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Abstract
It has been shown in the literature that judgment post stratification (JPS) sampling
design often leads to more efficient statistical inference than what is possible to obtain
in simple random sampling (SRS) design of comparable size. Since the JPS is a cost-
efficient sampling design, a large enough sample size may not be available to use
normal theory of the estimators. In this paper, we describe two bootstrap methods
for JPS sampling scheme, one of which has been already used in the literature with-
out studying its consistency and the other is new. We also show that both bootstrap
approaches are consistent. We then investigate the use of the bootstrap methods for
constructing confidence intervals for the population mean and compare them with the
confidence interval of the population mean obtained via normal approximation (NA)
method using Monte Carlo simulation. It is found that for the asymmetric distribu-
tions, one of the bootstrap methods we describe in the paper often leads to a closer
coverage probability (CP) to the nominal level than NAmethod. Finally, a real dataset
is analysed for illustration.

Keywords Confidence interval · Coverage probability · Judgment post stratified
sample · Resampling methods · Simple random sample

Mathematics Subject Classification 62G09 · 62F40 · 62D05

1 Introduction

Judgment post stratification (JPS) sampling scheme was introduced by MacEachern
et al. (2004) as an alternative to simple random sampling (SRS) scheme for situa-
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tions where the variable of interest is expensive or difficult to measure, but judgment
ranking is cheap and can be done relatively easily. These situations happen in many
practical research including educational studies (Wang et al. 2016), sport sciences
(He et al. 2018; Qian et al. 2019) and medical studies (Mahdizadeh and Zamanzade
2019; Zamanzade andMahdizadeh 2020). A JPS sample is constructed using a simple
random sample and its supplementary judgment ranks. The JPS sampling procedure
is shortly described as follows.

To draw a JPS sample of size n using set size m from an infinite population, a
SRS sample of size n is collected and measured. Then for each measured unit in
the simple random sample, m − 1 supplemental units are identified from the same
population to create a set of size m. Finally, the judgment rank of measured unit
in the simple random sample among m − 1 supplemental units is noted. Thus, a
JPS sample contains a SRS sample plus its preparatory judgment ranks and can be
represented as (Y1, R1) , . . . , (Yn, Rn), where Ri is the judgment rank of Yi among
m − 1 supplemental units in the set of size m. Throughout of this paper, the term of
judgment rank is used to point out that the rank of Ri is obtained using an inexpensive
method such as visual inspection, covariate or an expert’s personal judgment which
does not require referring to exact values of supplemental units in the set and thus it
may not to be accurate and contains error. If the rank is obtained without error (perfect
ranking), then the conditional distribution of Yi given its rank Ri = r is the same as
the r th order statistic of a sample of size m. Otherwise, the conditional distribution
follows the r th judgment order statistic of a sample of size m. A ranking process is
called consistent if

F (t) = 1

m

m∑

r=1

F[r ] (t) ,

where F (t) and F[r ] (t) are cumulative distribution functions (CDFs) of the parent
distribution and r th judgment order statistic of a sample of size m, evaluated at the
point t , respectively (see Presnell and Bohn 1999).

Let nr be the number of JPS units with judgment rank r , then one can simply
show that under a consistent ranking process, the vector n = (n1, . . . , nm) follows a
multinomial distribution with mass parameter n and probability vector

( 1
m , . . . , 1

m

)
.

Conditioning on the vector of the ranks R = (R1, . . . , Rn), a JPS sample can be
regarded as an unbalanced ranked set sample (RSS). To draw a RSS sample, one first
determines a set size m and a vector of post strata sample sizes n = (n1, . . . , nm), so
that n = ∑m

r=1 nr is the total sample size. For r = 1, . . . ,m, nr samples of size m are
identified from the population of interest, ranked in an increasing magnitude, and the
unit with rank r is selected for actual measurement.

Although JPS and RSS are in close connection with each other, two obvious differ-
ences between them can be found from their definitions. The first one is related to how
judgment ranks are connected to the sample units. Note that in JPS (RSS) setting, the
ranks are assigned to each sample unit after (before) its measurement, and therefore
they are loosely (strongly) attached to the sample units and can (cannot) be ignored.
This means that a JPS sample has more variability than its RSS counterpart, yet more
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flexibility to be used in practice since the standard SRS techniques can still be used
for a JPS sample when the ranks are ignored. The second difference between JPS and
RSS is related to the vector of post strata sample sizes n = (n1, . . . , nm). While n
is a fixed and pre-specified vector in RSS, it is a random vector in JPS and follows a
multinomial distribution.

The JPS has been the subject of many studies since its introduction, including
estimation of the population mean (Wang et al. 2008; Frey and Feeman 2012; Dastbar-
avarde et al. 2016; Frey 2016), estimation of the population variance (Frey and Feeman
2013; Zamanzade and Vock 2015; Zamanzade 2016), estimation of the cumulative
distribution function (CDF; Frey and Ozturk 2011; Wang et al. 2012; Duembgen and
Zamanzade 2020), estimation of the population proportion (Zamanzade and Wang
2017), estimation of the population quantile (Ozturk 2014), two-sample problems
(Ozturk 2015; Dastbaravarde and Zamanzade 2020), finite mixture model analysis
(Omidvar et al. 2018), finite sample size corrections (Ozturk 2016) and perfect rank-
ing test (Zamanzade and Vock 2018).

