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Abstract
The present work introduces a mixture INAR(1) model based on the mixing Pegram
and binomial thinning operators with a finite range {0, 1, . . . , n}. The new model can
be used to handle equidispersion, underdispersion, overdispersion, zero-inflation and
multimodality. Several probabilistic and statistical properties are explored. Estimators
of the model parameters are derived by the conditional maximum likelihood method.
The asymptotic properties and numerical results of the estimators are also studied. In
addition, the forecasting problem is addressed. Applications to real data sets are given
to show the application of the new model.

Keywords Binomial AR(1) processes · Pegram operator · Binomial thinning
operator · Parameter estimation · Forecasting

1 Introduction

During the past few decades, there has been an upsurge of interest in the field of count
data time series analysis. In particular, INAR(1) models have attracted the attention
of a great number of researchers due to the strong application value, see Weiß (2008).
The most common way to construct INAR(1) processes is based on different types of
thinning operators. The binomial thinning operator “◦” is the most popular one which
was proposed by Steutel and Van Harn (1979). It is defined as
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α ◦ X =
X∑

i=1

Bi , (1)

where {Bi } is an independent identically distributed (iid) Bernoulli(α) random
sequence independent of X and α ∈ [0, 1]. Based on the binomial thinning oper-
ator, some INAR(1) processes have been proposed, see, for example, Kim and Lee
(2017), Bourguignon and Vasconcellos (2015) and Jazi et al. (2012) and Bourguignon
et al. (2019), and the references therein. The models cited above are suitable to model
count data having an infinite range {0, 1, . . .}.

The use ofmixturemodels is another approach for constructing INAR(1) processes.
As pointed out by Shirozhan and Mohammadpour (2018a) and Khoo et al. (2017),
the mixture models provide an appealing tool for time series modeling, having been
used inmodeling population heterogeneity. It is well-known that finite mixture models
provide more flexibility in empirical modeling and are able to cater for multimodality
in the data. For these reasons, some mixture INAR(1) models based on Pegram’s
operator have been proposed. The Pegram’s operator was proposed by Pegram (1980)
and is defined below.

Definition 1 (Pegram’s Operator) Consider two independent discrete random vari-
ables U and V . Pegram operator mixes U and V with the weights φ and 1 − φ as

Z = (φ, U ) ∗ (1 − φ, V ) (2)

with the corresponding marginal probability function

P(Z = j) = φP(U = j) + (1 − φ)P(V = j), j = 0, 1, 2, . . .

Based on Pegram and different types of thinning operators, three new INAR(1)
models have been proposed. Khoo et al. (2017) introduced a novel INAR(1) process
to provide more flexibility in empirical modeling. Shirozhan and Mohammadpour
(2018a, b) proposed INAR(1) models with Poisson marginal distribution and serially
dependent innovation, respectively. However, the above three models focus on count
data having an infinite range {0, 1, . . .}. The binomial AR(1) (BAR(1)) process, pro-
posed by McKenzie (1985), is the most common way to model count data having a
finite range {0, 1, . . . n}. The definition of the BAR(1) model is given below.

Definition 2 (BAR(1) Model) Let p ∈ (0; 1) and ρ ∈ (max{− p
1−p ,− 1−p

p }; 1).
Defined β := p(1 − ρ) and α := β + ρ. Fix n ∈ N. A BAR(1) process {Xt } is
defined by the recursion

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1) wi th X0 ∼ B(n, p), (3)

where all thinnings are performed independently of each other, andwhere the thinnings
at time t are independent of (Xs)s<t .

The BAR(1) model has been widely used due to its strong application value. Some
authors have studied this model during the past ten years. Cui and Lund (2010) studied
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inference methods for the BAR(1) model. Weiß (2009a) investigated marginal and
serial properties of jumps in the BAR(1) process. Weiß (2009b) proposed several
approaches to monitor a binomial AR(1) process. Weiß and Kim (2013) presented
four approaches for estimating the parameters of the BAR(1) model. Weiß (2013)
considered the moments, cumulants, and estimation of the BAR(1) model. Scotto
et al. (2014) introduced new classes of bivariate time series models being useful to fit
count data time series with a finite range of counts. Yang et al. (2018) presented a new
approach for estimating the parameters of the self-exciting threshold BAR(1) model.

