
Statistical Papers (2021) 62:2907–2921
https://doi.org/10.1007/s00362-020-01219-8

REGULAR ART ICLE

A novel method for constructing mixed two- and
three-level uniform factorials with large run sizes

Hongyi Li1 · Xingyou Huang1 · Huili Xue1 · Hong Qin2

Received: 5 October 2020 / Revised: 21 November 2020 / Accepted: 8 December 2020 /
Published online: 15 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
The methods of doubling and tripling have been used to construct two-level and three-
level symmetrical fractional factorial designs with optimal properties. In this paper,
the construction of symmetrical designs is generalized to an asymmetrical case, a
novel constructionmethod by amplifying is presented for constructingmixed two- and
three-level uniform designs with large run sizes. The analytic relationship between the
squared wrap-around L2- discrepancy value of the amplified design constructed by
amplifying and the wordlength pattern of the initial design is built. Furthermore, the
relationships of uniformity and aberration between the amplified design and the corre-
sponding initial design are respectively considered. These results provide a theoretical
basis for constructing mixed two- and three-level uniform designs with large run sizes.
Finally, some numerical results are provided to support our theoretical results.

Keywords Amplified design · Distance distribution · GMA · Uniformity · Lower
bound · Discrepancy

Mathematics Subject Classification 62K15 · 62K10 · 62K99

1 Introduction

Uniform design (Fang et al. 2006) is one of space-filling designs for physical and
computer experiments. It requires the experiment points uniformly scatter over exper-
imental domain. As measures of uniformity, discrepancies play a key role in uniform
designs. Hickernell (1998) used the tool of reproducing kernel Hilbert spaces to define
several discrepancies, such as the centered L2-discrepancy and the wrap-around L2-
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discrepancy. For practical use, uniform designs with various sizes are needed, so the
construction of such uniform designs is an important issue. There are lots of existing
construction methods, such as the good lattice point method and its modifications, the
cutting method, the linear level permutation method and combinatorial construction
method. About the construction of uniform designs, we can refer to (Fang et al. 2018,
Sun et al. 2019).

Doubling is a simple but powerful method of constructing two-level fractional fac-
torial designs. The method of doubling has been first used to construct the orthogonal
main effect designs. Chen and Cheng (2006) showed that for 9N/32 ≤ n ≤ 5N/16,
all minimum aberration designs with N runs and n factors are projections of the max-
imal design with 5N/16 factors which is constructed by repeatedly doubling the 25−1

design defined by I = ABCDE . Subsequently, the method of doubling is widely
applied in the construction of two-level design with excellent properties, see Cheng
and Zhang (2010), Xu and Cheng (2008), Zhang and Cheng (2010), Ou andQin (2010;
2017). Ou et al. (2019) extended themethod of doubling to themethod of tripling based
on level permutation of factors, which had been used to construct three-level fractional
factorial designs and considered some links of the coefficients of the indicator func-
tions between the Triple design and its original design. The uniformity of the Triple
design and its projective designs was also studied. Li and Qin (2018) discussed the
connections between the Triple design and its original design under various screen-
ing criteria, such as E( fNOD) criterion, generalized minimum aberration, minimum
moment aberration, orthogonality criterion and uniformity criterion.

A natural question arises: how to construct mixed two- and three-level unform
designs by suitable combination of permuted designs from level permutation? The
present paper aims to study the question. A novel method is presented to construct
mixed two- and three-level unform designs with large run sizes, and some related
properties are discussed.

The paper is organized as follows. Section 2 provides some concepts and the
required formulas. The analytic connection between the squared wrap-around L2- dis-
crepancy value of the amplified design constructed by amplifying and the wordlength
pattern of the initial design is investigated, and the relationship of uniformity between
the amplified design and its initial design is also considered in Sect. 3. Section 4
presents the analytic connection between the amplified design and its initial design
via generalized minimum aberration criterion. Two illustrative examples are provided
to support our theoretical results in Sect. 5. Some concluding remarks are given in
Sect. 6.

2 Preliminaries

Let U(n; q1s1 × q2s2) be a class of asymmetrical factorials of n runs, where s1, s2 and
q1, q2 represent respectively the number of factors and levels. For d ∈ U(n; qs11 ×qs22 ),
a typical treatment combination of d is defined by z = (z(1), z(2)), where z(k) =
(z(k)1 , . . . , z(k)sk ), 0 ≤ z(k)l ≤ qk − 1, 1 ≤ l ≤ sk, k = 1, 2. Let V (1), V (2) and V
be the respective sets of all the v1 = qs11 , v2 = qs22 and v = qs11 × qs22 treatment
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combinations lexicographically ordered. For any z ∈ V , let yd(z) be the number of
times the treatment combination z occurs in d ∈ U(n; qs11 ×qs22 ) . For any z(1) ∈ V (1),
let yd(z(1)) be a v2 × 1 vector with elements yd(z(1), z(2)) for all elements z(2) in V (2)

arranged in the lexicographic order. Let yd be a v × 1 vector with elements yd(z)
arranged in the lexicographic order. Throughout the paper, we only consider balanced
(with equal occurrence property) designs in which all levels appear equally often for
any column.