It is shown in the most of the above literature that JPS sampling design provides
more efficient statistical inference than what is possible in SRS design of compa-
rable size provided that the sample size is not too small and quality of ranking is
fairly good (Dastbaravarde et al. 2016). Most of the JPS literature focus on drawing
statistical inference of the population characteristics based on normal approximation
(NA) method. However, since the JPS is applicable for situations in which obtaining
exact values of sample units is hard/expensive, a large enough sample size may not be
available to obtain a valid asymptotic inference due to time/cost considerations. So,
there is a need of existing an alternative method to draw statistical inference for the
population characteristics based on a JPS sample.

Bootstrap approach proposed by Efron (1979), is a computer-based method that
repeats a simple operation so many times. This method enjoys from the property that
it makes few distributional assumptions and provides solutions to many standard sta-
tistical problems. Specifically, the bootstrap approach can be used to estimate CDF and
constructing a confidence interval for the population characteristics without making
any distributional assumptions.

This paper describes two bootstrap approaches for a JPS sample, one of which has
been already used by Ozturk (2016) without studying its consistency and the other is
new. In Sect. 2, two bootstrap methods based on JPS sample scheme are introduced
and their asymptotic consistencies are established in Sect. 3. In Sect. 4, the bootstrap
techniques are used to construct confidence intervals for the population mean based on
a JPS sample. The bootstrap confidence intervals we developed in this section are then
compared with the confidence interval based on NA using Monte Carlo simulation. In
Sect. 5, a real dataset is used to show the applicability and efficiency of the introduced
methods in practice. Some concluding remarks and directions for future research are
provided in Sect. 6.
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2 BootstrapMethods for a Judgment Post Stratified Sample

Let (Y1, R1) , . . . , (Yn, Rn), be a JPS sample of size n from a population with CDF
F , where Ri is the judgment rank of Yi among m − 1 supplemental units in the set of
size m. Let nr be the number of the JPS sample units with judgment rank r , then it is
easy to show that under a consistent ranking process, the vector (n1, . . . , nm) follows
a multinomial distribution with mass parameter n and probability vector

( 1
m , . . . , 1

m

)
.

As it is mentioned earlier, the conditional distribution of Yi given its judgment rank
Ri = r is given by F[r ] (t) = P (Yi ≤ t |Ri = r) = P

(
Y[r ] ≤ t

)
, where Y[r ] is the r th

judgment order statistic of a sample of size m. Here, the square bracket [.] is used to
indicate imperfect rankings. If the rankings are perfect, then the square brackets are
replacedwith the roundones and F(r) (t) = B (F (t) , r ,m + 1 − r), where B (t, α, β)

is the CDF of the beta distribution with parameters α and β, evaluated at the point t .
The empirical estimator of F[r ] (t) based on a JPS sample is given by

F[r ],nr (t) =
(

1

nr

nr∑

i=1

I (Yi ≤ t) I (Ri = r)

)
I (nr > 0) , (1)

where I (.) is the indicator function. The empirical estimator of CDF based on a JPS
sample is then given by

Fn, j ps (t) = 1

dm

m∑

r=1

F[r ],nr (t) , (2)

where dm = ∑m
r=1 I (nr > 0).

The standard mean estimator in the JPS setting can be defined in a similar fashion
as follows

μ̂ j ps = 1

dm

m∑

r=1

Ȳ[r ], (3)

where

Ȳ[r ] =
(

1

nr

n∑

i=1

Yi I (Ri = r)

)
I (nr > 0) , (4)

is the mean of sample units with judgment rank r . Dastbaravarde et al. (2016) exam-
ined the finite sample size and asymptotic properties of μ̂ j ps . They showed that this
estimator is unbiased regardless of issue of rankings. Dastbaravarde et al. (2016) also
proved that if the sample size n goes to infinity then

√
n

(
μ̂ j ps − μ

)
converges in

distribution to a mean zero normal distribution with variance σ 2
j ps = 1

m

∑m
r=1 σ 2[r ],

where σ 2[r ] is the variance of the r th judgment order statistic in a set of sizem. One can

simply show that σ 2
j ps ≤ σ 2, and therefore μ̂ j ps is at least as asymptotically efficient

as the standard mean estimator in SRS.
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In what follows, we develop two algorithms to draw a bootstrap sample from a
JPS sample. The first algorithm is called simple bootstrap JPS (SBJPS) which is
based on drawing simple random samples of JPS units with replacement from the
original JPS sample. In the second algorithm, the JPS sample units are partitioned into
different strata based on their judgment ranks and then a simple random sample with
replacement is drawn from each stratum. The second algorithm is called bootstrap JPS
by stratum (BJPSS). These two algorithms are delineated as follows.

