∣∣∣
}

≤ λ1

{
E

[(
ψ

(1)
n1

)2]+ 2
∞∑

j=1

β
δ

2+δ ( j)M2
}
. (18)

We also have

E

⎡

⎣
([nλ1]∑

i=1

ψ
(1)
ni

)⎛

⎝
n∑

i=[nλ1]+1

ψ
(2)
ni

⎞

⎠

⎤

⎦ =
[nλ1]∑

i=1

n∑

j=[nλ1]+1

E
(
ψ

(1)
ni ψ

(2)
nj

)
.

From

sup
n≥1

sup
i, j≥1

∣∣∣E
(
ψ

(1)
ni ψ

(2)
nj

)∣∣∣ ≤ β
δ

2+δ ( j − i)MM∗,

where M∗ = supn≥1

{
E

[(
ψ

(2)
n1

)2+δ
]} 1

2+δ

, it results that

lim
n→∞

1

n

[nλ1]∑

i=1

n∑

j=[nλ1]+1

∣∣∣E
(
ψ

(1)
ni ψ

(2)
nj

)∣∣∣ ≤ λ1

∞∑

j=1

β
δ

2+δ ( j)MM∗. (19)

Similarly, we get

lim
n→∞

1

n
E

⎡

⎣
( n∑

i=[nλ1]+1

ψ
(2)
ni

)2
⎤

⎦ ≤ (1 − λ1)
{
E

[(
ψ

(1)
n1

)2]+ 2
∞∑

j=1

β
δ

2+δ ( j)(M∗)2
}
.(20)

From (18)-(20), we deduce (15).
Now, we turn to proving (14). For all i ≥ 1, and for any κ > 0, define

ψ
( j),κ
ni =

{
ψ

( j)
ni if

∣∣ψ( j)
ni

∣∣ ≤ κ

0 if
∣∣ψ( j)

ni

∣∣ ≥ κ, j = 1, 2.

It is immediate that

sup
n≥1

sup
i≥1

∣∣ψ( j)
ni

∣∣ ≤ κ < ∞.
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It results from the integrability condition in Theorem 2 that the sequences {ψ( j)
ni ; i ≥

1, j = 1, 2} are uniformly integrable.
Whence

sup
i≥1

E

(∣∣∣ψ( j)
ni − ψ

( j),κ
ni

∣∣∣
2+δ

)
−→ 0 as κ → ∞, j = 1, 2

and (14) is proved.
The proof of (16), that is

lim
n→∞E

⎡

⎢⎣

⎛

⎝ 1√
n

⎧
⎨

⎩

[nλ1]∑

i=1

[
ψ

(1),κ
ni − E

(
ψ

(1),κ
ni

)]
+

n∑

i=[nλ1]+1

[
ψ

(2),κ
ni − E

(
ψ

(2),κ
ni

)]
⎫
⎬

⎭

⎞

⎠
2
⎤

⎥⎦ = cκ ,

where cκ is some positive constant, is similar to that of (15).
It remains to prove (17).

For any i, j = 1, 2, denote byψ
( j),κ
i the counterpart ofψ( j),κ

ni obtained by substituting
the Yni ’s for the Xi ’s.

We have

cκ = λ1E

{[
ψ

(1),κ
1 − E

(
ψ

(1),κ
1

)]2}+ 2λ1

∞∑

i=1

E

{[
ψ

(1),κ
1 − E

(
ψ

(1),κ
1

)] [
ψ

(1),κ
i+1 − E

(
ψ

(1),κ
i+1

)]}

+λ1

∞∑

i=1

E

{[
ψ

(1),κ
1 − E

(
ψ

(1),κ
1

)] [
ψ

(2),κ
i+1 − E

(
ψ

(2),κ
i+1

)]}

+(1 − λ1)E

{[
ψ

(2),κ
1 − E

(
ψ

(2),κ
1

)]2}

+2(1 − λ1)

∞∑

i=1

E

{[
ψ

(2),κ
1 − E

(
ψ

(2),κ
1

)] [
ψ

(1),κ
i+1 − E

(
ψ

(2),κ
i+1

)]}
.

