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Abstract
Similarity measurement of two probability distributions is important in many appli-
cations of statistics. Embedding such distributions into a reproducing kernel Hilbert
space (RKHS) has many favorable properties. The choice of the reproducing kernel is
crucial in the approach.We study this question by considering the similarity of two dis-
tributions of the same class. In particular, we investigate when the RKHS embedding
is “admissible” in the sense that the distance between the embeddings should become
smaller when the expectations are getting closer or when the variance is increasing
to infinity. We give conditions on the widely-used translation-invariant reproducing
kernels to be admissible. We also extend the study to multivariate non-symmetric
Gaussian distributions.
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1 Introduction

Distance between probability measures has many applications, including distribution
testing, density estimation, signal detection, etc (Rachev 1991; Vajda 1989). In recent
years, many kinds of distance between probability measures have been proposed (see,
for example, Sriperumbudur et al. 2009, 2010). Many of them are built on the general
approach of integral probability metric (IPM) (Müller 1997).

To introduce the approach, denote by P the set of all Borel probability measures
on a probability space (M,A). The IPM between P1,P2 ∈ P is defined as

γF (P1,P2) = sup
f ∈F

∣
∣
∣
∣

∫

M
f dP1 −

∫

M
f dP2

∣
∣
∣
∣
, (1)

where F is a class of real-valued bounded measurable functions on M . Different
choices of the class F yield different metrics γF on the given probability space. The
followings are among the well-known examples in the literature:

1. Total variation distance: F = Cbu(M), the space of all uniformly bounded con-
tinuous functions on M or F = { f : ‖ f ‖∞ ≤ 1}, where ‖ f ‖∞ = supx∈M | f (x)|
(see, for example, Shorack 2000, Chapter 19);

2. The Kolmogorov distance: F = {1(−∞,t] : t ∈ R
d}, where 1A denotes the char-

acteristic function of a subset A of Rd (see, for example, Shorack 2000, Chapter
19);

3. The Kantorovich metric or Wasserstein distance: F := { f : ‖ f ‖L ≤ 1} where
‖ f ‖L := sup{| f (x) − f (y)|/ρ(x, y), x �= y ∈ M} with M being a metric space
with metric ρ (see, Dudley 2002, Theorem 11.8.2);

4. Reproducing kernel Hilbert space embedding of measures: F = { f ∈ HK :
‖ f ‖HK ≤ 1}, whereHK is the reproducing kernel Hilbert space of a reproducing
kernel K on M (Gretton et al. 2007; Smola et al. 2007).

5. Reproducing kernel Banach space embedding of measures (Sriperumbudur et al.
2011): F = { f ∈ B : ‖ f ‖B ≤ 1}, where B is a reproducing kernel Banach space
on M (Song et al. 2013; Zhang et al. 2009).

This paper attempts to contribute to the approach 4 above.We introduce the concept
of reproducing kernel Hilbert spaces and reproducing kernels (Aronszajn 1950).

Definition 1.1 Let M be a prescribed set. A reproducing kernel on M is a real-valued
function K : M × M → R such that for all finite points x1, x2, . . . , xn ∈ M , the
matrix

[K (x j , xk)]nj,k=1

is symmetric and positive semi-definite.

For a reproducing kernel K on M , there exists a unique associated Hilbert space
denoted by HK consisting of certain functions on M such that K (x, ·) ∈ HK for all
x ∈ M and

f (x) = 〈 f , K (x, ·)〉HK for all f ∈ HK , x ∈ M,
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Admissible kernels for RKHS embedding of probability distributions 1501

where 〈·, ·〉HK denotes the inner product on HK . The space HK is called the repro-
ducing kernel Hilbert space (RKHS) of the reproducing kernel K . We introduce the
notation

γK (P1,P2) = sup
f ∈HK ,‖ f ‖HK ≤1

∣
∣
∣
∣

∫

M
f dP −

∫

M
f dQ

∣
∣
∣
∣
. (2)

When only finite i.i.d. random samples {Xi : 1 ≤ i ≤ m} and {Y j : 1 ≤ j ≤ n}
drawn from unknown measures P1,P2 are available, one approximates P1 and P2
respectively by

P1m := 1

m

m
∑

i=1

δXi and P2n := 1

n

n
∑

j=1

δY j

and thereby approximating γF (P1,P2) by γF (P1m,P2n). By choosingF to be the unit
ball of the reproducing kernel Hilbert space of a reproducing kernel K , the approach
of reproducing kernel Hilbert space embedding of measures enjoys many advantages
over other approaches (Gretton et al. 2007; Sriperumbudur et al. 2009; Weaver 1999).
Firstly, γK (P1m,P2n) is simply a sum of expectations of the kernel K and hence
is much easier to compute compared to other choices. Secondly, γK (P1m,P2n) is a√
mn/(m + n)-consistent estimate of γK (P1,P2) for all P1,P2 under the mild con-

ditions that K is measurable and bounded (Gretton et al. 2007). Thirdly, when K is
translation-invariant, the rate of approximating γK (P1,P2) by γK (P1m,P2n) is inde-
pendent of the dimension (Sriperumbudur et al. 2009).

