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Abstract
Design of experiment is an efficient statistical methodology of establishing which
input variables are important (have significant effects) in an experiment (process) and
the conditions under which these inputs should work to optimize the outputs of that
process. Two-level designs are widely used in high-tech industries and manufacturing
for productivity and quality improvement experiments. The construction of (nearly)
optimal two-level designs for real-life experimentswith large number of input variables
can be quite challenging. The practice demonstrated that the existing techniques are
complex, highly time-consuming, produce limited types of designs, and likely to fail in
large experiments (i.e., optimal results are not expected). To overcome these significant
problems, this article gives a simple and effective technique for constructing large two-
level designswith good statistical properties. Tomeet practical needs in different fields,
the statistical properties of the generated designs by the new technique are investigated
from four basic perspectives: minimizing the similarity among the experimental runs,
minimizing the aliasing among the input variables, maximizing the resolution, and
filling the experimental domain as uniformly as possible. New recommended saturated
orthogonal main effect plans and uniform orthogonal arrays of strength three with
thousands or even millions of runs and factors are generated via the new technique
without recourse to optimization software.
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1 Introduction

Design of experiments is becoming the cornerstone of many real-world complex phe-
nomena for investigating which input variables (i.e., factors) have significant effects
and the conditions (i.e., selected values) under which these factors should work to
optimize the outputs of that phenomena by establishing the connections between the
factors and their responses. To gain a precise and correct understanding about the
behavior of such phenomena, the construction of good experimental designs (i.e., data
sets) is the most significant hard initial step in this process. A full factorial design
(FuFD) is the classical logical idea to gain all the possible information about the
behavior of a given experiment and estimate all the possible factor effects (parame-
ters) by collecting the responses of all the possible qs experimental trials (runs) for
s factors each having q different values (levels). Unfortunately, for many real-world
experiments there are no enough resources to use FuFDs.

A fractional factorial design (FrFD) is thewidely used solution of a large experiment
for gaining as more as possible information about the behavior of that experiment and
estimating as more as possible factor effects by selecting a subset (fraction) with
good statistical properties from the corresponding FuFD. The selection of FrFDs with
good statistical properties is the significant problem in this regard. To meet practical
needs in different fields, the widely used statistical properties for selecting FrFDs
are investigated from four basic perspectives: minimizing the similarity among the
experimental runs (probability Hamming distance and moment aberration criteria),
minimizing the aliasing among the input variables (aberration criterion), maximizing
the resolution (orthogonality criteria), andfilling the experimental domain as uniformly
as possible (uniformity criteria). The FrFDs from these perspectives are the most
widely used FrFDs in engineering, chemical engineering, science, chemistry, industry,
high technology, and agriculture.

Two-level FrFDs with large number of factors are the most widely used experi-
mental designs in manufacturing and high-tech industries for quality and productivity
improvement experiments. The construction of optimal (from the above mentioned
perspectives) two-level FrFDs for experiments with large number of factors can be
quite challenging. Several methods have been presented for constructing these optimal
two-level FrFDs, such as threshold accepting algorithm (Winker and Fang 1997; Fang
et al. 2000), adjusted threshold accepting algorithm (Fang et al. 2017), augmented
designs by folding over runs and/or factors (Yang et al. 2017, 2019; Elsawah 2018,
2019), extended designs by adding more runs (Gupta et al. 2010, 2012; Elsawah and
Qin 2016), level permutation and/or projection of factors (Tang and Xu 2013; Zhou
and Xu 2014; Elsawah et al. 2019a), and quaternary codes and their binary Gray map
images (Xu and Wong 2007; Phoa and Xu 2009; Elsawah and Fang 2018).

These methods are complex, highly time-consuming, produce limited types of
experimental designs, and likely to fail in large experiments (i.e., optimal results
are not expected). This paper presents a general framework for constructing optimal
two-level FrFDs with large sizes by multiple doubling of small two-level FrFDs. Dou-
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bling (Plackett and Burman,1964) is a simple classical technique for doubling the size
of a two-level FrFD. The multiple doubling technique in this paper is an interesting
and useful extension (improvement) of the classical doubling technique. The existing
results of the classical doubling technique can be obtained as special cases of the
multiple doubling technique. Some interesting statistical properties of the generated
two-level FrFDs via the multiple doubling technique are investigated from the above
mentioned four perspectives. The necessary and sufficient conditions for constructing
large two-level FrFDs with good statistical properties by the multiple doubling tech-
nique are discussed. A comparison study between the multiple doubling technique
and the above mentioned widely used techniques are given by using theoretical and
computational justifications. New recommended optimal two-level FrFDs with large
sizes are generated via the multiple doubling technique without computer search.

The rest of this paper is organized as follows. The multiple doubling technique is
given in Sect. 2. Sects. 3, 4, 5 and 6 investigate the optimality of the generated two-
level FrFDs via the multiple doubling technique in terms of the Hamming distance,
aberration, moment aberration and orthogonality, respectively. The uniformity of the
generated two-level FrFDs via the multiple doubling technique is investigated via a
framework for all the discrepancies in Sect. 7. Further discussions on the optimality
of the generated two-level FrFDs via the multiple doubling technique is given in
Sect. 8. We illustrate the potential of the multiple doubling technique by generating
new optimal two-level FrFDs in Sect. 9. We close through the conclusion and some
new interesting ideas for future work in Sect. 10. For clarity and due to the limitation
of the space, we relegate many tables (Tables A1–A18) to an online supplementary
material of this paper.

2 Multiple doubling technique

For any n × s matrix X with two distinct entries, 0 and 1, the double of X is the
following 2n × 2s matrix

D(X) =
(
X X
X 1sn − X

)
,

where 1ba is the a × b matrix with all elements 1. Plackett and Burman (1964) used
the doubling method to construct orthogonal main-effect plans (orthogonal designs).
Chen and Cheng (2006) discussed the construction of two-level FrFDs of resolution
(the lengthof the shortest relationbetween the factors) IVbydoubling regular two-level
FrFDs of resolution IV. A general complementary design theory for the doubling is
investigated in Xu and Cheng (2008). The uniformity of the double FrFDs is discussed
in Lei and Qin (2014) and Zou and Qin (2017).

While the doubling technique has been soundly investigated by many researchers,
no one has been devoted to this problem for more than one-time doubling. Multiple
doubling of two-level designs is necessary in many real-world experiments which
require large number of runs and factors. For example, for constructing a two-level
FrFD with 256 factors and 512 runs via the classical doubling technique, an initial
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two-level FrFD with 128 factors and 256 runs is needed. The first significant problem
before using the doubling technique is that, how to select the initial two-level FrFD?
However, a uniform two-level orthogonal array of strength 3 with 256 factors and
512 runs can be generated by doubling a very small and simple vector X = (1 0)T

eight times, or by doubling the FuFD with 2 factors seven times (as given in Table 6).
Therefore, the multiple doubling technique is a simple and effective approach for
constructing optimal two-level FrFDs with large sizes.

For any balanced (the levels appear equally often) two-level (0 and 1) design X
with n runs and s factors and any integer t ≥ 1, the generated t-double design of X is
given by

D(η)(X) =
(
D(η−1)(X) D(η−1)(X)

D(η−1)(X) 12
η−1s

2η−1n
− D(η−1)(X)

)
, 1 ≤ η ≤ t, D(0)(X) = X .

The generated t-double design D(t)(X) is a balanced two-level design with 2t n runs
and 2t s factors, i.e., D(t)(X) ∈ U(2, 2t n, 2t s), where U(2, a, b) is the set of all
the balanced two-level designs with a runs and b factors. On the other hand, let
D(2, a, b) ⊂ U(2, a, b) be the set of all the generated t-double designs with a runs
and b factors. In the forthcoming discussions, we simply use D(t) for the generated
t-doubling of a design X instead of D(t)(X).

Remark 1 Although the multiple doubling technique provides an easy and efficient
technique for constructing designs with large sizes which are multiples of powers of
2, the significant question experimenters may ask is that can this technique be used to
construct designs with large sizes which are not multiples of powers of 2? To construct
a design with a large size which is not a multiple of powers of 2, the above technique
can be used to construct a design with size as close as possible to the required size
after that we have the following two cases

• If the size of the generated t-double design is greater than the required size, the
projection technique (see, Cheng 2006 and Sun et al. 2019) of the generated t-
double design onto a subset of factors and/or runs can be used to reduce its size.
Elsawah et al. (2019b) proved that there are strong linkages between the optimality
of a full-dimensional design and the optimality of its projections based on all of
the above mentioned criteria.

• If the size of the generated t-double design is less than the required size, the
extended (augmented) technique of the generated t-double design can be used to
increase the size by adding more runs and/or factors. Elsawah et al. (2019c) (see
also, Yang et al. 2019) proved that there are strong linkages between the optimality
of a given design and the optimality of its corresponding extended (or, augmented)
design.

Remark 2 Any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial two-
level design X ∈ U(2, n, s) via the multiple doubling technique consists of 2t equal
size blocks (sub-designs) with n runs and 2t s two-level factors. The first block contains
the first n runs 1 ≤ i ≤ n of the t-double design D(t), the second block contains the
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second n runs n + 1 ≤ i ≤ 2n of the t-double design D(t) and the r th block contains
the r th n runs (r − 1)n + 1 ≤ i ≤ rn of the t-double design D(t).

An illustrative example Doubling of the design X = (0 1)T ∈ U(2, 2, 1) four times
is a design D(4) ∈ U(2, 32, 16) which is given as follows

D(4) =
(
D(3) D(3)

D(3) 18s8n − D(3)

)
=
⎛
⎜⎝

D(2) D(2)(X) D(2) D(2)

D(2) 14s4n − D(2) D(2) 14s4n − D(2)

D(2) D(2) 14s4n − D(2) 14s4n − D(2)

D(2) 14s4n − D(2) 14s4n − D(2) D(2)

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D(1) D(1) D(1) D(1) D(1) D(1) D(1) D(1)

D(1) 12s2n − D(1) D(1) 12s2n − D(1) D(1) 12s2n − D(1) D(1) 12s2n − D(1)

D(1) D(1) 12s2n − D(1) 12s2n − D(1) D(1) D(1) 12s2n − D(1) 12s2n − D(1)

D(1) 12s2n − D(1) 12s2n − D(1) D(1) D(1) 12s2n − D(1) 12s2n − D(1) D(1)

D(1) D(1) D(1) D(1) 12s2n − D(1) 12s2n − D(1) 12s2n − D(1) 12s2n − D(1)

D(1) 12s2n − D(1) D(1) 12s2n − D(1) 12s2n − D(1) D(1) 12s2n − D(1) D(1)

D(1) D(1) 12s2n − D(1) 12s2n − D(1) 12s2n − D(1) 12s2n − D(1) D(1) D(1)

D(1) 12s2n − D(1) 12s2n − D(1) D(1) 12s2n − D(1) D(1) D(1) 12s2n − D(1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, we have

D(4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X X X X X X X X X X X X X X X X