2.1 SBJPS: Simple Bootstrap JPS

The simple bootstrap JPS algorithm is based on the fact that the pairs of (Yi , Ri ),
i = 1, . . . , n in the JPS sample, are identically and independently distributed. Thus,
the original bootstrap algorithm can be applied on the pairs (Yi , Ri ). This technique
was firstly used by Ozturk (2016), and here, we describe it in detail and establish its
asymptotic properties.

Algorithm 1: SBJPS

1. Assign probability 1
n to each pair of (Y1, R1) , . . . , (Yn, Rn).

2. Randomly draw n pairs with replacement from (Y1, R1) , . . . , (Yn, Rn) to obtain(
Y ∗
1 , R∗

1

)
, . . . ,

(
Y ∗
n , R∗

n

)
.

3. Define the bootstrap empirical distribution function as

F∗
n, j ps (t) = 1

d∗
m

m∑

r=1

F∗[r ],nr (t) ,

where

F∗[r ],nr (t) =
⎛

⎝ 1

n∗
r

n∗
r∑

j=1

I
(
Y ∗
i ≤ t

)
I
(
R∗
i = r

)
⎞

⎠ I
(
n∗
r > 0

)
,

d∗
m = ∑m

r=1 I
(
n∗
r > 0

)
and n∗

r is the number of bootstrap sample units with
judgment rank r (for r = 1, . . . ,m).

4. The bootstrap estimate of the parameter θ = g (F), for an arbitrary function of

g (.), is then obtained as θ̂∗ = g
(
F∗
n, j ps

)
.

5. Repeat steps 1–4 for B times to obtain bootstrap sample
(
θ̂∗
1 , . . . , θ̂∗

B

)
.

2.2 BJPSS : Bootstrap JPS by Stratum

This bootstrap algorithm is based on the idea that artificial post-strata can be con-
structed based on the judgment ranks in a JPS sample. Thus, independent bootstrap
samples can be first drawn from different post-strata and then combined to obtain the
final bootstrap sample. Let (Y1, R1) , . . . , (Yn, Rn), be a JPS sample of size n from a
populationwithCDF F . LetYr = {(Y1, R1) , . . . , (Yn, Rn) ; Yi |Ri = r; i = 1, . . . , n}
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be the sample units with judgment rank r (for r = 1, . . . ,m). Then for a fixed r , the
sample units inYr are independent and identical randomvariables. Thus, the following
bootstrap algorithm is proposed.
Algorithm 2: BJPSS

1. If nr > 0, then assign probability 1
nr

to each element of Yr and randomly draw nr
pairs of (Y ∗

i , R∗
i ) with replacement from Yr to construct Y∗

r .
2. Repeat the step (1) for r = 1, . . . ,m.
3. The bootstrap sample is then obtained as ∪m

r=1Y∗
r .

4. The bootstrap empirical distribution function and estimate of the parameter θ =
g (F) are then defined in a similar fashion as in algorithm 1.

5. Repeat steps 1–4 for B times to obtain bootstrap sample
(
θ̂∗
1 , . . . , θ̂∗

B

)
.

Finally, bootstrap statistical inference can be made based on the bootstrap sample(
θ̂∗
1 , . . . , θ̂∗

B

)
obtained from each of the algorithms defined above. For example, boot-

strap variance estimate of θ̂ is obtained from V̂ ar B
(
θ̂
)

= 1
B−1

∑B
b=1

(
θ̂∗
b − ¯̂

θ∗
)
,

where ¯̂
θ∗ = 1

B

∑B
b=1 θ̂∗

b .

3 Asymptotic Results

In this section, we establish the consistency of the bootstrap algorithms we described
in Sect. 2 usingMallowsmetric which was firstly used by Bickel and Freedman (1981)
in the context of the bootstrap technique. The definition of Mallows metric is given
below.

Definition 1 (Mallows metric) Let �2 be the set of CDFs having finite second
moments. Let X and Y be random variables with CDFs G, H ∈ �2, respectively,
and define ρ2(G, H) = infτX ,Y E

1/2(|X − Y |2) where τX ,Y is the set of all possible
joint distributions of the pair (X ,Y )whose marginal CDFs are G and H , respectively.

Definition 2 (Concept of consistency for bootstrap estimators) Let Tn = T (X1, X2,

. . . , Xn) be a statistic based on a random sample X1, . . . , Xn and T ∗
n be its correspond-

ing bootstrap replicate. Then the bootstrap procedure is strongly consistent under ρ2

for T if ρ2(Hn, H∗
n )

a.s.−→ 0, where Hn is the sampling distribution of Tn and H∗
n is the

sampling distribution of T ∗
n and ρ2 is a metric on the space of CDFs.

In order to obtain asymptotic results for our bootstrap algorithms, the following
lemmas are recalled from Bickel and Freedman (1981).