Despite many favorable properties, there is one critical question not well-addressed
in the RKHS embedding of measures, which is the choice of reproducing kernels. An
RKHS HK is completely determined by its reproducing kernel K (Aronszajn 1950;
Zhang and Zhao 2013). In fact,HK is the completion of the linear space

span {K (x, ·) : x ∈ M}

under the inner product

〈 p
∑

j=1

c j K (x j , ·),
q
∑

k=1

dkK (yk, ·)
〉

HK

=
p
∑

j=1

q
∑

k=1

c j dk K (x j , yk) c j , dk ∈ R.

Therefore, the choice of the reproducing kernel K much affects the embedding of
probability measures inHK . So far, studies in the literature have focused on charac-
teristic kernels which ensure γK (P1,P2) to be a metric on (M,A) (see, for example,
Berlinet and Thomas-Agnan 2004; Chen et al. 2016; Fukumizu et al. 2009, 2008;
Gretton et al. 2007; Sriperumbudur et al. 2011, 2009, 2010; Steinwart 2001). Being
characteristic can be viewed as a preliminary requirement on the reproducing kernel.
Our attempt in this paper is to impose another admissibility criterion on the repro-
ducing kernel in measuring the similarity of a class of probability distributions. Let us
make our objective clear.
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νμ

as μ → ν

σ

ν1μ1

σ

Fig. 1 Let μ < ν and σ be fixed. Then the regions under the curves of the density functions of Pμ,σ and
Pν,σ have a larger overlapping area when μ, ν become closer

σ

μ

as σ increases

ν

σ1

μ ν

Fig. 2 Let μ < ν be fixed. Then the regions under the curves of the density functions of Pμ,σ and Pν,σ

have a larger overlapping area as σ increases

Assume that K is a characteristic kernel. Thus γK (P1,P2) is a metric and can be
used to measure the similarity between two probability measures P1,P2. Consider the
most important class of Gaussian distributions measures

dPμ,σ (x) = 1√
2πσ

exp

(

− (x − μ)2

2σ 2

)

dx, x ∈ R.

with mean μ and standard deviation σ . Naturally, two Gaussian measures Pμ1,σ1 and
Pμ2,σ2 should be closer in the following two cases (see Figs. 1 and 2 for illustration
and explanation):

(i) when the means are getting closer, that is, μ1 tends to μ2;
(ii) when σ1 = σ2 are increasing while the means are different but fixed.

To summarize, we shall study conditions on the reproducing kernel K that is admis-
sible for the Gaussian distributions in the following sense. Denote by ‖ ·‖ the standard
Euclidean norm on R

d .

Definition 1.2 Let Q be a Borel probability measure on R
d . A reproducing kernel K

on Rd is said to be admissible for the class of distributions

123



Admissible kernels for RKHS embedding of probability distributions 1503

dPμ,σ (x) = 1

σ d
dQ

(
x − μ

σ

)

, x ∈ R
d , μ ∈ R

d , σ > 0

(or simply, Q-admissible), if the following two conditions are satisfied:

(A1) γK (Pμ1,σ ,Pμ2,σ ) is strictly decreasing as ‖μ1 − μ2‖ decreases;
(A2) γK (Pμ1,σ ,Pμ2,σ ) is strictly decreasing as σ increases.

We present sufficient conditions for a translation-invariant kernel K to be Q-
admissible in Sect. 3. The concrete examples of Gaussian distributions is then
investigated. To this end, we present necessary preliminaries on reproducing kernels
and RKHS embeddings of probability measures in Sect. 2. Section 3 is devoted to
non-symmetric multivariate Gaussian distributions. We remark that by the illustration
of our motivation in Figs. 1 and 2, the notion of admissible kernels introduced in the
paper seems useful only for probability distributions of a single mode such as the
Gaussian distributions. Kernel methods to evaluate the distance between probability
distributions of multiple modes would be an interesting question for us in the future.

2 Admissible kernels

Let K be a reproducing kernel on R
d that is translation-invariant in the sense

K (x, y) = K (x − z, y − z)

for all x, y, z ∈ R
d . It is easy to see

K (x, y) = ψ(x − y), x, y ∈ R
d (3)

for some function ψ(x) = K (x, 0) on R
d . By the celebrated Bochner theorem

(Bochner 1959), if ψ is continuous on R
d then K (x, y) = ψ(x − y) makes a repro-

ducing kernel on Rd if and only if there exists a finite positive Borel measure ρ on Rd

such that

ψ(x) =
∫

Rd
e−i x ·t dρ(t), x ∈ R

d . (4)

It was shown in Sriperumbudur et al. (2010) that K is a characteristic kernel, that is,
γK is a metric, if and only if ρ is supported on the whole Rd . For simplicity, we also
assume that ρ is symmetric about the origin so that ψ and K are real-valued.

Denote by P(Rd) the set of all Borel probability measures on R
d . Let R+ :=

[0,+∞) and let N be the set of positive integers. We shall need the convolution of a
bounded continuous function f on Rd and a measure ρ ∈ P(Rd) given as

( f ∗ ρ)(x) :=
∫

Rd
f (x − y) dρ(y), x ∈ R

d .
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and the convolution of two probability measures 	, λ ∈ P(Rd)

(	 ∗ λ)(E) :=
∫

Rd

∫

Rd
1E (x − y) d	(x) dλ(y).