The binomial index of dispersion, BID, is a useful metric which is used to quan-
tify the dispersion behavior of a count data random variable X with a finite range
{0, 1, . . . n}. It is defined as

BID = nσ 2

μ(n − μ)
,

where μ and σ 2 are the mean and variance of the random variable X , respectively.
A finite range count data random variable is said to have overdispersion if BID > 1,
it is equidispersed if BID = 1, and it is underdispersed if BID < 1. The BID of
binomial distribution equals one, which leads to the result that the BAR(1) model can
not explain underdispersion and overdispersion. To solve this problem, some extended
BAR(1) models were proposed. Weiß and Pollett (2014) considered a class of density-
dependent BAR(1) process nt with range {0, 1, . . . n}, where the thinning probabilities
were not constant in time but rather depend on the current density nt/n. Kim andWeiß
(2015) considered the modeling of count data time series with a finite range having
extra-binomial variation.Möller et al. (2016) proposed types of self-exciting threshold
BAR(1) models for integer-valued time series with a finite range, which are based on
the BAR(1) model. Möller et al. (2018) developed four extensions of the BAR(1)
processes, which can accommodate a broad variety of zero patterns.

To better model count data with bounded support, in this paper, we introduce a mix-
ture INAR(1) model with bounded support based on the mixing Pegram and binomial
thinning operators. One main advantage of the mixture model is that multimodality
can be well described. Furthermore, the new model not only has the ability to handle
equidispersion, underdispersion and overdispersion, but also gives good performances
in explaining the zero-inflated phenomenon.

The contents of this paper are organized as follows. In Sect. 2, we introduce the
new model. Some probabilistic and statistical properties are investigated. In Sect. 3,
the CML method is used to estimate the model parameters. Section 4 presents some
simulation studies for the proposed estimation method. In Sect. 5, the forecasting
problem is addressed. Section 6 gives two real data examples and the forecasting
methods discussed in Sect. 5 are applied. The paper ends with a discussion section.

2 Definition and properties of the new process

In this section, a mixture INAR(1) model with a finite range {0, 1, . . . , n} based on the
mixing Pegram and binomial thinning operators is presented. Note that the BAR(1)
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process defined in (3) comprises two thinned elements: α ◦ Xt−1 and β ◦ (n − Xt−1).
Pegram’s mixing operator (∗) with mixing weight φ on the two integer-valued random
variables α ◦ Xt−1 and β ◦ (n − Xt−1) yields the proposed model given below.

Definition 3 (Mixture of Pegram-BAR(1) Model) Let φ, α, β ∈ (0; 1). Fix n ∈ N and
the initial value of the process X0 ∈ {0, 1, . . . , n}. Then themixture of Pegram-BAR(1)
model {Xt } is defined by the recursion

Xt = (φ, α ◦ Xt−1) ∗ (1 − φ, β ◦ (n − Xt−1)), (4)

where ◦ and ∗ are the binomial and mixing Pegram thinning operators, respectively.
The random variables α ◦ Xt−1 and β ◦ (n − Xt−1) are independent of each other
when Xt−1 is given. All thinnings are performed independently of each other and
the thinnings at time t are independent of (Xs)s<t . For convenience, we denote the
new model by MPTBAR(1) (BAR(1) model with the mixture of Pegram and binomial
thinning operators) model.

Transition probabilities are very important in determining the process since the
MPTBAR(1) model is Markovian. The transition probabilities of the MPTBAR(1)
model are given in the following proposition.

Proposition 1 For fixed n ∈ N, the transition probabilities of the MPTBAR(1) model
are given by

P(Xt = i |Xt−1 = j) = I{i≤ j,i≤n− j}
(

φ

(
j

i

)
αi (1 − α) j−i

+ (1 − φ)

(
n − j

i

)
β i (1 − β)n− j−i

)

+ I{i≤ j,n− j<i}φ
(

j

i

)
αi (1 − α) j−i

+ I{ j<i,i≤n− j}(1 − φ)

(
n − j

i

)
β i (1 − β)n− j−i . (5)

