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Abstract
Sliced Latin hypercube designs (SLHDs) are widely used in various computer exper-
iments. Literatures concerning the construction of SLHDs are all about constructing
SLHDs with slices of the same size. However, in some cases, e.g. when an exper-
iment with multiple computer models having different complexities or a sequential
experiment with varying costs in different periods is considered, SLHDs with slices of
different sizes are preferable. In this paper, we propose a new class of SLHD, named
the flexible SLHD, in which the whole design is a Latin hypercube design (LHD), and
each slice is also an LHD when its levels being properly collapsed, the difference lies
in that its slices may have different run sizes. Several methods for constructing such
designs are developed. Theoretical results on the constructed designs are derived, and
discussion on the slice sizes of the constructed flexible SLHDs is provided. Further-
more, an optimization algorithm is developed to improve the space-filling property of
the constructed SLHDs. The newly proposed flexible SLHD is also a special nested
LHD (Qian in Biometrika 96:957–970, 2009), each of its slice can be viewed as a
small LHD nested in the whole design.
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1 Introduction

Sliced Latin hypercube designs (SLHDs), proposed by Qian (2012), are widely used
in computer experiments with qualitative and quantitative factors, model calibration,
cross validation, multiple experiments, stochastic optimization and data pooling. Such
a design is a special Latin hypercube design (LHD, McKay et al. 1979) that can be
partitioned into smaller slices, each of which is also an LHD when its levels being
properly collapsed.

Extensive work has been done in the literature on constructing and finding “good”
SLHDs. Qian (2012) provided a construction method for generating SLHDs column
by column independently using sliced permutation matrix. Unlike the procedure intro-
duced byQian (2012), Ba et al. (2015) proposed a new approach for generating SLHDs
that first generates small LHDs in each slice and then arranges them together to form
the SLHD. However, these two methods cannot guarantee the low correlations among
the columns of each slice of the design, and among the columns of the whole design.
The rationales for using designs with exact or near orthogonality can be found in
Ye (1998), Steinberg and Lin (2006), Bingham et al. (2009), Sun et al. (2009, 2010,
2011), and Yang and Liu (2012) among others. In consideration of the fact that SLHDs
with good orthogonality are often required, much work on this topic has been done,
such as Yang et al. (2013, 2016), Huang et al. (2014), Cao and Liu (2015), and Wang
et al. (2017).

Recently, Xie et al. (2014) proposed general SLHDs for computer experiments.
A general SLHD has multiple layers, at each of which there are multiple LHDs that
can be sliced into smaller LHDs at the next layer. Furthermore, Kong et al. (2018)
constructed sliced designs with flexible sizes of slices for computer experiments.

To the best of our knowledge, the proposed SLHDs and general SLHDs are all
with slices of the same size, and the flexible sliced designs proposed by Kong et al.
(2018) are not always SLHDs. In practice, in some cases, for example, when an exper-
iment with multiple computer models having different complexities or a sequential
experiment with varying costs in different periods is considered, SLHDs with slices of
different sizes are preferable. So we propose a new class of SLHD, named the flexible
SLHD, which is an SLHD with slices of different sizes. Such designs are useful for
collective and batch evaluation of computer models. Several methods for constructing
flexible SLHDs are developed. Meanwhile, discussion on the slice sizes of the con-
structed flexible SLHDs is also provided. Furthermore, an optimization algorithm for
generating uniform flexible SLHDs is proposed. The newly proposed flexible SLHD
is also a special nested LHD (Qian 2009), each of its slice can be viewed as a small
LHD nested in the whole design.

The rest of this paper is organized as follows. Section 2 provides relevant defini-
tions and notation. The construction methods and properties of the newly constructed
designs are developed in Sect. 3, along with some discussion on special cases of
the slice sizes of the constructed flexible SLHDs. Section 4 proposes an optimization
algorithm for generating uniform flexible SLHDs. Concluding remarks are given in
Sect. 5.
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2 Definitions and notation

For a matrix A, let A(:, j) be its j th column and A(i, :) be its i th row. For any real
number r , �r� denotes the smallest integer not smaller than r , and for any real vec-
tor or matrix M , �M� is similarly defined. For a positive integer b, let Zb denotes
the set {1, . . . , b}. Throughout, sampling a uniform permutation on ZN means ran-
domly taking a permutation on the set, with all N ! possible permutations being equally
probable.

