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Received: 22 May 2019 / Revised: 17 December 2019 / Published online: 22 February 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
We revisit and update estimating variances, fundamental quantities in a time series
forecasting approach called kriging, in time seriesmodels known as FDSLRMs,whose
observations can be described by a linear mixedmodel (LMM). As a result of applying
the convex optimization, we resolved two open problems in FDSLRM research: (1)
theoretical existence and equivalence between two standard estimationmethods—least
squares estimators, non-negative (M)DOOLSE, and maximum likelihood estimators,
(RE)MLE, (2) and a practical lack of free available computational implementation for
FDSLRM. As for computing (RE)MLE in the case of n observed time series values,
we also discovered a new algorithm of order O(n), which at the default precision
is 107 times more accurate and n2 times faster than the best current Python(or R)-
based computational packages, namely CVXPY, CVXR, nlme, sommer and mixed.
The LMM framework led us to the proposal of a two-stage estimation method of vari-
ance components based on the empirical (plug-in) best linear unbiased predictions of
unobservable random components in FDSLRM. The method, providing non-negative
invariant estimators with a simple explicit analytic form and performance comparable
with (RE)MLE in the Gaussian case, can be used for any absolutely continuous prob-
ability distribution of time series data. We illustrate our results via applications and
simulations on three real data sets (electricity consumption, tourism and cyber secu-
rity), which are easily available, reproducible, sharable and modifiable in the form of
interactive Jupyter notebooks.
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1 Introduction

The need to obtain sufficiently accurate predictions for facilitating and improving
decision making becomes an integral part not only of science, industry or economy
but also in many other human activities. The key idea of the so-called kriging as a
time series prediction approach consists in modeling the given time series data in an
appropriate general class of linear regressionmodels (LRMs) and subsequently finding
the best linear unbiased predictor—the BLUP which minimizes the mean squared
error (MSE) of prediction among all linear unbiased predictors, see e.g. Štulajter
(2002), Kedem and Fokianos (2005), Christensen (2011) and Brockwell and Davis
(2016).

In the frame of kriging, we investigate theoretical features and econometric appli-
cations of a class of time series models called finite discrete spectrum linear regression
models or shortly FDSLRMs. The FDSLRM class was introduced in 2002–2003 by
Štulajter (Štulajter 2002, 2003) as a direct extension of classical (ordinary) linear
regression models (see e.g. Christensen 2011; Hyndman and Athanasopoulos 2018).

The FDSLRM has mean values (trend) given by linear regression and random com-
ponents (error terms) are represented as a sum of a linear combination of uncorrelated
zero-mean random variables and white noise which together can be interpreted in
terms of the finite discrete spectrum (Priestley 2004).

Formally the FDSLRM can be presented as

X(t) =
k∑

i=1

βi fi (t) +
l∑

j=1

Y jv j (t) + Z(t); t ∈ T, (1.1)

where1

T representing the time domain is a countable subset of the real line R,
k and l are some fixed non-negative integers, i.e. k, l ∈ N0,
β = (β1, β2, . . . , βk)

′ ∈ Rk is a vector of regression parameters,
Y = (Y1,Y2, . . . ,Yl)′ is anunobservable l×1 randomvectorwith zeromeanvector

E {Y} = 0l , andwith l×l diagonal covariancematrixCov{Y} = diag
{
σ 2
j

}
, where

σ 2
j ∈ R+ are non-negative real numbers,
fi (.); i = 1, 2, . . . , k and v j (.); j = 1, 2, . . . , l are real functions defined on R,
Z(.) stands for white noise uncorrelated with Y and having a positive dispersion
D {Z(t)} = σ 2

0 ∈ R++.
Typically, due to the nature of time series data collection, themost frequently consid-

ered time domain T is the set of natural numbersN = {1, 2, . . .}. FDSLRM variance
parameters, which are fundamental quantities in kriging, are commonly described by
one vector ν ≡ (ν0,ν1, . . . ,νl)

′ = (σ 2
0 , σ 2

1 , . . . , σ 2
l )′, an element of the parametric

space Υ = (0,∞) × [0,∞)l or Υ = R++ × Rl+ for short.

1 As it is common practice, we use subindices as an indication of size for identity matrix In , zero matrix
0l×n or zero vector 0l . Dimension of other matrices will be indicated directly in the text or by a matrix
space in which they belong.
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Our recent article (Gajdoš et al. 2017) summarizes the FDSRLMkriging procedure,
guiding methodology and corresponding references dealing with FDSLRM kriging
for time series econometric forecasting as one of the advanced alternative approaches
to the most popular Box-Jenkins methodology (Box et al. 2015; Shumway and Stoffer
2017).

The principal goal of this paper is to revisit and update theory, computational
and implementation aspects of estimation procedures for variances in FDSLRM fit-
ting (Štulajter 2002; Štulajter and Witkovský 2004; Hančová 2008), the first part of
FDSLRMkriging, in the light of recent advances in closely related linearmixedmodel-
ing (LMM), convex optimization and modern computational technology. As a result
of such investigation, we would also like to present relations of existing FDSLRM
estimators with the well-established standard variance estimators in the field of linear
mixed models. Moreover, the alternative views via convex optimization and the theory
of empirical BLUPs lead us to new theoretical results, computational algorithms and
tools in estimating FDSLRM variances.

The structure of the paper is organized as follows. Since the time series analysis
and prediction based on FDSLRM is still a relatively new approach and therefore
not broadly known, brief review Sect. 2 recapitulates key basic features and benefits
of FDSLRM together with important notes about corresponding theoretical methods
and computational tools offered by closely connected mathematical branches and
computational research. This background became the strong basis for our investigation
focusing especially on non-negative versions of the estimators.

Section 3 is devoted to standard estimation methods of variances ν in FDSLRM
leading to non-negative estimates of ν in the frame of convex optimization. Since
the methods are based on maximum likelihood or least squares (Gajdoš et al. 2017),
we also demonstrate their relations to the well-known maximum likelihood estima-
tors in LMM—MLE, residual MLE (REMLE) requiring specification of the time
series distribution, and noniterative distribution-free quadratic estimators—method of
moments (MM), minimum norm quadratic estimation (MINQE) and variance least
squares (VLS) estimation (Demidenko 2013).

Section 4 describes newalternative estimators for FDSLRMvarianceswhose defini-
tion becomes a consequence of applying the general theory of the BLUP in LMM. Our
approach also represents an improved two-stage modification of the previously devel-
opedmethodof natural estimators (NE) (Hančová2008)which is nowbasedon the idea
of empirical (plug-in) BLUPs. Therefore, we will refer to our newmethod as EBLUP-
NE for short. The section also develops the computational form and some basic
statistical properties of EBLUP-NE using two special matrices known in linear algebra
as the Schur complement and Gram matrix (Zhang 2005). The method is distribution-
free which means that a finite FDLSRM observation X = (X(1), . . . , X(n))′, n ∈ N

must have only an absolutely continuous probability distribution with respect to some
σ -finite measure.

In the following fifth section containing numerical simulations, we illustrate theo-
retical results of the paper and the performance of EBLUP-NE on three real time series
data sets—electricity consumption, tourism and cyber security. Final Sect. 6 presents
the conclusions of the paper. For the sake of paper readability, we moved some proofs
to the Appendix. In the Appendix, we report current computational tools found or
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1902 M. Hančová et al.

developed by us for FDSLRM kriging. Finally for a better orientation, the Appendix
also contains a list of acronyms and abbreviations used in the paper (Table 6).

Since the paper is aimed at statisticians, analysts, econometricians and data scien-
tists applying time series and forecasting methods, our notation is standard for time
series analysis and prediction using linear regression models (Štulajter 2002; Kedem
and Fokianos 2005; Brockwell and Davis 2009). Sets likeR,R+,R++ are labeled as
it is usual in convex optimization (Boyd and Vandenberghe 2009).

2 Theoretical and computational background for FDSLRM kriging

Let us recall some important notes about time series FDSLRM kriging, its connection
to other math branches and current computational technology.

Any finite FDSLRMobservation X = (X(1), . . . , X(n))′, n ∈ N satisfies a special
type of linear mixed model (LMM) of the form2

X = Fβ + VY + Z, (2.1)

where

E {Z} = 0n, Cov{Z} = σ 2
0 In, Cov{Y , Z} = 0l×n,

Cov{Y} = diag
{
σ 2
j

}
≡ Dν, Cov{X} = σ 2

0 In + VDνV′ ≡ �ν.

Matrices F = {Fti } = { fi (t)},V = {Vt j } = {v j (t)} for t = 1, 2, . . . , n;
i = 1, 2, . . . , k; j = 1, 2 . . . , l are LMM design matrices and random vector
Z = (Z(1), Z(2), . . . , Z(n))′ is a finite n-dimensional white noise observation. In
the language of LMM terminology β represents the k × 1 vector of fixed effects and
Y the l × 1 vector of the random effects (Witkovský 2012; Demidenko 2013).

Thanks to the fundamental property (2.1), we can apply convenient LMM math-
ematical techniques for FDSLRM fitting and forecasting (Jiang 2007; Pinheiro and
Bates 2009; Christensen 2011; Witkovský 2012; Demidenko 2013; Rao and Molina
2015; Covarrubias-Pazaran 2016; Singer et al. 2017).

Another characteristic feature of LMM (2.1) is that it also belongs to linear models
with linear covariance structure or shortly linear covariancemodels (Demidenko 2013,
Sect. 4.3)

Cov{X} =
l∑

j=0

ν jV j with V0 = In,V j = v jv
′
j , j = 1, . . . , l (2.2)

where vectors v j , j = 1, 2, . . . , l are columns of design matrix V. According to Wu
and Xiao (2012), such type of a linear model was introduced just in time series domain
by Anderson (1970). From the perspective of the variance parameter estimation, it was

2 To easily follow if any matrix (or vector) contains variance parameters, elements of vector ν, we usually
use vector ν as its subscript.
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studied extensively e.g. in Rao and Kleffe (1988) and it still remains the subject of
intensive research (Zwiernik et al. 2017).

From a time series modeling point of view, if we consider any time series model
X(.) in the additive form X(t) = m(t) + ε(t); t ∈ T whose mean value function
m(.) is a real function on R expressible by a functional series (e.g. Taylor or Fourier
series) and error term ε(.) is a mean-zero stationary process, then according to the
spectral representation theory of time series (Priestley 2004; Percival and Walden
2009) X(.) can be approximated arbitrarily closely by FDSLRM. Therefore, from a
practice perspective, FDSLRMscanbe potentially applied inmanypractical situations.

In econometric applications of FDSLRM kriging, we have some restrictions given
by character of econometric data. There is typically only one realization of time series
X(.) and we do not know the mean-value parameters β ∈ Rk nor the variance parame-
ters ν ∈ Υ. From the view of time series analysis, the problem of estimating variances
ν belongs to the class of problems concerning covariance matrix estimation with one
realization (Wu and Xiao 2012).

Simultaneously, in time series econometric analysis using FDSLRMs (Štulajter
2002; Gajdoš et al. 2017), econometric datasets almost always show some periodic
patterns as they are influenced by seasons or regularly repeating events. Therefore the
fundamental modeling procedure is based on spectral analysis of time series (Štula-
jter 2002; Priestley 2004; Brockwell and Davis 2009) using trigonometric functions
cos, sin as fi , v j regressors in FDLSRM (1.1).

If we identify the significant Fourier frequencies in time series data by periodogram
(Štulajter andWitkovský 2004; Gajdoš et al. 2017), then it restricts the form of design
matrices F an V leading to the orthogonality condition for FDSLRM (Štulajter and
Witkovský 2004)

F′V = 0 and V′V = diag
{∥∥v j

∥∥2
}

, (2.3)

where v j , j = 1, 2 . . . , l is j-th column of V and ‖•‖2 = (•)′(•) is the square of the
standard Euclidean vector norm. Such FDSLRM, satisfying condition (2.3), is called
orthogonal (Štulajter and Witkovský 2004). If we consider Gaussian FDSLRM, then
with respect to the model identifiability (Demidenko 2013, Sect. 3.2) the orthogonal
model (2.3) is always identifiable. So in econometric practice, we mainly work with
the orthogonal and identifiable version of FDSLRM. Our interactive supplementary
materials (Gajdoš et al. 2019c), dealing with real data sets in Sect. 5, demonstrate
every step of the iterative econometric FDLSRM building that can be followed in
every detail with respect to given restrictions.