X 1sn − X X 1sn − X X 1sn − X X 1sn − X X 1sn − X X 1sn − X X 1sn − X X 1sn − X

X X 1sn − X 1sn − X X X 1sn − X 1sn − X X X 1sn − X 1sn − X X X 1sn − X 1sn − X

X 1sn − X 1sn − X X X 1sn − X 1sn − X X X 1sn − X 1sn − X X X 1sn − X 1sn − X X

X X X X 1sn − X 1sn − X 1sn − X 1sn − X X X X X 1sn − X 1sn − X 1sn − X 1sn − X

X 1sn − X X 1sn − X 1sn − X X 1sn − X X X 1sn − X X 1sn − X 1sn − X X 1sn − X X

X X 1sn − X 1sn − X 1sn − X 1sn − X X X X X 1sn − X 1sn − X 1sn − X 1sn − X X X

X 1sn − X 1sn − X X 1sn − X X X 1sn − X X 1sn − X 1sn − X X 1sn − X X X 1sn − X

X X X X X X X X 1sn − X 1sn − X 1sn − X 1sn − X 1sn − X 1sn − X 1sn − X 1sn − X

X 1sn − X X 1sn − X X 1sn − X X 1sn − X 1sn − X X 1sn − X X 1sn − X X 1sn − X X

X X 1sn − X 1sn − X X X 1sn − X 1sn − X 1sn − X 1sn − X X X 1sn − X 1sn − X X X

X 1sn − X 1sn − X X X 1sn − X 1sn − X X 1sn − X X X 1sn − X 1sn − X X X 1sn − X

X X X X 1sn − X 1sn − X 1sn − X 1sn − X 1sn − X 1sn − X 1sn − X 1sn − X X X X X

X 1sn − X X 1sn − X 1sn − X X 1sn − X 1sn − X 1sn − X X 1sn − X X X 1sn − X X 1sn − X

X X 1sn − X 1sn − X 1sn − X 1sn − X X 1sn − X 1sn − X 1sn − X X X X X 1sn − X 1sn − X

X 1sn − X 1sn − X X 1sn − X X X 1sn − X 1sn − X X X 1sn − X X 1sn − X 1sn − X X

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.
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3 Probability Hamming distance of the generated designs

While comparing two binary strings of equal length, the coincidence distance (CD)
is the number of bit positions in which the two bits are coincide and the Hamming
distance (HD) is the number of bit positions in which the two bits are different. TheHD
and the CD between the i th experimental run of a design X and the j th experimental
run of a design Y are denoted as Hi j (X ,Y ) and Ci j (X ,Y ), respectively. The HD
vector (HDV) (Clark and Dean 2001) is the widely used criterion for measuring the
dissimilarity among experimental runs of a given design. For any two-level design
X ∈ U(2, n, s), the probability of the r th HD (PHDr ) is the probability that the HD
between any two experimental runs of X is equal to r . That is,

PHDr (X) = 1

n2
�
{
(i, j) : Hi j (X , X) = r

}
, 0 ≤ r ≤ s,

where �{.} denotes the cardinality of a set. It is obvious that,
∑s

r=0 PHDr (X) = 1.
Moreover, the probability HD vector (PHDV) is defined as follows

PHDV (X) = (PHD0(X), . . . , PHDs(X)) .

Optimal FrFD from this perspective makes its experimental runs be as dissimilar
as possible by (sequentially) minimizing the PHDV over the domain of the exper-
iment. For example, PHD1(X) = PHD2(X) = PHD3(X) = PHD4(X) = 0
and PHD5(X) �= 0 means that the HD between any two runs of the design X is
≥ 5. The resulting optimal FrFD via the PHDV is called minimum (probability) HD
design. It is worth mentioning that, the PHDV here is different than the HDV in lit-
erature (cf. Elsawah 2020), where HDV = (H0(X), . . . , Hs(X)) = nPHDV =
(nPHD0(X), . . . , nPHDs(X)) .

Lemma 1 For any two-level design d ∈ U(2, α, β), we get the following relationships
between the design d and its complementary (level permuted) design 1β

α − d based on
the HD and the CD

• The HD between the i th experimental run and the j th experimental run of d is
equal to the CD between the i th experimental run of d and the j th experimental
run of 1β

α − d. That is, Ci j (d, d) = Hi j (d, 1β
α − d).

• The HD (CD) between the i th experimental run and the j th experimental run of d
is equal to the HD (CD) between the i th experimental run and the j th experimental
run of 1β

α −d. That is,Hi j (d, d) = Hi j (1
β
α −d, 1β

α −d) and Ci j (d, d) = Ci j (1β
α −

d, 1β
α − d).

• From the above relationships, it is obvious thatHi j (d, d) +Hi j (d, 1β
α − d) = β.

Theorem 1 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the HD and
CD between the experimental runs of the generated t-double design D(t) have the
following interesting behavior
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• The HD between the i th experimental run from any kth block of D(t) and the j th
experimental run from any r( �= k)th block of D(t) is equal to the CD between them
which is equal to 2t−1 times of the number of the factors of the initial design X.
That is, for any i, j ∈ {1, ..., n}, r , k ∈ {1, ..., 2t } and r �= k we get

H(i+kn−n)( j+rn−n)(D
(t), D(t)) = C(i+kn−n)( j+rn−n)(D

(t), D(t)) = 2t−1s.

• The HD (CD) between the i th experimental run and the j th experimental run
from any rth block of D(t) is equal to the HD (CD) between the i th experimental
run and the j th experimental run from any kth block of D(t). That is, for any
i, j ∈ {1, ..., n} and r , k ∈ {1, ..., 2t } we get

H(i+kn−n)( j+kn−n)(D
(t), D(t)) = H(i+rn−n)( j+rn−n)(D

(t), D(t)).

C(i+kn−n)( j+kn−n)(D
(t), D(t)) = C(i+rn−n)( j+rn−n)(D

(t), D(t)).

• The HD (CD) between the i th experimental run and the j th experimental run
from any kth block of D(t) is equal to 2t times of the HD (CD) between the
i th experimental run and the j th experimental run of X . That is, for any i, j ∈
{1, ..., n} and k ∈ {1, ..., 2t } we get

H(i+kn−n)( j+kn−n)(D
(t), D(t)) = 2tHi j (X , X).

C(i+kn−n)( j+kn−n)(D
(t), D(t)) = 2tCi j (X , X).

Proof By using the Principle of Mathematical Induction, we have the following steps:

Basis. Doubling of a design X ∈ U(2, n, s) one time gives

D(1) =
(
X X
X 1sn − X

)

and

Hi j (D
(1), D(1)) =

⎧⎪⎪⎨
⎪⎪⎩

Hi j (X , X) + Hi j (X , X), i, j ∈ {1, ..., n};
Hi( j−n)(X , X) + Hi( j−n)(X , 1sn − X), i ∈ {1, ..., n}, j ∈ {n + 1, ..., 2n};
H(i−n) j (X , X) + H(i−n) j (1sn − X , X), i ∈ {n + 1, ..., 2n}, j ∈ {1, ..., n};
H(i−n)( j−n)(X , X) + H(i−n)( j−n)(1sn − X , 1sn − X), i, j ∈ {n + 1, ..., 2n}.

From Lemma 1, we get

Hi j (D
(1), D(1)) =

⎧⎪⎪⎨
⎪⎪⎩

2Hi j (X , X), i, j ∈ {1, 2, ..., n};
s, i ∈ {1, ..., n}, j ∈ {n + 1, ..., 2n};
s, i ∈ {n + 1, ..., 2n}, j ∈ {1, ..., n};
2H(i−n)( j−n)(X , X), i, j ∈ {n + 1, ..., 2n}.

Therefore, we have

Hi j (D
(1), D(1)) =

{
2H(i−kn)( j−kn)(X , X), i, j ∈ {kn + 1, ..., n + kn}, k ∈ {0, 1};
s, ow.

(1)
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2930 A. M. Elsawah

Induction Hypothesis: Assume that for any generated t-double design D(t) ∈
U(2, 2t n, 2t s), we have

Hi j (D
(t), D(t))=

{
2tH(i−kn)( j−kn)(X , X), i, j ∈ {kn+1, ..., (k+1)n}, 0≤k≤2t − 1;
2t−1s, ow.

(2)

Induction Step: For any generated (t+1)-double design D(t+1) ∈ U(2, 2t+1n, 2t+1s),
we get

D(t+1) =
(
D(t) D(t)

D(t) 12
t s

2t n − D(t)

)

and

Hi j (D
(t+1), D(t+1)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi j (D(t), D(t)) + Hi j (D(t), D(t)), 1 ≤ i, j ≤ 2t n;
Hi( j−2t n)(D(t), D(t)) + Hi( j−2t n)(D(t), 12

t s
2t n − D(t)),

1 ≤ i ≤ 2t n, 2t n + 1 ≤ j ≤ 2t+1n;
H(i−2t n) j (D(t), D(t)) + H(i−2t n) j (12

t s
2t n − D(t), D(t)),

1 ≤ j ≤ 2t n, 2t n + 1 ≤ i ≤ 2t+1n;
H(i−2t n)( j−2t n)(D(t), D(t))

+H(i−2t n)( j−2t n)(12
t s

2t n − D(t), 12
t s

2t n − D(t)),

2t n + 1 ≤ i, j ≤ 2t+1n.

From Lemma 1 and (2), we get

Hi j (D
(t+1), D(t+1)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2t+1H(i−kn)( j−kn)(X , X), kn
+1 ≤ i, j ≤ (k + 1)n, 0 ≤ k ≤ 2t − 1;
2t s, 1 ≤ i ≤ 2t n, 2t n + 1 ≤ j ≤ 2t+1n;
2t s, 1 ≤ j ≤ 2t n, 2t n + 1 ≤ i ≤ 2t+1n;
2t+1H(i−kn)( j−kn)(X , X), kn
+1 ≤ i, j ≤ (k + 1)n, 2t ≤ k ≤ 2t+1 − 1.

Conclusion: From the above discussions, Theorem 1 is correct for any generated t-
double design. ��
Corollary 1 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, we have

2t n∑
i=1

2t n∑
j=1

Hi j (D
(t), D(t)) =

2t n∑
i=1

2t n∑
j( �=i)=1

Hi j (D
(t), D(t)) = 1

2
8t n2s.
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Proof For any t-double design D(t) ∈ U(2, 2t n, 2t s), we have

2t n∑
i=1

2t n∑
j=1

Hi j (D
(t), D(t)) =

2t−1∑
k=0

(k+1)n∑
i=kn+1

(k+1)n∑
j=kn+1

Hi j (D
(t), D(t))

+
2t−1∑
l=0

2t−1∑
k( �=l)=0

(k+1)n∑
i=kn+1

(l+1)n∑
j=ln+1

Hi j (D
(t), D(t)).

From Theorem 1, we get

2t n∑
i=1

2t n∑
j=1

Hi j (D
(t), D(t)) = 2t

2t−1∑
k=0

(k+1)n∑
i=kn+1

(k+1)n∑
j=kn+1

H(i−kn)( j−kn)(X , X)

+
2t−1∑
l=0

2t−1∑
k( �=l)=0

(k+1)n∑
i=kn+1

(l+1)n∑
j=ln+1

2t−1s

= 2t
2t−1∑
k=0

n2s

2
+

2t−1∑
l=0

2t−1∑
k( �=l)=0

n22t−1s = 1

2
8t n2s.

��
Theorem 2 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated t-
double design D(t) is a minimum probability HD design in the setD(2, 2t n, 2t s) if and
only if the initial design X is a minimum probability HD design in the set U(2, n, s).
Moreover, the relationships between them are given as follows

• The probability of the rth HD of the generated t-double design D(t) strongly
depends on the probability of the kth HD of the initial design X , when r = 2t k,
k = s

2 and s is even. Moreover, the relationship between them is given as follows

PHD2t−1s(D
(t)) = 1 −

(
1

2

)t

+
(
1

2

)t

PHD s
2
(X), when sis even.