For a probability distribution Q, denote

Q̄ := Q ∗ Q̃, (5)

where dQ̃(x) := dQ(−x).
Let K be given by (3) and (4), where ρ is a finite positive Borel measure on R

d .
Then K is bounded on Rd × R

d . Consequently, the function

f	(x) :=
∫

Rd
K (x, t) d	(t), x ∈ R

d

is well-defined for each 	 ∈ P(Rd). An important observationmade in Sriperumbudur
et al. (2010) is that f	 ∈ HK for all 	 ∈ P(Rd) and that

γK (	, λ) = ∥
∥ f	 − fλ

∥
∥HK

, 	, λ ∈ P(Rd). (6)

Moreover,

〈 f	, g〉HK =
∫

Rd
g(x) d	(x), 	 ∈ P(Rd), g ∈ HK . (7)

Returning to our main theme, we let Q ∈ P(Rd) and define the associated class of
probability measures

dPμ,σ (x) = 1

σ d
dQ

(
x − μ

σ

)

x ∈ R
d , μ ∈ R

d , σ > 0. (8)

We first give an initial result for the reproducing kernel K given by (3), (4) to satisfy the
two admissible requirements (A1) and (A2). To this end, we introduce the following
definitions.

Definition 2.1 Let f be a function on R
d . Then it is said to be

• radial provided that f (x) = f (y) whenever ‖x‖ = ‖y‖;
• radially decreasing if f is radial and f (x) ≤ f (y) whenever ‖x‖ > ‖y‖;
• strictly radially decreasing if f is radial and f (x) < f (y) whenever ‖x‖ > ‖y‖;
• radially increasing (strictly radially increasing) if − f is radially decreasing
(strictly radially decreasing).

It can be verified that the convolution of two radial functions remains radial. Inter-
ested readers are referred to Lieb and Loss (2001) for more properties about radial
functions.

123



Admissible kernels for RKHS embedding of probability distributions 1505

Lemma 2.2 Let K be the translation-invariant kernel given by (3) and (4), where ρ is
supported on the whole Rd . Define the function

Gψσ ,Q(x) := (ψσ ∗ Q̄)(x), x ∈ R
d , (9)

where

ψσ (x) := ψ(σ x), x ∈ R
d .

Then K is admissible for the class of distributions (8) if and only if Gψσ ,Q is strictly
decreasing as ‖x‖ increases for any σ > 0 and as σ increases for fixed ‖x‖.
Proof By (6) and (7), we have for two measures 	, λ ∈ P(Rd)

(

γK (	, λ)
)2 = ∥

∥ f	 − fλ
∥
∥2HK

= 〈 f	, f	〉HK + 〈 fλ, fλ〉HK − 2〈 f	, fλ〉HK

=
∫

Rd
f	(x) d	(x) +

∫

Rd
fλ(x) dλ(x) − 2

∫

Rd
f	(x) dλ(x)

=
∫

Rd

∫

Rd
K (x, y) d	(x) d	(y) +

∫

Rd

∫

Rd
K (x, y) dλ(x) dλ(y)

− 2
∫

Rd

∫

Rd
K (x, y) d	(x) dλ(y).

(10)

Specifying the distributions Pμ1,σ ,Pμ2,σ , we compute

γ 2
K (Pμ1,σ ,Pμ2,σ ) =

∫

Rd

∫

Rd
ψ(x − y) dPμ1,σ (y) dPμ1,σ (x)

+
∫

Rd

∫

Rd
ψ(x − y) dPμ2,σ (y) dPμ2,σ (x)

− 2
∫

Rd

∫

Rd
ψ(x − y) dPμ2,σ (y) dPμ1,σ (x)

= σ−2d
[∫

Rd

∫

Rd
ψ(σ x + μ1 − σ y − μ1) dQ(y) dQ(x)

+
∫

Rd

∫

Rd
ψ(σ x + μ2 − σ y − μ2) dQ(y) dQ(x)

−
∫

Rd

∫

Rd
ψ(σ x + μ1 − σ y − μ2) dQ(y) dQ(x)

]

= σ−2d
∫

Rd

∫

Rd

[

ψ (σ(x − y)) − ψ
(

σ(x − y) + μ1 − μ2
)]

dQ(y) dQ(x)

= σ−2d
[
(

ψσ ∗ Q̄
)

(0) − (ψσ ∗ Q̄)

(
μ1 − μ2

σ

)]

.

Since ρ is supported on the whole real line, γK is a metric on P(Rd). Then by the
above calculation, we have that
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(ψσ ∗ Q̄)(t) < (ψσ ∗ Q̄)(0) for t �= 0.

As a result, the requirements (A1) and (A2) are satisfied if and only if (ψσ ∗ Q̄)(t)
is monotonically decreasing as ‖t‖ increases for fixed σ > 0 and as σ increases for
fixed ‖t‖. �

Specifying a certain class of probability distributions, we are able to show that not
all translation-invariant characteristic kernels are admissible for the RKHS embedding
of probability distributions.

Example 2.3 Consider dimension d = 1. Let Q be the Bernoulli distribution with
success probability 1

2 , i.e. Q(0) = Q(1) = 1
2 . Then we have Q̄(−1) = Q̄(1) = 1

4 and
Q̄(0) = 1

2 . With ψ being given by (4), we have

Gψσ ,Q(t) = ψσ ∗ Q̄(t) = 1

2
ψ(σ t) + 1

4
ψ(σ t − σ) + 1

4
ψ(σ t + σ)

Now let ψ be an even function on R which is strictly decreasing on R+ and con-
verging to 0 (examples including e−|t |, e−t2 , etc.). Choose σ large enough such that

ψ
(σ

2

)

<
1

4
ψ(0).