Let A = (ai j ) be an N × p LHD, denoted by LHD(N , p), in which each column is
a uniform permutation on {1, . . . , N } and all the columns are obtained independently.
For positive integers m and s, an SLHD with N = ms runs, p factors and s slices,
denoted by SLHD(m, s, p), is an LHD(N , p) that can be partitioned into s slices and
each slice forms a smaller LHD(m, p) (after its levels being properly collapsed, this
is also needed for any of the following LHDs).

Recently, Xie et al. (2014) defined a general SLHD as follows. Given positive
integers s and p, for positive integers m, r1, . . . , rs and N with N = m

∏s
j=1 r j , an

s-layer general SLHD has the following form: in the first layer, the whole design
consists of

∏s
j=1 r j LHDs, each of which is an LHD(m, p); in the kth layer, for

k = 2, . . . , s, there are
∏s

j=k r j LHDs, each of which is an LHD(m
∏k−1

j=1 r j , p)
and consists of rk−1 LHDs from the (k − 1)th layer. The rs LHDs in the sth layer
constitute the whole design, which is an LHD(N , p). Such a design is denoted as
GSLHD(r1, . . . , rs;m; p) by Xie et al. (2014).

Next, we define the flexible SLHD with slices of different sizes. Given positive
integers s and p, for positive integers m1, . . . ,ms , a flexible SLHD with N = m1 +
· · · + ms runs, p factors and s slices of sizes m1, . . . ,ms , respectively, denoted by
FSL((m1, . . . ,ms), s, p), is an LHD(N , p) that can be partitioned into s subarrays,
these subarrays can be collapsed into smaller LHDs of sizes mi × p, 1 ≤ i ≤ s,
respectively. When m1 = · · · = ms = m, it reduces to an SLHD(m, s, p). For s = 1,
an FSL((m1, . . . ,ms), s, p) reduces to an LHD(N , p). Take the following design

D = (DT
(1), D

T
(2), D

T
(3))

T =
⎛

⎝
4 7 12 2 9 6 10 3 11 1 5 8
12 3 1 8 6 10 4 7 9 5 2 11
7 4 6 12 2 9 8 3 10 5 11 1

⎞

⎠

T

(1)

as an example. The whole design is an LHD(12, 3), and after the levels being col-
lapsed according to �D(1)/6�, �D(2)/3� and �D(3)/2�, respectively, its three subarrays
D(1), D(2), D(3) become LHD(2, 3), LHD(4, 3) and LHD(6, 3), respectively, thus D is
an FSL((2, 4, 6), 3, 3). Figure 1 shows the two-dimensional projections of D, where
the symbols (•, ◦,�) represent the points from the three slices D(1), D(2) and D(3) of
D, respectively (each level is shifted to its left by 0.5).
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Fig. 1 Two-dimensional projections of the flexible SLHD in (1). The two “•” are from D(1), the four “◦”
are from D(2), and the six “�” are from D(3)

3 Construction of flexible SLHDs

In this section, we propose four methods for constructing FSL((m1, . . . ,ms), s, p)’s
with N = m1 + · · · +ms , starting with different types of initial designs. Without loss
of generality, we assume m1 ≤ m2 ≤ · · · ≤ ms .

3.1 Method I

In this subsection, we provide a construction method based on the method given in Xie
et al. (2014). Assume ms+1 = N and mi |mi+1 (1 ≤ i ≤ s), where mi |mi+1 means
“mi divides mi+1”, then there exist integers r1, . . . , rs such that mi+1 = miri =
m1

∏i
j=1 r j . The construction of an FSL((m1, . . . ,ms), s, p) is as follows.
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Algorithm 1 Step 1 Generate a GSLHD(r1, . . . , rs;m1; p) using the construction
method in Xie et al. (2014), denote the design as D0.

Step 2 Partition the rows of D0 as follows: D(1) consists of the first m1 rows of D0,
for 2 ≤ i ≤ s, D(i) consists of the (

∑i−1
j=1m j + 1)th to (

∑i−1
j=1m j + mi )th rows

of D0.
Step 3 Obtain a design D = (DT

(1), . . . , D
T
(s))

T .

Theorem 1 The design D constructed in Algorithm 1 is an FSL((m1, . . . ,ms), s, p).

Theproof is obvious from the construction, soweomit it here. From the construction
of general SLHDs in Xie et al. (2014), we have the following theorem directly.

Theorem 2 For each flexible SLHD constructed using Algorithm 1, its slice D(i) is an
SLHD(m1, mi/m1, p), which holds for every i, 1 ≤ i ≤ s.