• The probability of the rth HD of a t-double design D(t)
1 generated from any initial

design X1 ∈ U(2, n, s) is equal to the probability of the rth HD of a t-double
design D(t)

2 generated from any initial design X2 ∈ U(2, n, s), when r = 2t−1s
and s is odd. Moreover, it is given as follows

PHD2t−1s(D
(t)) = 1 −

(
1

2

)t

, when s is odd.

• The probability of the kth HD of the initial design X is equal to 2t times of the
probability of the rth HD of the generated t-double design, when r = 2t k, 0 ≤
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k ≤ s, k �= s
2 . That is,

PHD2t k(D
(t)) =

(
1

2

)t

PHDk(X), for 0 ≤ k ≤ s and k �= s

2
.

• The probability of the rth HD of the generated t-double design D(t) is equal to
zero, when r /∈ {2t k, 2t−1s}, 0 ≤ k ≤ s. That is,

PHDr (D
(t)) = 0, r /∈ {2t k, 2t−1s}, 0 ≤ k ≤ s.

Proof From Theorem 1, from all the 4t n2 values of the HDs of the t-double design
D(t) ∈ U(2, 2t n, 2t s) there are 2t (2t − 1)n2 values with Hi j (D(t), D(t)) = 2t−1s
and there are 2t n2 values with Hi j (D(t), D(t)) = 2tH(i−kn)( j−kn)(X , X), kn + 1 ≤
i, j ≤ (k + 1)n, 0 ≤ k ≤ 2t − 1. Therefore, we have the following cases

Case 1 When r = 2tμ, 0 ≤ μ �= s
2 ≤ s, from Theorem 1 we get

D2tμ(D(t)) = 1

4t n2
�
{
(i, j) : Hi j (D

(t), D(t)) = 2tμ, 1 ≤ i, j ≤ 2t n
}

= 1

4t n2
�
{
(i, j) : Hi j (D

(t), D(t)) = 2tμ, kn + 1 ≤ i, j ≤ (k + 1)n, 0 ≤ k ≤ 2t − 1
}

+ 1

4t n2
�
{
(i, j) : Hi j (D

(t), D(t)) = 2tμ, kn + 1 ≤ i ≤ (k + 1)n, 0 ≤ k ≤ 2t − 1,

ln + 1 ≤ j ≤ (l + 1)n, 0 ≤ l ≤ 2t − 1, k(�= l) = 0
}

= 1

4t n2
�
{
(i, j) : 2tH(i−kn)( j−kn)(X , X) = 2tμ, kn + 1 ≤ i, j ≤ (k + 1)n,

0 ≤ k ≤ 2t − 1
}+ 1

4t n2
× 0

= 1

4t n2
2t�
{
(i, j) : 2tHi j (X , X) = 2tμ, 1 ≤ i, j ≤ n

} =
(
1

2

)t

PHDμ(X).

Case 2 When r = 2t−1s (i.e., r = 2tμ, μ = s
2 ), from Theorem 1 we get

PHD2t−1s(D
(t)) = 1

4t n2
�
{
(i, j) : Hi j (D

(t), D(t)) = 2t−1s, 1 ≤ i, j ≤ 2t n
}

= 1

4t n2
�
{
(i, j) : Hi j (D

(t), D(t)) = 2t−1s, kn + 1 ≤ i, j ≤ (k + 1)n, 0 ≤ k ≤ 2t − 1
}

+ 1

4t n2
�
{
(i, j) : Hi j (D

(t), D(t)) = 2t−1s, kn + 1 ≤ i ≤ (k + 1)n, 0 ≤ k ≤ 2t − 1,

ln + 1 ≤ j ≤ (l + 1)n, 0 ≤ l ≤ 2t − 1, k(�= l) = 0
}

= 1

4t n2
�
{
(i, j) : 2tH(i−kn)( j−kn)(X , X) = 2t−1s, kn + 1 ≤ i, j ≤ (k + 1)n,

0 ≤ k ≤ 2t − 1
}+ 1

4t n2
2t (2t − 1)n2

= 1

4t n2
2t�
{
(i, j) : Hi j (X , X) = s

2
, 1 ≤ i, j ≤ n

}
+ 1 −

(
1

2

)t

=
(
1

2

)t

PHD s
2
(X) + 1 −

(
1

2

)t

.
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Case 3 When r is even and r /∈ {2tμ, 2t−1s}, 0 ≤ μ ≤ s, we get PHDr (D(t)) = 0.

Case 4: When r is odd and r �= 2t−1s, we get PHDr (D(t)) = 0.
From Case 1-Case 4, the proof can be completed. ��
Remark 3 To check the correctness of the above results, for any t-double design
D(t) ∈ U(2, 2t n, 2t s) generated from an initial design X ∈ U(2, n, s) via the multiple
doubling technique it is obvious from Theorem 2 that

2t s∑
r=0

PHDr (D
(t)) =

(
1

2

)t s∑
μ( �= s

2 )=0

PHDμ(X) + PHD2t−1s(D
(t))

=
(
1

2

)t s∑
μ=0

PHDμ(X) + 1 −
(
1

2

)t

=
(
1

2

)t

+ 1 −
(
1

2

)t

= 1.

4 Generalized aberration of the generated designs

Minimum (generalized minimum) aberration designs (Fries and Hunter 1980; Cheng
et al. 1999, 2002) are a widely used class of FrFDs for minimizing the aliasing (gen-
eralized word-length pattern or generalized aberration vector) between factor effects
under an ANOVA model Y = ∑s

i=0 ai yi + ε, where ε is the random error, y0 is the
intercept, yr is the vector of all r -factor interactions, a0 is an n × 1 vector of 1’s, ar is
the matrix of orthonormal contrast coefficients for yr and Y is the vector of n obser-
vations. For any two-level design X ∈ U(2, n, s), let br = (s

r

)
and ar = (a(r)

ik )n×br .

Then, the generalized aberration vector (GAV, Tang and Deng 1999; Ma and Fang
2001; Xu and Wu 2001) is defined by the vector

GAV (X) = (A0(X), A1(X), . . . , As(X)), Ar (X) = 1

n2

br∑
k=1

∣∣∣∣∣
n∑

i=1

a(r)
ik

∣∣∣∣∣
2

, 0 ≤ r ≤ s.

A (generalized) minimum aberration design (sequentially) minimizes the GAV over
all the domain of the experiment.

Theorem 3 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the gener-
ated t-double design D(t) is a (approximately) minimum aberration design in the
set D(2, 2t n, 2t s) if the initial design X is a minimum aberration design in the set
U(2, n, s). Moreover, the relationship between them is given as follows

Ar (D
(t)) =

(
1

2

)t+s s∑
μ=0

s∑
g=0

Pr (2
tμ; 2t s, 2)Pμ(g; s, 2)Ag(X)

+
(
1 −

(
1

2

)t)
Pr (2

t−1s; 2t s, 2),
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where Pr ( j; s, 2) = ∑r
ν=0(−1)ν

( j
ν

)(s− j
r−ν

)
are the Krawtchouk polynomials.

Proof From Theorem 1 in Elsawah (2020) and Theorem 2 with some algebera, we get

Ar (D
(t)) =

2t s∑
ψ=0

Pr (ψ; 2t s, 2)PHDψ(D(t))

=
s∑

μ(�= s
2 )=0

Pr (2
tμ; 2t s, 2)PHD2tμ(D(t)) + Pr (2

t−1s; 2t s, 2)PHD2t−1s(D
(t))

=
(
1

2

)t s∑
μ=0

Pr (2
tμ; 2t s, 2)PHDμ(X) +

(
1 −

(
1

2

)t)
Pr (2

t−1s; 2t s, 2)

. (3)

From Theorem 6 in Elsawah (2020), (3) can be rewritten as follows

Ar (D
(t)) =

(
1

2

)t s∑
μ=0

Pr (2
tμ; 2t s, 2)

⎛
⎝(1

2

)s s∑
g=0

Pμ(g; s, 2)Ag(X)

⎞
⎠

+
(
1 −

(
1

2

)t)
Pr (2

t−1s; 2t s, 2)

=
(
1

2

)t+s s∑
μ=0

s∑
g=0

Pr (2
tμ; 2t s, 2)Pμ(g; s, 2)Ag(X)

+
(
1 −

(
1

2

)t)
Pr (2

t−1s; 2t s, 2).

��
Corollary 2 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the gener-
ated t-double design D(t) is a (approximately) minimum aberration design in the
set D(2, 2t n, 2t s) if the initial design X is a minimum probability HD design in the
set U(2, n, s). Moreover, the relationship between them is given as follows

Ar (D
(t)) =

(
1

2

)t s∑
μ=0

Pr (2
tμ; 2t s, 2)PHDμ(X) +

(
1 −

(
1

2

)t)
Pr (2

t−1s; 2t s, 2).

Remark 4 To check the correctness of the above results, for any generated t-double
design D(t) ∈ U(2, 2t n, 2t s) from an initial two-level design X ∈ U(2, n, s) it is
obvious from Theorem 3 that

A0(D
(t)) =

(
1

2

)t+s s∑
μ=0

(
s

μ

)
+ 1 −

(
1

2

)t

=
(
1

2

)t+s

2s + 1 −
(
1

2

)t

= 1.
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5 Moment aberration of the generated designs

Minimum moment aberration designs (Xu 2003) make their runs be as dissimilar as
possible by sequentially minimizing the power moments of the CD among these runs.
The moment aberration vector (MAV) of a design X ∈ U(2, n, s) is defined by the
vector

MAV (X) = (M0(X), . . . , Ms(X)),

Mr (X) = 2

n(n − 1)

n∑
i=1

n∑
j=i+1

(Ci j (X , X))r , 0 ≤ r ≤ s.

Theorem 4 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated
t-double design D(t) is a minimummoment aberration design in the setD(2, 2t n, 2t s)
if and only if the initial design X is a minimum moment aberration design in the set
U(2, n, s). Moreover, the relationship between them is given as follows

Mr (D
(t)) = 2tr

2t n − 1

[
(n − 1)Mr (X) + n

( s
2

)r
(2t − 1)

]
, 0 ≤ r ≤ 2t s.