Finally, it is worth to mention that from the viewpoint of prediction quality (the
size of MSE), any FDSLRMmodel with k, l > 0 is always better in applications than
corresponding classical LRM with the same regressors (containing α j ∈ R instead of
Y j in (1.1)), because MSE of the FDSLRM is always less or equal and conditions of
the same MSE practically never hold. It was directly proved in Hančová (2007) using
block matrix algebra and the Löwner partial order relation.

On the other hand, the standard maximum likelihood or least squares estimates
of ν in FDSLRM are optimization problems. Our motivation to explore estimating
FDSLRMvariances in the frame of convex optimization lays on the fact that its mathe-

123



1904 M. Hančová et al.

matical tools and efficient, very reliable computational interior-point methods became
important or fundamental tools in many other branches of mathematics (Boyd and
Vandenberghe 2009) like the design of experiments, high-dimensional data, machine
learning or data mining.

Inspired by essential and recent works on convex optimization (Boyd and Vanden-
berghe 2009; Bertsekas 2009; Koenker et al. 2014; Cornuéjols et al. 2018; Agrawal
et al. 2018), we prove new theoretical relations among existing FDSLRM estimators
in the extended parametric space Υ = Rl+1+ for the orthogonal version of FDSLRM.
Obtained theoretical results bring us also to the development of new fast and accurate
computational algorithms for estimating variances in FDSLRM and can be effectively
used in time series simulations (Monte Carlo and bootstrap).

One of the reasons, why time series FDSLRM kriging is not widely used, seems
to be also the lack of available computer implementation of FDSLRM approach.3

Therefore all our computational algorithms, developed functions, packages and results,
confronted with standard LMM and convex optimization computational tools, are
easily readable, sharable, reproducible, and modifiable, thanks to open-source Jupyter
technology (Kluyver et al. 2016). In particular, we present our results in the form of
Jupyter notebooks, dynamic HTLM documents integrating prose, code (Python or R
language) and results similarly as Mathematica notebooks, stored in our free available
GitHub (Lima et al. 2014) repositories devoted to our FDSLRM research (Gajdoš et al.
2019a). This easily reproducible way and presentation of our computing with real data
were inspired by works (Brieulle et al. 2019; Weiss 2017). More details dealing with
the computer implementation and tools are described in the Appendix A.3.

3 Estimating FDSLRM variances via convex optimization

3.1 Mathematical approaches in estimating FDSLRM variances

In the LMM framework (Searle et al. 2009; Demidenko 2013), generally in variance
estimation problems, the basic nonlinear optimization theory with the standard matrix
calculus or advanced matrix (tensor) calculus4 are applied. Recently, however, we can
also see the use of mathematical apparatus of convex optimization in the aforemen-
tioned work, Zwiernik et al. (2017), dealing with MLE in linear covariance models.

In time series analysis and forecasting, one of the traditional approaches in finding
least squares or maximum likelihood estimators of unknown parameters in linear
regression models, initiated by Kolmogorov in 1941 and presented in the well-known
reference books (Brockwell and Davis 1991, 2009; Pourahmadi 2001; Galántai 2004;
Christensen 2011), is represented by geometrical projection methods in the frame of

3 More than ten years ago it was simply assumed that a potential user of FDSLRM will use one of the
well-known commercial environments for scientific computing—MATLAB or Mathematica where he will
directly apply formulas from the corresponding theory. But now analyses (see e.g. Frederickson (2019, Sect.
Scientific Languages)) show that the situation is dramatically changing, favoring open, free technology like
Jupyter notebooks or R.
4 The matrix calculus using the Kronecker product, vec and vech operators or commutation and duplication
matrices.
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Table 1 Estimation methods with references in FDSLRM

Least squares Maximum likelihood

Double ordinary least squares estimators Maximum likelihood estimators

(DOOLSE) (Štulajter 2002; Štulajter and
Witkovský 2004)

(MLE) (Štulajter 2002; Štulajter and Witkovský
2004)

Modified (unbiased) DOOLSE Restricted (residual) MLE

(MDOOLSE) (Štulajter and Witkovský 2004) (REMLE) (Štulajter and Witkovský 2004)

Natural estimators (NE) (Hančová 2008)

Hilbert (or inner product) spaces. Therefore the theory and computational aspects of the
estimation procedures forν in FDSLRMfitting, have been developed using orthogonal
andobliqueprojections (Štulajter 2002; Štulajter andWitkovský2004;Hančová2007).

In this section we investigate, revisit and update five variance estimation methods
under different assumptions on the structure and distribution of FDSLRM observation
X , summarized in Table 1, in the light of convex optimization, LMM and modern
computational technology.

According to Agrawal et al. (2018) and Boyd and Vandenberghe (2009), to for-
mulate any mathematical problem as an convex optimization problem, we need to
identify three attributes of the problem: optimization variable, convex constraints that
the variable must satisfy and the convex objective function depending on the variable
whose optimal value we want to achieve.

In all our estimation methods, optimization variable is ν ∈ Rl+1 satisfying con-
straintsΥ = R++ ×Rl+. In order to avoid any incompatibility problems in the convex
optimization theoretical or computational framework, we extend constraints Υ into
the form of standard non-negativity constraints Υ∗ = Rl+1+ = [0,∞]l+1 or ν � 0
using generalized inequality.

Finally, we also explain relations of the FDSLRM estimators with the standard
estimators in the LMM framework, where the problem of estimating variances has a
long and rich history with many essential reference works (e.g. Rao and Kleffe 1988;
Searle et al. 2009; Christensen 2011; Demidenko 2013 and Rao and Molina 2015, see
also a review paper Witkovský 2012).

3.2 General case of the orthogonal FDSLRM

First of all, we formulate the basic assumptions required in our investigations on
the structure and distribution of FDSLRM. As we mentioned in review Sect. 2, in
econometric FDSLRM analysis we mainly work with orthogonal FDSLRMs (2.3).
Unless otherwise stated, we will assume hereafter this type of FDSLRMs.

The second assumption deals with a distribution of the FDSLRM observation X =
(X(1), . . . , X(n))′, n ∈ N. Wewill assume X (2.1), having any absolutely continuous
probability distribution with respect to some σ -finite measure.
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Under these two assumptions, we can consider three noniterative distribution-free
quadratic estimation methods: natural estimators (NE), double ordinary least squares
estimators (DOOLSE) andmodified (unbiased) double ordinary least squares estima-
tors (MDOOLSE).

3.2.1 Natural estimators—NE

In the paper Hančová (2008), we proposed the method of almost surely positive invari-
ant quadratic estimators of FDSLRM variancesν, called natural estimators (NE) . The

main idea behindNE came from the fact that σ 2
j = Cov{Y j } = E

{
Y 2
j

}
; j = 1, . . . , l.

Therefore, if random vector Y in (1.1) was known, the natural estimate of σ 2
j would

be just Y 2
j . This initial consideration was identical with Rao’s estimates known as

MINQE (Rao and Kleffe (1988, Sect. 5.1) and Christensen (2011, Sect. 12.7)).
To get sufficiently simple, explicit analytic expressions available for further theo-

retical study, we predicted the random vector Y as fixed by the ordinary least squares
method leading to the following form of linear predictor of Y based on X

Y̆ = W−1V′MFX; W = V′MFV ∈ Rl×l . (3.1)

Matrix MF = (In − F(F′F)−1F′) ∈ Rn×n represents (Hančová 2008) the orthogonal
projector onto the orthogonal complement of the column space of F and matrix5

W 	 0 is known in linear algebra and statistics (Zhang 2005, chap. 6) as the Schur

complement of F′F in the block matrix
(
F′F F′V
V′F V′V

)
.

The form (3.1) exists only in the case of FDSLRMwith the full column rank k+l of
matrix (F V). Such FDSLRM, not necesarily orthogonal, is called full-rank FDSLRM.
However, NE exist and can be calculated in FDSLRMs without full-rank assumption.
Moreover, if we assume extra condition n > k + l together with full-rankness, then
from the viewpoint of LMM identifiability FDSLRM (2.1) under the assumption of
normal distribution becomes identifiable (Demidenko 2013, Sect. 3.2). As for σ 2

0 , NE
is simply the sum of residuals in the OLS method applied to (2.1) assuming both β

and Y as fixed divided by degrees of freedom. Unlike NE for σ 2
j , j = 1, ..., l, such

estimator is not only almost surely positive, but also unbiased.
Employing results of Hančová (2008), orthogonality condition (2.3), also giving

MFV = V in (3.1), leads to the following analytic form of NE

ν̆(e) =

⎛

⎜⎜⎜⎜⎜⎝

1
n−k−l e

′ MV e
(e′v1)2/ ‖v1‖4
(e′v2)2/ ‖v2‖4

...

(e′vl)2/ ‖vl‖4

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
n−k−l

(
e′e −

l∑
j=1

(e′v j )
2/

∥∥v j
∥∥2

)

(e′v1)2/ ‖v1‖4
(e′v2)2/ ‖v2‖4

...

(e′vl)2/ ‖vl‖4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.2)

5 As it is usual, for symmetric matrices 	 0 will mean positive definiteness.
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where e = x − Fβ∗ = MFx (β∗ = (F′F)−1Fx) is nothing else than the vector of
ordinary least squares (OLS) residuals in FDSLRM, x is an arbitrary realization of
the FDSLRM observation X and vectors v j , j = 1, 2, . . . , l are columns of design
matrix V. Matrix MV = In − V(V′V)−1V′ represents again the orthogonal projector
onto the orthogonal complement of the column space of V.

As for computational complexity of NE, using elementary theory of complexity
(Boyd and Vandenberghe 2018), we get the complexity of 2kn operations for the
residual vector e and 4ln for NE (3.2). Therefore, computing NE (3.2) represents an
algorithmwith the complexity having orderO(n)with respect to the realization length
or the number of time series data n.

Since NE employ the least-squares method, it is easy to show that in orthogonal
FDSLRMs, NE can be obtained as a unique, always existing, non-negative solution
of the following convex optimization problem (Agrawal et al. 2018; Boyd and Van-
denberghe 2009)

NE

minimize f0(ν) = ||ee′ −
l∑

j=1
ν jV j ||2 + ∥∥MVee′MV − ν0V0

∥∥2

subject to ν = (ν0, . . . ,νl)
′ ∈ [0,∞)l+1

(3.3)

where matrices in the objective function f0(ν) are defined by expressions V0 =
MFMV and V j = v jv

′
j , j = 1, . . . , l.. Now for any symmetric matrix A

‖A‖ =
√
tr(A2) =

√∑

i, j

A2
i j

means the standard Euclidean matrix norm of A.
In convex optimization, this kind of optimization problems belongs to the convex

quadratic optimization problems or the norm approximation problems (Boyd andVan-
denberghe 2009, Sects. 4.4, 6.1). Although we known the analytic form of NE, from
the computational point of view, the representation as the convex optimization prob-
lem can be useful for the purposes of software cross-checking results and evaluating
numerical precision of general convex optimization algorithms.

Remark 1 NE vs. MM
From LMM perspective, NE method used in orthogonal FDSLRMs can be viewed as
a variation of the Henderson method 3 (method of fitting constants), whose general-
ization is the method of moments (MM) provinding unbiased estimators (Christensen
(2011, Sect. 12.9), Demidenko (2013, Sect. 3.11), Rao and Molina (2015, Sect. 5.1)).

If we applied the idea behind MM estimator in orthogonal FDSLRMs, we would
also calculate residuals e = x−Fβ∗ = MFx as in (3.2). Then we would orthogonally
project e onto column space of V by OLS leading to empirical covariance matrix
Y̆ Y̆

′
with vector Y̆ = (V′V)−1V′X , the same as Y̆ (3.1) for orthogonal FDSLRM

(V′MF = V′), from which we would finally removed its bias.
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Comparing NE and MM, in orthogonal FDSLRMs, gives us that NE for ν0 is
identical with the MM estimator and NE for each ν j , j = 1, ..., l is the first non-
negative term of MM estimator for ν j (or the term before removing bias). In other
words, if we removed a bias from NE, we got MM estimator. But such unbiased NE,
equivalent to MM estimates, generally do not hold non-negative constrains ν � 0
required by convex optimization.