Discrepancies have used in lots of literature as measurements of uniformity. It has
shown that the wrap-around L2-discrepancy (for simplicity,WD) has good properties.
For anydesignd ∈ U(n; qs11 ×qs22 ), itsWD value, denoted asWD(d), can be computed
by the following formula,

[WD(d)]2 = −
(
4

3

)s1+s2
+ 1

n2

n∑
i=1

n∑
j=1

2∏
k=1

sk∏
l=1

[
3

2
− |x (k)

il − x (k)
jl |(1 − |x (k)

il − x (k)
jl |)

]
,

(1)

where x (k)
il = 2z(k)il +1

2qk
, for any fixed i . The WD(d) value can be used for measur-

ing uniformity of design points of d over experimental domain. Then the uniformity
criterion in this paper favors designs with the smallest WD(d) value. It is important
to obtain lower bounds (LWD(d)) of [WD(d)]2, which can be used a benchmark
for constructing a uniform design or measuring the uniformity of designs. In some
circumstances, the lower bound can not be reached, a ratio is defined by

e = LWD(d)

[WD(d)]2 ,

when e = 1, the design d called a uniform design, when e is close to 1 (≥ 0.95), the
design d is called a nearly uniform design.

For d ∈ U(n; qs11 × qs22 ), the distance distribution of d is defined by

E j1 j2(d) = 1

n
| {(u1, u2) : dH (u(1)

1 , u(1)
2 ) = j1, dH (u(2)

1 , u(2)
2 ) = j2,

u1 = (u(1)
1 , u(2)

1 ) ∈ d, u2 = (u(1)
2 , u(2)

2 ) ∈ d }|, (2)

for 0 ≤ j1 ≤ s1 and 0 ≤ j2 ≤ s2, where u(k)
i = (u(k)

i1 , u(k)
i2 , . . . , u(k)

isk
), u(k)

i t ∈
{0, 1, . . . , qk − 1}, 1 ≤ t ≤ sk, i, k = 1, 2, dH (u1, u2) is the Hamming distance
between two rows u1 and u2, that is, the number of placeswhere they differ,λu1u2(d, d)

is the coincide number of rows u1 and u2 in d, i.e., λu1u2(d, d) = s1+s2−dH (u1, u2),
|{(u1, u2)}| is the cardinality of the set {(u1, u2)}.

The MacWilliams transforms of the distance distribution are

Ai1i2(d) = 1

n

s1∑
j1=0

s2∑
j2=0

Pi1( j1; s1, q1)Pi2( j2; s2, q2)E j1 j2(d), (3)
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Table 1 kinds of level permutation of d2, d3 and the corresponding images

Permutation no. Initial design Permutation method Image

1 d2 (0, 1) �→ (0, 1) d2

2 d2 (0, 1) �→ (1, 0) d(1)
2

3 d3 (0, 1, 2) �→ (0, 1, 2) d3

4 d3 (0, 1, 2) �→ (0, 2, 1) d(1)
3

5 d3 (0, 1, 2) �→ (2, 1, 0) d(2)
3

6 d3 (0, 1, 2) �→ (1, 0, 2) d(3)
3

7 d3 (0, 1, 2) �→ (2, 0, 1) d(4)
3

8 d3 (0, 1, 2) �→ (1, 2, 0) d(5)
3

for 0 ≤ i1 ≤ s1 and 0 ≤ i2 ≤ s2, where Pit ( jt ; st , qt ) = ∑it
r=0(−1)r (qt −

1)it−r
( jt
it

)(st− jt
it−r

)
is Krawtchouk polynomial, t = 1, 2. For 0 ≤ i ≤ s1 + s2, define

Ag
i (d) =

∑
i1+i2=i

Ai1i2(d),

the vector (Ag
1(d), Ag

2(d), . . . , Ag
s1+s2(d)) is called the generalized wordlength pat-

tern. For two designs d ′ and d
′′
in U(n; qs11 × qs22 ), d ′ is said to have less aberration

than d
′′
if there exists a r , 1 ≤ r ≤ s1 + s2, such that Ag

r (d ′) < Ag
r (d

′′
) and

Ag
i (d

′) = Ag
i (d

′′
) for i = 1, 2, . . . , r − 1. The design d ′ has generalized mini-

mum aberration (GMA) if there is no other design with less aberration than d ′. The
GMA criterion is to sequentially minimize Ag

i (d) for i = 1, . . . , s1 + s2. About more
details of GMA criterion, one can refer to Xu and Wu (2001).