Then

Gψσ ,Q

(
1

2

)

= 1
4ψσ

(− 1
2

)+ 1
2ψσ

( 1
2

)+ 1
4ψσ

( 3
2

)

≤ ψσ

( 1
2

)

< 1
4ψσ (0) + 1

2ψσ (1) + 1
4ψσ

(

2) = Gψσ ,Q(1).

Therefore, the function Gψσ ,Q is not monotonically decreasing for this example. By
Lemma 2.2, the kernel K is not admissible.

Next we shall present a sufficient condition and a necessary condition guarantee-
ing admissibility, which covers a large class of reproducing kernels and probability
distributions.

Theorem 2.4 Let ψ and Q̄ be defined by (4) and (5), respectively, with ρ supported
on R

d . Suppose that Q̄ has a Lebesgue integrable density function f . If both ψ and
f are radially decreasing with at least one of them being strictly radially decreasing
then the kernel K given by (3) is admissible for the class of distributions (8).

Conversely, suppose that f and ψ are radial and that f is radially decreasing. If
the kernel K is admissible, then ψ is radially decreasing.

Proof For the first part, by Lemma 2.2, we need to show that the function Gψσ ,Q(t)
defined by (9) is monotonically decreasing as ‖t‖ and σ increase.

We only consider the case when σ is fixed, the case when σ varies can be handled
similarly. Let δ,� be two points in Rd with ‖δ‖ < ‖�‖. As ψσ , f are both radial, so
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Admissible kernels for RKHS embedding of probability distributions 1507

is Gψσ ,Q = ψσ ∗ f . We may hence assume δ = (δ1, 0, . . . , 0),� = (�1, 0, . . . , 0),
where 0 ≤ δ1 < �1. Also, we may assume further that ψ is the one which is strictly
radially decreasing.

Set Ht := {x ∈ R
d : x1 < t}, t ∈ R. We first write

Gψσ ,Q(δ) − Gψσ ,Q(�) = (ψσ ∗ f )(δ) − (ψσ ∗ f )(�)

=
∫

Rd

[

ψσ (δ − x) − ψσ (� − x)
]

f (x) dx

=
∫

H δ1+�1
2

[

ψσ (δ − x) − ψσ (� − x)
]

f (x) dx

−
∫

Rd\H δ1+�1
2

[

ψσ (� − x) − ψσ (δ − x)
]

f (x) dx .

We then apply the substitution x = δ + � − t to the second integral above and use
the radiality of ψ and f to get

Gψσ ,Q(δ) − Gψσ ,Q(�)

=
∫

H δ1+�1
2

[

ψσ (δ − x) − ψσ (� − x)
][

f (x) − f (x − δ − �)
]

dx . (11)

Note that for x ∈ H δ1+�1
2

,

‖δ − x‖ < ‖� − x‖ and ‖x‖ < ‖x − δ − �‖.

Since ψσ is strictly radially decreasing and f is radially decreasing,

ψσ (δ − x) − ψσ (� − x) > 0 and f (x) − f (x − δ − �) ≥ 0, x ∈ H δ1+�1
2

.

As a consequence, we get by (11) that Gψσ ,Q(δ) − Gψσ ,Q(�) ≥ 0.
To obtain Gψσ ,Q(δ) − Gψσ ,Q(�) > 0, we have to show that the set E = {x ∈

H δ1+�1
2

: f (x) �= f (x − δ − �)} has a positive Lebesgue measure on Rd . Assume on

the contrary that the Lebesgue measure of E equals 0. Then f is a periodic function
on H δ1+�1

2
\E . Since f is radially decreasing, it must be constant on H δ1+�1

2
\E . This

together with the assumption that f is radial implies that it equals a constant almost
everywhere on R

d . It is hence impossible to be the density function of a probability
distribution, which is a contradiction.

For the second part, we only have to prove that if f is radially decreasing, then the
kernel K being admissible implies ψ being radially decreasing. Since f is radially
decreasing and is the density function of Q̄, we have

∫

Rd f (x) dx = 1. Define

123



1508 L. Chen et al.

Gψσ ,Q(x) =
∫

Rd
ψσ (x − y) f (y) dy

= 1

σ d

∫

Rd
ψ(σ x − y) f

( y

σ

)

dy,

where ψ is a bounded and continuous function on R
d . The density function 1

σ d f ( y
σ
)

clearly converges in distribution to the Dirac mass δ0 in y when σ → 0. Hence
Gψσ ,Q(x) → ψ(x) when σ → 0. Now assume on the contrary that ψ is not radially
decreasing. Then there exist two points x0, y0 such that ‖x0‖ ≤ ‖y0‖ and ψ(x0) <

ψ(y0). Let ε be a real number such that 0 < ε < ψ(y0) − ψ(x0). Then by the
continuity of ψ and the fact that Gψσ ,Q(x) → ψ(x) (as σ → 0), there exists σ small
enough such that

Gψσ ,Q(x0/σ) ≤ ψ(x0) + ε/2 < ψ(y0) − ε/2 ≤ Gψσ ,Q(y0/σ).