By the Lebesgue dominated convergence theorem, one obtains

E

{[
ψ

(1),κ
1 − E

(
ψ

(1),κ
1

)]2} −→ E

[(
ψ

(1)
1

)2]
as κ → ∞,

E

{[
ψ

(1),κ
1 − E

(
ψ

(1),κ
1

] [
(ψ

(1),κ
i+1 − E

(
ψ

(1),κ
i+1

)]} −→ E

(
ψ

(1)
1 ψ

(1)
i+1

)
as κ → ∞,

E

{[
ψ

(1),κ
1 − E

(
ψ

(1),κ
1

)] [
ψ

(2),κ
i+1 − E

(
ψ

(2),κ
i+1

)]} −→ E

(
ψ

(2)
1 ψ

(2)
i+1

)
as κ → ∞,

E

{[
ψ

(2),κ
1 − E

(
ψ

(2),κ
1

)]2} −→ E

[(
ψ

(2)
1

)2]
as κ → ∞

and

E

{[
ψ

(2),κ
1 − E

(
ψ

(2),κ
1

)] [
ψ

(2),κ
i+1 − E

(
ψ

(2),κ
i+1

)]} −→ E

(
ψ

(2)
1 ψ

(2)
i+1

)
as κ → ∞.
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Therefore

lim
κ→∞ cκ = c

and (17) is proved. Whence, the finite dimensional convergence is established.
For proving the tightness, we need the following Lemma.

Lemma 4 (Phillips and Durlauf 1986) Probability measures on a product space are
tight iff all the marginal probability measures are tight on the component spaces.

It results from this lemma that it suffices to prove the tightness of each component of
the sequence of processes in (11). It is immediate from Proposition 2 that the first is
tight. For the second, define

Mn(λ) = σ
−1/2
22

1√
n

[nλ]∑

i=1

hG(n),2(Yni ).

If λ1 ≤ λ ≤ λ2, from the integral conditions and condition (5), there exists a constant
C such that

E

(
|Mn(λ) − Mn(λ1)|2|Mn(λ2) − Mn(λ)|2

)
≤ C

1

n2
([nλ] − [nλ1])([nλ2] − [nλ])

≤ C
1

n2
([nλ1] − [nλ])([nλ] − [nλ2])

≤ C
1

n2
([nλ2] − [nλ1])2

≤ C(λ2 − λ1)
2.

If λ2 −λ1 ≥ 1/n the last inequality follows and if λ2 −λ1 < 1/n, then either λ1 and λ

lie in the same subinterval [(i −1)/n, i/n] or else λ and λ2 do. In either of these cases
the left hand of last inequality vanishes. From Theorem 13.5 of Billingsley (1999),
the process Mn is tight. This ends the proof of Proposition 3. �

5.2 Proof of Theorem 1

Using the Hoeffding decomposition, we can write Zn(λ) as

Zn(λ) = n−3/2
[nλ]∑

i=1

n∑

j=[nλ]+1

[
hF,1(Xi ) + hF,2(X j ) + gF (Xi , X j )

]

= n−3/2

⎡

⎣(n − [nλ])
[nλ]∑

i=1

hF,1(Xi ) + [nλ]
n∑

j=[nλ]+1

hF,2(X j )

⎤

⎦

+n−3/2
[nλ]∑

i=1

n∑

j=[nλ]+1

gF (Xi , X j ). (21)
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From Proposition 1, we have

n−3/2 sup
0≤λ≤1

∣∣∣∣
[nλ]∑

i=1

n∑

j=[nλ]+1

gF (Xi , X j )

∣∣∣∣ −→n→∞ 0

in probability.
Thus, by Slutsky’s lemma, it suffices to show that the sum of the first two terms

{
n−3/2(n − [nλ])

[nλ]∑

i=1

hF,1(Xi ) + n−3/2[nλ]
n∑

j=[nλ]+1

hF,2(X j )
}

0≤λ≤1

converges in distribution to the desired limit process.
It results from Proposition 2 that the process

{ 1√
n

[nλ]∑

i=1

hF,1(Xi )
}

0≤λ≤1

converges weakly to a Brownian motion {W (λ)}0≤λ≤1.
Proposition 3 yields

{ 1√
n

[nλ]∑

i=1

(
hF,1(Xi )

hF,2(Xi )

)}

0≤λ≤1
−→n→∞

{(W1(λ)

W2(λ)

)}

0≤λ≤1

in distribution on the space (D[0, 1])2 to (D[0, 1])2.
Now, we consider the mapping defined by

(
x1(λ)

x2(λ)

)
�→ (1 − λ)x1(λ) + λ(x2(1) − x2(λ)), 0 ≤ λ ≤ 1.