Remark 1 As pointed out by a referee: from (5), the MPTBAR(1) model encounters
the problem that the impossible one-step transitions exist. To be specific, for i, j ∈
{0, 1, . . . , n}, we have P(Xt = i |Xt−1 = j) = 0 if j < i and n − j < i . For example,
without loss of generality, suppose that n = 6, we have P(Xt = 6|Xt−1 = 1) = 0,
P(Xt = 6|Xt−1 = 2) = P(Xt = 5|Xt−1 = 2) = 0, P(Xt = 6|Xt−1 = 3) =
P(Xt = 5|Xt−1 = 3) = P(Xt = 4|Xt−1 = 3) = 0, P(Xt = 6|Xt−1 = 4) = P(Xt =
5|Xt−1 = 4) = 0 and P(Xt = 6|Xt−1 = 5) = 0. With the referee’s help, this problem
will be fixed in Sect. 7.

The strict stationarity and ergodicity of the MPTBAR(1) model are very important
to establish the asymptotic properties of the parameter estimates. Then we state the
following theorem.
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Theorem 1 The process {Xt } is an irreducible, aperiodic and positive recurrent (and
thus ergodic) Markov chain. Hence, there exists a strictly stationary process satisfying
Eq. (4).

Proof Suppose that I is the state space of {Xt }. From Definition 3, we know that
I = {0, 1, . . . , n} is finite. Firstly, from (5), for ∀ i, j ∈ I, we have

P(Xt+1 = 0|Xt = j) = φ(1 − α) j + (1 − φ)(1 − β)n− j > 0

and

P(Xt+1 = i |Xt = 0) = I{i=0}[φ + (1 − φ)(1 − β)n]
+ I{i �=0}

[
(1 − φ)

(
n

i

)
β i (1 − β)n−i

]
> 0.

For ∀ i, j ∈ I, we have

P(Xt+2 = i |Xt = j) =
n∑

k=0

P(Xt+2 = i, Xt+1 = k|Xt = j)

=
n∑

k=0

P(Xt+1 = k|Xt = j)P(Xt+2 = i |Xt = j, Xt+1 = k)

=
n∑

k=0

P(Xt+1 = k|Xt = j)P(Xt+2 = i |Xt+1 = k)

≥ P(Xt+1 = 0|Xt = j)P(Xt+2 = i |Xt+1 = 0) > 0.

For ∀ i, j ∈ I, based on P(Xt+2 = i |Xt = j) > 0, we have

P(Xt+3 = i |Xt = j) =
n∑

k=0

P(Xt+3 = i, Xt+2 = k|Xt = j)

=
n∑

k=0

P(Xt+2 = k|Xt = j)P(Xt+3 = i |Xt = j, Xt+2 = k)

=
n∑

k=0

P(Xt+2 = k|Xt = j)P(Xt+3 = i |Xt+2 = k)

≥ P(Xt+2 = 0|Xt = j)P(Xt+3 = i |Xt+2 = 0) > 0.

By the similar way, for ∀ i, j ∈ I and s ≥ 4, we can prove that

P(Xt+s = i |Xt = j) > 0.
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Thus, we can conclude that for ∀ i, j ∈ I and m ≥ 2, we have

P(Xt+m = i |Xt = j) > 0.

This implies primitivity and thus the process is ergodic with uniquely determined
stationary marginal distribution since we have a finite Markov Chain. 
�

Next, some statistical properties, such as the autocorrelation function and binomial
dispersion index BID, are studied. Since the one-step conditional moments are the
most important regression properties, we give the following proposition now.

Proposition 2 Suppose {Xt } is the stationary process defined in (4), the one-step con-
ditional moments of {Xt } are given by

E(Xt |Xt−1) = [φα − (1 − φ)β]Xt−1 + (1 − φ)nβ,

E(X2
t |Xt−1) = (n2 − n)(1 − φ)β2 + n(1 − φ)β + [φα2 + (1 − φ)β2]X2

t−1

+ [φα − φα2 + (1 − φ)β2 − 2n(1 − φ)β2 + (1 − φ)β]Xt−1.

Proof It is easy to obtain

E[Xt |Xt−1] = φαXt−1 + (1 − φ)β(n − Xt−1)

= [φα − (1 − φ)β]Xt−1 + (1 − φ)nβ

and

E[X2
t |Xt−1] = φE[(α ◦ Xt−1)

2|Xt−1] + (1 − φ)E
[(

β ◦ (n − Xt−1)
)2|Xt−1

]

= φ[αXt−1 + α2Xt−1(Xt−1 − 1)]
+ (1 − φ)[β(n − Xt−1) + β2(n − Xt−1)(n − Xt−1 − 1)]

= (1 − φ)(nβ + n2β2 − nβ2) + [φα2 + (1 − φ)β2]X2
t−1

+ [φ(α − α2) + (1 − φ)(β2 − 2nβ2 − β)]Xt−1.