Lemma 1 Let Gn,G ∈ �2. Then ρ2(Gn,G)
a.s.−→ 0 as n → ∞ is equivalent to

Gn → G weakly and
∫

t2dGn(t)
a.s.−→

∫
t2dG(t).
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Lemma 2 Suppose the U j are independent, likewise for Vj . Assume that their corre-
sponding CDFs are in �2 and E(Uj ) = E(Vj ). Then

ρ2

⎛

⎝
∑

j

U j ,
∑

j

V j

⎞

⎠
2

≤
∑

j

ρ2(Uj , Vj )
2.

Lemma 3 Let the CDFs of U , V are in �2. Then

ρ2(U , V )2 = ρ2[U − E(U ), V − E(V )]2 + |E(U ) − E(V )|2.

The first theorem in this section shows that the empirical estimator of F[r ] (t) based
on a JPS sample is consistent.

Theorem 3.1 Let (Y1, R1) , . . . , (Yn, Rn), be a JPS sample of size n from a population
with CDF F ∈ �2 which is obtained under a consistent ranking process. Let F[r ],nr (t)

be the empirical estimator of F[r ] (t) as given in Eq. (1). Then ρ2(F[r ],nr , F[r ])
a.s.−→ 0

as the sample size n goes to infinity.

Proof Let Yr = {(Y1, R1) , . . . , (Yn, Rn) ; Yi |Ri = r; i = 1, . . . , n} be the sample
units with judgment rank r (for r = 1, . . . ,m). Then for a fixed value of r and under
a consistent ranking assumption, the sample units in Yr are independent and identi-
cally distributed with CDF F[r ]. A straightforward application of Glivenko–Cantelli
theorem indicates that

sup
t

∣∣F[r ],nr (t) − F[r ](t)
∣∣ a.s.−→ 0 as nr → ∞ ; ∀r .

If F ∈ �2, then F[r ] ∈ �2. Thus, it follows from strong law of large numbers (SLLN)
that:

∫
t2dF[r ],nr (t) = 1

nr

nr∑

j=1

X2[r ] j
a.s.−→

∫
t2dF[r ](t).

Therefore by Lemma 1, ρ2
(
F[r ],nr , F[r ]

) a.s.−→ 0 as nr → ∞ for r = 1, . . . ,m. 
�
Theorem 3.2 Let (Y1, R1) , . . . , (Yn, Rn), be a JPS sample of size n from a population
with CDF F ∈ �2 which is obtained under a consistent ranking process. Let Fn, j ps (t)
be the empirical estimator of F (t) based on the JPS sample as given in Eq. (2). Then
ρ2(Fn, j ps, F)

a.s.−→ 0 as n → ∞.

Proof Note that under a consistent ranking process assumption, we can write

F (t) = 1

m

m∑

r=1

F[r ] (t) .
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Therefore, we have

sup
t

|Fn(t) − F(t)| = sup
t

∣∣∣∣∣
1

dm

m∑

r=1

F[r ],nr (t) − 1

m

m∑

r=1

F[r ](t)
∣∣∣∣∣

≤
m∑

r=1

sup
t

∣∣∣∣
1

dm
F[r ],nr (t) − 1

m
F[r ](t)

∣∣∣∣ .

Besides

sup
t

∣∣ 1

dm
F[r ],nr (t) − 1

m
F[r ](t)

∣∣

≤ ∣∣ 1

dm
− 1

m

∣∣F[r ],nr (t) + 1

m
sup
t

∣∣F[r ],nr (t) − F[r ](t)
∣∣ = o(1).

Therefore supt
∣∣Fn(t) − F(t)

∣∣ = o(1). If F ∈ �2 then F[r ] ∈ �2. Thus, by SLLN we
have:

∫
t2dFn(t)

a.s.−→
m∑

r=1

1

m

∫
t2dF[r ](t) =

∫
t2d

(
1

m

m∑

r=1

F[r ](t)
)

=
∫

t2dF(t).

Then by Lemma 1, ρ2 (Fn, F)
a.s.−→ 0 as n → ∞. 
�

Theorem 3.3 Let
(
Y ∗
1 , R∗

1

)
, . . . ,

(
Y ∗
n , R∗

n

)
, be a SBJPS sample of size n based on a

JPS sample of the same size from a population with CDF F ∈ �2 which is obtained
under a consistent ranking process. Then ρ2(F∗[r ],n∗

r
, F[r ],nr )

a.s.−→ 0 as nr → ∞ for
r = 1, . . . ,m, where F∗[r ],nr is the empirical estimator of F[r ],n based on the SBJPS
sample.

Proof Let Y∗
r = {(

Y ∗
1 , R∗

1

)
, . . . ,

(
Y ∗
n , R∗

n

) ; Y ∗
i |R∗

i = r; i = 1, . . . , n
}
be the boot-

strap units with judgment rank r (for r = 1, . . . ,m). Note that the units in Y∗
r are

independent and identically distributedwith CDF F[r ]. Thus it follows fromGlivenko–
Cantelli theorem that

sup
t

∣∣F∗[r ],n∗
r
(t) − F[r ],nr (t)

∣∣ a.s.−→ 0 as nr → ∞; ∀r .