Therefore, by Lemma 2.2 we know that K is not admissible. So if K is admissible,
then ψ must be radially decreasing. �

Note that the kernel which satisfies the assumptions in Theorem 2.4 is of the form

K (x, y) = ψ(x − y) = φ(‖x − y‖), x, y ∈ R
d , (12)

whereφ is decreasing onR+.Kernels of the above formare called radial basis functions
(Wendland 2005; Wu 1995). Let φ be a function on R+ such that φ(‖x − y‖) is a
reproducing kernel on R

d . It is quite natural to ask when φ is strictly decreasing.
A fundamental result on radial basis functions due to Schoenberg (1938) states that
φ(‖x − y‖) makes a reproducing kernel on R

d for all dimensions d ∈ N if and only
if there is a finite positive Borel measure μ on R+ such that

φ(t) =
∫ +∞

0
exp(−st2) dμ(s), t ∈ R+.

In this case, φ is automatically decreasing on R+ and is strictly decreasing as long
as suppμ �= {0}, which is equivalent to say that the radial kernel K in (12) is char-
acteristic (Sriperumbudur et al. 2011, Proposition 5). In conclusion, if for all d ∈ N,
K is a nontrivial reproducing kernel on R

d and a characteristic kernel, then we have
by Theorem 2.4 that K is Q-admissible provided that the density function f of Q is
radially decreasing.

Things are different ifφ(‖x−y‖) is only a kernel on certain dimensions.We present
an explicit example to illustrate this. It was proved in Schoenberg (1938) that for a
fixed dimension d, φ(‖x − y‖) is a kernel on R

d if and only if

φ(t) =
∫ +∞

0
�d(ts) dμ(s), t ≥ 0,

123



Admissible kernels for RKHS embedding of probability distributions 1509

where μ is a finite positive Borel measure on R+ and

�d(r) :=
∫ π

0 eir cos θ sind−2 θ dθ
∫ π

0 sind−2 θ dθ
, d ≥ 2, r ≥ 0.

Setting d = 3 leads to

�3(r) = sin r

r
.

We then choose the measure μ such that suppμ = [0, 2π ] and dμ(s) = s ds for
s ∈ [0, 2π ]. The resulting function φ is

φ(t) =
∫ 2π

0

sin st

st
dμ(s) = 1 − cos 2π t

t2
, t ≥ 0,

which is not decreasing since φ(1) = 0 while φ( 32 ) = 8
9 . Therefore by Theorem

2.4 K (x, y) = φ(‖x − y‖) is not admissible for any class of radially decreasing
distributions. In particular, it is not admissible for the Gaussian distributions.

Nevertheless, there exists a large class of compactly supported decreasing φ so
that (12) defines a kernel that satisfies the conditions in Theorem 2.4. These are the
compactly supported radial basis functions ofminimal degree constructed inWendland
(2005) and Wu (1995). Examples for dimension d = 3 include

φ(r) := (1 − r)3+ and φ(r) := (1 − r)4+(1 + 4r), r ∈ R+,

where (1 − r)+ := max{0, 1 − r}. More examples are available in (Wendland 2005,
Chapter 9).

Going back to our main objective, we shall use Theorem 2.4 to establish admissi-
bility for the RKHS embedding of Gaussian distributions.

Theorem 2.5 Let K be a reproducing kernel onRd of the form K (x, y) = ψ(x− y) =
φ(‖x − y‖) where φ is deceasing on R+ and such that ρ in (4) is supported on all of
R
d . Then K is admissible for the class of Gaussian distributions

dPμ,σ (x) =
(

1√
2πσ

)d

exp

(

−‖x − μ‖2
2σ 2

)

dx, x ∈ R
d , μ ∈ R

d , σ > 0 (13)

and for the class of generalized Gaussian distributions

dEμ,σ (x) =
(

1√
2πσ

)d

cω

∫ ∞

0
exp

(

−‖x − μ‖2
2τσ 2

)

dω(τ) dx,

x ∈ R
d , μ ∈ R

d , σ > 0 (14)

123



1510 L. Chen et al.

where ω is a nontrivial finite positive Borel measure on R+ with suppω �= {0}, and
cw is a positive constant such that

cω

∫ ∞

0
τ

d
2 dω(τ) = 1.

Proof It suffices to verify that the conditions in Theorem 2.4 is satisfied. Firstly,
K (x, y) = ψ(x − y) where ψ(x) = φ(‖x‖) is radial and radially decreasing. For the
Gaussian distributions, we see that

dPμ,σ (x) = dQ

(
x − μ

σ

)

where Q has the density function

g(x) :=
(

1√
2π

)d

exp

(

−‖x‖2
2

)

, x ∈ R
d .

Thus, the density function for Q̄ = Q ∗ Q̃ is

f (x) := (g ∗ g)(x) :=
(

1

2
√

π

)d

exp

(

−‖x‖2
4

)

, x ∈ R
d ,

which is radial and strictly radially decreasing. Therefore K is admissible for the
Gaussian distributions (13).

For the generalized Gaussian distributions (14), the density function of Q̄ is

g(x) :=
(

1√
2π

)d

c2ω

∫ ∞

0

∫ ∞

0

√

ts

t + s
exp

(

− ‖x‖2
2(t + s)

)

dω(s) dω(t), x ∈ R
d ,

which is also radial and strictly radially decreasing. �
Generalized Gaussian distributions have found many applications in image pro-

cessing (Mallat 1989; Moulin and Liu 1999) and the field of engineering (Miller and
Thomas 1972; Beaulieu and Young 2009). Classical probability density functions for
generalized Gaussian distributions are of the following form

f p(x) = cp
σ d

exp

(

−‖x − μ‖p

2σ p

)

, x ∈ R
d ,

where p > 0 and cp is the constant that makes f p(x) a density function. The existence
of the measure ω(τ) can be guaranteed by theoretic results in Bochner (1937).