In this paper, we only considermixed two- and three-level designs, i.e, q1 = 2, q2 =
3. Let d23 = (d2

... d3) ∈ U(n; 2s1 ×3s2) represent a mixed two- and three-level design
in which d2 and d3 are respectively decided by the first s1 columns with two levels
and the next s2 columns with three levels. The two kinds of level permutation of d2,
the six kinds of level permutation of d3 and the corresponding designs obtained from
these level permutations are listed in Table 1.

Inspired by the construction of two-level Double designs and three-level Triple
designs, and based on the level permutations of factors, the method of amplifying
for constructing uniform mixed two- and three-level designs with large run sizes is
proposed in the following definition.

Definition 1 Suppose d23 = (d2
... d3) ∈ U(n; 2s1 ×3s2), the 3n× (4s1 +3s2) matrix

K(d23) =
⎛
⎜⎝
d2 d2 d2 d(1)

2 d3 d3 d(1)
3

d2 d2 d(1)
2 d2 d3 d(4)

3 d(2)
3

d2 d(1)
2 d2 d2 d3 d(5)

3 d(3)
3

⎞
⎟⎠ ,
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is called the amplifying of d23, where d
(1)
2 , d(i)

3 is shown in Table 1, i = 1, 2, 3, 4, 5.
K(d23) is called the amplified design of d23, d23 is called the initial design of K(d23).

Example 1 Take n = 6 and s1 = 1, s2 = 1. Consider the following mixed two-
and three-level d23 ∈ U(6; 2131). By Definition 1, the amplified design of K(d23) ∈
U(18; 2433) is obtained as follows,

d23 =
(
0 0 0 1 1 1
0 1 2 0 1 2

)′
,

K(d23) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 2 0 1 2 0 1 1 2 0 1 2 0
0 2 1 0 2 1 2 1 0 2 1 0 1 0 2 1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

′

.

3 Uniformity of the amplified designK(d23)

For any d23 = (d2
... d3) ∈ U(n; 2s1×3s2),K(d23) ∈ U(3n; 24s1×33s2) is the amplified

design of d23. Denote δd2(i),d2( j)(a, b) as the number of position where rows i and j
of d2 take pair (a, b), where a, b = 0, 1, i, j = 1, . . . , n. The following lemma gives
out the relationship of the coincide number between K(d23) and d2, d3.

Lemma 1 Let d23 = (d2
... d3) ∈ U(n; 2s1 × 3s2), and K(d23) ∈ U(3n; 24s1 ×

33s2) be the amplified design of d23. Then the analytic relationship between
λi j (K(d23),K(d23)) and λi j (d2, d2), λi j (d3, d3), is as follows, for 1 ≤ i, j ≤ n,

λ(i+kn)( j+ln)(K(d23),K(d23)) =
{
4λi j (d2, d2) + 3λi j (d3, d3), k = l, k, l = 0, 1, 2,
2s1 + s2, k �= l, k, l = 0, 1, 2.

Proof When k = l = 0, by the definition of the coincide number and Definition 1,

λi j (K(d23),K(d23)) = 3λi j (d2, d2) + λi j (d
(1)
2 , d(1)

2 ) + 2λi j (d3, d3) + λi j (d
(1)
3 , d(1)

3 )

= 4λi j (d2, d2) + 3λi j (d3, d3).

When k = l = 1, 2, the proofs of such cases are similar. When k = 0, l = 1, by
Lemma 1 in Li and Qin (2018),

λi j (K(d23),K(d23)) = 2λi j (d2, d2) + λi j (d2, d
(1)
2 ) + λi j (d

(1)
2 , d2)
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+ λi j (d3, d3) + λi j (d3, d
(4)
3 ) + λi j (d

(1)
3 , d(2)

3 )

= 2δ(0,0)
d2(i),d2( j)

+ 2δ(1,1)
d2(i),d2( j)

+ 2δ(0,1)
d2(i),d2( j)

+ 2δ(1,0)
d2(i),d2( j)

+ s2
= 2s1 + s2.

When k �= l, the proofs of the other cases are similar. So Lemma 1 holds.

Next we discuss the relationship of uniformity between the amplified designK(d23)
and the initial design d23.