Example 1 Let us construct an FSL((2, 2, 4, 8), 4, 4) using Algorithm 1. First, com-
pute r1 = 2/2 = 1, r2 = 4/2 = 2, r3 = 8/4 = 2, r4 = 16/8 = 2. Then using a
GSLHD(1, 2, 2, 2; 2; 4), we can construct an FSL((2, 2, 4, 8), 4, 4) as

D =

⎛

⎜
⎜
⎝

1 9 7 15 14 6 11 3 2 10 13 5 12 4 8 16
4 12 5 13 2 10 8 16 15 7 1 9 11 3 6 14
6 14 10 2 3 11 7 15 12 4 8 16 13 5 1 9
10 2 7 15 6 14 3 11 13 5 9 1 8 16 12 4

⎞

⎟
⎟
⎠

T

.

(2)

Figure 2 shows the two-dimensional projections of the flexible SLHD in (2), where
the symbols (•,�, ◦,�) represent the points from its 1st, 2nd, 3rd and 4th slices,
respectively (each level is shifted to its left by 0.5).

For the first two slices of design D in (2), it is easy to check that they satisfy the
property in Theorem 2, i.e. they are two SLHD(2, 1, 4)’s (in fact two LHD(2, 4)’s).
As to the last two slices, Fig. 3 plots the two-dimensional projections of these two
slices (with their levels being properly collapsed, and then each level is shifted to its
left by 0.5), which show that the property in Theorem 2 also holds for these two slices,
i.e. they are SLHD(2, 2, 4) and SLHD(2, 4, 4), respectively.

3.2 Method II

In this subsection, we propose an approach to constructing an FSL((m1, . . . ,ms),

s, p), based on the method in Qian (2012), using the level expansion procedure.
Assume m1|mi and mi |N , i.e., N = mi ti (1 ≤ i ≤ s). The details are as follows.

Algorithm 2 Step 1 Generate an SLHD(m1, t1, p) using the method in Qian (2012),
denote the design as D0.

Step 2 Collapse the levels of each column in D0 according to i → �i/t1�, i =
1, . . . , N ; denote theobtaineddesign asD1, such adesign contains t1 LHD(m1, p)’s.
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Fig. 2 Two-dimensional projections of the flexible SLHD in (2). The two “•” are from its 1st slice, the two
“�” are from its 2nd slice, the four “◦” are from its 3rd slice, the eight “�” are from its 4th slice

Step 3 Partition the rows of D1 as follows: D1(1) consists of the first m1 rows of D1,
for 2 ≤ i ≤ s, D1(i) consists of the (

∑i−1
j=1m j + 1)th to (

∑i−1
j=1m j + mi )th rows

of D1, i.e., D1(i) consists of mi/m1 LHD(m1, p)’s.
Step 4 Take the j th ( j = 1, . . . , p) column of D1, for w = s, . . . , 1, repeat:

Divide the elements of ZN into mw blocks, b1, . . . , bmw , where

bi = {a ∈ ZN |�a/tw� = i}.

Replace the mw/m1 entries k (k = 1, . . . ,m1) in D1(w)(:, j) by randomly choose
an element from the ((k−1)mw/m1+1)th to ((k−1)mw/m1+mw/m1)th blocks,
respectively, except for the elements that have been chosen once.
During the repeat process, once there is a block that all its elements have been
chosen once, stop the loop and restart from the beginning of Step 4.
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(a) Two-dimensional projections ofD(3).
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(b) Two-dimensional projections ofD(4).

Fig. 3 Two-dimensional projections of the last two slices of D in (2)

Step 5 Denote the corresponding obtained designs by D(s), . . . , D(1), respectively.
Stack them row by row to form design D = (DT

(1), . . . , D
T
(s))

T .

Remark 1 In Step 4, maybe more than one repeat loop should be implemented. For
example, take m1 = 2,m2 = 6,m3 = 8,m4 = 8, N = 24, for w = 4 and w = 3, if
integers 5, 6, 7, 8 are chosen from the 2nd and 3rd blocks, then when w = 2, there is
a block, i.e., {5, 6, 7, 8}, with all its elements having been chosen once, so restarting
from the beginning of Step 4 is necessary. During the process of selecting elements for
level expansion in Step 4, we should choose the elements such that they are uniformly
scattered in each block and ensure that all the elements having been chosen are spread
as evenly as possible on ZN (do not take two successive integers on ZN , if possible).
In this way, a flexible SLHD will be finally found for the parameters satisfying the
conditions given at the beginning of this subsection.