Specifying the measure ω, we have the following examples.
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Admissible kernels for RKHS embedding of probability distributions 1511

Example 2.6 Let the Borel measure dω(τ) = dτ/τ 2, τ ∈ [1, 2] in (14). Then the
corresponding generalized Gaussian distribution is

dEμ,σ (x) = 2cω

(2π)d/2σ d−2‖x − μ‖2
(

exp

(

−‖x − μ‖2
4σ 2

)

− exp

(

−‖x − μ‖2
2σ 2

))

dx, x ∈ R
d .

Let the Borel measure ω = ∑m
i=1 αiδτi , where αi ≥ 0 and δτi is the dirac measure at

point τi > 0. Then the corresponding generalized Gaussian distribution is simply the
linear combination of Gaussian distributions with the same expectation. That is,

dEμ,σ (x) =
(

1√
2πσ

)d

cω

m
∑

i=1

αi exp

(

−‖x − μ‖2
2τiσ 2

)

dx, x ∈ R
d .

In particular, the Wendland functions (Wendland 2005) and the Gaussian kernels
are admissible for the Gaussian distributions.We remark that the latter observation can
also be made from direct computation as done in Sriperumbudur et al. (2009), where it
was shown that for two Gaussian distributions Pμ,σ ,Pν,θ and for the Gaussian kernel

K (x, y) = exp

(

−‖x − y‖2
2τ 2

)

, x, y ∈ R
d , τ > 0,

it holds

γ 2
K (Pμ,σ ,Pν,θ ) =

(
τ√

2σ 2 + τ 2

)d

+
(

τ√
2θ2 + τ 2

)d

− 2
d
∏

i=1

τ exp
(

− (μi−νi )
2

2(σ 2+θ2+τ 2)

)

√
σ 2 + θ2 + τ 2

.

Thus, when σ = θ ,

γ 2
K (Pμ,σ ,Pν,σ ) = 2

(
τ√

2σ 2 + τ 2

)d (

1 − exp

(

− ‖μ − ν‖2
2(2σ 2 + τ 2)

))

. (15)

Clearly, the two admissibility requirements are satisfied.

3 Non-radial Gaussian distributions

In this section, we study similarity of two multivariate non-radial Gaussian distribu-
tions under RKHS embedding. Such distributions appear widely in probability and
statistics. They are of the general form
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dPμ,�(x) =
(

1√
2π

)d

(det�)−
1
2 exp

(

−1

2
(x − μ)T�−1(x − μ)

)

dx, x ∈ R
d

(16)
where μ ∈ R

d and � is a radial and positive-definite d × d matrix. To fulfill our
purpose, we need to introduce the definition of multivariate monotonic functions from
(Engelking 1989).

Definition 3.1 Let h be a function fromR
n toRk . We say that h ismonotonic provided

that for any y ∈ R
k , h−1(y) is connected in Rn .

Recall that a set C inRn is connected if there do not exist two disjoint open subsets
U , V ∈ R

n such that C ⊆ U ∪ V and both C ∩U and C ∩ V are nonempty.
Obviously, a constant function f onRn is monotonic as for every c ∈ R, f −1(c) is

either empty or the entire Rn . We give some other nontrivial examples of multivariate
monotonic functions to help comprehend this definition.

We first point out that the above seemingly abstract definition coincides with the
ordinary one for continuous univariate monotonic functions.

Example 3.2 Let f be a continuous function on R. If f is monotonic in the ordinary
sense then it is easy to see that it satisfies Definition 3.1. On the other hand, assume that
it is monotonic according to Definition 3.1. In other words, for each c ∈ R, f −1(c) is
connected inR. One shows by the intermediate value theorem for continuous functions
that f must be monotonic in the ordinary sense.

Example 3.3 A linear function f : R
n → R defined by f (x) := a1x1 + a2x2 +

· · · + anxn , where ai ∈ R is a monotonic function. This is because for all y ∈ R,
f −1(y) = {x ∈ R

n : ∑n
i=1 ai xi = y} is a hyperplane in R

n , which is connected in
R
n .

The following example will appear in our discussion.

Lemma 3.4 Let f : Rn → R defined by f (x) = exp(α1x21+α2x22+· · ·+αnx2n ), where
αi are simultaneously all negative or all positive. Then f is a monotonic function.

Proof Without loss of generality, we assume α1, α2, . . . , αn > 0. Then f (x) ≥ 1
and f −1(1) = {0}, which is a connected set. For c > 1, the set f −1(c) =
{(x1, x2, . . . , xn) : α1x21 + α2x22 + αnx2n = ln c} is an n-dimensional ellipsoid,
which is connected in Rn . Therefore we have by Definition 3.1 that f is a monotonic
function. �

Before proceeding to the next lemma, two classical results are needed, see van Mill
(1989).

1. A continuous injective function f from a compact subset of Rn to R
n is a home-

omorphism (van Mill 1989, Excise 1.1.4).
2. The Brouwer Invariance of Domain Theorem: If two sets X ,Y ⊆ R

n are home-
omorphic then so are their interiors (van Mill 1989, Theorem 4.6.7, Corollary
4.6.6).
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Lemma 3.5 Let F : Rn → R be a continuous monotonic function and G : Rn → R
n

be a continuous injective mapping. Then their composition F ◦ G : R
n → R is

monotonic.