3.2.2 Double least squares estimators—DOOLSE, MDOOLSE

From the optimization viewpoint, assuming full-rank, not necessarily orthogonal
FDSLRM observation X (2.1), DOOLSE and MDOOLSE can be viewed as the fol-
lowing optimization problems for ν at given OLS residuals e

DOOLSE
minimize f0(ν) = ∥∥ee′ − �ν

∥∥2

subject to ν = (ν0, . . . ,νl)
′ ∈ [0,∞)l+1

(3.4)

MDOOLSE
minimize f0(ν) = ∥∥ee′ − MF�νMF

∥∥2

subject to ν = (ν0, . . . ,νl)
′ ∈ [0,∞)l+1

(3.5)

where e are again OLS residuals as in the case of NE and �ν = σ 2
0 In + VDνV′ is

the covariance matrix of X . We call empirical covariance matrix Se ≡ ee′ matrix of
residual products or more compactly the residual products matrix. Using elementary
properties of mean value, we can derive that E {Se} = MF�νMF.

Remark 2 DOOLSE, MDOOLSE vs. VLS, MINQE
In the LMMframework,DOOLSEandMDOOLSEwithout non-negativity constraints
are identical with variance least squares (VLS) and unbiased VLS (UVLS) estimation
methods (Demidenko 2013, Sect. 3.12) applied to FDSLRM observation X described
by theLMMmodel (2.1). The idea behindVLS is knownmore than 40years (Amemiya
1977). The DOOLSE method, its name and acronym DOOLSE were independently
reinvented and formulated in time series analysis by Štulajter (1991, 2002). Since the
DOOLSE method consists in applying two OLS regressions, the first one producing
residuals e and the second one variance estimates, we consider name DOOLSE, even
not well-known in statistical community, as more descriptive and better representing
the idea of the method as name VLS.

In addition, using results of (Witkovský 2012), we can also prove by direct com-
putation that in the orthogonal FDSLRM invariant MINQE or shortly MINQE(I) are
identical with DOOLSE and invariant unbiased MINQE, MINQE(U,I), are identical
to MDOOLSE.

In the next text, some theoretical results can be written in one form for both
of DOOLSE and MDOOLSE problems. To emphasize this fact, we will use one
abbreviation with parenthesis ( ), e.g (M)DOOLSE, assuming that given results or
considerations hold for both problems.
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Using the geometrical languageofHilbert spaces (Brockwell andDavis 1991, 2009;
Štulajter 2002), (M)DOOLSE determine an unknown variances ν stored in matrices
�ν or in MF�νMF in such way, that these matrices have the smallest Euclidean
distance to the observable matrix Se. In such case, (M)DOOLSE for orthogonal
FDSLRMs could be computed geometrically as the orthogonal projection of Se onto
the linear spanL (V0,V1, . . . ,Vl) using the Gram matrix G of set {V0,V1, . . . ,Vl}
generated by the inner product (•, •) = tr(• · •). Matrices V j , j = 1, . . . , l are the
same as in (2.2), for DOOLSE: V0 = In and for MDOOLSE: V0 = MF.

According to Štulajter andWitkovský (2004), the mentioned projection is given by

ν̃(e) = G−1q, (3.6)

where

G =

⎛

⎜⎜⎜⎜⎜⎝

n∗ ‖v1‖2 ‖v2‖2 . . . ‖vl‖2
‖v1‖2 ‖v1‖4 0 . . . 0
‖v2‖2 0 ‖v2‖4 . . . 0

...
...

... . . .
...

‖vl‖2 0 0 . . . ‖vl‖4

⎞

⎟⎟⎟⎟⎟⎠
	 0, q =

⎛

⎜⎜⎜⎜⎜⎝

e′e
(e′v1)2
(e′v2)2

...

(e′vl)2

⎞

⎟⎟⎟⎟⎟⎠
,

where forDOOLSE:n∗ ≡ n, forMDOOLSE:n∗ ≡ n−k, e are againOLS residuals,v j

are columns ofV. This formula gives the same results as formula (4.111) inDemidenko
(2013) obtained by standardmatrix calculus, applied to orthogonal FDSLRMs in (2.1).

However, the formula (3.6) can produce estimates out of the parametric space
Υ at a relatively high probability (Gajdoš et al. 2017), i.e. in many practical cases
of econometric time series analysis it frequently produces negative estimates. The
projection-based (or standard matrix calculus) calculation (3.6) is not able to handle
non-negative constraints given by Υ reliably and in some simple way.

To distinguish the projection-based estimates (or VLS estimates from the view-
point of LMM) from actual DOOLSE (3.4), MDOOLSE (3.5) which are always
non-negative, we suggest to bemore accurate and use full names for real DOOLSE and
MDOOLSE: non-negative DOOLSE (NN-DOOLSE) and non-negative MDOOLSE
(NN-MDOOLSE). Such specific way of notation is not rare and is similarly used e.g.
in the case of Rao’s MINQE (Rao and Kleffe 1988, chap. 5). For the projection-based
DOOLSE and MDOOLSE (3.6), without considering non-negativity constraints, we
leave the original acronyms DOOLSE, MDOOLSE coined by Štulajter.

3.2.3 Non-negative double least squares estimators – NN-(M)DOOLSE

Now applying the basic convex quadratic optimization theory (Cornuéjols et al. 2018;
Bertsekas 2009) in orthogonal FDSLRMs,we can rewriteNN-(M)DOOLSE as strictly
convex quadratic problems, whose solutions ν̃ always exist and are unique global
minimizers on Υ∗. Here are details proving this conclusion.

Using the standard inner product ofmatrices defined as (•, •) = tr(•, •), generating
the Euclidean norm ‖•‖ of a matrix, and basic properties of the trace function, we can
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easily rewrite expressions (3.4), (3.5) for the objective functions as quadratic forms.
The particular form of these quadratic forms in optimization problems (M)DOOLSE
is described by the following proposition.

Proposition 1 (NN-(M)DOOLSE as quadratic optimization problems)
In an orthogonal FDSLRM theNN-(M)DOOLSE problems are convex quadratic opti-
mization problems in the form

minimize f0(ν) = ν′Gν − 2q ′ν
subject to −Il+1ν 
 0l+1

(3.7)

q =

⎛

⎜⎜⎜⎜⎜⎝

e′e
(e′v1)2
(e′v2)2

...

(e′vl)2

⎞

⎟⎟⎟⎟⎟⎠
, G =

⎛

⎜⎜⎜⎜⎜⎝

n∗ ‖v1‖2 ‖v2‖2 . . . ‖vl‖2
‖v1‖2 ‖v1‖4 0 . . . 0
‖v2‖2 0 ‖v2‖4 . . . 0

...
...

... . . .
...

‖vl‖2 0 0 . . . ‖vl‖4

⎞

⎟⎟⎟⎟⎟⎠
	 0,

where for NN-DOOLSE: n∗ ≡ n, NN-MDOOLSE: n∗ ≡ n − k,

According to the fundamental KKT theorem of convex optimization (Boyd and
Vandenberghe 2009, chap. 5) which handles convex optimization problems with con-
straints in the form of inequalities giving a list of the so-called Karush–Kuhn–Tucker
(KKT) optimality conditions, we consider our optimization problemNN-(M)DOOLSE
in the Lagrange multiplier form with Lagrangian L as a sum of the objective func-
tion f0(ν) and a linear combination of multipliers λ = (λ0, λ1, . . . , λl)

′ � 0l+1 and
constraints −ν = (ν0,ν1, . . . ,νl)

′ 
 0l+1.
Then KKT optimality conditions for (3.7) become necessary and sufficient con-

ditions of optimality, satisfied at any local optimal solution, being represented by
three sets of conditions: (1) primal and dual feasibility: ν � 0l+1, λ � 0l+1, (2)
stationarity of the Lagrangian: ∇νL(ν,λ) = 0l+1 and (3) complementary slackness:
ν jλ j = 0, j ∈ {0, 1, . . . , l}. Computing the gradient of the Lagrangian, we arrive at
the following proposition.

Proposition 2 (KKT optimality conditions for NN-(M)DOOLSE)
In an orthogonal FDSLRM consider the non-negative NN-(M)DOOLSE problems
in the Lagrange multiplier form with the Lagrangian

L(ν,λ) = f0(ν) −
l∑

j=0

λ jν j .

Then, a necessary and sufficient condition for ν̃, λ̃ to be problems’ optimal solution
is

(1) ν � 0l+1, λ � 0l+1,

(2)
(
G −Il+1

) (
ν

λ

)
= q,
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(3) ν ◦ λ = 0l+1
(⇔ ν jλ j = 0, j ∈ {0, 1, . . . , l}).

As for the existence of optimal solutions, we can apply the well-known basic results
for minimizing quadratic forms (Bertsekas (2009, chap. 3)). Since the Hessian of
(3.7) equal to ∇2

ν f0(ν) = 2G is a positive definite matrix, like G, then f0(ν) is
strictly convex and also coercive proper function. These two properties are sufficient
conditions for NN-(M)DOOLSE (Bertsekas (2009, Weierstrass’ theorem, p. 119))
to have always a unique global optimal solution ν̃. Employing the familiar Bessel’s
inequality (Brockwell and Davis 2009, Sect. 2.4)

l∑

j=1

(e′v j/
∥∥v j

∥∥)2 ≤ ‖e‖2 , where equality holds if and only if e ∈ L (V),

it is also not difficult to rewrite KKT conditions (1–3) as the following system

n∗ν0 +
l∑

j=1

ν j
∥∥v j

∥∥2 − λ0 = ‖e‖2 , (3.8)

ν0
∥∥v j

∥∥2 + ν j
∥∥v j

∥∥4 − λ j = (e′v j )
2; j ∈ {1, . . . , l}, (3.9)

ν jλ j = 0, λ j ≥ 0, ν j ≥ 0; j ∈ {0, 1, . . . , l} (3.10)

implying an optimal solution ν̃ with ν̃0 = 0 if and only if the vector of OLS residuals
e belongs to the column space of V. Since probability of e ∈ L (V) is zero, our
existence conclusions can be summarized in the next proposition.

Proposition 3 (Solution existence of NN-(M)DOOLSE)
In an orthogonal FDSLRM the following holds

(1) NN-(M)DOOLSE problems are strictly quadratic optimization problems.
(2) Their solutions ν̃ always exist and they are unique global minimizers.
(3) ν̃0 = 0 ⇔ e ∈ L (V) ⇔ x ∈ L (F,V).
(4) P(ν̃0 = 0) = P(e ∈ L (V)) = P (x ∈ L (F,V)) = 0.

From the practical computational viewpoint, the most important result is funda-
mental KKT conditions because finding solutions of convex optimization problems is
nothing else than solving the corresponding KKT conditions analytically or in general
numerically.

In our case of NN-(M)DOOLSE, the KKT conditions (1–3) in Proposition 2 can be
represented by a set of 2l nonsingular linear systems of equations, where each of them
is given by a specific matrix K derived from G and by vector q from (3.6). Details of
such representation can be found in the Appendix A.2. Then our theoretical results in
Proposition 3 dictate that only one of the linear systems always gives us all required
non-negative elements of ν̃.

On this representation, we can establish a simple KKT optimization algorithm
which run through given linear systems, compute their analytical solution and stops
when the solution appears non-negative. In other words, the proposed KKT algorithm
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Table 2 Scheme of the KKT algorithm for NN-(M)DOOLSE ν̃ in orthogonal FDSLRM

Input: Form the matrix G, the vector q from vectors e and v j ; j ∈ {1, . . . , l}.
For each auxiliary vector b = (b1, b2, . . . , bl )

′ ∈ {0, 1}l do:
1. Set the KKT-conditions matrix K:

K ← G;

For j = 1, 2, . . . , l do: If b j = 0 then K0 j ← 0, K j j ← −1.

2. Calculate the auxiliary vector γ:

γ ← K−1q.

3. Test non-negativity of γ:

If γ ≥ 0 then quit.

Output: Use the last b, γ to form NN-(M)DOOLSE ν̃ of ν:

ν̃ ← γ;

For j = 1, 2, . . . , l do: If b j = 0 then ν̃ j ← 0.

always founds the required NN-(M)DOOLSE ν̃ in at most 2l steps. The algorithm is
summarized in Table 2, whereas the proof is in the Appendix A.2.