If F ∈ �2, then F[r ] ∈ �2. By SLLN, we have

∫
t2dF∗[r ],n∗

r
(t)

a.s.−→
∫

t2dF[r ],nr (t).

Therefore by Lemma 1, ρ2
(
F∗[r ],n∗

r
, F[r ],nr

)
a.s.−→ 0 as nr → ∞ for r = 1, 2, . . . ,m.


�
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Theorem 3.4 Let
(
Y ∗
1 , R∗

1

)
, . . . ,

(
Y ∗
n , R∗

n

)
, be a SBJPS sample of size n based on a

JPS sample of the same size from a population with CDF F ∈ �2 which is obtained
under a consistent ranking process. Then ρ2(F∗

n, j ps, Fn, j ps)
a.s.−→ 0 as n → ∞, where

F∗
n, j ps is the empirical estimator of F based on the SBJPS sample.

Proof

sup
t

∣∣F∗
n, j ps(t) − Fn, j ps(t)

∣∣ = sup
t

∣∣
m∑

r=1

1

d∗
m
F∗[r ],n∗

r
(t) − 1

m

m∑

r=1

F[r ],nr (t)
∣∣

≤
m∑

r=1

sup
t

∣∣ 1

d∗
m
F∗[r ],n∗

r
(t) − 1

m
F[r ],nr (t)

∣∣ = o(1).

If F ∈ �2 then F[r ] ∈ �2. Thus, by SLLN we have

∫
t2dF∗

n (t)
a.s.−→

m∑

r=1

1

m

∫
t2dF[r ],nr (t) =

∫
t2dFn(t)

and this completes the proof. 
�
Now, we are ready to present the main results. To do so, we only present the results
for SBJPS algorithm and the results for BJPSS can be obtained in a similar fashion.

Theorem 3.5 Let
(
Y ∗
1 , R∗

1

)
, . . . ,

(
Y ∗
n , R∗

n

)
, be a SBJPS sample of size n based on a

JPS sample of the same size from a population with CDF F ∈ �2 which is obtained
under a consistent ranking process. Then ρ2(F∗

n, j ps, F)
a.s.−→ 0 as n → ∞, where

F∗
n, j ps is the empirical estimator of F based on the SBJPS sample.

Proof

sup
t

∣∣F∗
n, j ps(t) − F(t)

∣∣≤sup
t

∣∣F∗
n, j ps(t) − Fn, j ps(t)

∣∣+sup
t

∣∣Fn, j ps(t) − F(t)
∣∣=o(1).

If F ∈ �2 then F[r ] ∈ �2. So, SLLN indicates that

∫
t2dF∗

n, j ps(t)
a.s.−→

m∑

r=1

1

m

∫
t2dF[r ](t)

=
∫

t2d

(
1

m

m∑

r=1

F[r ](t)
)

=
∫

t2dF(t),

and this completes the proof. 
�
Theorem 3.6 Let

(
Y ∗
1 , R∗

1

)
, . . . ,

(
Y ∗
n , R∗

n

)
, be a SBJPS sample of size n based on a

JPS sample of the same size from a population with CDF F ∈ �2 which is obtained
under a consistent ranking process. Define Tn = √

n(μ̂ j ps −μ) and T ∗
n = √

n(μ̂∗
j ps −

μ̂ j ps), then ρ2(H∗
n , Hn)

a.s.−→ 0 as n → ∞ where Hn and H∗
n are the sampling

distributions of Tn and T ∗
n , respectively.
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Proof

ρ2
(
H∗
n , Hn

) = ρ2

(√
n

(
μ̂∗

j ps − μ̂ j ps

)
,
√
n

(
μ̂ j ps − μ

))

= ρ2

(√
n

m∑

r=1

(
1

d∗
m
X̄∗[r ] − 1

dm
X̄[r ]

)
,
√
n

m∑

r=1

(
1

dm
X̄[r ] − 1

m
μ[r ]

))

= ρ2

(
m∑

r=1

√
n

nr

√
nr

(
1

d∗
m
X̄∗[r ] − 1

dm
X̄[r ]

)
,

m∑

r=1

√
n

nr

√
nr

(
1

dm
X̄[r ] − 1

m
μ[r ]

))

a.s.−→ ρ2

(
m∑

r=1

√
nr
m

(
X̄∗[r ] − X̄[r ]

)
,

m∑

r=1

√
nr
m

(
X̄[r ] − μ[r ]

)
)

≤ 1√
m

√√√√
m∑

r=1

ρ2

(√
nr

(
X̄∗[r ] − X̄[r ]

)
,
√
nr

(
X̄[r ] − μ[r ]

))

≤ 1√
m

√
m

√
sup
r

[
ρ2

(√
nr

(
X̄∗[r ]− X̄[r ]

)
,
√
nr

(
X̄[r ] − μ[r ]

)) ]
=o(1).