�
Based on the one-step conditional moments of theMPTBAR(1) process in Proposi-

tion 2, the mean and variance of our model can be given by the following proposition.

Proposition 3 Suppose {Xt } is the stationary process defined in (4), the mean and
variance of {Xt } are given by

E(Xt ) = (1 − φ)nβ

1 − [φα − (1 − φ)β] ,

Var(Xt ) = φ(1 − φ)nβ(α − α2) + (1 − φ)2nβ(β2 − 2nβ2 − β)[
1 − (

φα2 + (1 − φ)β2
)][

1 − (
φα + (1 − φ)β

)]
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+ (1 − φ)(n2β2 − nβ2 + nβ)

1 − [φα2 + (1 − φ)β2] − (1 − φ)2n2β2

[
1 − (

φα + (1 − φ)β
)]2 .

Proof Based on Proposition 2, we have

E(Xt ) = E[E(Xt |Xt−1)] = E
[(

φα − (1 − φ)β
)
Xt−1 + (1 − φ)nβ

]

= (1 − φ)nβ

1 − [φα − (1 − φ)β] ,

E(X2
t ) = E[E(X2

t |Xt−1)] = (1 − φ)(n2β2 − nβ2 + nβ)

1 − [φα2 + (1 − φ)β2]
+ φ(α − α2) + (1 − φ)(β2 − 2nβ2 − β)

1 − [φα2 + (1 − φ)β2] E(Xt )

= φ(1 − φ)nβ(α − α2) + (1 − φ)2nβ(β2 − 2nβ2 − β)[
1 − (

φα2 + (1 − φ)β2
)][

1 − (
φα − (1 − φ)β

)]

+ (1 − φ)(n2β2 − nβ2 + nβ)

1 − [φα2 + (1 − φ)β2] ,

Var(Xt ) = E(X2
t ) − [E(Xt )]2

= φ(1 − φ)nβ(α − α2) + (1 − φ)2nβ(β2 − 2nβ2 − β)[
1 − (

φα2 + (1 − φ)β2
)][

1 − (
φα + (1 − φ)β

)]

+ (1 − φ)(n2β2 − nβ2 + nβ)

1 − [φα2 + (1 − φ)β2] − (1 − φ)2n2β2

[
1 − (

φα + (1 − φ)β
)]2 .


�
Next, we give the expression for the binomial dispersion index of the MPTBAR(1)

process.

Proposition 4 Suppose {Xt } is the stationary process defined in (4), the binomial
dispersion index BID of {Xt } is given by

BID =
[
1 − (

φα − (1 − φ)β
)]2[

φ(α − α2) + (1 − φ)(β2 − 2nβ2 − β)
]

(1 − φα)
[
1 − (

φα2 + (1 − φ)β2
)][

1 − (
φα + (1 − φ)β

)]

+ (nβ − β + 1)
[
1 − (

φα − (1 − φ)β
)]2

(1 − φα)
[
1 − (

φα2 + (1 − φ)β2
)]

− (1 − φ)nβ
[
1 − (

φα − (1 − φ)β
)]2

(1 − φα)
[
1 − (

φα + (1 − φ)β
)]2 .

We will see in Sect. 4, the MPTBAR(1) model has ability to model equidispersion,
overdispersion and underdispersion according to the true values of the model param-
eters. In the following proposition, we consider the autocorrelation function of the
MPTBAR(1) model.
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Proposition 5 Suppose {Xt } is the stationary process defined in (4), for any non-
negative integer h, the autocovariance at lag h is given by

Cov(Xt , Xt+h) = [φα − (1 − φ)β]hVar(Xt ). (6)

Proof It is easy to obtain

Cov(Xt , Xt+h) = E(Xt Xt+h) − E(Xt+h)E(Xt )

= E
[
Xt

(
φαXt+h−1 + (1 − φ)β(n − Xt+h−1)

)]

− E(Xt )E
(
φαXt+h−1 + (1 − φ)β(n − Xt+h−1)

)

= [φα − (1 − φ)β]E(Xt Xt+h−1)

− [φα − (1 − φ)β]E(Xt )E(Xt+h−1)

= [φα − (1 − φ)β]Cov(Xt , Xt+h−1)

= · · · = [φα − (1 − φ)β]hVar(Xt ).