For any d23 = (d2
... d3) ∈ U(n; 2s1 × 3s2), by (1), its squared WD value is as

follows,

[WD(d23)]2 = −
(
4

3

)s1+s2
+ 1

n2

(
5

4

)s1 (
23

18

)s2 n∑
i=1

n∑
j=1

(
6

5

)λi j (d2,d2) (
27

23

)λi j (d3,d3)

.

(4)

From (4), it is noted that WD(d23) is decided by the coincide number of d2 and d3 of
the initial design d23.

Chatterjee et al. (2005) provided a lower bound of WD value of mixed two- and
three-level design,

[WD(d23)]2 ≥ LWD(d23), (5)

where

LWD(d23) = −
(
4

3

)s1+s2
+ 1

n2

(
5

4

)s1 (
23

18

)s2 s1∑
i=0

s2∑
j=0

(
s1
i

)(
s2
j

) (
1

5

)i ( 4

23

) j

θi j ,

θi j = nηi j + τi j (1 + ηi j ), τi j = n − 2i3 jηi j , ηi j = 	n/(2i3 j )
 is the largest integer
less than or equal to n/(2i3 j ).

For any d23 = (d2
... d3) ∈ U(n; 2s1 × 3s2), K(d23) ∈ U(3n; 24s1 × 33s2) is the

amplified design of d23, by (1) and Lemma 1, the squared WD value of K(d23) is as
follows,

[WD(K(d23))]2 = −
(
4

3

)4s1+3s2
+ 1

9n2

[(
n∑

i=1

+
2n∑

i=n+1

+
3n∑

i=2n+1

)

⎛
⎝ n∑

j=1

+
2n∑

j=n+1

+
3n∑

j=2n+1

⎞
⎠

⎤
⎦

×
4s1∏
l=1

4s1+3s2∏
l=4s1+1

[
3

2
− |xil − x jl |(1 − |xil − x jl |)

]
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= −
(
4

3

)4s1+3s2
+ 2

3n2

n∑
i=1

n∑
j=1

(
3

2

)2s1 (
5

4

)2s1 (
3

2

)s2 (
23

18

)2s2

+ 1

3n2

(
5

4

)4s1 (
23

18

)3s2 n∑
i=1

n∑
j=1

(
64

54

)λi j (d2,d2) (
273

233

)λi j (d3,d3)

= −
(
4

3

)4s1+3s2
+ 2

3

(
225

64

)s1 (
529

216

)s2

+ 1

3n2

(
5

4

)4s1 (
23

18

)3s2 n∑
i=1

n∑
j=1

(
64

54

)λi j (d2,d2) (
273

233

)λi j (d3,d3)

.(6)

By (6),WD(K(d23)) is also decided by the coincide number of d2 and d3 of the initial
design d23.

For any positive integer k, let 1k and Ik respectively be the k × 1 vector with all
elements unity and an identity matrix of order k. Define L(1)(0) = 1′

2, L
(2)(0) =

1′
3, L

(1)(1) = I2, L(2)(1) = I3. For positive integer s, the s−fold Kronecker products

of 1k and Ik will be denoted by 1(s)
k and I (s)

k , respectively. For i = 1, 2, let �(i)

be the set of binary si−tuples and define the matrix for any x (i) = (x (i)
1 , . . . x (i)

si ) ∈
�(i), H (i)(x (i)) = L(i)(x (i)

1 )
⊗ · · · ⊗ L(i)(x (i)

si ), where
⊗

is Kronecker product.
Let � = {x = (x (1), x (2)) : x (1) ∈ �(1), x (2) ∈ �(2)} and the members of � be
lexicographically ordered, and the cardinality of � be 2(s1+s2). For 0 ≤ i ≤ s1, 0 ≤
j ≤ s2, let�i j be the subset of� consisting of those binary (s1+s2)-tuples which has
exactly i elements of x (1) unity and j elements of x (2) unity, �∗ = �−�00 be the set
of non-null members of�. Define the v ×v matrix H(x) = H (1)(x (1))

⊗
H (2)(x (2)).

Let

D(1)
0 =

⎛
⎜⎝

( 3
2

)4 (
5
4

)4
(
5
4

)4 ( 3
2

)4
⎞
⎟⎠ and D(2)

0 =
⎛
⎜⎝

( 3
2

)3 ( 23
18

)3 ( 23
18

)3
( 23
18

)3 ( 3
2

)3 ( 23
18

)3
( 23
18

)3 ( 23
18

)3 ( 3
2

)3

⎞
⎟⎠ .