Proof From Theorem 1 and Lemma 1, we get

2t n∑
i=1

2t n∑
j=1

(Ci j (D(t), D(t)))r =
2t n∑
i=1

2t n∑
j=1

(2t s − Hi j (D
(t), D(t)))r

=
2t−1∑
k=0

(k+1)n∑
i=1+kn

(k+1)n∑
j=1+kn

(2t s − Hi j (D
(t), D(t)))r

+
2t−1∑
l=0

2t−1∑
k( �=l)=0

(k+1)n∑
i=1+kn

(l+1)n∑
j=1+ln

(2t s − Hi j (D
(t), D(t)))r

=
2t−1∑
k=0

(k+1)n∑
i=1+kn

(k+1)n∑
j=1+kn

(2t s − 2tH(i−kn)( j−kn)(X , X))r

+
2t−1∑
l=0

2t−1∑
k( �=l)=0

(k+1)n∑
i=1+kn

(l+1)n∑
j=1+ln

(2t s − 2t−1s)r

= 2tr
2t−1∑
k=0

n∑
i=1

n∑
j=1

(s − Hi j (X , X))r +
2t−1∑
l=0

2t−1∑
k( �=l)=0

n2(2t−1s)r

= 2tr+t
n∑

i=1

n∑
j=1

(Ci j (X , X))r + n22t (2t − 1)(2t−1s)r
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= 2tr+t

⎛
⎝2

n∑
i=1

n∑
j=i+1

(Ci j (X , X))r +
n∑

i=1

(Ci i (X , X))r

⎞
⎠+ n2sr2r(t−1)(4t − 2t )

= 2tr+t (n(n − 1)Mr (X) + nsr
)+ n2sr2r(t−1)(4t − 2t ). (4)

It is obvious by simple algebra that

2t n∑
i=1

2t n∑
j=1

(Ci j (D(t), D(t)))r =
2t n∑
i=1

2t n∑
j=i+1

(Ci j (D(t), D(t)))r +
2t n∑
j=1

2t n∑
i= j+1

(Ci j (D(t), D(t)))r

+
2t n∑
i=1

2t n∑
j=i

(Ci j (D(t), D(t)))r

= 2
2t n∑
i=1

2t n∑
j=i+1

(Ci j (D(t), D(t)))r + 2t+tr nsr . (5)

From the definition of the moment aberration, we get

Mr (D
(t)) = 2

2t n(2t n − 1)

2t n∑
i=1

2t n∑
j=i+1

(Ci j (D(t), D(t)))r , 0 ≤ r ≤ 2t s. (6)

Combining (4), (5) and (6), the proof can be completed. ��
Corollary 3 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated
t-double design D(t) is a (approximately) minimum moment aberration design in the
set D(2, 2t n, 2t s) if the initial design X is a minimum probability HD design in the
set U(2, n, s). Moreover, the relationship between them is given as follows

Mr (D
(t)) = 2tr

2t n − 1

⎡
⎣n

s∑
μ=0

(s − μ)r PHDμ(X) − sr + n
( s
2

)r
(2t − 1)

⎤
⎦ , 0 ≤ r ≤ 2t s.

Proof The proof can be obtained from Theorem 7 in Elsawah (2020) and Theorem 4.
��

Corollary 4 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated
t-double design D(t) is a (approximately) minimum moment aberration design in the
set D(2, 2t n, 2t s) if the initial design X is a minimum aberration design in the set
U(2, n, s). Moreover, the relationship between them is given as follows

Mr (D
(t)) = 2tr

2t n − 1

⎡
⎣n
(
1

2

)2 s∑
μ=0

s∑
g=0

(s − μ)r Pμ(g; s, 2)Ag(X) − sr + n
( s
2

)r
(2t − 1)

⎤
⎦ .

Proof The proof can be obtained from Theorem 6 in Elsawah (2020) and Corollary 3.
��
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6 Orthogonality of the generated designs

Two-level orthogonal array (Hedayat et al. 1999; Dey and Mukerjee 1999) of strength
f (≤ s) with s factors is an experimental design with resolution f + 1, such that for
any f factors the 2 f level combinations appear equally often. An orthogonal array
of strength f can be used to estimate all the main effects and the interactions among
up to 	 factors when the interactions among at least f − 	 + 1 factors are ignored.
Orthogonal designs (or, orthogonalmain effect plans) are orthogonal arrays of strength
2.Orthogonal arrays have been successfully applied intomany real-world applications,
for example integration and visualization (Owen 1992), image segmentation (Franek
and Jiang 2013), automatic software testing (Wu 2013), flow pattern transition (Hou
et al. 2015), and high performance liquid chromatography analysis of sedimentary
pigments (Liang et al. 2016).

For measuring the orthogonality, the NB-criterion vector (NBV, Lu et al. 2002;
Fang et al. 2003), O-criterion vector (OV, Fang et al. 2002), the deviation criterion
vector (DV, Zhang et al. 2005) and the χ2 criterion vector (χ2V, Liu et al. 2006)
are given as measures of r -factor non-orthogonality, which are defined by the vec-
tors OV (X) = (O1(X), ..., Os(X)), N BV (X) = (B1(X), ..., Bs(X)), DV (X) =
(E1(X), ..., Es(X)) , and χ2V (X) = (

χ2
1 (X), ..., χ2

s (X)
)
, respectively, where the

definitions of Or (X), Br (X), Er (X) and χ2
r (X) for any 0 ≤ r ≤ s are omitted due to

the limited space and can be found in Elsawah (2020). The optimal orthogonal arrays
with higher strengths sequentially minimize the OV/NBV/DV/χ2V.

Theorem 5 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the rth NB-
criterion of the generated t-double design D(t) depends on the NBV of the initial
design X . Moreover, the relationship between them is given as follows

Br (D
(t)) = r !

(2t s)!2
t−r n2(2t − 1)

r∑
j=1

(2t s − j)!
(r − j)! Pj (2

t−1s; 2t s, 2) + r !
(2t s)!2

t−r−sn2

×
r∑
j=1

s∑
μ=0

(2t s − j)!
(r − j)!

(
s

μ

)
Pj (2

tμ; 2t s, 2) + s!r !
(2t s)!2

t−r−s

×
r∑
j=1

g∑
ψ=1

s∑
g=1

s∑
μ=0

(−1)g−ψ2ψ(2t s − j)!
ψ !(g − ψ)!(s − g)!(r − j)! Pj (2

tμ; 2t s, 2)Pμ(g; s, 2)Bψ(X).

Proof From Theorem 3 in Elsawah (2020) and Theorem 3, we get

Br (D
(t)) = 4t n2r !

(2t s)!2r
r∑
j=1

(2t s − j)!
(r − j)! A j (D

(t))

= 4t n2(2t − 1)r !
(2t s)!2r+t

r∑
j=1

(2t s − j)!
(r − j)! Pj (2

t−1s; 2t s, 2) + 4t n2r !
(2t s)!2r+t+s

×
r∑
j=1

s∑
μ=0

(2t s − j)!
(r − j)! Pj (2

tμ; 2t s, 2)
⎛
⎝Pμ(0; s, 2) +

s∑
g=1

Pμ(g; s, 2)Ag(X)

⎞
⎠ . (7)
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From Theorem 1 in Elsawah (2020), we get

Ag(X) = 1

n2

g∑
ψ=1

(−1)g−ψ 2ψ s!
ψ !(g − ψ)!(s − g)! Bψ(X), 1 ≤ g ≤ s. (8)

Combining (7) and (8), the proof can be completed. ��
Theorem 6 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an ini-
tial two-level design X ∈ U(2, n, s) via the multiple doubling technique, the rth
O-criterion of the generated t-double design D(t) depends on the OV of the initial
design X . Moreover, the relationship between them is given as follows

Or (D
(t)) = 2t−2t s

s∑
μ=0

s∑
g=0

Pr (2
tμ; 2t s, 2)Pμ(g; s, 2)Og(X)

+ 2t−2t s(2t − 1)n2Pr (2
t−1s; 2t s, 2).

Proof From Theorem 1 in Elsawah (2020), we get

Ar (D
(t)) = 22

t s

4t n2
Or (D

(t)) and Ar (X) = 2s

n2
Or (X). (9)

Combining (9) and Theorem 3, the proof can be completed. ��
Theorem 7 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the rth deviation
criterion of the generated t-double design D(t) depends on the DV of the initial design
X . Moreover, the relationship between them is given as follows

Er (D
(t)) = 2t−2r n2(2t − 1)

(2t s − r)!
r∑
j=1

(2t s − j)!
(r − j)! Pj (2

t−1s; 2t s, 2) + 2t−2r−sn2

(2t s − r)!

×
r∑
j=1

s∑
μ=0

(2t s − j)!
(r − j)!

(
s

μ

)
Pj (2

tμ; 2t s, 2) + 2t−2r−s

(2t s − r)!

×
r∑
j=1

g∑
ψ=1

s∑
g=1

s∑
μ=0

(−1)g−ψ22ψ(2t s − j)!(s − ψ)!
(g − ψ)!(s − g)!(r − j)!

×Pj (2
tμ; 2t s, 2)Pμ(g; s, 2)Eψ(X).

Proof From Theorem 3 in Elsawah (2020), we get

Br (D
(t)) = r !(2t s − r)!

(2t s)! 2r Er (D
(t)) and Br (X) = r !(s − r)!

s! 2r Er (X). (10)

Combining (10) and Theorem 5, the proof can be completed. ��
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Theorem 8 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the rth χ2 cri-
terion of the generated t-double design D(t) depends on the χ2V of the initial design
X . Moreover, the relationship between them is given as follows

χ2
r (D(t)) = n(2t − 1)

(2t s − r)!
r∑
j=1

(2t s − j)!
(r − j)! Pj (2

t−1s; 2t s, 2) + 2−sn

(2t s − r)!

×
r∑
j=1

s∑
μ=0

(2t s − j)!
(r − j)!

(
s

μ

)
Pj (2

tμ; 2t s, 2) + 2−s

(2t s − r)!

×
r∑
j=1

g∑
ψ=1

s∑
g=1

s∑
μ=0

(−1)g−ψ(2t s − j)!(s − ψ)!
(g − ψ)!(s − g)!(r − j)!

×Pj (2
tμ; 2t s, 2)Pμ(g; s, 2)χ2

ψ(X).

Proof From Theorem 4 in Elsawah (2020), we get

Er (D
(t)) = 2t−2r nχ2

r (D(t)) and Er (X) = n

22r
χ2
r (X). (11)

From Theorem 7 and (11), the proof can be completed. ��
Remark 5 From Sects. 3,4 and 5 and Theorems 5-8, many new relationships between
the Hamming distance, aberration and moment aberration of the initial design X ∈
U(2, n, s) and the orthogonality of the generated t-double design D(t) ∈ U(2, 2t n, 2t s)
can be obtained.

7 Uniformity of the generated designs

Uniform designs (Fang 1980; Wang and Fang 1981) are a class of robust space-filling
designs which are widely used in several real-life applications by minimizing the
deviation (discrepancy) between the theoretical uniform distribution and the empirical
distribution function of the design points over the experimental domain. For any design
with n runs and s factors X = {x1, ..., xn}, xi ∈ Cs = [0, 1)s, 1 ≤ i ≤ n, let
Fn(x) = ∑n

i=1 I (xi ≤ x), where I (xi ≤ x) = 1 if xi ≤ x and 0 if xi > x, be the
empirical distribution function of the design points and let Fu(x) be the theoretical
uniform distribution function on Cs = [0, 1)s . The L p-discrepancy is given by the
form Disc(X) = ||Fu(x)− Fn(x)||p,where ||.||p is a p-norm. The discrepancy plays
a significant role in the construction of uniform designs (Elsawah 2017a), the study
of model robustness (Fang and Wang 1994), robust experimental designs (Hickernell
1999; Yue and Hickernell 1999), and quasi-Monte Carlo methods (Hickernell 2000).

It isworthmentioning that, the L p-discrepancy is not invariant under the coordinates
rotation, not easy to compute, not consistent with the above mentioned criteria in
experimental designs and does not have a simple expression expect the case of 2-
norm. To solve these problems, Hickernell (1998a; 1998b) used the tool of reproducing
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Table 1 The definitions of the kernel functions for various discrepancies

Discrepancy f (x, y)

Discrete discrepancy (a, b)

{
a, if x = y,
b, if x �= y, a > b > 0.