This is a continuous mapping from (D[0, 1])2 to D[0, 1]. Whence,

⎧
⎨

⎩n−3/2(n − [nλ])
[nλ]∑

i=1

hF,1(Xi ) + n−3/2[nλ]
n∑

j=[nλ]+1

hF,2(X j )

⎫
⎬

⎭
0≤λ≤1

−→n→∞ {Z(λ)}0≤λ≤1 ,

where for any λ ∈ [0, 1],

Z(λ) = (1 − λ)W1(λ) + λ[W2(1) − W2(λ)].

Whence, Theorem 1 is proved. �
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5.3 Proof of Theorem 2

Now we prove Theorem 2. Under the conditions of Theorem 2, we have the following
equality

Zn(λ) = Z∗
n(λ) − n−3/2[nλ](n − [nλ])θ(F, F)

= n−3/2[nλ](n − [nλ])θ(F,G(n)) − n−3/2[nλ](n − [nλ])θ(F, F)

+[nλ](n − [nλ])
n3/2

1

[nλ]
[nλ]∑

i=1

hF,1(Xi )

+[nλ](n − [nλ])
n3/2

1

(n − [nλ])
n∑

j=[nλ]+1

hG(n),2(Ynj )

+ 1

n3/2

[nλ]∑

i=1

n∑

j=[nλ]+1

gF (Xi ,Ynj ).

From Proposition 1, we deduce that

n−3/2 sup
0≤λ≤1

∣∣∣∣
[nλ]∑

i=1

n∑

j=[nλ]+1

gF (Xi ,Ynj )

∣∣∣∣ −→n→∞ 0

in probability.
From Proposition 2, we deduce that

n−1/2
[nλ]∑

i=1

hF,1(Xi )

converges weakly to the Brownian process {W1(λ)}0≤λ≤1 and

n−1/2
n∑

j=[nλ]+1

hG(n),2(Ynj )

converges weakly to the Brownian process {W2(1) − W2(λ)}0≤λ≤1 .
We have also from the H1,n

lim
n→∞ n−3/2[nλ](n − [nλ])θ(F,G(n)) − n−3/2[nλ](n − [nλ])θ(F, F) = λ(1 − λ)A.

From Proposition 3, we obtain that

⎧
⎨

⎩n−3/2(n − [nλ])
[nλ]∑

i=1

hF,1(Xi ) + n−3/2[nλ]
n∑

j=[nλ]+1

hG(n),2(Ynj )

⎫
⎬

⎭
0≤λ≤1
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−→n→∞
{
Z̃(λ)

}
0≤λ≤1 ,

where for any λ ∈ [0, 1],

Z̃(λ) = (1 − λ)W1(λ) + λ(W2(1) − W2(λ)).

This establishes Theorem 2.

5.4 Proof of Theorem 3

Let 1 ≤ [(n + 1)t] ≤ [nλ0], then

Z∗
n(t) = n−3/2

∑

1≤i< j≤[nλ0]
h(Xi , X j ) + n−3/2

[nλ0]∑

i=1

n∑

j=[nλ0]+1

h(Xi , X j )

−n−3/2
[ ∑

1≤i< j≤[(n+1)t]
h(Xi , X j ) +

∑

[(n+1)t]+1≤i< j≤[nλ0]
h(Xi , X j )

+
∑

[(n+1)t]+1≤i≤[nλ0]

∑

[nλ0]+1≤ j≤n

h(Xi , X j )

]

= R(1)
n + R(2)

n −
(
R(3)
n + R(4)

n + R(5)
n

)
.