�
Remark 2 From (6), it follows that the autocorrelation function of the MPTBAR(1)
model can be given by Corr(Xt , Xt+h) = [φα − (1 − φ)β]h for h ≥ 0.

To obtain the unique stationary distribution of theMPTBAR(1) process, aMarkov–
Chain approach, proposed by Weiß (2010), is applied. Let P denote the transition
matrix of the MPTBAR(1) process, i.e.,

P = (P( j |i))i, j=0,1,2... (7)

with P( j |i) = P(Xt = j |Xt−1 = i) is the transition probability given in (5). Let
� denote the stationary marginal distribution of our process. Then, by solving the
invariance equation � = �P, the marginal distribution will be obtained. We will
show the the marginal distribution plots of our model in Sect. 4.

3 Conditional maximum likelihood estimation

Suppose that {Xt } is a strictly stationary and ergodic solution of the MPTBAR(1)
model. Our aim is to estimate the parameter η = (α, β, φ)� from a sample
(X1, X2, . . . , XT ). We assume that n is known. The CML method is used to esti-
mate the model parameters. Furthermore, some analytical and asymptotic results for
estimators are derived. Assume that x1 is fixed. The CML estimates can be obtained
by maximizing the conditional log-likelihood function for the MPTBAR(1) model

�(η) = log
( T∏

t=2

P(Xt |Xt−1)
) =

T∑

t=2

log
(
P(Xt |Xt−1)

)
, (8)
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where P(Xt |Xt−1) is defined in (5). We use numerical optimization methods to obtain
the CML estimates because the CML estimates do not have closed form.

Theorem 2 There exists a consistent CML estimator of η, maximizing (8), that is also
asymptotically normally distributed,

√
T − 1

⎛

⎝
α̂CML − α

β̂CML − β

φ̂CML − φ

⎞

⎠ d−→N(0, I−1(η)),

I(η) is the Fisher information matrix.

Proof To prove Theorem 2, we have to check if Condition 5.1 in Billingsley (1961)
is satisfied. Let I be the state space of {Xt } and Pη( j |i) = P(Xt = j |Xt−1 = i).
For ∀ i, j ∈ I, the set D of (i, j) such that Pη( j |i) > 0. First, D is independent
of η. Furthermore, for ∀ (i, j) ∈ D, Pη( j |i) are polynomials in α, β, φ. So partial
derivatives in α, β, φ up to any order exist and are continuous functions in α, β, φ.

Without loss of generality, we will assume n > 2 in the proof below. The gradients
of

Pη(0|0) = φ + 2(1 − φ)(1 − β)n,

Pη(0|1) = φ(1 − α) + 2(1 − φ)(1 − β)n−1,

Pη(0|2) = φ(1 − α)2 + 2(1 − φ)(1 − β)n−2,

are shown to be linearly independent, i.e. the matrix

⎛

⎝
∂Pη(0|0)/∂α ∂Pη(0|0)/∂β ∂Pη(0|0)/∂φ

∂Pη(0|1)/∂α ∂Pη(0|1)/∂β ∂Pη(0|1)/∂φ

∂Pη(0|2)/∂α ∂Pη(0|2)/∂β ∂Pη(0|2)/∂φ

⎞

⎠

has rank 3.
So Condition 5.1 in Billingsley (1961) is satisfied, and there exists a consistent

CML estimator of η that is also asymptotic normally distributed (Billingsley 1961,
Theorems 2.1 and 2.2). 
�

4 Simulation study

In this section, we conduct a simulation study to the finite sample performances of
the CML estimates. The initial value X0 is fixed at 3. We generate the data from the
MPTBAR(1) model and set the sample sizes T = 50, 100, 200, 500. In simulations,
the mean squared error (MSE), mean absolute deviation error (MADE) and standard
deviation (SD) are computed over 1000 replications. The true values of the parameters
are selected as:

(a) (n, α, β, φ) = (5, 0.9, 0.8, 0.1) (BID = 0.9845, underdispersion);
(b) (n, α, β, φ) = (5, 0.8, 0.7, 0.2) (BID = 1, equidispersion);
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Fig. 1 Sample paths, ACF and marginal distributions of the MPTBAR(1) model for: (a) (n, α, β, φ) =
(5, 0.9, 0.8, 0.1); (b) (n, α, β, φ) = (5, 0.8, 0.7, 0.2); (c) (n, α, β, φ) = (10, 0.3, 0.4, 0.5); (d) (n, α, β,

φ) = (40, 0.3, 0.8, 0.4)

(c) (n, α, β, φ) = (10, 0.3, 0.4, 0.5) (BID = 2.1155, overdispersion; zero-inflation);
(d) (n, α, β, φ) = (40, 0.3, 0.8, 0.4) (multimodality).

Figure 1 shows the sample paths, autocorrelation function (ACF), marginal distri-
butions of some typical MPTBAR(1) models. Note that the ACF of the MPTBAR(1)
model with (n, α, β, φ) = (10, 0.3, 0.4, 0.5) indicates that the samples are not
stemmed from a first-order autoregressive process. The explanation for this phe-
nomenon is that the first-order autocorrelation coefficients of the MPTBAR(1) model
is close to zero under this situation.

The summary of the simulation results are shown in Table 1. We observe that MSE,
MADE and SD of the estimators decrease as the sample size n increases, as expected.
The CML estimation method can produce reliable estimates for the model parameters.
Figure 2 shows the Q–Q plots of CML estimators for the MPTBAR(1) model with
(n, α, β, φ) = (10, 0.3, 0.4, 0.5). Q–Q plots in Fig. 2 appear to be roughly normally
distributed as expected. Similar results can be obtained from the MPTBAR(1) model
with other parameter combinations. To save space, the figures are omitted here.

5 Forecasting for theMPTBAR(1) process

The forecasting problem is always an important topic in time series analysis. The
most common method of forecasting is to use the conditional expectation, which
yields forecasts with minimum mean square error. Based on the above reason, We
use this method to forecast a MPTBAR(1) process. The h-step-ahead predictor of the
MPTBAR(1) model is given by

X̂t+h |Xt = E[Xt+h |Xt ], h = 1, 2, . . .
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Fig. 2 Q–Q plots of the CML estimators for the MPTBAR(1) model with n = 10, α = 0.3, β = 0.4,
φ = 0.5 and sample size T = 500

From the properties of the binomial thinning operator, we have the following propo-
sition.

Proposition 6 Suppose {Xt } is defined in (4), the h-step conditional mean of Xt can
given by

E(Xt+h |Xt ) = [φα − (1 − φ)β]h Xt + (1 − φ)nβ
1 − [φα − (1 − φ)β]h

1 − [φα − (1 − φ)β] .

Proof It is easy to obtain

E(Xt+1|Xt ) = [φα − (1 − φ)β]Xt + n(1 − φ)β,

E(Xt+2|Xt ) = E
[(

φαXt+1 + (1 − φ)β(n − Xt+1)
)∣∣Xt

]

= E
[[[φα − (1 − φ)β](φαXt + (1 − φ)β(n − Xt )

) + (1 − φ)nβ
]∣∣Xt

]

= [φα − (1 − φ)β]2Xt + [φα − (1 − φ)β](1 − φ)nβ + (1 − φ)nβ,

E(Xt+h |Xt ) = [φα − (1 − φ)β]h Xt + (1 − φ)nβ

h−1∑

j=0

[φα − (1 − φ)β] j

= [φα − (1 − φ)β]h Xt + (1 − φ)nβ
1 − [φα − (1 − φ)β]h

1 − [φα − (1 − φ)β] .