The following example is an illustration for Remark 1.

Example 2 Takem1 = 2,m2 = 6,m3 = 8,m4 = 8, N = 24 as in Remark 1, consider
constructing one column of an FSL((2, 6, 8, 8), 4, p). Generate an SLHD(2, 12, 1),

D0 = (
17 1 21 9 16 10 19 11 14 12 23 3 5 24 4 18 20 2 7 13 8 22 6 15

)T
,

then we have

D1 = (DT
1(1), D

T
1(2), D

T
1(3), D

T
1(4))

T

= (
2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1 2

)T
.

For w = 4 and 3, replace the eight entries 1 in D1(4) and D1(3) by elements 1, 4, 7, 10
and 3, 6, 9, 12, respectively; replace the eight entries 2 in D1(4) and D1(3) by elements
13, 16, 19, 22 and 15, 18, 21, 24, respectively. For w = 2, replace the three entries 1
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in D1(2) by elements 2, 5, 11; replace the three entries 2 by elements 14, 17, 23. For
w = 1, replace its two entries 1 and 2 by 8 and 20, respectively. Then, we have

D = (DT
(1), D

T
(2), D

T
(3), D

T
(4))

T

= (
20 8 14 2 17 5 23 11 15 3 18 6 9 21 12 24 13 1 4 16 7 19 10 22

)T
.

It is easy to verify that D is one column of an FSL((2, 6, 8, 8), 4, p).

Theorem 3 The design D constructed in Algorithm 2 is an FSL((m1, . . . ,ms), s, p).

Remark 2 For the cases in Method I, designs with the same parameters can also be
constructed by Algorithm 2. Moreover, randomly shuffle the entries in each column of
each slice in design D, the obtained design is still a flexible SLHDwith the sameparam-
eters. In this way, in order to improve the space-filling properties of the constructed
designs, we can adopt some optimality criteria for evaluating designs, such as the var-
ious measures of uniformity, among which, for example, the centered L2-discrepancy
(Hickernell 1998a) and the wrap-around L2-discrepancy (Hickernell 1998b) are two
popular choices.

Theorem 4 For a design constructed using Algorithm 2, its slice D(i) is an
SLHD(m1,mi/m1, p), which holds for every i, 1 ≤ i ≤ s.

Let us see an example to illustrate Algorithm 2.

Example 3 Suppose N = 12, m1 = 2, m2 = 4, m3 = 6, p = 3. First, generate an
SLHD(2, 6, 3) using the method in Qian (2012), denote it as D0,

D0 =
⎛

⎝
7 6 3 8 1 10 12 4 9 2 11 5
9 4 2 10 1 11 6 12 8 5 3 7
5 10 9 1 7 6 8 2 12 4 3 11

⎞

⎠

T

. (3)

Second, for each column of D0, after its levels being collapsed according to Step 2 in
Algorithm 2, we get design D1,

D1 =
⎛

⎝
2 1 1 2 1 2 2 1 2 1 2 1
2 1 1 2 1 2 1 2 2 1 1 2
1 2 2 1 2 1 2 1 2 1 1 2

⎞

⎠

T

.

Third, partition D1 as follows,

D1 = (DT
1(1), D

T
1(2), D

T
1(3))

T =
⎛

⎝
2 1 1 2 1 2 2 1 2 1 2 1
2 1 1 2 1 2 1 2 2 1 1 2
1 2 2 1 2 1 2 1 2 1 1 2

⎞

⎠

T

.
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Fourth, divide Z12 into six blocks: {1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12},
then we can obtain

D(3) =
⎛

⎝
10 3 11 1 5 8
4 7 9 5 2 11
8 3 10 5 11 1

⎞

⎠

T

;

divide Z12 into 4 blocks: {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, then we can have

D(2) =
⎛

⎝
12 2 9 6
1 8 6 10
6 12 2 9

⎞

⎠

T

;

similarly, we can get D(1),

D(1) =
⎛

⎝
4 7
12 3
7 4

⎞

⎠

T

.

Finally, stack the above three slices row by row, we have the design D given in (1),
which is an FSL((2, 4, 6), 3, 3) with its two-dimensional projections shown in Fig. 1.

In Algorithm 2, if we take an SLHDwith each of its slice being an orthogonal array
based LHD as the initial SLHD in Step 1, a flexible SLHD with good stratification
properties can then be obtained. That is to say, Method II can also be employed to
generate flexible SLHDs with good stratification properties.