It is to be noted that D(1)
0 and D(2)

0 can be respectively expressed as

D(1)
0 = 625

256
L(1)(0)′L(1)(0) + 671

256
L(1)(1)′L(1)(1)

and

D(2)
0 = 12167

5832
L(2)(0)′L(2)(0) + 7516

5832
L(2)(1)′L(2)(1).

Denote

D(1)
s1 =

s1⊗
i=1

D(1)
0 , D(2)

s2 =
s2⊗
j=1

D(2)
0 , D = D(1)

s1

⊗
D(2)
s2 .
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A lower bound of [WD(K(d23))]2 is given out in the following lemma.

Lemma 2 Let K(d23) ∈ U(3n; 24s1 × 33s2) be the amplified design of d23. Then

[WD(K(d23))]2 ≥ LWD(K(d23)), (7)

where

LWD(K(d23)) = −
(
4

3

)4s1+3s2
+ 2

3

(
225

64

)s1 (
529

216

)s2
+ 1

3n2

(
625

256

)s1 (
12167

5832

)s2

×
s1∑
i=0

s2∑
j=0

(
s1
i

)(
s2
j

)(
671

625

)i ( 7516

12167

) j

θi j ,

θi j , τi j , ηi j are shown in (5).

Proof It is to be noted that D can be expressed as

D =
(
625

256

)s1 (
12167

5832

)s2 ∑
x (1)∈�(1)

∑
x (2)∈�(2)

(
671

625

)∑
x (1)
j

(
7516

12167

)∑
x (2)
j

H ′(X)H(x)

y′
d Dyd =

(
625

256

)s1 (
12167

5832

)s2 s1∑
i=0

s2∑
j=0

(
671

625

)i ( 7516

12167

) j
⎛
⎝ ∑

x∈�i j

y′
d H

′(X)H(x)yd

⎞
⎠ ,

(8)

for any
∑

x∈�i j
, the elements of (2i3 j ) × 1 vector H(x)yd are nonnegative integers

with sum n. Thus

y′
d H

′(X)H(x)yd ≥ η2i j (2
i3 j − τi j ) + (ηi j + 1)2τi j

= nηi j + τi j (ηi j + 1). (9)

By (1) and Lemma 1,

[WD(K(d23))]2 = −
(
4

3

)4s1+3s2
+ 2

3

(
225

64

)s1 (
529

216

)s2
+ 1

3n2
y′
d Dyd . (10)

From (8)–(10), the proof of Lemma 2 is completed.

LWD(K(d23)) can be used as a benchmark formeasuring the uniformity of designs
and searching uniform designs. The amplified designK(d23) of d23 is called a uniform
design if it has the smallestWD value, i.e,K(d23) is a uniform design if itsWD value
reaches the lower bound LWD(K(d23)). According to (5) and (7), we have found
that WD(K(d23)) reaches the LWD(K(d23)) if and only if WD(d23) reaches the
LWD(d23). Then we have the following result directly and omit its proof.
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Theorem 1 The amplified design K(d23) is an (nearly) uniform design if and only if
the initial design d23 is an (nearly) uniform design.

Remark 1 From Theorem 1, the uniformity of the amplified design K(d23) is closely
related to the uniformity of the initial design d23. According to Theorem 1, a kind
of mixed two- and three-level uniform designs with large run sizes are obtained by
amplifying.

In order to build the analytical relationship between the squared WD value of the
amplified design K(d23) and the wordlength pattern of the initial design d23, the next
lemma is necessary.

Lemma 3 For d ∈ U(n; qs11 × qs22 ), denote λ
(qk )
i j as the coincide number of rows i and

j of corresponding to the qk-level part in d, where k = 1, 2. Then for any positive
number z1, z2 greater than 1,

n∑
i=1

n∑
j=1

z
λ

(q1)

i j
1 z

λ
(q2)

i j
2 = n2

(
q1 + z1 − 1

q1

)s1 (
q2 + z2 − 1

q2

)s2 s1∑
i1=0

s2∑
i2=0

(
z1 − 1

z1 + q1 − 1

)i1

×
(

z2 − 1

z2 + q2 − 1

)i2
Ai1i2(d).

Proof By (3) and the orthogonality of Krawtchouk polynomials,

E j1 j2(d) = nq−s1
1 q−s2

2

s1∑
i1=0

s2∑
i2=0

Pj1(i1; s1, q1)Pj2(i2; s2, q2)Ai1i2(d).