Proof It is easy to see that F◦G is a continuous function.Bydefinition,wehave to show
that for every c ∈ R, the set (F ◦ G)−1(c) is connected in Rn . Since F is monotonic,
we know that F−1(c) is a connected set inRn . By the fact that the continuous image of
a connected set is still connected, the set (F ◦ G)−1(c) = G−1(F−1(c)) is connected
provided that G−1 is continuous.

We then prove that if G is continuous and injective, then its inverse G−1 is a
continuous function from G(Rn) to R

n . For any sequence {yk : k = 1, 2, . . .} ⊆
G(Rn) that converges to y0 ∈ G(Rn), denote their preimages by {xk : k = 1, 2, . . .}
and x0, respectively. Let Br be a closed ballwith radius r centered at x0,which is clearly
compact. Using the result 1 above we have the fact that Br must be homeomorphic to
G(Br ). Then we have by the Brouwer Invariance of Domain Theorem that int Br and
intG(Br ) are homeomorphic. Therefore for sufficiently large k, yk must be located
in intG(Br ). Again by the fact that G is injective, xk must be contained in Br for
all sufficient large k. Since the radius r is arbitrary, we have that xk converges to x0,
namely, G−1 is continuous. �

We are ready to present the main result of this section about the similarity of two
general d-dimensional Gaussian distributions.

Theorem 3.6 The Gaussian reproducing kernel K (x, y) = exp(−‖x−y‖22
2τ 2

), τ > 0 is
admissible for the class of d-dimensional Gaussian distributions given by (16) in the
sense that

(A1’) As a function of μ, ν, γK (Pμ,�,Pν,�) decreases monotonically to 0 as μ tends
to ν,

(A2’) As a function of the eigenvalues of �−1, γK (Pμ,�,Pν,�) decreases monoton-
ically to 0 as det� tends to infinity.

Proof Let P1, P2 be two d-dimensional Gaussian distributions given by

dP1(x) = 1

(2π)
d
2 (det�1)

1
2

exp

(

−1

2
(x − μ)T�−1

1 (x − μ)

)

dx,

dP2(x) = 1

(2π)
d
2 (det�2)

1
2

exp

(

−1

2
(x − ν)T�−1

2 (x − ν)

)

dx,

where �1, �2 are two positive-definite matrices.
If �1�2 = �2�1 then there exists an orthogonal d × d matrix B such that

�1 = BT�−1
1 B =

⎛

⎜
⎜
⎜
⎝

α1
α2

. . .

αd

⎞

⎟
⎟
⎟
⎠

, �2 = BT�−1
2 B =

⎛

⎜
⎜
⎜
⎝

β1
β2

. . .

βd

⎞

⎟
⎟
⎟
⎠

,
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where αi , βi , i = 1, 2, . . . , d are all positive. Then

∫∫

Rd×Rd
K (x, y) dP1(x) dP1(y)

= 1

(2π)d det�1

∫∫

Rd×Rd
K (x, y)

exp

{

−1

2

[

(x − μ)T�−1
1 (x − μ) + (y − μ)T�−1

1 (y − μ)
]}

dx dy

(♠)= 1

(2π)d det�1

∫∫

Rd×Rd

exp

(

−‖x − y‖22
2τ 2

)

exp

{

−1

2
(xT�−1

1 x + yT�−1
1 y)

}

dx dy

(♥)= 1

(2π)d det�1

∫∫

Rd×Rd
exp

(

−‖x − y‖22
2τ 2

)

exp

{

−1

2
(xT�1x + yT�1y)

}

dx dy

= 1

(det�1)
1
2

d
∏

i=1

τ
√

2 + αiτ 2
,

the equality (♠) holds since the kernel K (x, y) is translation invariance, and (♥)

follows if we replace x and y with Bx and By, respectively.
Similarly, we have

∫∫

Rd×Rd
K (x, y) dP2(x) dP2(y) = 1

(det�2)
1
2

d
∏

i=1

τ
√

2 + βiτ 2

and

∫∫

Rd×Rd
K (x, y) dP1(x) dP2(y) = 1

(det(�1�2))
1
2

d
∏

i=1

τe
− αi βi (μi−νi )

2

2(αi+βi+αi βi τ
2)

√

αi + βi + αiβiτ 2
.

As a result,

γ 2
K (P1,P2) = 1

(det�1)
1
2

d
∏

i=1

τ
√

2 + αiτ 2
+ 1

(det�2)
1
2

d
∏

i=1

τ
√

2 + βiτ 2

− 2

(det(�1�2))
1
2

d
∏

i=1

τe
− αi βi (μi−νi )

2

2(αi+βi+αi βi τ
2)

√

αi + βi + αiβiτ 2
.

123



Admissible kernels for RKHS embedding of probability distributions 1515

In particular, we have

γ 2
K (Pμ,�,Pν,�) = 2τ d

(det�)
1
2

1 −∏d
i=1 e

− αi (μi−νi )
2

2(2+αi τ
2)

∏d
i=1

√

2 + αiτ 2
, (17)

where the αi ’s are the eigenvalues of �−1. Based on this formula, we shall verify that
the properties (A1’) and (A2’) hold true.