3.3 Method III

In this subsection, a more general method is proposed. As long as mi |N , i.e., N =
mi ti , 1 ≤ i ≤ s, an FSL((m1, . . . ,ms), s, p) can be constructed as follows.

Algorithm 3 Step 1 Give positive integers s,m1, . . . ,ms , and N = m1 + · · · + ms .
Step 2 For w = s, . . . , 1, repeat:

Divide the elements of ZN into mw blocks, b1, . . . , bmw , where:

bi = {a ∈ ZN |�a/tw� = i}. (4)

Randomly choose an element from the 1st tomwth blocks, respectively, except for
the elements that have been chosen once. These mw chosen elements constitute
the entries of a column of the wth slice, denote it as D(w).

During the repeat process, once there is a block in which all its elements have been
chosen once, stop the loop and restart from the beginning of Step 2.
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Table 1 Constraints on the
parameter values for each
proposed method

Method Constraints on parameters

Algorithm 1 ms+1 = N , mi |mi+1, 1 ≤ i ≤ s

Algorithm 2 m1|mi , mi |N , 1 ≤ i ≤ s

Algorithm 3 mi |N , 1 ≤ i ≤ s

Step 3 Stack the slices D(s), . . . , D(1) obtained in Step 2 row by row to form a column
D = (DT

(1), . . . , D
T
(s))

T .

The above algorithm provides the construction for one column of a flexible SLHD,
independently implement the above algorithm p times, a flexible SLHD with p
columns is thus obtained.

Theorem 5 AnFSL((m1, . . . ,ms), s, p)will be obtainedby independently implement-
ing Algorithm 3 p times.

Algorithm 3 ismore general thanAlgorithms 1 and 2, and it can be used to construct
new flexible SLHDs that not included in the aforementioned two methods.

Example 4 For s = 4, m1 = 2, m2 = 3, m3 = 3, m4 = 4, N = 12, p = 2, a
flexible SLHD generated using Algorithm 3 is

D = (DT
(1), D

T
(2), D

T
(3), D

T
(4))

T =
(

7 4 8 3 12 5 2 10 6 11 1 9
1 9 4 12 8 6 2 10 3 5 11 7

)T

.

It is easy to verify that the above design is an FSL((2, 3, 3, 4), 4, 2).

The conditions under which an FSL((m1, . . . ,ms), s, p) exists for each of the
aforementioned three proposed methods, i.e. Algorithms 1, 2 and 3, are summarized
in Table 1. From this table, it is easy to see that Algorithm 2 is more flexible than
Algorithm 1, and Algorithm 3 is the most flexible of all. In addition, flexible SLHDs
generated by these three methods are limited to those constraints on parameters.

Theorem 6 For an FSL((m1, . . . ,ms), s, p) constructed by any of the three methods
proposed above,

(i) when s = 2, the design is an ordinary SLHD with N runs and two slices each
with N/2 runs;

(ii) when s = 3, the positive integers m1, m2 and m3 with m1 ≤ m2 ≤ m3, N =
m1+m2+m3 andmi |N for i = 1, 2, 3must satisfy oneof the following conditions:

(a) m1 = m2 = m3;
(b) m3 = 2m1 and m1 = m2 < m3;
(c) m2 = 2m1, m3 = 3m1, and m1 < m2 < m3.

The proof of Theorem 6 is deferred to the Appendix. For s > 3, when a flexible
SLHD with parameters m1, . . . ,ms can be constructed via one of the three meth-
ods proposed above, the conditions that all these parameters should satisfy can be
deduced by the number theory method, the details are omitted here since they are too
complicated.
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3.4 Method IV

In this part, we will present a general method which can be used to generate an
FSL((m1, . . . ,ms), s, p) for any given positive integers m1, . . . ,ms, s, p and N =
m1 + · · · + ms . The following is the construction for one column of such a design,
repeat the procedure p times independently, an FSL((m1, . . . ,ms), s, p) can then be
constructed.

Algorithm 4 Step 1 Same as Step 1 of Algorithm 3.
Step 2 Same as Step 2 of Algorithm 3, except for replacing (4) with

bi = {a ∈ ZN |�mwa/N� = i}. (5)

Step 3 Same as Step 3 of Algorithm 3.

Theorem 7 AnFSL((m1, . . . ,ms), s, p)will be obtainedby independently implement-
ing Algorithm 4 p times.