As for computational complexity of the KKT optimization algorithm, all calcula-
tions of input have complexity O(n), whereas the body of the algorithm (steps 1–3)
needs extra operations of orderO(l2 ·2l). Since fixed number l of variance parameters
in matrix Dν = Cov{Y} is usually much smaller than n (or l2 · 2l is not bigger than
n), then the complete algorithm has the leading order O(n) with respect to n. It is
the same as in the case of NE and generally typical only for computationally fastest
analytical solutions of the KKT conditions.

3.3 Gaussian orthogonal FDSLRM

In the LMM framework, the most usual distribution of X used in practice is repre-
sented by the multivariate normal (Gaussian) distribution. Therefore, in addition to the
orthogonality of FDSLRM, we will require in this section the distributional assump-
tion X ∼ Nn(Fβ,�ν). We will refer to FDSLRM under these assumptions as to
Gaussian orthogonal FDSLRM.

In the case of Gaussian orthogonal FDSLRM, we can add to our investigation
last two always non-negative estimation methods from Table 1: maximum likelihood
estimators (MLE) and residual maximum likelihood estimators (REMLE).

3.3.1 Maximum likelihood estimators—MLE, REMLE

Both MLE and REMLE of variances ν provide estimates maximizing ML and REML
log-likelihood functions (logarithms of likelihoods).

Using simple and clear arguments from Lamotte’s paper (LaMotte 2007), we can
easily form theML log-likelihood function lm(ν, x) andREML loglikelihood function
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lr(ν, x), assuming full-rank FDSLRM observation X (2.1), as

lm(ν, x) = 1
2

(
ln det(�−1

ν ) − ∥∥x − Fβ∗
ν

∥∥2
�−1

ν

)
, (3.11)

lr(ν, x) = 1
2

(
ln det(�−1

ν ) − ln det(F′�−1
ν F) − ∥∥x − Fβ∗

ν

∥∥2
�−1

ν

)
, (3.12)

where eν = x − Fβ∗
ν are FDSLRM residuals, known as marginal residuals in LMM

(Singer et al. 2017), x is an arbitrary realization of the FDSLRM observation X with
covariancematrix�ν,β∗

ν = (F′�−1
ν F)−1F′�−1

ν x is the best linear unbiased estimator
(BLUE) of β and ‖•‖2

�−1
ν

= (•)′�−1
ν (•) is the square of a generalized vector norm

given by�−1
ν . Moreover, in orthogonal FDSLRM, BLUE β∗

ν = (F′�−1
ν F)−1F′�−1

ν x
andmarginal residuals eν are identical with OLS estimate β∗ = (F′F)−1F′x and OLS
residuals e respectively, not depending on ν (Štulajter and Witkovský 2004).

Remark 3 — REML likelihood
In Lammote’s paper (LaMotte 2007), which presents a direct derivation of REML
likelihood function in LMM using familiar linear algebra operations, we can find
that the formulation of ML and REML likelihood in LMM under the assumption of
normality was originally done in Harville’s works (Harville 1974, 1977).

However, LMM references up to 2007 show the explicit form of REML likelihood
for LMM rarely. In Štulajter’s FDSLRM reference works dealing with MLE (Štulajter
2002; Štulajter and Witkovský 2004) REML likelihood for FDSLRM is also absent.
According to Lammote (LaMotte 2007), the reason why seems to be Harville’s too
sophisticated, and indirect derivation. As for Demidenko’s LMM monograph (Demi-
denko 2013), the FDSLRM formulas (3.11), (3.12) are special cases ofML and REML
log-likelihood functions presented in Sect. 2.2.6, where estimator β∗

ν is mentioned as
the generalized least squares estimator. Assumption about full column rank of F is
identical with Demidenko’s assumption in Sect. 2.2.6.

Maximum likelihood and residualmaximum likelihood estimation of variance com-
ponents in LMMs produce, in general, no analytical expressions for the estimators
(Searle et al. 2009, chap. 6). They exist only for ν0 > 0. According to Demidenko
(2013, Sect. 2.5, Theorem 4) MLE and REMLE estimates do not exist in general
FDSLRM with LMM observation X (2.1) if and only if a realization x of X belongs
to L (F,V), linear span of columns F and V. This condition is also equivalent with
e ∈ L (V).

In orthogonal FDSLRM, theMLE and REMLE can be rewritten as the optimization
problems for ν at given OLS residuals e

MLE
maximize f0(ν) = ln det(�−1

ν ) − ‖e‖2
�−1

ν

subject to ν = (ν0, . . . ,νl)
′ ∈ [0,∞)l+1

(3.13)

REMLE
maximize f0(ν) = ln det(�−1

ν ) − ln det(F′�−1
ν F) − ‖e‖2

�−1
ν

subject to ν = (ν0, . . . ,νl)
′ ∈ [0,∞)l+1

(3.14)
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where ‖e‖2
�−1

ν
= e′�−1

ν e = tr
(
Se�−1

ν

)
and Se is the residual products matrix used in

definitions (3.4), (3.5) of non-negative (M)DOOLSE.
Generally, (RE)MLE in FDSLRM are not convex optimization problems with

respect to ν and they do not exist for ν0 = 0 which occurs if and only if e ∈ L (V).
If we apply the following bijective transformation defined on Υ = (0,∞) × [0,∞)l

d0 = 1

ν0
, d j = ν j

ν0(ν0 + ∥∥v j
∥∥2 ν j )

, j ∈ {1, . . . , l}, (3.15)

we can convert the (RE)MLE problems into the form of equivalent convex problems
(Boyd and Vandenberghe 2009, Sect. 4.1.3) whose solutions can be readily converted
into (RE)MLE solutions by the inverse transformation to (3.15).Here aremore detailed
steps of the conversion.

In orthogonal FDSLRM �−1
ν (Štulajter 2003, Lemma 2.1) and e′�−1

ν e are equal to

�−1
ν = 1

ν0
In −

l∑

j=1

ν j

ν0

(
ν0 + ∥∥v j

∥∥2 ν j

)v jv
′
j = d0In − Vdiag

{
d j

}
V′,

‖e‖2
�−1

ν
= e′�−1

ν e = d0e′e − e′V diag
{
d j

}
V′e.

(3.16)

Using orthogonality conditions (2.3) and determinant expression (Searle and Khuri
2017, Sect. 6.8)

det(λIn − AB) = λn−l det(λIl − BA) for λ �= 0,A ∈ Rn×l ,B ∈ Rl×n, (3.17)

we get for determinants in (RE)ML loglikelihoods (3.13), (3.14)

det(F′�−1
ν F) = det(d0F′F) = dk0 det(F

′F),

det�−1
ν = dn−l

0 det(d0Il − V′Vdiag
{
d j

}
) = dn−l

0

l∏

j=1

(d0 − d j
∥∥v j

∥∥2).

(3.18)
Since the chosen bijective transformation (3.15) also transforms convex constraints
for ν to convex constraints for d, substituting (3.16), (3.18) into objective functions
(3.13), (3.14) of (RE)MLE, we can formulate the following proposition.

Proposition 4 ((RE)MLE as equivalent convex problems)
Let assume e /∈ L (V) and consider a bijective transformation in the following form:

d0 = 1

ν0
, d j = ν j

ν0(ν0 + ∥∥v j
∥∥2 ν j )

, j ∈ {1, . . . , l}.
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Then, in a Gaussian orthogonal FDSLRM the (RE)MLE problems are equivalent to
convex problems:

minimize f0(d) = −(n∗− l) ln d0 −
l∑

j=1

ln(d0 − d j
∥∥v j

∥∥2) + d0e
′e − e′V diag

{
d j

}
V′e

subject to d0 > max{d j
∥∥v j

∥∥2 , j = 1, . . . , l}
d j ≥ 0, j = 1, . . . l

where for MLE: n∗ ≡ n, and for REMLE: n∗ ≡ n − k.

Similarly as for NN-(M)DOOLSE, we can write the equivalent (RE)MLE problem
with 2l constraints in the corresponding Lagrangian multiplier form based on the
following Lagrangian with 2l multipliers (λ1, . . . , λl , μ1, . . . , μl)

′ = (λ′,μ′)′ ∈ R2l+

L(d,λ,μ) = f0(d) −
l∑

j=1

[
λ j d j + μ j (d0 − d j ||v j ||2)

]
.

Then by direct computation, we obtain KKT conditions for equivalent (RE)MLE
describing: (1) primal and dual feasibility for d and (λ′,μ′)′, (2) stationarity of the
Lagrangian (∇dL(d,λ,μ) = 0) and (3) complementary slackness, all described by
the next proposition.

Proposition 5 (KKT optimality conditions for equivalent (RE)MLE)
Consider equivalent convex optimization problems to (RE)MLE in the Lagrangian
multiplier form

L(d,λ,μ) = f0(d) −
l∑

j=1

[
λ j d j + μ j (d0 − d j ||v j ||2)

]
.

Then, anecessary and sufficient condition for d̂, λ̂, μ̂ to be problems’ optimal solution
is

(1) d0 − d j
∥∥v j

∥∥2 > 0, d j ≥ 0, λ j ≥ 0, μ j ≥ 0, j ∈ {1, . . . , l},

(2) ||e||2 − n∗ − l

d0
−

l∑

j=1

(
μ j + 1

d0 − d j ||v j ||2
)

= 0,

||v j ||2
d0 − d j ||v j ||2 − (e′v j )

2 − λ j + μ j ||v j ||2 = 0, j ∈ {1, . . . , l},
(3) −d jλ j = 0, −(d0 − d j ||v j ||2)μ j = 0, j ∈ {1, . . . , l}.
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Similarly as in the case of NN-(M)-DOOLSE, the Hessian H ≡ ∇2
d f0(d) equal to

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∗−l
d20

+
l∑

j=1

1

(d j‖v j‖2−d0)
2 − ‖v1‖2

(d1‖v1‖2−d0)
2 − ‖v2‖2

(d2‖v2‖2−d0)
2 . . . − ‖vl‖2

(dl‖vl‖2−d0)
2

− ‖v1‖2
(d1‖v1‖2−d0)

2
‖v1‖4

(d1‖v1‖2−d0)
2 0 . . . 0

− ‖v2‖2
(d2‖v2‖2−d0)

2 0 ‖v2‖4
(d2‖v2‖2−d0)

2 . . . 0

...
...

... · · · ...

− ‖vl‖2
(dl‖vl‖2−d0)

2 0 0 . . .
‖vl‖4

(dl‖vl‖2−d0)
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

	 0

leads to strict convexity of the problem. Since f0(d) is also coercive,we can summarize
the existence conditions of optimal solutions in the final proposition as we did for NN-
(M)DOOLSE problems.

Proposition 6 (Solution existence of equivalent (RE)MLE)
Let assume e /∈ L (V). Then in a Gaussian orthogonal FDSLRM the following holds

(1) Equivalent (RE)MLE problems are strictly convex optimization problems.
(2) The objective function f0(d) is coercive with respect to constraints.
(3) Their solutions d̂ always exist and they are unique global minimizers.

The bijection (3.15) implies d0 − d j
∥∥v j

∥∥2 = (ν0 + ν j
∥∥v j

∥∥2)−1 �= 0 which
dictates μ j = 0 to satisfy the complementary slackness conditions in KKT (3) and
simultaneously forms the new version of KKT (1–3) of Proposition 5

||e||2 − (n∗ − l)ν0 −
l∑

j=1

(ν0 + ν j
∥∥v j

∥∥2) = 0, (3.19)

||v j ||2(ν0 + ν j
∥∥v j

∥∥2) − (e′v j )
2 − λ j = 0, j ∈ {1, . . . , l}, (3.20)

ν0 > 0, −ν jλ j = 0, ν j ≥ 0, λ j ≥ 0, j ∈ {1, . . . , l}. (3.21)

But for e /∈ L (V), which occurs with probability 1, the system (3.19)–(3.21) is the
same as the system (3.8)–(3.10).

In other words we just proved that for ν0 �= 0 (or e /∈ L (V)) the KKT conditions
for NN-(M)DOOLSE are equivalent with the KKT conditions for (RE)MLE and the
bijective transformation. It means that using the convex optimization approach in
orthogonal FDSLRM, we proved the equivalence of NN-(M)DOOLSE and (RE)MLE
with probability 1.

Theorem 1 (equivalence between NN-(M)DOOLSE and (RE)MLE)
In a Gaussian orthogonal FDSLRM non-negative (M)DOOLSE are almost surely
equal to (RE)MLE, i.e.