Because

ρ2
(√

nr
(
X̄∗[r ] − ¯X[r ]

)
,
√
nr

(
X̄[r ] − μ[r ]

))2

= 1

nr
ρ2

⎛

⎝
nr∑

j=1

(
X∗[r ] j − X̄[r ]

)
,

nr∑

j=1

(
X[r ] j − μ[r ]

)
⎞

⎠
2

≤ 1

nr

nr∑

j=1

ρ2

(
X∗[r ] j − X̄[r ], X[r ] j − μ[r ]

)2

= ρ2
(
X∗[r ]1 − X̄[r ], X[r ]1 − μ[r ]

)2

= ρ2
(
X∗[r ]1, X[r ]1

)2 − ∣∣X̄[r ] − μ[r ]
∣∣2

= ρ2

(
F∗[r ],n∗

r
, F[r ],nr

)2 − ∣∣X̄[r ] − μ[r ]
∣∣2

= o(1).


�

In the next section, we will use the above bootstrap methods for constructing con-
fidence intervals of the population mean.
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4 Monte Carlo Simulation

In this section, we compare the performance of bootstrap expanded percentile confi-
dence intervals based on the standard mean estimator in JPS with confidence interval
using NA technique. In the NA method, we used the fact that μ̂ j ps is an unbiased
estimator of the population mean and

√
n

(
μ̂ j ps − μ

)
converges in distribution to a

mean zero normal distribution with variance σ 2
j ps as the sample size n tends to infinity.

An unbiased estimator σ̂ 2
j ps for V(μ̂ j ps) is given by Ozturk (2016, Eq. 2.5 in Theorem

2). Based on this estimator, the 100 (1 − α)% asymptotic confidence interval for the
population mean due to Ozturk (2016), is given by

⎛

⎝μ̂ j ps − t1−α/2,n−1

√
σ̂ 2
j ps

n
, μ̂ j ps + t1−α/2,n−1

√
σ̂ 2
j ps

n

⎞

⎠ ,

where tp,v is the pth quantile of the t-distribution with v degrees of freedom.
There are several methods for constructing a confidence interval using bootstrap

approach. Here, we use bootstrap expanded percentile confidence interval since it is
obtained using the similar adjustments to the NA confidence interval described above
for the bootstrap setting and it often has better performance than percentile confidence
interval (see for example, Hesterberg 2015).

The 100 (1 − α)% expanded percentile confidence interval for the population
mean using bootstrap approach can be constructed as follows. First, let α′/2 =
	

(√
n/ (n − 1)tα/2,n−1

)
, where 	(.) is the CDF of the standard normal distribution.

Then, draw B bootstrap samples of size n from original JPS sample using each of the
bootstrap methods introduced in Sect. 2. Next, obtain the estimate of the population

mean using the bootstrap sample,
(
μ̂∗

j ps,1, . . . , μ̂
∗
j ps,B

)
. Finally, the 100 (1 − α)%

bootstrap expanded percentile confidence interval is obtained as
(
μ̂

∗,α′/2
j ps , μ̂

∗,1−α′/2
j ps

)
,

where μ̂
∗,p
jps is the pth quantile of the bootstrap sample

(
μ̂∗

j ps,1, . . . , μ̂
∗
j ps,B

)
.

To generate a JPS sample, we assume that the ranking in each set of size m is done
using perceptual linear ranking model due to Dell and Clutter (1972). In this model, it
is assumed that in each set of size m, the actual rank of the concomitant variable Y is
assigned as the judgment rank of the interest variable X , where the following relation
between X and Y holds

Y = λ

(
X − μx

σx

)
+

√
1 − λ2Z ,

whereμx and σx are mean and standard deviation of X , respectively, Z is independent
from X and follows a standard normal distribution and the parameterλ is the correlation
coefficient between X and Y which controls the quality of ranking.

We set n ∈ {10, 20, 30, 50, 100}, m ∈ {3, 4, 5}, λ ∈ {0.5, 0.7, 0.9, 1} and for each
combination of (n,m, λ), we have generated 10,000 JPS random samples from three
symmetric distributions, i.e. standard normal distribution (N (0, 1)), standard uniform
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Fig. 1 Estimated coverage probability (CP) of different confidence intervals based on NA (represented by
two dash line, and blue color), SBJPS (represented by solid line and red color) and BJPSS (represented by
dotted line and black color) methods as a function of sample size n for m ∈ {3, 4, 5}, λ ∈ {0.5, 0.7, 0.9, 1}
when the parent distribution is N (0, 1). This figure appears in color in the electronic version of this paper.
(Color figure online)

distribution (U (0, 1)), beta distribution with parameters 0.5, and 0.5 (B (0.5, 0.5))
and three asymmetric distributions, i.e. standard log-normal distribution (LN (0, 1)),
Gamma distribution with scale parameter 1 and shape parameter 0.5 (G (0.5)) and
Weibull distribution with scale parameter 1 and shape parameter 0.5 (W (0.5)). We
have then estimated the coverage probability (CP) of bootstrap andNA95%confidence
intervals using the simulated samples. Also, the bootstrap size is taken to be B =
1000. For brevity, we only present the results for standard normal and standard log-
normal distributions in Figs. 1 and 2, respectively, in the paper. The results for other
distributions can be found in Figs.S1, S2, S3 and S4 in the Supplementary Material.