Algorithm 4 provides a way to generate flexible SLHDs for any given parameters.
Obviously, it covers Algorithm 3 as a special case.

Example 5 For s = 2, m1 = 3, m2 = 4, p = 1, N = 7, a flexible SLHD generated
using Algorithm 4 is

D = (DT
(1), D

T
(2))

T = (
6 4 2 7 5 3 1

)T
.

Collapsing its slices by D(1) → �D(1) ∗ 3/7� and D(2) → �D(2) ∗ 4/7�, we get
D(1) → (3, 2, 1)T and D(2) → (4, 3, 2, 1)T , it can be seen that the above design is
an FSL((3, 4), 2, 1).

For s = 3, m1 = 3, m2 = 5, m3 = 6, p = 1, N = 14, a flexible SLHD
generated using Algorithm 4 is

D = (DT
(1), D

T
(2), D

T
(3))

T = (
12 6 4 14 11 8 5 2 13 10 9 7 3 1

)T
.

Similarly, it can be verified that such a design is an FSL((3, 5, 6), 3, 1).
A flexible sliced design with the same parameters (i.e., s = 3, m1 = 3, m2 = 5,

m3 = 6, p = 1, N = 14) generated by Kong et al. (2018)’s method is

D = (DT
(1), D

T
(2), D

T
(3))

T

= (0.066 0.441 0.680 0.114 0.287 0.528 0.627 0.828 0.085

0.254 0.339 0.555 0.689 0.864 )T . (6)

The whole design D in (6) is not an LHD, which can be easily seen from Fig. 4.
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Fig. 4 Scatter plot of the flexible sliced design in (6)

Remark 3 More generally, when the number of runs N is far less than the least common
multiple of m1, . . . ,ms , designs generated by our methods tend to have better one-
dimensional uniformity than the designs proposed by Kong et al. (2018). Without loss
of generality, consider the design constructed in Kong et al. (2018) with its parameters
n1 = · · · = nk = 1 and N1, . . . , Nk , denoted by FSD(N1 × 1 + · · · + Nk × 1), such
a design is a flexible sliced design with k slices of sizes N1, . . . , Nk respectively. Let
l be the least common multiple of N1, . . . , Nk , the main procedure to generate one
column of an FSD(N1 × 1 + · · · + Nk × 1) is as follows [the notations used here are
the same as those defined in Kong et al. (2018)]:

(i) let M = (mi,h)k×l be a k × l matrix whose hth column is a random permutation
of {(h − 1)k + 1, . . . , hk};

(ii) for i = 1, . . . , k, q = 1, . . . , Ni , draw a(i)
q from {mi,(q−1)λi+1, . . . ,mi,qλi },

where λi = l/Ni . Let M (i) = (m(i)
1 , . . . ,m(i)

Ni
)T , with its Ni elements being a

random permutation of a(i)
1 , . . . , a(i)

Ni
;

(iii) for i = 1, . . . , k, q = 1, . . . , Ni , let

d(i)
q = 1

kl
(m(i)

q − εi,q),

where εi,q ’s are independent random variables following the uniform distribution

on (0, 1). D(i) = (d(i)
1 , . . . , d(i)

Ni
)T constitutes the i th slice of an FSD(N1 × 1 +

· · · + Nk × 1).

From the above procedure to generate a flexible sliced design, it can be easily seen
that each slice of a flexible sliced design can be collapsed into an LHD, while for the
whole design, when the number of runs N (N = N1 + · · · + Nk) is far less than l, the
one-dimensional uniformity of the whole design of an FSD(N1 × 1 + · · · + Nk × 1)
may be worse than an LHD. This also holds for flexible sliced designs with general
parameters satisfying the condition that the number of runs N is far less than l.
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4 Optimal flexible SLHDs

The whole design and each slice of a flexible SLHD generated by methods in Sect. 3
have one-dimensional maximum stratification property. However, a randomly gener-
ated design by the proposed methods can be poor in terms of the space-filling property
in higher dimensions, see e.g., the two-dimensional projections shown in Fig. 3. In this
section, we provide an optimization algorithm for generating optimal flexible SLHDs
with desirable space-filling properties.