P

(
non-negative
DOOLSE

= MLE
)

= P

(
non-negative
MDOOLSE

= REMLE
)

= 1.
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The important theoretical result of Theorem 1 is stronger and more general than in
Štulajter andWitkovský (2004) proved only for interior points ofΥ andwhose iterative
computational algorithm could fail in calculating (RE)MLE when (M)DOOLSE, not
satisfying non-negativity (equivalent with VLS estimates), are negative.

The very useful consequence of Theorem 1 is that we can practically computeMLE
or REMLE in orthogonal FDSLRMs as quadratic NN-(M)DOOLSE. Moreover, for
e ∈ L (V) NN-(M)DOOLSE do not fail as (RE)MLE, but naturally extend them.
Therefore, we can use our KKT algorithm of order O(n). However, in computing
(RE)MLE we can apply any of the current standard computational tools of convex
optimization or LMM (all giving algorithms at least of the order O(n3)) described in
detail in the Appendix A.3.

4 Estimating FDSLRM variances via EBLUPs

4.1 Definition and computational form of new estimators

The convex optimization approach brought us new theoretical relations between non-
iterative distribution-free quadratic and maximum likelihood estimators of FDSLRM
variances and also a new fast computational algorithm for their computation. As we
can see in this section, the LMM framework itself gives us a new improved version of
the previously developed method of NE described in Sect. 3.2.

If we look at formula (3.1) for NE through eyes of the general theory of the BLUP
in LMM (see e.g. Christensen (2011, chap. 12)), then in FDSLRM the OLS predictor
Y̆ for Y is linear, unbiased, computationally and analytically simple as we required
for further theoretical research, but not the best. Therefore, following the standard
practice of LMMs in predicting Y , the random effect in LMM (2.1), we take the best
linear unbiased predictor (BLUP) as the estimator of Y . This consideration leads to
the following improved version of our original NE.

Let us consider FDSLRM (1.1) and its observation X described by (2.1), not nec-
essarily orthogonal. Then estimators in the form

σ̊ 2
j (X) ≡ (Y∗

ν )2j ; Y∗
ν is the BLUP of Y based on X (4.1)

are said to be natural estimators of ν based on the BLUP or BLUP-NE for short.
The BLUP Y∗

ν of Y together with the best linear unbiased estimator β∗
ν (BLUE)

of β, mentioned in (RE)ML log-likelihoods (3.11) and (3.12), can be obtained from
celebrated Henderson’s mixed model equations, MME for short [for MME in the
current framework of LMM see e.g. Christensen (2011, Sect. 12.3) or Witkovský
(2012, Sect. 2)]. MME have the following form in the case of FDSLRM

(
F′F F′V
V′F Gν

)
·
(

β∗
ν

Y∗
ν

)
=

(
F′X
V′X

)
, (4.2)

where Gν ≡ GV + σ 2
0D

−1
ν = V′V + σ 2

0D
−1
ν and GV ≡ V′V ∈ Rl×l is the Gram

matrix (Boyd and Vandenberghe 2018, Sect. 10.1) for columns of matrix V.
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Assuming the full-ranked FDSLRM with r(F V) = k + l as in the case of NE and
using the so-calledBanachiewicz inversion formula for the inverse of a 2×2 partitioned
(block) matrix (see e.g. Zhang 2005, Sect. 6.0.2) or (Hančová 2008, Sect. 2.1), we can
easily prove the existence and the following form of the inverse to the block matrix in
(4.2)

(
F′F F′V
V′F Gν

)−1

=
(

(F′F)−1 0k×l

0l×k 0l×l

)
+

(−(F′F)−1F′V
Il

)
W−1

ν

(
−V′F(F′F)−1 Il

)
,

whereWν ≡ W+σ 2
0D

−1
ν = V′MFV+σ 2

0D
−1
ν 	 0,W is the same Schur complement

as in NE case (3.1). The matrix Wν is also Schur complement of F′F but now in the

block matrix
(
F′F F′V
V′F Gν

)
. We call matrix Wν more specifically as the extended Schur

complement determined by variances ν.
Substituting the last result for the inverse into MME (4.2) and rearranging, we get

for Y∗
ν (symbols • denote blocks not needed in deriving)

(
β∗

ν
Y∗
ν

)
=

(
F′F F′V
V′F Gν

)−1

·
(
F′X
V′X

)
=

( • •
−W−1

ν V′F(F′F)−1 W−1
ν

)
·
(
F′X
V′X

)
,

Y∗
ν = W−1

ν V′(In − F(F′F)−1F′)X = W−1
ν V′MFX . (4.3)

Denoting matrix W−1
ν V′MF ∈ Rl×n as Tν, we just derived the following computa-

tional form of new BLUP-NE estimators.

Proposition 7 (the computational form of BLUP-NE)
Let us consider the following full-ranked LMM model for FDSLRM observation X

X = Fβ + VY + Z, E {Z} = 0n, Cov{Z} = σ 2
0 In,

Cov{Y} = diag
{
σ 2
j

}
, Cov{Y , Z} = 0l×n, r(FV) = k + l.

Then BLUP-NE estimators σ̊ 2
1 , . . . , σ̊ 2

l of parameters σ 2
1 , . . . , σ 2

l are given by

σ̊ 2
j (X) = (Y∗

ν )
2
j = (TνX)′j (TνX) j = X ′τ jτ

′
jX; j = 1, . . . , l, (4.4)

where τ j ≡ (Tν j1, Tν j2, . . . , Tν jn)
′ are rows of matrix Tν and Tν = W−1

ν V′MF

withWν = diag
{
σ 2
0 /σ 2

j

}
+ V′MFV.

It is straightforward to extend our computational form to the case when some
variances σ 2

j are zero or in other words when matrix Dν is singular. For a singular
Dν, MME (4.2) have the alternative form (Witkovský 2012)

(
F′F F′VDν

V′F Hν

)
·
(

β∗
ν

Z∗
ν

)
=

(
F′X
V′X

)
, (4.5)
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where Hν ≡ GVDν + σ 2
0 Il = V′VDν + σ 2

0 Il and Y∗
ν = DνZ∗

ν.
Applying the same argument with the Banachiewicz inversion formula, we get the

second version of the computational form of Tν determining Y∗
ν

Tν = DνU−1
ν V′MF with Uν = WDν + σ 2

0 Il = V′MFVDν + σ 2
0 Il . (4.6)

As opposed to Wν,Gν, matrices Uν,Hν always exist under the assumption of
r(F V) = k + l. Simultaneously both of Uν,Hν are also always invertible, since
both of detUν, detHν are nonzero for any Dν in our FDSLRM as it is shown in the
Appendix A.4. In the case of a nonsingular Dν the mentioned matrices are connected
via following relationships

Hν = GνDν, G−1
ν = DνH−1

ν , Uν = WνDν, W−1
ν = DνU−1

ν . (4.7)

The version (4.5) of MME is also preferred in numerical calculations (Witkovský
2012), since it can handle not only a singular Dν but also a very ill-conditioned Dν

appearing when ν has very small positive components σ 2
j .

It is worth to mention that originally MME were derived under the normality
assumptions [see the original work Henderson et al. (1959) or Witkovský (2012)],
but from the viewpoint of least squares both versions (4.2), (4.5) of MME describe
the BLUP Y∗

ν and BLUE β∗
ν (Christensen 2011, Sect. 12.3) with no need to restrict

distributions of Y and Z to be normal.

Remark 4 —General FDSLRM and BLUP-NE for σ 2
0

Unlike our computational form in Proposition 7, the idea (4.1) behind BLUP-NE does
not depend on the assumption of FDSLRM full-rankness. As it is described in (Searle
et al. 2009) or (Witkovský 2012) the inverse of block matrix in MME (4.2) can be
calculated using any g-inverse of the block matrix. In this situation, we would have
to abandon our analytic approach and explore the problem only numerically, but in
econometric applications this is not the case.

As for the first component ν0 = σ 2
0 of ν, we could consider as the BLUP based

natural estimator the sum of squares of white noise residuals Z∗
ν = X − Fβ∗

ν −VY∗
ν

divided by the number of degrees of freedom in FDSLRM

σ̊ 2
0 (X) = 1

n − k − l
[X − Fβ∗

ν − VY∗
ν ]′[X − Fβ∗

ν − VY∗
ν ],

In theLMMframework, FDSLRMwhite noise residuals Z∗
ν are also called conditional

residuals (Singer et al. 2017). It is not difficult to show that such estimator would be
biased even in orthogonal FDSLRM. Therefore, as a natural estimator of σ 2

0 we will
keep the original unbiased invariant quadratic NE σ̆ 2

0 (X) of σ 2
0 , the sum of residuals

in the OLSmethod applied to (2.1) assuming both β and Y as fixed divided by degrees
of freedom [Eq. (2.2) in Hančová (2008)].
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4.2 Statistical properties at known variance parameters

The derivation of theoretical properties of BLUP-NE estimates under the assumption
of known ν, regarding the first and second order moment characteristics, can be sig-
nificantly facilitated by the following lemma describing the properties of matrix Tν

determining the BLUP Y∗
ν in (4.3).

Its proof can be accomplished in a similarway as the proof ofLemma3.1 inHančová
(2008) by a direct routine computation employing formulas (4.7), Tν = W−1

ν V′MF,
Wν = V′MFV+σ 2

0D
−1
ν , properties of orthogonal projectors (orthogonality, idempo-

tency, symmetry) and Schur complements (symmetry, positive definiteness).

Lemma 1 (basic properties of Tν)

(1) TνT′
ν = W−1

ν (Il − σ 2
0D

−1
ν W−1

ν ) = DνU−1
ν (Il − σ 2

0U
−1
ν )

(2) TνF = 0l×n and TνV = Il − σ 2
0D

−1
ν W−1

ν = Il − σ 2
0U

−1
ν

(3) Tν�νT′
ν = Dν − σ 2

0W
−1
ν = Dν(Il − σ 2

0U
−1
ν )

The computational forms (4.4) of BLUP-NE are also quadratic forms of X . In
addition, result (2) TνF = 0l×n implies that τ jF = 0. Such a condition leads to
the same conclusion as in the case of NE. BLUP based natural estimators σ̊ 2

j (X)

are always translation invariant or shortly invariant quadratic estimators (Štulajter
(2002, Sect. 1.5) or Hančová (2008, Sect. 3.1)). The following theorem summarizes
theoretical properties of BLUP-NE.

Theorem 2 (statistical properties of σ̊ 2
j (X))

Natural estimators σ̊ 2
j (X); j = 1, 2, . . . , l of ν based on the BLUP Y∗

ν of Y are
invariant quadratic estimators having the following properties

(1) Eν

{
σ̊ 2
j (X)

}
= σ 2

j − σ 2
0 (W−1

ν ) j j ; j = 1, 2, . . . , l,

If X ∼ Nn(Fβ,�ν), then
(2) Dν{σ̊ 2

j (X)} = 2(σ 2
j − σ 2

0 (W−1
ν ) j j )

2; j = 1, 2, . . . , l,

(3) Covν

{
σ̊ 2
i (X), σ̊ 2

j (X)
}

= 2(σ 2
0 (W−1

ν )i j )
2; i, j = 1, 2, . . . , l, i �= j ,

(4) MSEν{σ̊ 2
j (X)} = 2(σ 2

j − σ 2
0 (W−1

ν ) j j )
2 + σ 4

0 (W−1
ν )2j j ;

j = 1, 2, . . . , l.