Lee discrepancy 1 − min{|x − y|, 1 − |x − y|}
Wrap-around L2-discrepancy

3
2 − |x − y|(1 − |x − y|)

Symmetrical L2-discrepancy 2 − 2|x − y|
Centered L2-discrepancy 1 + 1

2 |x − 1
2 | + 1

2 |y − 1
2 | − 1

2 |x − y|
Mixture L2-discrepancy

15
8 − 1

4 |x − 1
2 | − 1

4 |y − 1
2 | − 3

4 |x − y| + 1
2 |x − y|2

kernels of a Hilbert space to propose several attractive generalized L2-discrepancies.
Let � be an experimental domain, x, y ∈ �, f (x, y) be a kernel function defined on
[0, 1]2, f (x) = ∫ 1

y=0 f (x, y)dy and � = ∫
�×�

∏s
k=1 f (xk, yk)dFu(x)dFu(y) is a

constant. The corresponding discrepancy can be expressed by

Disc(X) =
√√√√� − 2

n

n∑
i=1

s∏
k=1

f (xik) + 1

n2

n∑
i=1

n∑
j=1

s∏
k=1

f (xik, x jk).

Various discrepancies can be given by choosing different kernel functions. The
widely used discrepancies are the mixture L2-discrepancy (MD), wrap-around L2-
discrepancy (WD), centered L2-discrepancy (CD), symmetrical L2-discrepancy (SD),
discrete discrepancy (DD), and Lee discrepancy (LD). The definitions of the kernel
functions for these discrepancies are given in Table 1. From Elsawah (2017b) (cf.
Corollary 4.1), for any design X ∈ U(2, n, s),we can write all of the above mentioned
discrepancies in the following framework

Disc(X) =
√√√√�(s) + s

1

n2

n∑
i=1

n∑
j=1


Ci j (X ,X)

2 , (12)

where the parameters�(s), 1 and2 for different discrepancies are given in Table 2.

Theorem 9 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the uniformity of
the generated t-double design D(t) depends on the HDs among the experimental runs
of the initial design X . Moreover, the relationship between them is given as follows

[Disc(D(t))]2 = �(2t s) +
(
1 −

(
1

2

)t)(
2

12

)2t−1s

+ (12)
2t s

2t n2

n∑
i=1

n∑
j=1

(
1

2

)2tHi j (X ,X)

.
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Table 2 The parameters of various discrepancies for two-level designs

Discrepancy 1 2 �(s)

Discrete discrepancy (a, b) b a
b −

(
a+(q−1)b

q

)s

Wrap-around L2-discrepancy
5
4

6
5 −

(
4
3

)s

Lee discrepancy 1
2 2 -

(
3
4

)s

Symmetrical L2-discrepancy 1 2
(
4
3

)s − 2
(
11
8

)s

Centered L2-discrepancy 1 5
4

(
13
12

)s − 2
(
35
32

)s

Mixture L2-discrepancy
3
2

7
6

(
19
12

)s − 2
(
305
192

)s

Proof From (12), for any generated t-double design D(t) we can write all of the above
mentioned discrepancies in the following framework

[Disc(D(t))]2 = �(2t s) + 2t s
1

4t n2

2t n∑
i=1

2t n∑
j=1


Ci j (D(t),D(t))

2 . (13)

From Lemma 1 and Theorem 1, we get

2t n∑
i=1

2t n∑
j=1


Ci j (D(t),D(t))

2 = 2t s
2

2t n∑
i=1

2t n∑
j=1

(
1

2

)Hi j (D(t),D(t))

= 2t s
2

2t−1∑
k=0

(k+1)n∑
i=1+kn

(k+1)n∑
j=1+kn

(
1

2

)Hi j (D(t),D(t))

+2t s
2

2t−1∑
l=0

2t−1∑
k( �=l)=0

(k+1)n∑
i=1+kn

(l+1)n∑
j=1+ln

(
1

2

)Hi j (D(t),D(t))

= 2t s
2

2t−1∑
k=0

(k+1)n∑
i=1+kn

(k+1)n∑
j=1+kn

(
1

2

)2tH(i−kn)( j−kn)(X ,X)

+2t s
2

2t−1∑
l=0

2t−1∑
k( �=l)=0

(k+1)n∑
i=1+kn

(l+1)n∑
j=1+ln

(
1

2

)2t−1s

= 2t s
2 2t

n∑
i=1

n∑
j=1

(
1

2

)2tHi j (X ,X)

+ 2t s
2 2t (2t − 1)n2

(
1

2

)2t−1s

. (14)

Combining (13) and (14), the proof can be completed. ��
Theorem 10 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated t-
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double design D(t) is a (approximately) uniform design in the setD(2, 2t n, 2t s) if the
initial design X is a minimum probability HD design in the set U(2, n, s). Moreover,
the relationship between them is given as follows

[Disc(D(t))]2 = �(2t s) +
(
1 −

(
1

2

)t)(
2

12

)2t−1s

+(12)
2t s
(
1

2

)t s∑
r=0

(
1

2

)2t r

PHDr (X).

Proof The proof can be obtained from Theorem 9 and the fact that

n∑
i=1

n∑
j=1

(
1

2

)2tHi j (X ,X)

= n2
s∑

r=0

(
1

2

)2t r

PHDr (X).

��
Theorem 11 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated
t-double design D(t) is a (approximately) uniform design in the set D(2, 2t n, 2t s) if
the initial design X is a minimum aberration design in the set U(2, n, s). Moreover
the relationship between them is given as follows

[Disc(D(t))]2 = �(2t s) +
(
1 −

(
1

2

)t)(
2

12

)2t−1s +
(
1

2

)s+t (
2t

1 (2t
2 + 1)

)s

+
(
1

2

)s+t (
2t

1 (2t
2 + 1)

)s s∑
r=1

(
2t

2 − 1

2t
2 + 1

)r

Ar (X).

Proof From Theorem 6 in Elsawah (2020), we get

s∑
r=0

(
1

2

)2t r

PHDr (X) =
s∑

r=0

(
1

2

)2t r
⎛
⎝ 1

2s

s∑
g=0

Pr (g; s, 2)Ag(X)

⎞
⎠

=
(
1

2

)s s∑
g=0

Ag(X)

(
s∑

r=0

(
1

2t
2

)r

Pr (g; s, 2)
)

=
(
1

2

)s s∑
g=0

Ag(X)

(
1 +

(
1

2t
2

))s−g (
1 −

(
1

2t
2

))g

=
(
1

2

)s
(

2t
2 + 1

2t
2

)s s∑
g=0

Ag(X)

(
2t

2 − 1

2t
2 + 1

)g

. (15)

From Theorem 10, (15) and the fact that A0(X) = 1, the proof can be completed. ��
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Theorem 12 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated
t-double design D(t) is a (approximately) uniform design in the set D(2, 2t n, 2t s) if
the initial design X is a minimum moment aberration design in the set U(2, n, s).
Moreover the relationship between them is given as follows

[Disc(D(t))]2 = �(2t s) + 1

2t n
(12)

2t s +
(
1 −

(
1

2

)t)(
2

12

)2t−1s

+ 2t s
1 (n − 1)

2t n

∞∑
r=0

(ln2)
r

r ! 2tr Mr (X).

Proof From (13), for any t-double design D(t) we can write all of the abovementioned
discrepancies in the following framework

[Disc(D(t))]2 = �(2t s) + 2t s
1

4t n2

2t n∑
i=1

2t n∑
j=1


Ci j (D(t),D(t))

2

= �(2t s) + 2t s
1

4t n2

⎡
⎣2

2t n∑
i=1

2t n∑
j=i+1


Ci j (D(t),D(t))

2 + 2t n2t s
2

⎤
⎦

= �(2t s) + (12)
2t s

2t n
+ 22t s

1

4t n2

2t n∑
i=1

2t n∑
j=i+1


Ci j (D(t),D(t))

2 . (16)

From the definition of the moment aberration, we get

2t n∑
i=1

2t n∑
j=i+1


Ci j (D(t),D(t))

2 =
2t n∑
i=1

2t n∑
j=i+1

eCi j (D(t),D(t)) ln2

=
2t n∑
i=1

2t n∑
j=i+1

∞∑
	=0

(Ci j (D(t), D(t)) ln2
)	

	!

=
∞∑

	=0

(ln2)
	

	!
2t n∑
i=1

2t n∑
j=i+1

(
Ci j (D(t), D(t))

)	

= 2t−1n(2t n − 1)
∞∑

	=0

(ln2)
	

	! M	(D
(t)). (17)

From Theorem 4, (17) can be rewritten as

2t n∑
i=1

2t n∑
j=i+1


Ci j (D(t),D(t))

2 = 2t−1n
∞∑

	=0

(ln2)
	

	! 2t	(n − 1)M	(X)

+n22t−1(2t − 1)
∞∑

	=0

(
2t−1sln2

)	
	!
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= 2t−1n(n − 1)
∞∑

	=0

(ln2)
	

	! 2t	M	(X)

+n22t−1(2t − 1)2t−1s
2 . (18)

Combining (16) and (18), the proof can be completed. ��
Theorem 13 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated
t-double design D(t) is a (approximately) uniform design in the set D(2, 2t n, 2t s)
if the initial design X is a minimum OV design in the set U(2, n, s). Moreover the
relationship between them is given as follows

[Disc(D(t))]2 = �(2t s) +
(
1 −

(
1

2

)t)(
2

12

)2t−1s +
(
1

2

)s+t (
2t

1 (2t
2 + 1)

)s

+ 1

n2

(
1

2

)t (
2t

1 (2t
2 + 1)

)s s∑
r=1

(
2t

2 − 1

2t
2 + 1

)r

Or (X).

Proof The proof is obvious from Theorem 11 and (9). ��
Theorem 14 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated
t-double design D(t) is a (approximately) uniform design in the set D(2, 2t n, 2t s) if
the initial design X is a minimum NBV design in the set U(2, n, s). Moreover the
relationship between them is given as follows

[Disc(D(t))]2 = �(2t s) +
(
1 −

(
1

2

)t)(
2

12

)2t−1s +
(
1

2

)s+t (
2t

1 (2t
2 + 1)

)s

+ 1

n2

(
1

2

)t

2t s
1

s∑
r=1

(
2t

2 − 1
)r (s

r

)
Br (X).

Proof From Theorem 1 in Elsawah (2020), we get

s∑
r=1

(
2t

2 − 1

2t
2 + 1

)r

Ar (X) = 1

n2

s∑
r=1

r∑
j=1

(
2t

2 − 1

2t
2 + 1

)r

(−1)r− j2 j
(
s

r

)(
r

j

)
Bj (X).

(19)

From the facts
(s
r

)(r
j

) = (s
j

)(s− j
r− j

)
and (c + d)ψ = ∑ψ

τ=0

(
ψ
τ

)
cτdψ−τ and by taking

k = r − j , the summation in (19) can be simplified as follows

s∑
r=1

(
2t

2 − 1

2t
2 + 1

)r

Ar (X)

= 1

n2

s∑
r=1

r∑
j=1

(
2t

2 − 1

2t
2 + 1

)r

(−1)r− j2 j
(
s

j

)(
s − j

r − j

)
Bj (X)
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= 1

n2

s∑
j=1

2 j
(
s

j

)
Bj (X)

s∑
r= j

(
2t

2 − 1

2t
2 + 1

)r

(−1)r− j
(
s − j

r − j

)

= 1

n2

s∑
j=1

2 j
(
s

j

)
Bj (X)

s− j∑
k=0

(
2t

2 − 1

2t
2 + 1

)k+ j

(−1)k
(
s − j

k

)

= 1

n2

s∑
j=1

(
2(2t

2 − 1)

2t
2 + 1

) j (
s

j

)
Bj (X)

s− j∑
k=0

(
1 − 2t

2

2t
2 + 1

)k

(1)s− j−k
(
s − j

k

)

= 1

n2

s∑
j=1

(
2(2t

2 − 1)

2t
2 + 1

) j (
s

j

)(
2

2t
2 + 1

)s− j

B j (X)

= 1

n2

(
2

2t
2 + 1

)s s∑
j=1

(
2t

2 − 1
) j
(
s

j

)
Bj (X). (20)

From Theorem 11 and (20), we get the proof. ��
Theorem 15 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated
t-double design D(t) is a (approximately) uniform design in the set D(2, 2t n, 2t s)
if the initial design X is a minimum DV design in the set U(2, n, s). Moreover the
relationship between them is given as follows

[Disc(D(t))]2 = �(2t s) +
(
1 −

(
1

2

)t)(
2

12

)2t−1s +
(
1

2

)s+t (
2t

1 (2t
2 + 1)

)s

+ 1

n2

(
1

2

)t

2t s
1

s∑
r=1

(
2(2t

2 − 1)
)r

Er (X).