It is easy to see that γK (Pμ,�,Pν,�) → 0 as ‖μ − ν‖ → 0. To show the mono-
tonicity of γK with respect to μ − ν, we just have to verify that

D(x) :=
d
∏

i=1

exp

(

− αi x2i
2(2 + αiτ 2)

)

, x ∈ R
d

is monotonic on R
d according to Definition 3.1. This falls into Lemma 3.4. Thus,

(A1’) is verified.
Next, let μ, ν be fixed. By Formula (17), γK (Pμ,�,Pν,�) → 0 as det� → ∞. It

remains to show that γK is monotonic with respect to (α1, α2, . . . , αd). Set

g(s) :=
√

s

2 + τ 2s
, s ≥ 0 and G(t) := (g(t1), g(t2), . . . , g(td)), t ∈ R

d+.

Then g is continuous and strictly increasing on R+. Therefore G is continuous and
injective on Rn . Denote

Fc(t1, t2, . . . , td) = t1t2 · · · td(1 − exp[−(c1t
2
1 + c2t

2
2 + · · · + cd t

2
d )]),

where c = (c1, c2, . . . , cd) and t = (t1, t2, . . . , td) are both in R
d+. Then by Formula

(17) we have

γ 2
K (Pμ,�,Pν,�) = 2τ d Fω(G(α1, α2, . . . , αd))

where ω = (− (μ1−ν1)
2

2 ,− (μ2−ν2)
2

2 , . . . ,− (μd−νd )2

2 ). For every s ∈ R+, the set

F−1
ω (s) = {x ∈ R

d+ : Fω(x) = s}
= {(x1, . . . , xd) : (x1 · · · xd)
(

1 −
d
∏

i=1

exp

[

−
(

(μi − νi )
2

2
x2i

)])

= s

}

is connected in R
d+ (Please see the proof in the Appendix). By Lemma 3.5, 2τ d Fω ◦

G(α1, . . . , αd) is monotonic on α, which confirms (A2’). �
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4 Conclusion

Measuring the similarity and distance between two probability distributions is impor-
tant in many applications of statistics. The approach of RKHS embedding has many
advantages over other integral probability metrics. Due to the one-to-one correspon-
dence between reproducing kernels and reproducing kernel Hilbert spaces, the choice
of the reproducing kernel is critical in the approach. Past studies have been focusing
on when the kernel is characteristic. We investigate an admissibility criterion on the
kernel to ensure that the similarity among the RKHS embeddings of the same class of
distributions would satisfy two natural requirements. Sufficient and necessary condi-
tions are provided. In particular, we find that radially decreasing radial basis functions
are admissible for Gaussian distributions. We remark that the study can be extended
to other classes of probability distributions and to other norms on the Euclidean space.

Appendix

We now prove the connectivity of the set F−1
ω (s) in Theorem 3.6.

For if ω = 0, then F0(x1, x2, . . . , xd) = 0 for any x ∈ R
d+. Therefore, F−1

0 (0) =
R
d+ and for any s �= 0, F−1

0 (s) is an empty set. In both cases, the set F−1
0 (s) is

connected.
If ω �= 0, then there exists at least one coordinate ωi �= 0. For the case s = 0, it is

easy to see that the set

F−1
ω (0) = {(x1, x2, . . . , xd) ∈ R

d+ : at least one coordinate xi equals to zero}

is clearly a connected subset in Rd+.
Now assume s > 0, by scaling and permuting the coordinates we can assume

further that ω1 = · · · = ωn = 1 and ωn+1 = · · · = ωd = 0, where n ≤ d. We then
use the polar coordinates to simplify the problem. That is, let

x1 = r cos θ1

x2 = r sin θ1 cos θ2

...

xn−1 = r sin θ1 sin θ2 · · · sin θn−2 cos θn−1

xn = r sin θ1 sin θ2 · · · sin θn−2 sin θn−1

where r > 0 and θ1, . . . , θn−1 ∈ (0, π/2). Then we have

F−1
ω (s) =

{

x = (x1, . . . , xd) ∈ R
d+ : (rn�(θ1, . . . , θn−1)

·xn+1 · · · xd)
(

1 − e−r2
)

= s
}

,

where �(θ1, . . . , θn−1) = sinn−1 θ1 sinn−2 θ2 · · · sin θn−1 · cos θ1 · · · cos θn−1.
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For every fixed point (θ1, . . . , θn−1) ∈ (0, π/2)n−1 and fixed product p =
xn+1 · · · xd , there exists a unique solution rs = r(θ1, . . . , θn−1, p) > 0 to the equation

(�(θ1, . . . , θn−1) · p)rns
(

1 − e−r2s
)

= s.

The inverse mapping theorem shows that r(θ1, . . . , θn−1, p) is a continuous function
with respect to the variables θ1, . . . , θn−1, p. We now show that this implies that the
following set

F−1
ω (s) =

{

x(rs, θ1, . . . , θn−1) ∈ R
d+ : θi ∈ (0, π/2), xn+1 · · · xd = p

}

is path connected, and therefore connected. Indeed, for any two distinct points a, b ∈
F−1

ω (s), s > 0, assume their corresponding polar coordinates (without the r coordi-
nate) are α = (θ ′

1, . . . , θ
′
n−1, an+1, . . . , ad) and β = (θ ′′

1 , . . . , θ ′′
n−1, bn+1, . . . , bd),

respectively. Let γt = (1 − t)α + tβ. Then by the definition of rs , we have for every
t ∈ [0, 1], (rs(γt ), γt ) ∈ F−1

ω (s), and therefore (rs(γt ), γt ), t ∈ [0, 1] is a path from
a to b.
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