Proof See the Appendix A.4. ��
Remark 5 Bias of BLUP-NE
If some components in ν are zero, there is a need to use expression DνU−1

ν
instead of W−1

ν . The first property, biasedness of σ̊ 2
j (X), j = 1, 2, . . . , l, is in

full accordance with the Ghosh theorem (Ghosh 1996; Gajdoš et al. 2017) about
the incompatibility between simultaneous non-negativity and unbiasedness of esti-
mators for variances of random components Y in LMM. As for bias, defined as

Δν

{
σ̊ 2
j (X)

}
= Eν

{
σ̊ 2
j (X)

}
− σ 2

j , we have the following expression given by the

extended Schur complement Wν

Δν

{
σ̊ 2
j (X)

}
= −σ 2

0 (W−1
ν ) j j (4.8)
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Table 3 First and second order moment characteristics for BLUP-NE and NE

Characteristic NE estimators σ̆ 2
j (X) BLUP-NE estimators σ̊ 2

j (X)

Δν σ 2
0 (W−1) j j −σ 2

0 (W−1
ν ) j j

Dν 2(σ 2
j + σ 2

0 (W−1) j j )
2 2(σ 2

j − σ 2
0 (W−1

ν ) j j )
2

MSEν 2(σ 2
j + σ 2

0 (W−1) j j )
2 + σ 4

0 (W−1)2j j 2(σ 2
j − σ 2

0 (W−1
ν ) j j )

2 + σ 4
0 (W−1

ν )2j j

Now we can theoretically compare quality of the BLUP natural estimators with
original natural estimators (NE)proposed in our previous paper (Hančová2008).Aswe
can see from summarizing Table 3, their quality is determined by Schur complements
W and Wν where both of them are symmetric and positive definite matrices.

Using elementary properties of the Löwner partial ordering (Puntanen et al. 2013,
chap. 24), we have immediately relationsWν > W,W−1 > W−1

ν , (W) j j > (W−1
ν ) j j

which imply a smaller absolute value of bias, dispersion andMSEforBLUP-NE σ̊ 2
j (X)

in comparison with original NE σ̆ 2
j (X). This conclusion directly supports our idea of

the improvement leading to the BLUP-NE definition (4.1).
Under the condition of orthogonality (2.3), we can write for matricesMF,Uν,Wν,

Tν and BLUP-NE σ̊ 2
j (X)

MFV = V, Uν = GVDν + σ 2
0 Il = diag

{
σ 2
0 + σ 2

j

∥∥v j
∥∥2

}
,

W−1
ν = DνU−1

ν = diag
{
ρ j/

∥∥v j
∥∥2

}
, τ j = ρ jv

′
j/

∥∥v j
∥∥2 ,

σ̊ 2
j (X) = ρ2

j X
′v jv

′
jX/

∥∥v j
∥∥4 , j = 1, 2, . . . , l,

where we introduced ρ j ≡ σ 2
j ‖v j‖2

σ 2
0 +σ 2

j ‖v j‖2 ∈ R, 0 ≤ ρ j < 1, j = 1, 2, . . . , l.

Applying these results, we get the following direct corollary of Theorem 2 for any
orthogonal FDSLRM.

Corollary 1 (properties of σ̊ 2
j (X) in orthogonal FDSLRM)

In an orthogonal FDSLRM natural estimators σ̊ 2
j based on the BLUP Y∗

ν have the
following properties

(1) Eν

{
σ̊ 2
j (X)

}
= ρ jσ

2
j ; j = 1, 2, . . . , l, where ρ j = σ 2

j

∥∥v j
∥∥2

σ 2
0 + σ 2

j

∥∥v j
∥∥2

∈ R+.

If X ∼ Nn(Fβ,�ν), then
(2) Dν{σ̊ 2

j (X)} = 2ρ2
jσ

4
j ; j = 1, 2, . . . , l,

(3) Covν

{
σ̊ 2
i (X), σ̊ 2

j (X)
}

= 0; i, j = 1, 2, . . . , l, i �= j ,

(4) MSEν{σ̊ 2
j (X)} = [2ρ2

j + (1 − ρ j )
2]σ 4

j ; j = 1, 2, . . . , l.

Finally, if we look at original natural estimators σ̆ 2
j (X) from our paper (Hančová

2008), then in orthogonal FDSLRM it can be easily shown that σ̊ 2
j (X) = ρ2

j σ̆
2
j (X),
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j = 1, 2, . . . , l. If we introduce ρ0 = 1, then we obtain the complete orthogonal
version of (4.4) for computing BLUP-NE σ̊ 2

j (X):

σ̊ 2
j (X) = ρ2

j σ̆
2
j (X), j = 0, 1, . . . , l. (4.9)

4.3 Empirical version of BLUP-NEmethod

The computational form of our BLUP natural estimators, their first and second order
moment characteristics were derived under the assumption of known variances ν,
which is in practice rarely fulfilled. In such case, the simplest reasonable solution is
to use an empirical version of BLUP (EBLUP), as it is usual in the general theory
of empirical BLUPs in LMMs (Štulajter (2002, chap. 5), Witkovský (2012) and Rao
and Molina 2015, chap. 5). In particular, this step means replacing unknown true
parameters ν with other “initial” values or estimates of ν in FDSLRM. In the light of
iterative approaches, such empirical version of BLUP-NE can be viewed as a two-stage
iterative estimation method with one step in the iteration.

From the theoretical perspective, we prefer initial estimates with the simplest
explicit form and under least restrictive assumptions on the structure or distribution of
FDSLRM. On the other hand, from the practical point of view, it will be sufficient to
have such initial estimates which can be obtained by reliable and time efficient com-
putational methods. Therefore, we suggest natural estimators (NE) as initial estimates
for BLUP-NE, although we could consider any estimates based on least squares or
maximum likelihood.

Using (4.9), these newdistribution-free estimateswhichwill be referred as empirical
BLUP-NE or EBLUP-NE for short, are invariant and given in orthogonal FDSLRM
by

σ̊ 2
j (X) = ρ̆2

j σ̆
2
j (X), j = 0, 1, . . . , l, σ̆ 2

j (X) are NE, (4.10)

where ρ̆0 = 1, ρ̆ j = σ̆ 2
j ‖v j‖2

σ̆ 2
0 +σ̆ 2

j ‖v j‖2 .

As for computational complexity of EBLUP-NE, we get 5l orO(l) extra operations

to compute ρ̆2
j and product with σ̆ 2

j (X) in comparison with NE from (3.2). Therefore,

computing EBLUP-NE represents again an algorithm with the complexity having
orderO(n). It has the same order as our KKT algorithm, but in computational practice
it will be a little quicker, since KKT algorithm extra operations are O(l.2l), which
should be observable in cases of smaller n, comparable with l.2l .

Remark 6 EBLUPs from NE
According to general theory of EBLUPs (Štulajter 2002; Ża̧dło 2009;Witkovský 2012;
Rao and Molina 2015), if initial estimates ν̃ of ν are even, invariant and probability
distribution of Y and Z in LMM (2.1) are both symmetric around zero with finite mean
values, then empirical non-linear BLUP Y∗

ν̃ based on ν̃ is unbiased. Our quadratic
natural estimators NE, which are even and invariant, belong to this type of initial
estimates.

However, general theory of EBLUPs also says that an explicit expression for MSE
of EBLUP is not known. Non-linearity of EBLUP causes that theoretical properties
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of EBLUP can be usually explored only by approximate methods, using functional
series, which will be our goal in future research.

5 Application in real data examples

5.1 Three real data sets and their FDSLRMs

Generally, sinceEBLUPs are nonlinear functions of the observation X , their theoretical
study (especially their second order statistical properties) is considered as a very
difficult mathematical task and it is still open research theoretical problem in LMM
and FDSLRM (Witkovský 2012; Gajdoš et al. 2017). Therefore, we will illustrate our
theoretical results, performance and properties of the proposed EBLUP-NE method
applying numerical and computer simulation approach.

We use three real data sets: electricity consumption, tourism and cyber security.
For all data sets, we identified the most parsimonious structure of the FDSLRM using
an iterative process of the model building and selection based on exploratory tools of
spectral analysis and LMM theory. All details of our FDSLRM analysis and modeling
can be found in our easy reproducible Jupyter notebooks freely available at our GitHub
fdslrm repository EBLUP-NE (Gajdoš et al. 2019a).

5.1.1 Electricity consumption

As thefirst real data example,wehave the econometric time series data set, representing
hourly observations of the consumption of the electric energy (in kWh) in a department
store. The number of time series observations is n = 24. The data and model was
adapted from Štulajter and Witkovský (2004)

X(t) = β1 + β2 cos(ω1t) + β3 sin(ω1t)+
+ Y1 cos(ω2t) + Y2 sin(ω2t)+
+ Y3 cos(ω3t) + Y4 sin(ω3t) + Z(t), t ∈ N (5.1)

with k = 3, l = 4, Y = (Y1,Y2,Y3,Y4)′ ∼ N4(04,Dν), Z(.) ∼ i idN (0, σ 2
0 ) and

ν = (σ 2
0 , σ 2

1 , σ 2
2 , σ 2

3 , σ 2
4 )′ ∈ R5+. Frequencies (ω1, ω2, ω3)

′ = 2π (1/24, 2/24, 3/24)′
are significant Fourier frequencies from the time series periodogram in spectral anal-
ysis (Priestley 2004; Štulajter and Witkovský 2004; Gajdoš et al. 2017).

Since the time series data set contains only 24 observations and we have to estimate
three regression and five variance parameters of the FDSLRM, this real data FDSLRM
example should be considered only as a toy example. This model give us the oppor-
tunity to check our numerical results and to demonstrate how in principle FDSLRM
estimation methods and computational tools work.
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5.1.2 Tourism

In this econometric FDSLRM application, we consider the time series data set, called
visnights, representing total quarterly visitor nights (in millions) from 1998 to 2016 in
one of the regions of Australia—inner zone ofVictoria state. The number of time series
observations is n = 76. The data was adapted from Hyndman and Athanasopoulos
(2018).

The Gaussian orthogonal FDSLRM fitting the tourism data has the following form
(for modeling details see our Jupyter notebook tourism.ipynb):

X(t) = β1 + β2 cos
( 2π t
76

) + β3 sin
( 2π t ·2

76

) +
+ Y1 cos

( 2π t ·19
76

) + Y2 sin
( 2π t ·19

76

) + Y3 cos
( 2π t ·38

76

) + Z(t), t ∈ N (5.2)

with k = 3, l = 3, Y = (Y1,Y2,Y3)′ ∼ N3(03,Dν), Z(.) ∼ i idN (0, σ 2
0 ) and

ν = (σ 2
0 , σ 2

1 , σ 2
2 , σ 2

3 )′ ∈ R4+.

5.1.3 Cyber attacks

Our final FDSLRM application describes the real time series data set representing
the total weekly number of cyber attacks against a honeynet—an unconventional tool
which mimics real systems connected to Internet, like business or school computers
intranets, to study methods, tools and goals of cyber attackers. Data, taken from Sokol
and Gajdoš (2018), were collected from November 2014 to May 2016 in CZ.NIC
honeynet consisting of Kippo honeypots in medium-interaction mode. The number of
time series observations is n = 72.

The suitable FDSLRM, after a preliminary logarithmic transformation of data
L(t) = log X(t), is again Gaussian orthogonal (for modeling details see our Jupyter
notebook cyberattacks.ipynb) and in comparison with previous models (5.1),
(5.2) has the simplest structure:

L(t) = β1 + β2 cos
( 2π t
72

) + β3 sin
( 2π ·3t

72

) +
+ Y1 cos

( 2π ·14t
72

) + Y2 sin
( 2π ·14t

72

) + Z(t), t ∈ N, (5.3)

with k = 3, l = 2, Y = (Y1,Y2)′ ∼ N2(02,Dν), Z(.) ∼ i idN (0, σ 2
0 ) and ν =

(σ 2
0 , σ 2

1 , σ 2
2 )′ ∈ R3+.

5.1.4 Numerical results of estimating ν

For cross-checking purposes, we realized our numerical computations in both Python
and R based software tools (or packages). As we describe in the Appendix A.3, we
implemented own algorithms and methods in SciPy, SageMath and R, particularly
analytical expressions (3.2) for NE and the KKT algorithm for NN-(M)DOOLSE
(Table 2) in orthogonal FDSLRM. Simultaneously, we confirmed the same estimations
using CVXPY (or CVXR) package based on convex optimization and analogically
using up-to-date standard LMM R packages nlme, MMEinR (mixed) and sommer.

123



Estimating variances in time series kriging using... 1925

Table 4 summarizes all types of considered estimates in all four models. Since com-
putations also confirmed equivalency of NN-(M)DOOLSE and (RE)MLE described
by Theorem 1, we wrote results for (RE)MLE only.

Detailed computational results for all three data sets using all corresponding
relevant tools can be found and easily reproduced in our collection of Jupyter
notebooks (asterisk * represents a name of data and specific computational tool):
PY-estimation-*.ipynb andR-estimation-*.ipynb, available in repos-
itory EBLUP-NE (Gajdoš et al. 2019c).