Proof The proof is obvious from Theorem 14 and (10). ��
Theorem 16 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated
t-double design D(t) is a (approximately) uniform design in the set D(2, 2t n, 2t s)
if the initial design X is a minimum χ2V design in the set U(2, n, s). Moreover the
relationship between them is given as follows

[Disc(D(t))]2 = �(2t s) +
(
1 −

(
1

2

)t)(
2

12

)2t−1s +
(
1

2

)s+t (
2t

1 (2t
2 + 1)

)s

+1

n

(
1

2

)t

2t s
1

s∑
r=1

(
2t

2 − 1

2

)r

χ2
r (X).

Proof The proof is obvious from Theorem 15 and (11). ��
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Theorem 17 For any t-double design D(t) ∈ D(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, we get

• The generated t-double design D(t) is a (approximately) uniform design in view of
the centered L2-discrepancy if and only if it is a (approximately) uniform design
in view of the wrap-around L2-discrepancy. Moreover, the relationship between
them is given as follows

[CD(D(t))]2
(
8

9

)2t s 2t s∑
r=0

(
9

11

)r

− [WD(D(t))]2
(

8

11

)2t s

=
(
32

33

)2t s

+
2t s∑
r=0

2t s∑
r( �=l)=0

(
1

9

)r ( 9

11

)l

Ar (D
(t)) +

[(
26

27

)2t s

− 2

(
35

36

)2t s
]

2t s∑
r=0

(
9

11

)r

.

• The generated t-double design D(t) is a (approximately) uniform design in view
of the mixture L2-discrepancy if and only if it is a (approximately) uniform design
in view of the wrap-around L2-discrepancy. Moreover, the relationship between
them is given as follows

[MD(D(t))]2
(

8

13

)2t s 2t s∑
r=0

(
13

11

)r

− [WD(D(t))]2
(

8

11

)2t s

=
(
32

33

)2t s

+
2t s∑
r=0

2t s∑
r( �=l)=0

(
1

13

)r (13
11

)l

Ar (D
(t)) +

[(
38

39

)2t s

− 2

(
305

312

)2t s
]

2t s∑
r=0

(
13

11

)r

.

• The generated t-double design D(t) is a (approximately) uniform design in view
of the mixture L2-discrepancy if and only if it is a (approximately) uniform design
in view of the centered L2-discrepancy. Moreover, the relationship between them
is given as follows

[MD(D(t))]2
(

8

13

)2t s 2t s∑
r=0

(
13

9

)r

− [CD(D(t)))]2
(
8

9

)2t s

= 2

(
35

36

)2t s

−
(
26

27

)2t s

+
2t s∑
r=0

2t s∑
r(�=l)=0

(
1

13

)r (13

9

)l

Ar (D
(t)) +

[(
38

39

)2t s

− 2

(
305

312

)2t s
]

2t s∑
r=0

(
13

9

)r

.

Proof The proof can be obtained from Theorems 8-10 in Elsawah (2020) and Theo-
rem 11 with some simple algebra. ��
Theorem 18 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, we get
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• The generated t-double design D(t) is a uniform design in view of the Lee discrep-
ancy if and only if it is a uniform design in view of the discrete discrepancy

(
1, 1

2

)
.

Moreover, the relationship between them is given as follows

[
LD(D(t))

]2 =
[
DD

(
D(t); 1, 1

2

)]2
.

• The generated t-double design D(t) is a uniform design in view of the wrap-
around L2-discrepancy if and only if it is a uniform design in view of the discrete

discrepancy
(
3
2 ,

5
4

)
. Moreover, the relationship between them is given as follows

[
WD(D(t))

]2 =
[
DD

(
D(t); 3

2
,
5

4

)]2
+
(
11

8

)2t s

−
(
4

3

)2t s

.

• The generated t-double design D(t) is a uniform design in view of the symmet-
rical L2-discrepancy if and only if it is a uniform design in view of the discrete
discrepancy(2, 1). Moreover, the relationship between them is given as follows

[
SD(D(t))

]2 =
[
DD

(
D(t); 2, 1

)]2 − 2

(
11

8

)2t s

+
(
3

2

)2t s

+
(
4

3

)2t s

.

• The generated t-double design D(t) is a uniform design in view of the cen-
tered L2-discrepancy if and only if it is a uniform design in view of the discrete

discrepancy
(
5
4 , 1

)
. Moreover, the relationship between them is given as follows

[
CD(D(t))

]2 =
[
DD

(
D(t); 5

4
, 1

)]2
− 2

(
35

32

)2t s

+
(
9

8

)2t s

+
(
13

12

)2t s

.

• The generated t-double design D(t) is a uniform design in view of the mix-
ture L2-discrepancy if and only if it is a uniform design in view of the discrete
discrepancy

( 7
4 ,

3
2

)
. Moreover, the relationship between them is given as follows

[
MD(D(t))

]2 =
[
DD

(
D(t); 7

4
,
3

2

)]2
− 2

(
305

192

)2t s

+
(
13

8

)2t s

+
(
19

12

)2t s

.

Proof The proof can be obtained from Table 2 and Theorem 11 in Elsawah (2020)
with some algebra. ��

8 Measuring the performance of the generated designs

Although the above discussions investigated some theoretical justifications for the
necessary and sufficient conditions for constructing an optimal t-double design D(t) ∈
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D(2, 2t n, 2t s) from the set of all the t-double designs D(2, 2t n, 2t s) generated from
an initial two-level design X ∈ U(2, n, s) via the multiple doubling technique, the
logical question is what is the performance of the generated t-double design relative
to all the balanced designs in the set U(2, 2t n, 2t s) generated via any of the above
mentioned techniques? To answer this significant question, the following interesting
questions arise

• Howmany zero entries and non-zero entries in the vectors of the criteria, Hamming
distance, aberration, and orthogonality?

• What is the order of the first non-zero entry (i.e., the number of first zero entries)
in the vectors of the criteria, Hamming distance, aberration, and orthogonality?

• Can we find lower bounds of some criteria for the designs in U(2, 2t n, 2t s) as
benchmarks to measure the performance of the generated t-double design relative
to all the designs in U(2, 2t n, 2t s)?

The following discussions shed a light on the answers to these interesting questions
for measuring the performance of the generated t-double designs.

Theorem 19 For any t-double design D(t) ∈ U(2, 2t n, 2t s) generated from an initial
two-level design X ∈ U(2, n, s) via the multiple doubling technique, the generated
t-double design D(t) is a uniform design in the set U(2, 2t n, 2t s) if and only if

[Disc(D(t))]2 = �(2t s) + 1

2t n
2t s

1

[
2t s

2 + 1

2t n


⌊
2t s(2t n−2)
2(2t n−1)

⌋
2 (α + β2)

]
,

where α + β = 2t n(2t n − 1), α
⌊
2t s(2t n−2)
2(2t n−1)

⌋
+ β

⌊
2t s(2t n−2)
2(2t n−1)

⌋
+ β = 2t−1s(2t n − 2)

and 
η� be the integral part of η.

Proof From (16), we get

[Disc(D(t))]2 = �(2t s) + 1

2t n
(12)

2t s + 2t s
1

4t n2

2t n∑
i=1

2t n∑
j( �=i)=1


Ci j (D(t),D(t))

2 . (21)

From Lemma 1 and Corollary 1, we have

2t n∑
i=1

2t n∑
j( �=i)=1

Ci j (D(t), D(t)) =
2t n∑
i=1

2t n∑
j( �=i)=1

(2t s − Hi j (D
(t), D(t)))

= 2t n(2t n − 1)2t s − 1

2
8t n2s

= 1

2
8t n2s − 4t ns = 4t ns(2t−1n − 1). (22)

From Lemma 4 in Elsawah and Qin (2015) and (22), we can get the lower bound of
the summation in (21) and then the proof can be completed. ��
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Corollary 5 For any t-double design D(t) ∈ U(2, 2t+s, 2t s) generated from an initial
two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique, the generated
t-double design D(t) is better than any design d ∈ U(2, 2s+t , 2t s) based on the
uniformity criteria if and only if

[Disc(d)]2 > �(2t s) +
(
1 −

(
1

2

)t)(
2

12

)2t−1s +
(
1

2

)s+t (
2t

1 (2t
2 + 1)

)s
.

Proof From Theorem 19, for any t-double design D(t) ∈ U(2, 2t+s, 2t s) generated
from an initial two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique
we get

[Disc(D(t))]2 = �(2t s) +
(
1 −

(
1

2

)t)(
2

12

)2t−1s

+
(
1

2

)s+t (
2t

1 (2t
2 + 1)

)s
. (23)

From (23) and the definition of uniform designs, the proof can be completed. ��

Theorem 20 For any t-double design D(t) ∈ U(2, 2t+s, 2t s) generated from an initial
two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique, the performance
of the generated t-double design D(t) based on the PHDV can be measured by the
number of zero and non-zero entries in the PHDV as follows

�
{
1 ≤ r ≤ 2t s : PHDr (D

(t)) = ζ
}

=

⎧⎪⎪⎨
⎪⎪⎩

2t s − s, for ζ = 0 and even s;
2t s − s − 1, for ζ = 0 and odd s;
s, for ζ �= 0 and even s;
s + 1, for ζ �= 0 and odd s.

Proof For any initial two-level FuFD X ∈ U(2, 2s, s), we get

PHDr (X) =
(
1

2

)s (s
r

)
�= 0, 0 ≤ r ≤ s. (24)

Combining (24) and Theorem 2, we get

PHDr (D
(t)) = PHD2t s−r (D

(t))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( 1
2

)s+t ( s
s
2

)+ 1 − ( 1
2

)t
, r = 2t−1s and s is even;( 1

2

)s+t ( s
μ

)
, r = 2tμ, 0 ≤ μ ≤ s and r �= 2t−1s;

1 − ( 1
2

)t
, r = 2t−1s and s is odd;

0, ow.

(25)
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From (25), it is obvious that

PHDr (D
(t))

⎧⎨
⎩

�= 0, for r = 2tμ, 0 ≤ μ ≤ s;
�= 0, for r = 2t−1s;
= 0, ow.

(26)

From (26), the proof can be completed. ��
Corollary 6 For any t-double design D(t) ∈ U(2, 2t+s, 2t s) generated from an initial
two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique, the first 2t − 1
entries in the PHDV of the generated t-double design D(t) are zeros, i.e.,

PHD1(D
(t)) = ... = PHD2t−1(D

(t)) = 0.