So,

n∑
i=1

n∑
j=1

z
λ

(q1)

i j
1 z

λ
(q2)

i j
2 = n

s1∑
j1=0

s2∑
j2=0

E j1 j2(d)zs1− j1
1 zs2− j2

2

= n2
(
z1
q1

)s1 (
z2
q2

)s2 s1∑
j1=0

s2∑
j2=0

s1∑
i1=0

s2∑
i2=0

Pj1(i1; s1, q1)z− j1
1

× Pj2(i2; s2, q2)z− j2
2 Ai1i2(d)

= n2
(
z1
q1

)s1 (
z2
q2

)s2 s1∑
i1=0

⎛
⎝ s1∑

j1=0

Pj1(i1; s1, q1)z− j1
1

⎞
⎠

×
s2∑

i2=0

⎛
⎝ s2∑

j2=0

Pj2(i2; s2, q2)z− j2
2

⎞
⎠ Ai1i2(d)

= n2
(
z1
q1

)s1 (
z2
q2

)s2 s1∑
i1=0

s2∑
i2=0

[1 + (q1 − 1)z−1
1 ]s1−i1

(
1 − 1

z1

)i1
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× [1 + (q2 − 1)z−1
2 ]s2−i2

(
1 − 1

z2

)i2
Ai1i2(d)

= n2
(
q1 + z1 − 1

q1

)s1 (
q2 + z2 − 1

q2

)s2

×
s1∑

i1=0

s2∑
i2=0

(
z1 − 1

z1 + q1 − 1

)i1 (
z2 − 1

z2 + q2 − 1

)i2
Ai1i2(d),

which completes the proof of Lemma 3.

The following theorem provides the analytical relationship between the squared
WD value of the amplified design K(d23) and the wordlength pattern of the initial
design d23.

Theorem 2 Let d23 = (d2
... d3) ∈ U(n; 2s1 × 3s2), K(d23) ∈ U(3n; 24s1 × 33s2) be

the amplified design of d23. Then

[WD(K(d23))]2 = −
(
4

3

)4s1+3s2
+ 2

3

(
225

64

)s1 (
529

216

)s2
+ 1

3

(
304 + 254

2 × 204

)s1

×
(
2 × 236 + 6213

3 × 4143

)s2 s1∑
i1=0

s2∑
i2=0

(
64 − 54

64 + 54

)i1 (
273 − 233

273 + 2 × 233

)i2

Ai1i2(d23).

Proof By (6) and Lemma 3, Theorem 2 holds.

From Theorem 2 noting that the coefficient of Ai1i2(d23) in [WD(K(d23))]2
decreases exponentially with (i, j), we anticipate that the design with generalized
minimum aberration should behave well in terms of uniformity in the sense of keeping
[WD(K(d23))]2 small. This provides a justification for the uniformity of the amplified
design K(d23) from the view of aberration of the initial design d23.

4 Connection of the wordlength pattern betweenK(d23) and d23

In this section, the analytic connection of thewordlength pattern between the amplified
design and its original design is build. Firstly, the relationship of the distance distri-
bution between the original design and its amplified design is provided as follows.

Lemma 4 Let d23 = (d2
... d3) ∈ U(n; 2s1 × 3s2), K(d23) ∈ U(3n; 24s1 × 33s2) be the

amplifieddesignof d23. Let t1 = 0, 1, 2, 3, t2 = 0, 1, 2, s1mod4 = k1, s2mod3 = k2,
where k1 = 0, 1, 2, 3, k2 = 0, 1, 2. Then

(1) If k1 = k2 = 0,
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(i) If t1 = t2 = 0, then

E(4i1+t1)(3i2+t2)(K(d23)) =
{
Ei1i2(d23) + 2n, i1 = s1

2 and i2 = 2s2
3

Ei1i2(d23), else.

(ii) If t1 �= 0 or t2 �= 0, then for i1 = 0, . . . s1, i2 = 0, . . . s2,

E(4i1+t1)(3i2+t2)(K(d23)) = 0.

(2) If k1 = 0, k2 �= 0,

(i) If t1 = t2 = 0, then for i1 = 0, . . . s1, i2 = 0, . . . s2,

E(4i1+t1)(3i2+t2)(K(d23)) = Ei1i2(d23).

(ii) If t1 = 0, t2 = 3 − k2, then

E(4i1+t1)(3i2+t2)(K(d23)) =
{
2n, i1 = s1

2 and i2 = 2s2−3+k2
3

0, else.

and else for i1 = 0, . . . s1, i2 = 0, . . . s2,

E(4i1+t1)(3i2+t2)(K(d23)) = 0.

(3) If k1 �= 0, k2 = 0,

(i) If t1 = t2 = 0, then for i1 = 0, . . . s1, i2 = 0, . . . s2,

E(4i1+t1)(3i2+t2)(K(d23)) = Ei1i2(d23).

(ii) If t1 = 2, t2 = 0, then

E(4i1+t1)(3i2+t2)(K(d23)) =
{
2n, i1 = s1−1

2 and i2 = 2s2
3

0, else.

and else for i1 = 0, . . . s1, i2 = 0, . . . s2,

E(4i1+t1)(3i2+t2)(K(d23)) = 0.