Figure1 presents the simulation results when the parent distribution is standard
normal. We observe from this figure that the NA confidence interval provides the
nearest CP to its nominal level 95% in all considered cases, which is not surprising
since the NA method should be the best technique when the parent distribution is
truly normal. It should be mentioned that the CP of NA confidence interval does not
change much with sample size n. The confidence interval based on SBJPS method
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Fig. 2 Estimated coverage probability (CP) of different confidence intervals based on NA (represented by
two dash line, and blue color), SBJPS (represented by solid line and red color) and BJPSS (represented by
dotted line and black color) methods as a function of sample size n for m ∈ {3, 4, 5}, λ ∈ {0.5, 0.7, 0.9, 1}
when the parent distribution is LN (0, 1). This figure appears in color in the electronic version of this paper.
(Color figure online)

provides slightly lower (higher) CP to its nominal level for n = 10 (≥ 20). The CP of
SBJPS confidence interval increases when sample size goes from n = 10 to 20 and
levels out for n ≥ 20. The confidence interval based on BJPSS method has the lowest
CP for n ≤ 30 and the difference between its CP and the nominal level 95% is more
pronounced for n = 10. This can be justified by the nature of BJPSS algorithm. Note
that BJPSS forces the number of units with each judgment rank to be fixed. Since the
number of unitswith a particular rank is actually random in JPS, BJPSS underestimates
the amount of variability in the JPS mean estimate. It is worth mentioning that the
CP of BJPSS confidence interval increases with set sample size n, for n ≤ 50 and it
remains almost unchanged for n > 50. It is also easy to see the the set size m and the
quality of ranking λ do not have much effect on CPs of different confidence intervals.

Comparing Fig. 1 with Figs.S1 and S2 in the Supplementary Material, we observe
that the patterns of the CPs of different confidence intervals for standard normal
distribution remain almost the same as U (0, 1) and B (0.5, 0.5) distributions.
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Simulation results for standard log-normal distribution are given in Fig. 2. It is
clear from this figure that CPs of all considered confidence intervals are lower than the
nominal level, yet they converge to 95% as the sample size goes from n = 10 to 100.
The confidence interval based on SBJPS method has the nearest CP to the nominal
level 95% in all considered cases except for n = 10 in which the NA confidence
interval usually has slightly better performance. The BJPSS confidence interval has
the poorest performance for n ≤ 30, and the difference between its CP and the nominal
level becomes sizeable for n = 10, but for n ≥ 50 its CP usually fall between CPs of
the confidence intervals based on SBJPS and NA approaches. Similar to what we have
observed for standard normal distribution in Fig. 1, it is evident from Fig. 2 that the set
size m and the quality of ranking λ do not have much effect on CPs of the confidence
intervals for the standard log-normal distribution, as well.

Comparing Fig. 2 with Figs.S3 and S4 in the Supplementary Material, we find that
the patterns of CPs of different confidence intervals for LN (0, 1), G (0.5), W (0.5)
distributions are almost the same.

5 A Real Data Example

In this section, a real dataset is used to illustrate the potential application proposed
procedures in this paper to construct a confidence interval for the population mean.
The real dataset is then used the evaluate the performance of different confidence
intervals in the JPS setting.

Bone mineral density (BMD) is the amount of bone mineral in bone tissues, and it
is frequently used in medicine as an indicator for detecting osteoporosis. The BMD
measurement is usually made over the lumbar spine and over the upper part of the
hip using dual-energy X-ray absorptiometry (DEXA) technology, and a person is con-
sidered to be suffering from osteoporosis if his/her BMD measurement using DEXA
technology is no larger than 0.56. Note that obtaining exact measurement of BMD
using DEXA technology is costly, and the technology may not be easily accessible in
some developing countries. It is also inconvenient to use because it need a medical
expert to manually segment images. But, a medical expert can simply assign judge-
ment ranks to sample units in a set of small size in terms of probability of suffering
from osteoporosis. This can be done using the medical expert’s personal experience or
by checking if the patient has some risk factors of osteoporosis such as family history,
cigarette smoking, excessive alcohol and caffeine consumption. Therefore, JPS seems
to be a better alternative to SRS for this application.

The dataset used in this section in obtained from the third National Health and
Nutrition Examination Survey (NHANES III), and is available online at http://www.
cdc.gov/nchs/nhanes/nh3data.htm.1 We consider the BMD of people who suffer from
osteoporosis in NHANES III dataset as our hypothetical population (denoted here
after by BMD dataset). The histogram of BMD dataset is presented in Fig. 3. Suppose
that we are interested in constructing a confidence interval for mean of BMD in this
population. So, we assume that the BMD is our variable of interest. Using n = 20 and

1 Access date March 2020.
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Fig. 3 The histogram of BMD dataset

Table 1 A JPS sample of size
n = 20 using set size m = 3
from BMD dataset

(Yi , Ri ) (Yi , Ri ) (Yi , Ri ) (Yi , Ri ) (Yi , Ri )