Therefore, D(t) is better thanany design d ∈ U(2, 2t+s, 2t s) if and only if PHDr (d) �=
0 for any r < 2t .

Corollary 7 For any t-double designs D(t)
i ∈ U(2, 2t+si , 2t si ) generated from the

initial two-level FuFDs Xi ∈ U(2, 2si , si ), i = 1, 2, s2 = s1 + 1 via the multiple
doubling technique, we have

�
{
1 ≤ r ≤ 2t s1 : PHDr (D

(t)
1 ) �= 0

}
= �

{
1 ≤ r ≤ 2t s2 : PHDr (D

(t)
2 ) �= 0

}
, for odd s1.

�
{
1 ≤ r ≤ 2t s2 : PHDr (D

(t)
2 ) �= 0

}
= �

{
1 ≤ r ≤ 2t s1 : PHDr (D

(t)
1 ) �= 0

}
+ 2, for even s1.

Corollary 8 For any t-double design D(t) ∈ U(2, 2t+s, 2t s) generated from an initial
two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique, the generated
t-double design D(t) is a 1

2(2t−1)s−t FrFD and the entries of its PHDV are symmetric

about the (2t−1s)th entry, i.e.,

PHDr (D
(t)) = PHD2t s−r (D

(t))

and PHDr (D(t)) �= 0 if and only if PHD2t+r (D(t)) �= 0.Moreover, the first non-zero

entry of the PHDV is PHD2t (D(t)) = ( 1
2

)s+t
s for s ≥ 3.

Theorem 21 For any t-double design D(t) ∈ U(2, 2t+s, 2t s) generated from an initial
two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique, the performance
of the generated t-double design D(t) based on theGAVcanbemeasured by the number
of zero and non-zero entries in the GAV as follows

�{1 ≤ r ≤ 2t s : Ar (D
(t)) = ζ } =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3s+1
2 , for t = 1, ζ = 0 and odd s;

s−1
2 , for t = 1, ζ �= 0 and odd s;

3s
2 , for t = 1, ζ = 0 and even s;
s
2 , for t = 1, ζ �= 0 and even s;
2t−1s + 2, for t ≥ 2, ζ = 0;
2t−1s − 2, for t ≥ 2, ζ �= 0.
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Proof For any two-level FuFD X with s factors, we have A0(X) = 1 and Ag(X) =
0, 1 ≤ g ≤ s. Then, from Theorem 3 and the definition of the Krawtchouk polyno-
mials the r th entry of the GAV is given as follows

Ar (D
(t)) = 1

2t+s

s∑
μ=0

r∑
v=0

(−1)v
(
s

μ

)(
2tμ

v

)(
2t (s − μ)

r − v

)

+2t − 1

2t

r∑
v=0

(−1)v
(
2t−1s

v

)(
2t−1s

r − v

)
. (27)

From (27) with some algebra, we get

Ar (D
(t))

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�= 0, for t = 1, r = 4μ, 0 ≤ μ ≤ s
2 , and even s;

�= 0, for t = 1, r = 4μ, 0 ≤ μ ≤ s−1
2 , and odd s;

�= 0, for t ≥ 2, r = 2μ + 4, 0 ≤ μ ≤ 2t−1s − 4;
= 1, for t ≥ 2, r ∈ {0, 2t s};
= 0, ow.

(28)

From (28), the proof can be completed. ��
Corollary 9 For any t-double design D(t) ∈ U(2, 2s+t , 2t s) generated from an initial
two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique, the number of
zero entries in the GAV is greater than the number of non-zero entries and the linkages
between them for 1 ≤ r ≤ 2t s are given as follows

�{r : Ar (D
(t)) = 0} =

⎧⎨
⎩
3�{r : Ar (D(t)) �= 0} + 2, for odd s and t = 1;
3�{r : Ar (D(t)) �= 0}, for even s and t = 1;
�{r : Ar (D(t)) �= 0} + 4, for t ≥ 2.

Corollary 10 For any t-double design D(t) ∈ U(2, 2s+t , 2t s) generated from an initial
two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique, the first three
entries in the GAV are zeros, i.e., A1(D(t)) = A2(D(t)) = A3(D(t)) = 0, t ≥ 1.
That is, the generated t-double design D(t) is an orthogonal array of strength three.
Therefore, D(t) is better than any design d ∈ U(2, 2t+s, 2t s) if and only if Ar (d) �= 0
for any 1 ≤ r ≤ 3. This property is satisfied for all the above orthogonality criteria.

Corollary 11 For any double design D(1) ∈ U(2, 2s+1, 2s) generated from an initial
two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique, the first non-zero
entry in the GAV of the generated design D(1) is given as follows

A4(D
(1)
s ) = 3 +

s−1∑
k=3

k, for s ≥ 4.

Therefore, the generated design D(1) is better than any design d ∈ U(2, 2s+1, 2s)
based on the aberration if and only if Ar (d) �= 0 for any 1 ≤ r ≤ 3 or A4(d) >

3 +∑s−1
k=3 k for any s ≥ 4.
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Corollary 12 For any t-double design D(t) ∈ U(2, 2s+t , 2t s) generated from an initial
two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique, the entries of
the GAV are symmetric about the (2t−1s)th entry for t > 1, i.e.,

Ar (D
(t)) = A2t s−r (D

(t)), 0 ≤ r ≤ 2t s, for any t > 1.

However, for t = 1 we get

Ar (D
(1)) = A2s−r (D

(1)), 0 ≤ r ≤ 2s for even s and A2s−2(D
(1)) = s for odd s.

Corollary 13 For any ti -double designs D
(ti )
i ∈ U(2, 2si+ti , 2ti si ) generated from ini-

tial two-level FuFDs Xi ∈ U(2, 2si , si ), i = 1, 2 with 2t1s1 = 2t2s2 and ti ≥ 2 via
the multiple doubling technique, we have

�
{
1 ≤ r ≤ 2t1s1 : Ar (D

(t1)
1 ) = 0

}
= �

{
1 ≤ r ≤ 2t2s2 : Ar (D

(t2)
2 ) = 0

}
.

Corollary 14 For any t-double designs D(t)
i ∈ U(2, 2si+t , 2t si ) generated from initial

two-level FuFDs Xi ∈ U(2, 2si , si ), i = 1, 2 with s2 = s1 + 1 via the multiple
doubling technique, for t = 1 we have

�
{
1 ≤ r ≤ 2s2 : Ar (D

(1)
2 ) �= 0

}
= �

{
1 ≤ r ≤ 2s1 : Ar (D

(1)
1 ) �= 0

}
, for even s1,

�
{
1 ≤ r ≤ 2s2 : Ar (D

(1)
2 ) �= 0

}
= �

{
1 ≤ r ≤ 2s1 : Ar (D

(1)
1 ) �= 0

}
+ 1, for odd s1.

However, for t > 1 and any s2 = s1 + 1 we get

�
{
1 ≤ r ≤ 2t s2 : Ar (D

(t)
2 ) = 0

}
= �

{
1 ≤ r ≤ 2t s1 : Ar (D

(t)
1 ) = 0

}
+ 2t−1.

Remark 6 Theorem 21 andCorollaries 9-14 are satisfied for the orthogonality criterion
OV and the r th entry of the OV is given as follows

Or (D
(t)) = 2t+s−2t s

s∑
μ=0

r∑
v=0

(−1)v
(
s

μ

)(
2tμ

v

)(
2t (s − μ)

r − v

)
+ 2t+2s−2t s(2t − 1)

×
r∑

v=0

(−1)v
(
2t−1s

v

)(
2t−1s

r − v

)
.

Theorem 22 For any t-double design D(t) ∈ U(2, 2t+s, 2t s) generated from an initial
two-level FuFD X ∈ U(2, 2s, s) via the multiple doubling technique, the performance
of the generated t-double design D(t) based on the MAV is better than any design d ∈
U(2, 2t+s, 2t s) if and only if one of the following is satisfied M1(d) >

2t−1(2t+s s−2s)
2t+s−1 ,

M2(d) >
4
s
2+t−1

(2t s2+s)−4t s2

2t+s−1 , or M3(d) >
8
s
3+t−1

(2t s3+3s2)−8t s3

2t+s−1 .
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Proof From Theorem 4, the definition of the Krawtchouk polynomials and Corollary
1 in Elsawah (2020), the r th entry in the MAV is given as follows

Mr (D
(t)) = 2tr

2t+s − 1

⎡
⎣ s∑

j=0

(s − j)r
(
s

j

)
+ sr (2s+t−r − 2s−r − 1)

⎤
⎦ . (29)

From (29), the first three entries of the MAV for any D(t) ∈ U(2, 2s+t , 2t s) are the
smallest three entries of all the MAVs for all the designs in U(2, 2t+s, 2t s), which are
given by

Mr (D
(t)) =

⎧⎪⎪⎨
⎪⎪⎩

2t−1(2t+s s−2s)
2t+s−1 , r = 1;

4
s
2+t−1

(2t s2+s)−4t s2

2t+s−1 , r = 2;
8
s
3+t−1

(2t s3+3s2)−8t s3

2t+s−1 , r = 3.

(30)

From (30), the proof can be completed. ��

Corollary 15 For any t-double design D(t) ∈ U(2, 2t+1, 2t ) generated from an initial
two-level design X = (0 1)T ∈ U(2, 2, 1) via the multiple doubling technique, the
generated t-double design D(t) is an orthogonal array of strength three with

PHDr (D
(t)) =

⎧⎪⎨
⎪⎩
( 1
2

)t+1
, r ∈ {0, 2t };

1 − ( 1
2

)t
, r = 2t−1;

0, ow.

Moreover, the generated t-double design D(t) ∈ U(2, 2t+1, 2t ) has the above proper-
ties based on the aberration,Hamming distance,moment aberration and orthogonality
for a FuFD X with one factor s = 1.

Corollary 16 For any t-double design D(t) ∈ U(2, 2t+1, 2t+1) generated from an

initial two-level design X =
(
1 0
1 1

)
∈ U(2, 2, 2) via the multiple doubling technique,

the generated t-double designs D(t) ∈ U(2, 2t+1, 2t+1) after deleting the first column
D∗(t) ∈ U(2, 2t+1, 2t+1 − 1) are saturated orthogonal main effect plans (a design
Y ∈ U(2, α, β) is saturated if α − 1 = β ). Therefore, the HD between any two runs
of the design D∗(t) is equal to 2t . Thus, we get

PHDr (D
∗(t)) =

⎧⎪⎨
⎪⎩
( 1
2

)t+1
, r = 0;

1 − ( 1
2

)t+1
, r = 2t ;

0, ow.
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9 Numerical results with a comparison study

For supporting the above theoretical justifications, this section gives numerical studies
and a comparison study between the multiple doubling technique and the existing
widely used techniques mentioned above for constructing optimal designs with large
sizes. In the following discussions, let D(t)

ζ be a t-double design generated from a
FuFD X with ζ factors.

Example 1 The HDVs of the 1 ≤ t ≤ 4-doubling of FuFDs with 2 ≤ s ≤ 30
factors are given in Tables A1-A5 in the online supplementary material (cf. Appendix
A). Tables 3 and 4 present the conclusions of the results in Tables A1-A5, such as
the numbers of zero and non-zero entries and the number of first zero entries in the
PHDVs. From Tables 3 and 4 and Tables A1-A5, we can show that Theorem 20 and
its related Corollaries 6-8 are satisfied for any 2 ≤ s ≤ 30.