(4) If k1 �= 0, k2 �= 0,

(i) If t1 = t2 = 0, then for i1 = 0, . . . s1, i2 = 0, . . . s2,

E(4i1+t1)(3i2+t2)(K(d23)) = Ei1i2(d23).
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(ii) If t1 = 2, t2 = 3 − k2, then

E(4i1+t1)(3i2+t2)(K(d23)) =
{
2n, i1 = s1−1

2 and i2 = 2s2−3+k2
3

0, else.

and else for i1 = 0, . . . s1, i2 = 0, . . . s2,

E(4i1+t1)(3i2+t2)(K(d23)) = 0

Proof If k1 = k2 = 0, by the definition of distance distribution in (2) and Lemma 1 ,
If t1 = t2 = 0, for i1 = s1

2 , i2 = 2s2
3 ,

E(4i1+t1)(3i2+t2)(K(d23)) = 1

3n
|{(u1, u2) : dH (u(1)

1 , u(1)
2 ) = 2s1, dH (u(2)

1 , u(2)
2 ) = 2s2}|

= 1

3n
(3nEi1i2(d23) + 6n2) = 2n + Ei1i2(d23).

and for other cases of i1, i2,

E(4i1+t1)(3i2+t2)(K(d23)) = 1

3n
|{(u1, u2) : dH (u(1)

1 , u(1)
2 ) = 4i1, dH (u(2)

1 , u(2)
2 ) = 3i2}|

= Ei1i2(d23).

If t1 �= 0 or t2 �= 0, then

E(4i1+t1)(3i2+t2)(K(d23)) = 0.

The proof of the other three cases of k1, k2 is similar to the first case. So Lemma 4
holds.

The analytic connection betweenK(d23) and d23 in terms of the wordlength pattern
is built in the following theorem.

Theorem 3 Let d23 ∈ U(n; 2s1×3s2) andK(d23) ∈ U(3n; 24s1×33s2) be the amplified
design of d23, s1 mod 4 = k1, s2 mod 3 = k2, where k1 = 0, 1, 2, 3, k2 = 0, 1, 2.
For 0 ≤ j1 ≤ 4s1, 0 ≤ j2 ≤ 3s2, we have

A j1 j2(K(d23)) = 1

2s13s2+1

s1∑
i1=0

s2∑
i2=0

s1∑
v1=0

s2∑
v2=0

Pj1(4i1; 4s1, 2)Pj2(4i2; 3s2, 3)

Pi1(v1; s1, 2)
× Pi2(v2; s2, 3)Av1v2(d23)+

2

3
Pj1(2s1; 4s1, 2)Pj2(2s2; 3s2, 3) (11)
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Proof If k1 = k2 = 0, by (2) and Lemma 4, for 0 ≤ j1 ≤ 4s1, 0 ≤ j2 ≤ 3s2, we have

A j1 j2(K(d23)) = 1

3n

4s1∑
i1=0

3s2∑
i2=0

Pj1(i1; 4s1, 2)Pj2(i2; 3s2, 3)Ei1i2(K(d23))

= 1

3n

s1∑
i1=0

s2∑
i2=0

Pj1(4i1; 4s1, 2)Pj2(4i2; 3s2, 3)E(4i1)(3i2)(K(d23))

= 1

3n

s1∑
i1=0

s2∑
i2=0

Pj1(4i1; 4s1, 2)Pj2(4i2; 3s2, 3)Ei1i2(d23)

+ 2

3
Pj1(2s1; 4s1, 2)Pj2(2s2; 3s2, 3),

combine Ei1i2(d23) = n2−s13−s2
∑s1

v1=0

∑s2
v2=0 Pi1(v1; s1, 2)Pi2(v2; s2, 3)Av1v2(d23),

(11) holds. For the other three cases, (11) also holds, where the proof is similar to the
first case, which completes the proof of Theorem 3.

Remark 2 From Theorem 3, it is noted that the wordlength pattern of the amplified
design K(d23) is computed by the wordlength pattern of an initial design d23, which
reduces the complexity of computing the wordlength of the amplified design to a large
extent. Further, the wordlength pattern of the amplified design K(d23) is the linear
combination of the wordlength pattern of an initial design d23.

5 Numerical examples

In this section, some examples are provided to illustrate our theoretical results.