4.1 Optimality criteria for flexible SLHDs

The uniform design is a major kind of space-filling design, various measures of unifor-
mity have been introduced, see Fang et al. (2018) for more details. Hickernell (1998a)
proposed the centered L2-discrepancy (CL2) criterion to measure the uniformity of
a design. Let X = {x1, . . . , xN } be a set of N points in the p-dimensional unit cube
C p = [0, 1]p, where xi = (xi1, . . . , xip). The CL2 of X can be calculated as

(CL2(X))2 =
(
13

12

)p

− 2

N

N∑

i=1

p∏

k=1

[

1 + 1

2
|xik − 0.5| − 1

2
|xik − 0.5|2

]

+ 1

N 2

N∑

i=1

N∑

j=1

p∏

k=1

[

1 + 1

2
|xik − 0.5| + 1

2
|x jk − 0.5| − 1

2
|xik − x jk |

]

.

Here, the CL2 criterion is considered due to the appealing property that it becomes
invariant under reordering the runs, relabeling factors, or reflecting the points about
any plane passing through the center of the unit cube and parallel to its faces. For
comparing designs, designs with lower CL2-values are more uniform, and hence are
more desirable.

When extending the CL2 criterion for evaluating the goodness of a flexible SLHD
D with s slices of sizes m1, . . . ,ms respectively, both the uniformity of the whole
design and that of the sub-design in each slice should be considered. As a result, the
uniform flexible SLHD should not only minimize CL2(D) for the whole design, but
also minimize CL2(D(i)) for each slice (i = 1, . . . , s). To solve this multi-objective
optimization problem, we propose a single objective function that takes a weighted
average ofCL2(D) andCL2(D(i)) for each slice (i = 1, . . . , s), denoted by φCL2(D),
where

φCL2(D) = 1

2

{

CL2(D) +
s∑

i=1

mi

N
CL2(D(i))

}

,

with N = m1 + · · · + ms , more weights are given to slices that contain more design
points. Based on this combined measure, we can define a uniform flexible SLHD as
the one that minimizes φCL2(D).
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Other popular criteria for designing computer experiments can be extended for
selecting the flexible SLHD in a similar way. For example, we can define a maximin
distance flexible SLHD as one that maximizes the minimum inter-site distance based
on the maximin distance criterion proposed by Johnson et al. (1990).

4.2 An optimization algorithm

In this section, the threshold accepting algorithm, proposed by Dueck and Scheuer
(1990), is used to search uniform flexible SLHDs.

Algorithm 5 (Optimization algorithm for uniform flexible SLHDs)

Step 1 Randomly generate an initial flexible SLHD using the methods proposed in
Sect. 3, denoted by D0, and calculate φCL2(D0), denoted by d0. Give a sequence
of threshold parameters Th = (T1, . . . , TL), where T1 > · · · > TL = 0. Denote
the iteration number under each Tl by itmax for l = 1, . . . , L . Set indices l = 1
and i = 1.

Step 2 Randomly select a slice in D0, and interchange two randomly chosen elements
within a randomly selected column in this slice. Denote the new design by Dtry.
Calculate φCL2(Dtry), denoted by dtry.

Step 3 If dtry−d0 < Tl , replace D0 by Dtry and set d0 = dtry; else leave D0 unchanged.
Step 4 Update i = i + 1; if i ≤ itmax, go to Step 2.
Step 5 Update l = l+1, if l ≤ L , reset i = 1 and go to Step 2; else deliver Dbest = D0.

Note that Algorithm 5may find a locally optimal design, thus repeatingAlgorithm 5
with different initial designs can increase the possibility of finding a global optimal
design.

Remark 4 (i) The proposed optimization algorithm is an application of the threshold
accepting algorithm in searching for optimal flexible sliced Latin hypercube designs
under the φCL2(·) criterion, and many other greedy optimization algorithms can be
used. (ii) The choice of the length of the threshold sequence, i.e. L in Algorithm 5,
depends on the size of the design, usually, the number of out circles L should be
much less than the number of inner circles itmax. In the literature, it was suggested
that L ∈ [10, 100] and itmax∈ [104, 105] when the number of runs N ≤ 1000, and
L and itmax increase as N increases. One can do some empirical study in advance
for obtaining suitable L and itmax, please refer to Fang et al. (2018, Sect. 4.2) for
more details. In Examples 6 and 7, we take L = 11, (T1, T2, . . . , T11) = (10−5, 9 ×
10−6, . . . , 10−6, 0), and itmax= 104.