Example 2 The GAVs of the 1 ≤ t ≤ 4-doubling of FuFDs with 2 ≤ s ≤ 30 factors
are given in Tables A6-A12 in the online supplementary material (cf. Appendix B).
Tables 3 and 4 present the conclusions of the results in Tables A6–A12, such as the
numbers of zero and non-zero entries and the number of first zero entries in the GAVs.
From Tables 3 and 4 and Tables A6–A12, we can show that Theorem 21 and its related
Corollaries 9-14 are satisfied for any 2 ≤ s ≤ 30.

Example 3 The first three entries of theMAVs for the generated t-double design D(t)
s ∈

U(2, 2s+t , 2t s), t = 1, 2 in Tables 3 and 4 are given in Table 5. From Table 5, we
get that the first three entries of the MAV for any generated t-double design D(t)

s ∈
U(2, 2s+t , 2t s) are the smallest three entries of all the MAVs for all the designs in
U(2, 2t+s, 2t s).

Example 4 For the FuFDs with 2 ≤ s ≤ 7 factors, Tables A13–A18 in the online
supplementary material (cf. Appendix C) give the Lee discrepancy values of all the
generated 3 ≤ t ≤ 20-double designs D(t)

s ∈ U(2, 2s+t , 2t s) and the correspond-
ing lower bounds of the Lee discrepancy for the designs with the same sizes in
U(2, 2s+t , 2t s), i.e., the minimum value of the Lee discrepancy for any design in
U(2, 2s+t , 2t s). That is, if the Lee discrepancy value of any generated t-double design
D(t)
s is equal to the corresponding lower bound, the design D(t)

s has the minimum
value of the Lee discrepancy relative to all the designs in U(2, 2s+t , 2t s), i.e., the
design D(t)

s is a uniform design. Table 6 gives the conclusions of the results in Tables
A13–A18. From Theorem 19, Tables A13–A18 and Table 6, we can show that all the
generated 3 ≤ t ≤ 20-double designs are uniform orthogonal arrays of strength three
from the set of all the designs in U(2, 2s+t , 2t s).
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9.1 Measuring the efficiency of the new technique relative to existingmethods

The two-level orthogonal arrays of strength three d ∈ U(2, 2a+1, 2a), 2 ≤ a ≤ 8
on the website http://neilsloane.com/oadir/ can be generated from the initial FuFD
X ∈ U(2, 4, 2) by the multiple doubling technique without computer search (i.e.,
zero time) to present 1 ≤ t ≤ 7-double designs D(t) ∈ U(2, 2t+2, 2t+1). It is worth
mentioning that, these designs can be generated by 2 ≤ t ≤ 8-doubling of X = (0 1)T .

The 20-double design D(20) ∈ U(2, 4194304, 2097152) in Table 6 generated from
the initial FuFD X ∈ U(2, 2, 2) by the multiple doubling technique without computer
search (i.e., zero time) is a uniform design in view of the Lee discrepancy. This design
can be generated by doubling X = (0 1)T 21 times. The (adjusted) threshold accepting
algorithm needs few days to compare the Lee discrepancy values of all the possible
designs (millions) in U(2, 4194304, 2097152) to select the global or at least local
minimum value. The quaternary codes and their binary Gray map images technique
needs few days to select the uniform four-level design from U(4, 4194304, 1048576)
by using the (adjusted) threshold accepting algorithm and after that use the transfor-
mations 0 −→ 00, 1 −→ 01, 2 −→ 11, and 3 −→ 10 to generate the corresponding
design in U(2, 4194304, 2097152). The level permutation method takes few days to
select the best design from the set of all the possible level permuted designs of any
initial design from U(2, 4194304, 2097152). The projection method takes few days
to choose the best sub-design with 2097152 factors from an initial design with num-
ber of factors more than 2097152. Augmented (extended) design technique needs to
fold over (adding runs and/or factors to) a uniform design many times and compare
millions of designs in the set of all the possible augmented (extended) designs. It is
worth mentioning that, there is no guarantee that the generated designs via the above
methods are uniform designs.

10 Conclusion and future work

Two-level experimental designs are the most widely used designs in many real-life
experiments, such as manufacturing and high-tech industries. The construction of
these experimental designs is the most significant hard problem investigators may
face. Although there are many methods to construct such two-level designs, the chal-
lenge facing the experimenters is still daunting. The practice has demonstrated that
the existing methods are complex, highly time-consuming, produce limited types of
experimental designs, and likely to fail in large experiments (i.e., optimal results are
not expected). A new technique, multiple doubling technique, that can overcome these
defects of the existing techniques is presented in this paper as an interesting improve-
ment of the classical doubling technique. The results demonstrated that the multiple
doubling technique outperformed the current techniques in terms of construction
simplicity, computational efficiency and achieving satisfactory results capability. For
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non-mathematicians the new technique is much simpler than the current techniques,
as it allows them to design optimal large experiments without computer. To meet prac-
tical needs in different fields, the statistical properties of the generated designs by the
new technique are investigated from four basic perspectives: minimizing the similar-
ity among the experimental runs, minimizing the aliasing among the input variables,
maximizing the resolution of the design, and filling the experimental domain as uni-
formly as possible. The significance of the new method is evaluated by comparing it
with the existing methods. New recommended saturated orthogonal main effect plans
and uniform orthogonal arrays of strength three with very large sizes are generated by
the new technique without computational time.

After reading this paper, some interesting ideas for further study can arise. We are
working on these ideas and some interesting results are obtained. However, we cannot
give any conclusion at this stage and the results will be given in our future papers.

• Adjusted doubling technique Suppose that X is an n × s matrix with q distinct
entries, 0, 1, ..., q − 1. Therefore, the double of X is the 2n × 2s matrix

D(X) =
(
R(X) R(X)

R(X) −R(X)

)
,

where for odd q the function R is given as follows

R :
(
0, 1, ...,

q − 1

2
, ..., q − 1

)

−→
(

−q − 1

2
,−q − 1

2
+ 1, ..., 0, ...,

q − 1

2
− 1,

q − 1

2

)

and for even q the function R is given as follows

R :
(
0, 1, ...,

q

2
− 1,

q

2
,
q

2
+ 1, ..., q − 1

)

−→
(
−q

2
,−q

2
+ 1, ...,−2,−1, 1, 2, ...,

q

2
− 1,

q

2

)
.

This idea can be used for doubling designs with more than two levels.
• Multiple tripling technique Suppose that X is an n× s matrix with three distinct
entries, 0,1 and 2. The tripling of X is the following 3n × 3s matrix

T (X) =
⎛
⎝ X X f1(X)

X f4(X) f2(X)

X f5(X) f3(X)

⎞
⎠ ,
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where fi (X) = Xi , 1 ≤ i ≤ 5 are the level permuted designs of the three-level
design X via the functions f1 : (0, 1, 2) −→ (0, 2, 1), f2 : (0, 1, 2) −→ (2, 1, 0),
f3 : (0, 1, 2) −→ (1, 0, 2), f4 : (0, 1, 2) −→ (2, 0, 1), and f5 : (0, 1, 2) −→
(1, 2, 0) (cf. Zhang 2016). This idea can be extended to multiple tripling technique
for constructing large three-level designs by the same technique in this paper.

• Multiple quadrupling technique Suppose that X is an n × s matrix with four
distinct entries, 0,1, 2 and 3. The quadrupling of X is the following 4n×4s matrix

Q(X) =

⎛
⎜⎜⎝

X X X X
X g1(X) g2(X) g3(X)

X g2(X) g3(X) g1(X)

X g3(X) g1(X) g2(X)

⎞
⎟⎟⎠ ,

where gi (X) = Xi , 1 ≤ i ≤ 3 are the level permuted designs of the four-level
design X via the functions f1 : (0, 1, 2, 3) −→ (1, 0, 3, 2), f2 : (0, 1, 2, 3) −→
(2, 3, 0, 1), and f3 : (0, 1, 2, 3) −→ (3, 2, 1, 0) (cf. Li and Qin 2020). This idea
can be extended tomultiple quadrupling technique for constructing large four-level
designs by the same technique in this paper.

• Gray mapping-multiple doubling technique As we mentioned, the quaternary
codes and their binary Gray map images (QCBGMI, Elsawah and Fang 2018) is a
new method to construct four-level designs from two-level designs. For construct-
ing four-level designs with large sizes, optimal two-level designs with large sizes
are needed. The applications of the QCBGMI method to the multiple doubling
of two-level designs are interesting for constructing four-level designs with large
sizes. In our futurework, wewill study this problem and try to extend theQCBGMI
method from two-level designs to multiple doubling of two-level designs. For any
design X ∈ U(2, n, s), the future work will present the construction procedure
for resulting four-level design Q(t) ∈ U(4, 2t n, 4t−1s) for any t ≥ 1 via a new
technique, Gray mapping-multiple doubling technique.

• Finally, the future work will give a closer look at the projection and the comple-
mentary design theory of the generated multiple double designs.
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Table 5 The first three entries of MAVs for t-double designs D(t)
s ∈ U(2, 2s+t , 2t s), 1 ≤ t ≤ 2 generated

from FuFDs with s factors

s M1(D
(1)
s ) M2(D

(1)
s ) M3(D

(1)
s ) s M1(D

(1)
s ) M2(D

(1)
s ) M3(D

(1)
s )

2 1.7143 3.4286 6.8571 17 16.9999 297.4967 5.3464 × 103

3 2.8 8.8 28.8 18 18 332.9982 6.3179 × 103

4 3.8710 16.5161 74.3226 19 19 370.499 7.4005 × 103

5 4.9206 26.3492 149.2063 20 20 409.9994 8.6 × 103

6 5.9528 38.1732 258.5197 21 21 451.4997 9.9225 × 103

7 6.9725 51.9373 407.3725 22 22 494.9998 1.1374 × 104

8 7.9843 67.6321 601.1742 23 23 540.4999 1.2960 × 104

9 8.9912 85.2669 845.6305 24 24 587.9999 1.4688 × 104

10 9.9951 104.8559 1146.6536 25 25 637.5 1.6562 × 104

11 10.9973 126.4127 1.5103 × 103 26 26 689 1.8590 × 104

12 11.9985 149.9480 1.9425 × 103 27 27 742.5 2.0776 × 104

13 12.9992 175.4695 2.4496 × 103 28 28 798 2.3128 × 104

14 13.9996 202.9823 3.0374 × 103 29 29 855.5 2.5650 × 104

15 14.9998 232.4898 3.7121 × 103 30 30 915 2.8350 × 104

16 15.9999 263.9942 4.4798 × 103 31 31 976.5 3.1232 × 104

s M1(D
(2)
s ) M2(D

(2)
s ) M3(D

(2)
s ) s M1(D

(2)
s ) M2(D

(2)
s ) M3(D

(2)
s )

2 3.7333 14.9333 59.7333 9 17.9912 332.5296 6.2983 × 103

3 5.8065 35.6129 222.9677 10 19.9951 409.7094 8.5865 × 103

4 7.8730 65.0159 552.6349 11 21.9973 494.8241 1.1365 × 104

5 9.9213 102.6772 1.0961 × 103 12 23.9985 587.8953 1.4682 × 104

6 11.9529 148.3294 1.8974 × 103 13 25.9992 688.9385 1.8586 × 104

7 13.9726 201.8630 3.0010 × 104 14 27.9996 797.9643 2.3126 × 104

8 15.9844 263.2571 4.4523 × 103 15 29.9998 914.9795 2.8349 × 104
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