Example 1 (Continued). The mixed two- and three-level design d23 ∈ U(6; 2131)
in Example 1 is a minimum aberration design, which can be found on the home-
page of orthogonal arrays “http://neilsloane.com/oadir/”. K(d23) ∈ U(18; 2433) is
the amplified design of d23 by Definition 1. By equations (4) and (5), [WD(d23)]2
and LB[WD(d23)] can be computed. By equations (6) and (7), [WD(K(d23))]2 and
LB[WD(K(d23))] can be computed. Specific results see the following table,

Table 2 shows that when d23 is a uniform design with minimum aberration, the
amplified design K(d23) is also a uniform design, which further supports Theorem 1
and Theorem 2 (Table 3).

By the definition of the generalized wordlength pattern and (3), the wordlength
pattern (Ag

0(d23), . . . , A
g
2(d23)) of the initial design d23 is (1, 0, 0). From Theorem 3,

the wordlength pattern (Ag
0(K(d23)), . . . , A

g
7(K(d23))) of the amplified designK(d23)

is (1, 0, 0.667, 2, 17, 1.3333, 0, 2).

Example 2 Take n = 12 and s1 = 4, s2 = 1. Consider the two mixed two- and three-
level designs d23 and ˜d23 in Table 2, where d23 is a minimum aberration design which
can be found on the homepage of orthogonal arrays “http://neilsloane.com/oadir/”.
K(d23) andK( ˜d23) are respectively the amplifieddesigns ofd23 and ˜d23 byDefinition 1.
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Table 2 Numerical results Design Squared WD value LB e

d23 0.081 0.081 1

K(d23) 1.3949 1.3949 1

Table 3 Original designs in
U(12; 2431) d23 ˜d23

0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 1 0 1 0

1 0 1 0 0 1 0 1 0 0

1 1 1 1 0 1 1 1 1 1

0 0 1 1 1 0 0 1 1 0

0 1 1 0 1 0 1 1 0 1

1 0 0 0 1 1 0 0 0 1

1 1 0 1 1 1 1 0 1 1

0 0 1 1 2 0 0 1 1 2

0 1 0 0 2 0 1 0 1 2

1 0 0 1 2 1 0 0 0 2

1 1 1 0 2 1 1 1 0 2

Table 4 Numerical results Design Squared WD value LB e

d23 0.6229 0.6204 0.9961

˜d23 0.6393 0.6204 0.9704

K(d23) 188.3033 185.8928 0.9872

K( ˜d23) 195.4947 185.8928 0.9509

By equations (4) and (5), the squared WD values and the lower bounds of d23 and˜d23 can also be computed. By equations (6) and (7), the squared WD values and the
lower bound of K(d23) and K( ˜d23). Detailed results are listed in the following table,

Table 4 shows that when d23 with minimum aberration has better uniformity than
˜d23,K(d23) has better uniformity thanK( ˜d23), which further supports Theorem 1 and
Theorem 2.

By the definition of the generalized wordlength patterns and (3), the wordlength
pattern of the initial designs d23 and ˜d23 are respectively (1, 0, 0, 1.7778, 1, 0.2222)
and (1, 0, 0.5556, 1.4444, 0.7778, 0.2222). From Theorem 3, the wordlength patterns
of the amplified design K(d23) and K( ˜d23) are respectively (1, 0, 2.7, 32.8, 243.7,
581.3, 1691.9, 3362.7, 6398.9, 7383.1, 9376.9, 7997.8, 6065.3, 3585.8, 1538.7,
693.6, 162.2, 26.7, 0, 2) and (1, 0, 5.2, 30, 271, 532.6, 1811.3, 3115.7, 6705.9,
6984.7.1, 9824.6, 7625.5, 6393.6, 3355.4, 1655.4, 633., 182.3, 21.5, 1.3, 2). It is to
be noted that when d23 has lower aberration, the amplified designs K(d23)) has lower
aberration.
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6 Concluding remarks

In this paper, a novel method is provided for constructing mixed two- and three-level
optimal designs with large run sizes by amplifying. Firstly, the analytic relationship
between the wrap-around L2-discrepancy of the amplified design and the wordlength
pattern of the initial design is built, which shows that when the initial design has
minimum aberration, the amplified design has nice uniformity via WD. Secondly,
the relationship of uniformity between the amplified design and the initial design is
given out, which presents that the amplified design is a (nearly) uniform design if and
only if the initial design is a (nearly) uniform design measured by WD. These results
provide theoretical basis for constructing uniform mixed two- and three-level designs
with large sizes from initial mixed two- and three-level uniform design with minimum
aberration by amplifying, that is, if d23 ∈ U(n; 2s13s2) is a (nearly) unform design
with minimum aberration, a (nearly) uniform designs K(d23) ∈ U(3n; 24s133s2) via
amplifying is constructed, where the design K(d23) has 3n runs, 24s1 , 33s2 two-level
and three-level factors.
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