Example 6 (Example 1 continued) For the FSL((2, 2, 4, 8), 4, 4) constructed in Exam-
ple 1, it can be calculated that φCL2(D) = 0.2330. A uniform FSL((2, 2, 4, 8), 4, 4)
generated using Algorithm 5, denoted by D∗, with φCL2(D∗) = 0.1933 is as follows:

D∗ =

⎛

⎜
⎜
⎝

13 4 6 11 7 15 2 10 3 1 12 5 9 16 8 14
6 13 10 4 2 12 7 15 1 9 14 16 5 8 11 3
9 4 6 13 1 11 15 7 8 10 2 12 3 5 16 14
4 9 15 8 11 14 6 1 3 13 7 10 16 5 2 12

⎞

⎟
⎟
⎠

T

.
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Fig. 5 Two-dimensional projections of the uniform FSL((2, 2, 4, 8), 4, 4) D∗ in Example 6

The two-dimensional projections of D∗ are shown in Fig. 5, where the symbols
(◦,�, •,�) represent the points from the 1st, 2nd, 3rd and 4th slices of D∗, respec-
tively. It can be seen that both the whole design and each slice achieve a better
uniformity than the design D in Example 1.

Example 7 (Example 3 continued) For the FSL((2, 4, 6), 3, 3) D obtained in Exam-
ple 3, we have φCL2(D) = 0.1643. A uniform FSL((2, 4, 6), 3, 3) D∗ generated using
Algorithm 5 with φCL2(D∗) = 0.1474 is

D∗ =
⎛

⎝
4 9 11 2 8 6 1 3 7 10 12 5
10 4 11 5 2 7 6 12 8 9 3 1
4 9 7 2 5 12 8 6 1 11 3 10

⎞

⎠

T

.
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Fig. 6 Two-dimensional projections of the uniform FSL((2, 4, 6), 3, 3) D∗ in Example 7

The two-dimensional projections of D∗ are shown in Fig. 6, where the symbols
(•, ◦,�) represent the points from the 1st, 2nd and 3rd slices of D∗, respectively. It
also shows a better uniformity than the design D in Example 3.

5 Concluding remarks

In this paper, we propose a new class of SLHD, named the flexible SLHD, and provide
several methods to construct such designs. For Methods I and II, different types of
initial designs are applied, moreover, if the initial designs have “good” properties, the
obtained flexible SLHDs also tend to have the same properties. Theoretical results on
the constructed designs are developed. In addition, for two special cases when s = 2
and 3, we provide some discussion on the sizes of the whole design and each slice
for Methods I-III. Furthermore, an optimization algorithm is developed for selecting
uniform flexible SLHDs under the commonly used centered L2-discrepancy criterion.
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Nested LHDs are widely used in computer experiments with multiple levels of
accuracy (Qian 2009; Sun et al. 2014; Yang et al. 2014, 2016). Without loss of gen-
erality, consider a computer experiment with two-level of accuracy, the low-accuracy
experiment (LE) and the high-accuracy experiment (HE). Denote the designs for LE
and HE as Dl and Dh , respectively. If Dh ⊂ Dl and they are both LHDs (after
levels being properly collapsed if necessary), then the pair of designs (Dh, Dl) is
called a nested LHD. A flexible SLHD constructed in this paper is also a special
nested LHD, each of its slice can be viewed as a small LHD that nested in the
whole design. Besides, for a design constructed using Algorithms 1 or 2, each of
its slices is also a special nested LHD after its levels being properly collapsed. In gen-
eral, a flexible SLHD can be used for computer experiments with multiple levels of
accuracy.
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Appendix: Proof of Theorem 6

(i) It is known that N = m1 +m2, andm1|N , m2|N . So we havem1|m2 andm2|m1,
as all the numbers are positive integers, therefore, m1 = m2 = N/2.

(ii) For the positive integersm1,m2, andm3, sincem1 ≤ m2 ≤ m3, N = m1+m2+m3
and mi |N for i = 1, 2, 3, then we have

m1 + m2 ≤ 2m3 and m3|(m1 + m2),

which imply

m1 + m2 = 2m3, or (7)

m1 + m2 = m3. (8)

From Eq. (7), it is easy to deduce that m1 = m2 = m3. From Eq. (8) and m2|N ,
we have m2|2(m1 + m2), which implies m2|2m1; since m1 ≤ m2, m1 and m2
have the following relation,

2m1 = m2, or (9)

2m1 = 2m2. (10)

If Eq. (9) holds, it is easy to deduce that m2 = 2m1, m3 = 3m1, and m1 <

m2 < m3. Alternatively, if Eq. (10) holds, it is easy to deduce that m3 = 2m1 and
m1 = m2 < m3. This completes the proof. 
�
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