5.2 Simulation study of EBLUP-NE properties

In this section we present the results of a simulation study in the following scenario:

(1) We take all three considered Gaussian FDSLRM models (5.1), (5.2), (5.3);
(2) We set NE of variances ν̆ and OLSE of regression parameters β∗, computed from

corresponding data sets (the first and last column in Table 4), as true values of
models’ parameters;

(3) For each model we simulate N = 5000 time series realizations of X by Monte
Carlo from corresponding multivariate normal distributions Nn(Fβ∗,�ν̆);

(4) Finally we calculate NE, (RE)MLE, EBLUP-NE and their statistical properties –
Monte Carlo mean value (Mean) and Monte Carlo mean squared error (MSE).

Complete results of simulation summaries for all models are reported in Table 5.
As expected, NE exhibit the biggest biases, the biggest MSEs from all meth-

ods. Mean values of NE are always bigger than true variance parameters ν which
is consistent with the positive theoretical bias in Table 3. As for the proposed method
EBLUP-NE, results indicate that it is a really improvement of the NE method. More-
over, it seems that although we replaced in EBLUP-NE true parameters by NE, results
indicate that absolute value of bias and MSE still remained smaller as we conclude
from Table 3 for theoretical BLUP-NE at known ν.

Comparing the proposed method EBLUP-NE with MLE and REMLE, it is impor-
tant for our further research that EBLUP-NE slightly outperforms both of them in
majority of variance parameters (achieves smaller biases and smaller MSEs). But dif-
ferences are really small, so results indicate that EBLUP-NE shows at least comparable
performance as MLE and REMLE. Simulations also confirmed comparable runtimes
of computational form (4.10) for EBLUP-NE and the KKT algorithm (Table 2) used
for (RE)MLE, which is in full accordance with the same order O(n) of theoretical
computational complexity.

As it can be seen in our Jupyter notebooks, all results obtained by our procedures
are fully consistent with the results of the best convex optimization and LMM compu-
tational tools (seeAppendixA.3). However, we also noticed that unlike our procedures
or the convex optimization tools, standard LMM tools failed in small number of real-
izations during simulations.

Both—the computational form for EBLUP-NE and the KKT algorithm for
(RE)MLE working with double floating-point precision ε < 10−15 as the default
precision of outputs—significantly outperform these Python or R-based standard com-
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1928 M. Hančová et al.

putational tools in precision (107 times more accurate) and also in run-times (10–100
times faster on the current standard PC).6

6 Conclusions

In this paper we revisited and updated theoretical and computational knowledge deal-
ing with FDSLRM least squares and maximum likelihoods estimation procedures,
in the light of recent advances in closely related convex optimization, linear mixed
modeling (LMM), and modern computational technology.

Specifically, applying the convex optimization theory, we reformulated all estima-
tion methods as convex optimization problems in the so-called orthogonal FDSLRM,
the most usual form of FDSLRM used in econometric practice. We formulated the
KKT optimality conditions, which, unlike likelihood equations, are necessary and suf-
ficient conditions for optimal solutions of (RE)MLE or NN-(M)DOOLSE on extended
parametric space Υ = [0,∞)l+1.

KKT optimality conditions dictate not only the exact existence conditions of esti-
mates but they also solve the well-known problem dealing with standardly used
likelihood equations (Christensen (2011, chap. 12) and Searle et al (2009, chap. 6)) in
LMM where their solutions for (RE)MLE or NN-(M)DOOLSE may not be required
estimates—they may be out of the parameter space or they may be other than the
maximum or minimum.

Moreover, using KKT optimality conditions in orthogonal FDSLRMs, we proved
the equivalence of NN-(M)DOOLSE and (RE)MLEwith propability 1. This important
theoretical result of the paper is the stronger and more general result than in Štulajter
and Witkovský (2004) proved only for interior points of Υ.

Simultaneously, the convex optimization theory brought us to the new KKT
algorithm for computing NN-(M)DOOLSE, equivalent to (RE)MLE, with double
floating-point precision ε < 10−15 as the default precision of outputs and with com-
putational complexity O(n).

Such an algorithm which we implemented in SciPy, SageMath and R (all free
and open-source) and which at the default precision level is 107 times more accu-
rate and approximately n2 faster than the best current Python(or R)-based standard
computational tools, can be used in effective computational time series research to
study properties of FDSLRM (Monte Carlo and bootstrap methods, Kreiss and Lahiri
(2012)).

As a consequence of applying the general theory of BLUP in LMM, we suggested
and investigated an alternative, new method EBLUP-NE based on empirical BLUPs
for estimating variances in time series modeled by FDSLRM. The estimation method
can be also viewed, analogously likeEBLUP (Rao andMolina 2015;Witkovský 2012),
as a two-stage iterative method with one step in the iteration.

6 It is worth to mention that the speed of our Python procedures is not final. Our Jupyter notebooks have
been written in standard Python in SciPy. We assume that the rewriting of the code, using special Python
tools (Cython or Numba), speeds up our procedures (10–100 times faster) to run-times comparable with C
or C++ codes.
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EBLUP-NE are almost surely positive invariant estimators whose simple explicit
computational form are given by two special matrices—the Schur complement and
Gram matrix (Zhang 2005). The method can be used not only in the case of normally
distributed time series data, but for any absolutely continuous probability distribution
of time series data.

As initial (plug-in) estimates for EBLUP-NE, we decided to employ natural esti-
mators (NE) based on least squares. Applications of FDSLRM with the EBLUP-NE
on three real data sets (electricity consumption, tourism, cyber attacks) providing
one toy and two real models, together with a corresponding simulation study, indi-
cate that the method computationally gives at least comparable results with REMLE
or NN-MDOOLSE, but in faster run-time (n2 times faster which in our examples
meant approximately 10–1000 times faster real run-times on the standard PC). Unlike
REMLE or NN-DOOLSE, EBLUP-NE have simple explicit analytic forms, which
can be used in further theoretical study connected to kriging predictions dealing with
EBLUPs theory.

Regarding computational aspects, we were also successful in the identification
and demonstration of consistent results for the real data applications of FDSLRM
in several free, open-source current standard computational tools—namely CVXPY,
CVXR (R version of CVXPY) packages for convex optimization and LMM R pack-
ages nlme, sommer and MMEinR (our R version of Witkovsky’s MATLAB mixed
function). These results and procedures can be freely viewed in our 15 Jupyter note-
books which are easily readable, sharable, reproducible and modifiable directly in our
GitHub repository (Gajdoš et al. 2019a). Open-source Jupyter technology with Python
and R packages also solved our problem stated in Gajdoš et al. (2017) that no current
package in R was directly and effectively suitable for FDSLRM.

In connection with our current computational research in FDSLRM, but also for
real time series data analysis and forecasting, we started to build our own R package
(see a fully functional version in our fdslrm storage R-package Gajdoš et al. (2019d))
onmentioned LMMRpackages tomanipulate comfortably and readilywith FDSLRM
concepts and procedures.

Our investigation has also brought new questions for further research. There is
definitely a need for more extended analysis based on a simulation study and gen-
eral EBLUP theory (Ża̧dło 2009;Witkovský 2012; Rao andMolina 2015) focusing on
EBLUP-NE qualitywith respect to previously used estimationmethods and the perfor-
mance of the EBLUP-NE method itself with different initial starting points (not only
NE), using different computational tools in various probability distributions. These
research questions are under our current intensive investigation.

Finally, our results in the paper can be seen reciprocally as contributions to convex
optimization and LMM methodology. Particularly, our convex optimization applica-
tion in the context of time series modeling has become another one from awide variety
of application areas of convex optimization (Boyd and Vandenberghe 2009). Since
FDSLRM describing n observed time series values is also a special type of LMM,
our EBLUP-NE and the very fast, accurate KKT algorithm to compute (RE)MLE
may have potential to be used in computational research and applications dealing with
LMMs.
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Appendix

A.1 Acronyms and abbreviations

See Table 6

Table 6 List of acronyms used in the paper

Acronym Explanation Specification

BLUE Best linear unbiased estimator p. 14, (4.2) p. 18

BLUP Best linear unbiased predictor p. 2, (4.2) p. 18

BLUP-NE Natural estimators based on BLUP (4.1) p. 18

DOOLSE Double ordinary least squares estimator without
non-negativity constraints

(3.6) p. 10

EBLUP Empirical (plug-in) BLUP p. 22

EBLUP-NE Natural estimators based on EBLUP p. 23

FDSLRM Finite discrete spectrum linear regression model (1.1) p. 2

KKT Karush–Kuhn–Tucker p. 12

LMM Linear mixed model p. 4

LRM Linear regression model p. 2

MDOOLSE Modified (unbiased) DOOLSE without
non-negativity constraints

(3.6) p. 10

(M)DOOLSE Considering both DOOLSE and MDOOLSE Remark 2 p. 10

MINQE Minimum norm quadratic estimators p. 3

MINQE(I) Invariant MINQE Remark 2 p. 10

MINQE(U,I) Invariant unbiased MINQE Remark 2 p. 10

MLE Maximum likelihood estimators (3.13) p. 15

MM Method of moments (Henderson method 3) Remark 1 p. 9

MME Henderson’s mixed model equations (4.2) p. 18
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Table 6 continued

Acronym Explanation Specification

MSE Mean squared error p. 2

NE Natural estimators p. 8, (3.2) p. 8

NN-DOOLSE Non-negative DOOLSE (3.4) p .10

NN-MDOOLSE Non-negative modified DOOLSE (3.5) p. 10

NN-(M)DOOLSE Considering both NN-DOOLSE and
NN-MDOOLSE

Remark 2 p. 10

OLS Ordinary least squares p. 8

REMLE Residual (restricted) maximum likelihood estimator (3.14) p. 15

(RE)MLE Considering both MLE and REMLE Remark 2 p. 10

VLS Variance least squares estimator Remark 2 p. 10

UVLS Unbiased VLS Remark 2 p. 10

A.2 KKT algorithm for NN-(M)DOOLSE

If we consider ν0 = 0 which occurs if and only if e = ∑l
j=1 α jv j in KKT conditions

(3.8)–(3.10) then the optimal solution ν̃ for NN-(M)DOOLSE is trivial: ν0 = 0,ν j =
α2
j , j = 1, . . . , l. For ν0 �= 0 implying λ0 = 0, ν j and λ j cannot be simultaneous

zero otherwise it would lead to contradiction between (3.8) and (3.9). Therefore, in the
case ν0 �= 0, the complementary slackness condition (3) ν jλ j = 0, j ∈ {1, . . . , l}
can be rewritten in the form b jν j (1 − b j )λ j = 0, where b j is an auxiliary indicator,
which is zero if ν j = 0, λ j �= 0 and one if ν j �= 0, λ j = 0.

Using vector b = (b1, b2, . . . , bl)′ ∈ {0, 1}l , the derived KKT conditions (2) in
Proposition 2 can be described by a (l+1)× (l+1)matrix functionK(b) = {Ki j (b)}
and a vector function γ(b) = (γ0(b),γ1(b), . . . ,γl(b))′ as

K(b)γ(b) = q,

where

Ki j (b) =
⎧
⎨

⎩

0, if i = 0, b j = 0,
−1, if i = j �= 0, b j = 0,
Gi j , otherwise.

γ j (b) =
{

ν0, if j = 0
b jν j + (1 − b j )λ j , otherwise.

Applying theBanachiewicz formula,we canwrite for the inverse ofK(b) the following
analytic expression

K(b)−1 = φ−1
(

1 −b′GVD
−1
b

−D−1
b GV j l φD−1

b + D−1
b GV j lb

′GVD
−1
b

)
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where

Db = diag
{
b j

∥∥v j
∥∥4 + b j − 1

}
, GV = diag

{∥∥v j
∥∥2

}
,

j l = (1, 1, . . . , 1)′ ∈ Rl , φ = n∗ − b′GVD
−1
b GV j l .

Finally, Proposition 3 guarantees the existence of unique auxiliary vectors γ̃, b̃:

γ̃ = {γ;γ = K(b)−1q ≥ 0, b ∈ {0, 1}l}
b̃ = {b; γ̃ = K(b)−1q, b ∈ {0, 1}l}

Based on vectors γ̃, b̃, the NN-(M)DOOLSE ν̃ = (ν̃0, ν̃1, . . . , ν̃l)
′ of ν as a solution

of KKT conditions has the final form

ν̃ j =
{

0, if j �= 0, b j = 0,
γ̃ j , otherwise.