(0.405, 1) (0.538, 1) (0.516, 2) (0.445, 1) (0.517, 2)

(0.527, 2) (0.536, 2) (0.459, 2) (0.548, 3) (0.538, 3)

(0.545, 3) (0.497, 3) (0.445, 1) (0.536, 2) (0.554, 3)

(0.543, 2) (0.552, 3) (0.539, 2) (0.458, 2) (0.541, 1)

Table 2 95% JPS confidence
intervals for the mean of the
BMD using the data in Table1

Method Lower bound Upper bound

SB J PS 0.487 0.534

BJ PSS 0.489 0.530

N A 0.488 0.530

m = 3, we draw a JPS sample from the given population. To do so, we first draw a
SRS sample of size 20 from the BMD dataset and measure all of them. Then we each
measured unit, we draw 2 additional units to create a set of size m = 3. Sampling
with replacement is considered, so the assumption of independence is guaranteed. The
rank of each measured unit in the set of size m = 3 is determined using the linear
ranking model described in Sect. 4 with λ = 0.7. The sample units with their ranks
are presented in Table1 and the corresponding confidence intervals for the population
mean are given in Table2.

We next use this BMD dataset to compare performance of different confidence
intervals. In doing so, we set n ∈ {10, 20, 30, 50}, m ∈ {3, 4, 5} and for each com-
bination of (n,m), we draw 10, 000 JPS samples from the BMD dataset, where all
samplings are done with replacement. The ranking is done using the linear ranking
model as described in Sect. 4 with λ ∈ {1, 0.9, 0.7, 0.5}. Finally, we estimate CPs of
bootstrap expanded percentile and NA confidence intervals for the population mean
in the JPS setting using 10,000 samples. The bootstrap size is taken as B = 1000. The
results are presented in Table3.
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The results in Table 3 are consistent with what we observed in Sect. 4. The confi-
dence interval based on SBJPS method often provides the nearest CP to the nominal
level 95%, which can be justified by the fact that the distribution of BMD dataset is
skewed (see Fig. 3).

6 Conclusion

Judgment post stratification (JPS) is a useful sampling scheme in applications requiring
cost efficiency. The JPS adds additional judgment ranking information to a simple
random sample to improve estimation of the population parameters. The judgment
ranks are obtained through subjective judgment of an expert, concomitant variable, or
a combination of them and need not to be accurate.

Since JPS is a cost efficient sampling method and is applicable in the settings in
which obtaining exact values of sample units is much harder than finding their ranks
in a set of small size, it is very common that a researcher cannot obtain a JPS sample
with large enough size to use asymptotic distribution of the estimators. Therefore,
existence an alternative method to draw statistical inference based on a JPS sample is
essential.

In this paper, we described two bootstrapmethods based on a JPS sample, i.e. simple
bootstrap JPS (SBJPS) and bootstrap JPS by stratum (BJPSS). SBJPS has been already
used in the literature without studying its consistency and BJPSS is our proposal. We
then showed that the bootstrap procedures are consistent. Finally, as an application
of the bootstrap methods, we discussed construction of bootstrap expanded percentile
confidence intervals for the population mean using empirical mean estimator in JPS
and compared their coverage probabilities with the confidence interval obtained via
normal approximation (NA) usingMonte Carlo simulation study for variety choices of
sample size, set size and parent distribution. Based on the simulation study, we found
that each of NA and SBJPS techniques can be the best method in terms of coverage
probability (CP) for construction of a confidence interval for the population mean in
the most considered cases. So, we recommend using SBJPS technique to construct
a confidence interval for the population mean based on bootstrap methods when the
sample size is small and normality assumption is in suspect.

Although this work studies two resampling methods for a JPS sample, it remains an
ample space for future research in this field. For example, several improved mean esti-
mators over the empiricalmean estimator have been proposed in the literature byWang
et al. (2008), Frey and Feeman (2012) and Frey (2016), and exact expressions for vari-
ances of some of those mean estimators are not analytically available. Thus, one can
use the bootstrap methods described in this paper to construct confidence intervals for
the population mean using the improved mean estimators and it is intuitively expected
that those confidence intervals have better performance than confidence intervals based
on the empirical mean estimator. It is known that the bias-corrected and accelerated
and bootstrap-t methods often have a competitive performance as compared to boot-
strap expanded percentile technique (Hall 1988). Therefore, it is of interest to discuss
construction of those confidence intervals based on a JPS sample. One can also think
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of constructing confidence intervals for other population attributes rather than the
population mean.

Finally, we would like to mention that for a JPS sample of small size, it is very
common to observe empty strata (i.e. nr = 0 for some r ∈ {1, . . . ,m}). Statistical
inference based on a JPS sample with at least one empty stratum may be different
from JPS sample with no empty strata. For example, Zamanzade and Wang (2017)
showed that when there is at least one empty stratum, maximum likelihood estimator
of the population proportion can be much more efficient than other estimators in some
certain circumstances. Thus, another interesting topic for future research is to study
of the effect of empty strata on the performance of bootstrap confidence intervals in
JPS.
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