First we prove that

n−1/2R(1)
n

a.s.−→n→∞ λ20θ(F, F)/2.

From the Hoeffding decomposition (4), we have

n−1/2R(1)
n = 1

2n2
U[nλ0]

= [nλ0]([nλ0] − 1)

2n2
θ(F, F) + [nλ0]([nλ0] − 1)

n2
2

[nλ0]
[nλ0]∑

i=1

hF,1(Xi )

+[nλ0]([nλ0] − 1)

2n2
U (2)

[nλ0]. (22)

As (h(1)
1 (Xi ))1≤i≤n is stationary and ergodic, we have

1

[nλ0]
[nλ0]∑

i=1

hF,1(Xi )
a.s.−→n→∞ 0.

For any ε > 0, put

A[nλ0] = P

(∣∣∣U (2)
[nλ0]

∣∣∣ > ε
)
.
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One has from Markov inequality and Lemma 2 of Yoshihara (1976)

P

(∣∣∣U (2)
[nλ0]

∣∣∣ > ε
)

≤ 1

ε2
E

[(
U (2)

[nλ0]
)2]

= O([nλ0]−1−γ ), γ > 0,

which implies

[nλ0]∑

i=1

A[iλ0] < ∞.

Then from Borel–Cantelli lemma

[nλ0]([nλ0] − 1)

2n2
U (2)

[nλ0]
a.s.−→n→∞ 0.

Then from (22), we have

n−1/2R(1)
n

a.s.−→n→∞ λ20θ(F, F)/2.

Similarly, we prove

n−1/2R(3)
n

a.s.−→n→∞ t2θ(F, F)/2

and

n−1/2R(4)
n

D=
∑

1≤i< j≤[nλ0]−[(n+1)t]
h(Xi , X j )

a.s.−→n→∞ (t − λ0)
2θ(F, F)/2.

Now, we establish that

n−1/2R(2)
n

a.s.−→n→∞ λ0(1 − λ0)θ(F,G).

From (21), we have

n−1/2R(2)
n = 1

n2

[nλ0]∑

i=1

n∑

j=[nλ0]+1

{θ(F,G) + hG,1(Xi ) + hG,2(Y j ) + gG(Xi ,Y j )}

= [nλ0](n − [nλ0])
n2

θ(F,G) + [nλ0](n − [nλ0])
n2

1

[nλ0]
[nλ0]∑

i=1

hF,1(Xi )

+[nλ0](n − [nλ0])
n2

1

(n − [nλ0])
n∑

j=[nλ0]+1

hG,2(Y j )
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+ 1

n2

[nλ0]∑

i=1

n∑

j=[nλ0]+1

gF (Xi ,Y j ), (23)

where we recall that the Y j ’s are random variables with cumulative distribution func-
tion G and satisfy (5).
From the ergodic theorem, we have that

1

[nλ0]
[nλ0]∑

i=1

hF,1(Xi )
a.s.−→n→∞ 0.

and

1

(n − [nλ0])
n∑

j=[nλ0]+1

hG,2(Y j )
a.s.−→n→∞ 0.

From Lemma 2, we deduce that

E

⎧
⎪⎨

⎪⎩

⎡

⎣ 1

n2

[nλ0]∑

i=1

n∑

j=[nλ0]+1

gF (Xi ,Y j )

⎤

⎦
2
⎫
⎪⎬

⎪⎭
≤ Cst[nλ0](n − [nλ0])n−4.

From Markov inequality, we deduce for any ε > 0 that

P

⎛

⎝

∣∣∣∣∣∣
1

n2

[nλ0]∑

i=1

n∑

j=[nλ0]+1

gF (Xi ,Y j )

∣∣∣∣∣∣
> ε

⎞

⎠ = O(n−2).

Also, by Borel–Cantelli Lemma one has

1

n2

[nλ0]∑

i=1

n∑

j=[nλ0]+1

gF (Xi ,Y j )
a.s.−→n→∞ 0.

Similarly, we prove that

n−1/2R(5)
n

P−→ (λ0 − t)(1 − λ0)θ(F,G).

These observations clearly imply the first part of (7). The proof of its second part is
similar. �
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