Thanks to Proposition 3, it is worth to mention that the given matrix system includes
also solutions with ν0 = 0.

A.3 Modern computational technology for FDSLRM kriging

Our computational tools for FDSLRM

As for computational technology, our time series calculations are carried out using
free open-source software based on the R statistical language and packages (R Devel-
opment Core Team 2019; McLeod et al. 2012), the Scientific Python with the SciPy
ecosystem (Jones et al. 2001; Oliphant 2007) and free Python-based mathematics
software SageMath (Stein and others 2019; Beezer et al. 2013; Zimmermann et al
2018), an open source alternative to the popular commercial computer algebra sys-
temsMathematica orMaple. The simultaneous use of R, SciPy and SageMath provides
us valuable cross-checking of our computational results.

Detailed records of our computing with explaining narratives have the form of
Jupyter notebooks stored in our free availableGitHub repositories devoted toFDSLRM
research, https://github.com/fdslrm; see especially a fdslrm repository EBLUP-NE
dealingwith this paper (Gajdoš et al. 2019c).All notebooks should be seen or studied as
static HTML pages via Jupyter nbviewer (https://nbviewer.jupyter.org/, Kluyver et al.
(2016)) or interactively as live HTML documents usingBinder (https://mybinder.org/,
Project Jupyter et al. (2018)) where the code is executable without any need to install
or compile the software. To do that, it is only needed to choose and click appropriate
links in the Software section of the README homepage in the mentioned repository
EBLUP-NE. This easily reproducible way and presentation of our computing with real
data were inspired by works (Brieulle et al. 2019; Weiss 2017).

We also started to develop our own R package for FDSLRM, so any potential
user can install and use a fully functional version stored in our fdslrm repository R-
package (Gajdoš et al. 2019d), which allows the FDLSRMmodeling and predictions.
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Fig. 1 CVXPY code for computing DOOLSE in Jupyter environment

Its applications on various real data sets illustrating every step of our three-stage
FDSLRM-building approach—formulation (identification), estimation (fitting) and
residual diagnostics (checking)—can be found in other fdslrm repository applications
(Gajdoš et al. 2019b). All our results obtained from our own implementationwere fully
consistent with results of standard convex optimization and LMM computational tools
which we applied to FDSLRM and are described in the following subsections.

Convex optimization tools for FDSLRM

In nonlinear optimization, there is a variety of highly efficient, fast and reliable open-
source and commercial software packages (Cornuéjols et al 2018, chap. 20). Our
theoretical consideration and results allow us to apply for estimating ν directly the
latest, one of the most well-known convex optimization packages CVXPY and CVXR
based on disciplined convex programming, written in Python (Diamond and Boyd
2016) and R (Fu et al. 2019).

CVXPY and its R version CVXR are relatively unknown in statistical community.
CVXPY is not only a scientific Python library, but also a language with very simple,
readable syntax not requiring any expertise in convex optimization and its computer
implementation. CVXPY allows the user to specify the mathematical optimization
problem naturally following normal mathematical notation as we can see in comput-
ing NN-DOOLSE (Fig. 1) where a code easily mimics the non-negative DOOLSE
mathematical formulation (3.4) with �ν = σ 2

0 In +VDνV′ = ν0In +Vdiag
{
ν j

}
V′.

CVXPY implements not only convex optimization solvers using interior-point
numerical methods which are extremely reliable and fast, but also verifies convex-
ity of the given problem using rules of disciplined convex programming (Grant et al.
2006). CVXPY was inspired by MATLAB optimization package CVX (Grant and
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Boyd 2018) still used in many references, e.g. Cornuéjols et al. (2018). However, in
CVXPY (CVXR) the user can easily combine convex optimization and simplicity
of Python (R) language together with its high-level features such as object-oriented
design or parallelism.

It is worth to mention that unlike our KKT algorithm, both CVXPY and CVXR
are able to solve non-negative DOOLSE andMDOOLSE in a general FDSLRMwith-
out the orthogonality condition. In FDSLRM, interior-points numerical methods have
complexity n3 for one iteration or log(1/ε) times bigger for the complete compu-
tation with a precision ε of the required optimal solution (Boyd and Vandenberghe
2009).

LMM computational tools for FDSLRM

In our previous paper (Gajdoš et al. 2017), we stated that no current package in
R is directly and effectively suitable for FDSLRM. Thanks to a detailed study of
(Demidenko 2013; Galecki and Burzykowski 2013) we were successfully directed
and instructed how to implement the FDSLRM variance structure into one of the best
R packages for LMM known as nlme (Pinheiro and Bates 2009; Pinheiro et al 2018).
After that, inspired by nlme, we found another R package called sommer, also suitable
for FDSLRM fitting (Covarrubias-Pazaran 2016; Cornuéjols et al. 2018).

Simultaneously, thanks to online computing environment CoCalc for SageMath
(Stein and others 2019) with the possibility to run computations and codes for free
in many other programming languages and open softwares, we are also able to run
and test MATLAB function mixed (Witkovský 2018, 2012) primarily intended for
estimating variances in LMMs. On the basis of successful tests, we wrote its R version
called MMEinR, which is also available in our GitHub Repository (Gajdoš 2019).

The mentioned LMM packages can also handle (RE)MLE in the general FDSLRM
without orthogonality or full-rankness restriction. The packages use iterative methods
based onEMalgorithmorHendersonMME togetherwith some version of theNewton-
Raphson method whose complexity is generally at least n3.

We are fully aware that another efficient implementation for estimating vari-
ances in LMMs provides lme4 package (Bates et al. 2015) or SAS package PROC
MIXED (Stroup et al. 2018; SAS Institute Inc. 2018). As for lme4, which is much
faster than nlme, we found that the package does not allow implementing FDSLRM
covariance structure using lme4 standard input procedure. As SAS laymans, we
also tried a university edition of SAS, free from 2014, but we left it after running
into initial problems with Windows installation process in a virtual machine envi-
ronment and subsequently with a more sophisticated programming language than
Python or R. Therefore our knowledge with SAS remained only at the theoretical
level.

Finally, we point out that thanks to SageMath and our very fast KKT algorithm,
we were able to compute (in real time) NN-(M)-DOOLSE in the toy example with
infinite precision—as the exact closed-form (algebraic) numbers. To get an explicit
idea, e.g. for our toy model, we got these results for NN-MDOOLSE ν̃ identical with
REMLE
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ν̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ̃ 2
0

σ̃ 2
1

σ̃ 2
2

σ̃ 2
3

σ 2
4

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

− 6569
4080

√
3
√
2 − 13207

4080

√
3 − 22533

6800

√
2 + 312727

20400
6569
48960

√
3
√
2 + 275509

244800

√
3 + 7511

27200

√
2 + 50461

244800
6569
48960

√
3
√
2 + 37687

48960

√
3 + 7511

27200

√
2 − 93427

244800
6569
48960

√
3
√
2 + 13207

48960

√
3 + 11081

27200

√
2 − 66779

61200
6569
48960

√
3
√
2 + 13207

48960

√
3 + 43637

48960

√
2 − 17377

61200

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

≈

⎛

⎜⎜⎜⎜⎜⎜⎝

1.093

2.875

1.671

0.281

1.772

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Itmeans thatwe can compute real numerical errors in results for all used computational
tools to explore their quality from the viewpoint of numerical precision.

A.4 The BLUP-NE method — proofs

Existence of inversions for Uν, Hν

To prove nonsingularity of Uν, Hν, it is sufficient to show that both matrices have
non-zero determinants. Using idempotence ofMF and determinant expression (3.17),
we can write for determinants of Uν, Hν

detHν = det(σ 2
0 Il + V′VDν) = (−σ 2

0 )l−n det(σ 2
0 Il + VDνV′),

detUν = det(σ 2
0 Il + V′MFMFVDν) = (−σ 2

0 )l−n det(σ 2
0 Il + MFVDνV′MF).

Now we can see that the sum of positive definite matrix σ 2
0 Il (σ 2

0 > 0) and each of
positive semidefinite matrices VDνV′, MFVDνV′MF is a positive definite matrix,
whose determinant is always positive.

Proof (Theorem 2) Employing Lemma 1 and the well-known standard expressions for
mean values and covariances of invariant quadratic estimators [see e.g. Christensen
(2011), Puntanen et al. (2013)] Eν

{
X ′AX

} = tr(A�ν) and if X ∼ Nn(Fβ,�ν)

then Covν

{
X ′AX, X ′BX

} = 2 tr(A�νB�ν), we have

(1) Eν

{
σ̊ 2
j

}
= E(Xτ jτ

′
jX) = tr(τ jτ

′
j�ν) = tr(τ ′

j�ντ j ) = (Tν�νT′
ν) j j .

According to (3) of Lema 1 (Tν�νT′
ν) j j = Dν j j − σ 2(W−1

ν ) j j = σ 2
j −

σ 2(W−1
ν ) j j .

(2) Dν{σ̊ 2
j } = 2tr(τ jτ

′
j�ντ jτ

′
j�ν) = 2tr(τ ′

j�ντ ′
jτ j�ντ j ) = 2(Tν�νT′

ν) j j

As a consequence of (1) Dν{σ̊ 2
j } = 2(σ 2

j − σ 2(W−1
ν ) j j )

2.
(3) In a similar way as in (2)

Covν

{
σ̊ 2
i , σ̊ 2

j

}
= 2tr(τiτ

′
i�ντ jτ

′
j�ν) = 2tr(τ ′

i�ντ jτ
′
j�ντi ) = 2(τ ′

i�ντ j )
2

= 2(Tν�νT′
ν)2i j = 2(0 − σ 2(W−1

ν )i j )
2 = 2(σ 2(W−1

ν )i j )
2.
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(4) MSEν{σ̊ 2
j } = Eν

{
(σ̊ 2

j − σ 2
j )

2
}

= (Eν

{
σ̊ 2
j

}
− σ 2

j )
2 + Dν{σ̊ 2

j }
= (σ 2

j − σ 2(W−1
ν ) j j − σ 2

j )
2 + 2(σ 2

j − σ 2(W−1
ν ) j j )

2

= σ 4(W−1
ν )2j j + 2(σ 2

j − σ 2(W−1
ν ) j j )

2. ��
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martina.hancova@upjs.sk

1 Institute of Mathematics, Pavol Jozef Šafárik University, Košice, Slovakia

2 Institute of Physics, Pavol Jozef Šafárik University, Košice, Slovakia

3 Institute of Computer Science, Pavol Jozef Šafárik University, Košice, Slovakia

123

http://www.sagemath.org
https://www.mathworks.com/matlabcentral/fileexchange/200
https://www.mathworks.com/matlabcentral/fileexchange/200
http://orcid.org/0000-0001-8004-3972
http://orcid.org/0000-0003-1359-6117

	Estimating variances in time series kriging using convex optimization and empirical BLUPs
	Abstract
	1 Introduction
	2 Theoretical and computational background for FDSLRM kriging
	3 Estimating FDSLRM variances via convex optimization
	3.1 Mathematical approaches in estimating FDSLRM variances
	3.2 General case of the orthogonal FDSLRM
	3.2.1 Natural estimators—NE
	3.2.2 Double least squares estimators—DOOLSE, MDOOLSE
	3.2.3 Non-negative double least squares estimators – NN-(M)DOOLSE

	3.3 Gaussian orthogonal FDSLRM
	3.3.1 Maximum likelihood estimators—MLE, REMLE


	4 Estimating FDSLRM variances via EBLUPs
	4.1 Definition and computational form of new estimators
	4.2 Statistical properties at known variance parameters
	4.3 Empirical version of BLUP-NE method

	5 Application in real data examples
	5.1 Three real data sets and their FDSLRMs
	5.1.1 Electricity consumption
	5.1.2 Tourism
	5.1.3 Cyber attacks
	5.1.4 Numerical results of estimating 

	5.2 Simulation study of EBLUP-NE properties

	6 Conclusions
	Acknowledgements
	Appendix
	A.1 Acronyms and abbreviations
	A.2 KKT algorithm for NN-(M)DOOLSE
	A.3 Modern computational technology for FDSLRM kriging
	Our computational tools for FDSLRM
	Convex optimization tools for FDSLRM
	LMM computational tools for FDSLRM


	References