�
Remark 3 It can be easily seen that E(Xt ) = limh→∞ E(Xt+h |Xt ) = (1−φ)nβ

1−[φα−(1−φ)β] .
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From Proposition 6, based on the sample X1, X2, . . . , Xt , the h-step-ahead predic-
tor X̂t+h , h ∈ N, can be given by

X̂t+h = [φ̂α̂ − (1 − φ̂)β̂]h Xt + (1 − φ̂)nβ̂
1 − [φ̂α̂ − (1 − φ̂)β̂]h

1 − [φ̂α̂ − (1 − φ̂)β̂] , h ∈ N,

where α̂, β̂ and φ̂ are estimators for α, β and φ, respectively.
However, this procedure will seldom produce integer-valued X̂t+h . For this, Free-

land and Mccabe (2004) proposed that using the h-step-ahead forecasting conditional
distributions to forecast the future value. Freeland and Mccabe (2004), Möller et al.
(2016), Li et al. (2018) and Maiti and Biswas (2017) have applied this method to
forecast their processes. As pointed out by Möller et al. (2016), this approach leads
to forecasts being themselves counts and therefore being coherent with the sample
space, and the point forecasts are easily obtained from the median or the mode of the
forecasting distribution. By the Chapman–Kolmogorov equations, ph(xt+h |Xt ), the
h-step-ahead conditional distribution of Xt+h given Xt of the MPTBAR(1) process,
can be given by

ph(xt+h |Xt = xt ) = P(Xt+h = xt+h |Xt = xt ) = [Ph]xt,xt+h ,

where P denotes the transition matrix defined by (7).
Now,wehaveobtained theh-step-ahead conditional distribution, as ph(xt+h |Xt , η),

where η = (α, β, φ). Estimating η before we implement the forecasting method is the
problem we concern. For this, we can use CMLmethod in practice. As pointed out by
Theorem 2, the CML estimate η̂C M L is asymptotically normally distributed around
the true value η0. Following Li et al. (2018), we have the next theorem.

Theorem 3 For a fixed x ∈ {0, 1, . . . , n}, the quantity ph(x |Xt , η̂C M L) has an asymp-
totically normal distribution, i.e.,

√
T − 1

(
ph(x |Xt , η̂C M L) − ph(x |Xt , η0)

) d−→N(0,DI−1(η)D�),

where D =
(

∂ ph(x |Xt ,η)
∂α

∣∣∣
η=η0

,
∂ ph(x |Xt ,η)

∂β

∣∣∣
η=η0

,
∂ ph(x |Xt ,η)

∂φ

∣∣∣
η=η0

)
, I(η) is the Fisher

information matrix in Theorem 2.

Based on Theorem 5, the 100(1− α)% confidence interval for ph(xt+h |Xt , η) can
be given by

Cα
η = (

ph(x |Xt , η̂C M L) − σ√
T − 1

u1− α
2
, ph(x |Xt , η̂C M L) + σ√

n
u1− α

2

)
,

where σ =
√
DI−1(η)D�, u1− α

2
is the (1 − α

2 )-upper quantile of N (0, 1).
To compare the two forecasting methods, we will apply the two methods to a real

data in Sect. 6.
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Fig. 3 Sample path, ACF and PACF of the prostitution data

Table 2 Descriptive statistics for the prostitution data

Minimum Median Mean Variance BID p0 Maximum n

0 0 0.53 0.67 1.28 0.64 4 96

6 Data analysis

In this section, the first application of the MPTBAR(1) model is conducted to real
data for illustrative purposes. We consider a data set which represents monthly counts
of car beats in Pittsburgh (among n = 42 such car beats) that had at least one police
offense report of prostitution in that month. The data consist of 96 observations,
starting from January 1990 and ending in December 1997. This data set has been
investigated by Möller et al. (2018). Figure 3 shows the sample path, ACF and PACF
of the observations. The descriptive statistics for the data are listed in Table 2. The
binomial dispersion index of the data set is given by 1.28, indicating that the data set
shows overdispersion.

We illustrate the competitiveness and usefulness of the MPTBAR(1) model in
applications by comparing our process with the following models:

• BAR(1) model (McKenzie 1985);
• RZ-BAR(1), IZ-BAR(1), ZIB-AR(1) and ZT0-BAR(1) models (Möller et al.
2018). The unknown parameters of the fitted models are estimated by the (con-
ditional) maximum likelihood method. Also, the following statistics are derived:
Akaike information criterion (AIC), Bayesian information criterion (BIC), the
binomial index of dispersion BID and zero frequency p0.

From Table 3, we conclude that the BAR(1) model is not suitable to fit this data
set because the BAR(1) model fails to capture the zero-inflated and overdispersed
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Table 3 Estimates of the parameters and statistics for the prostitution data

Model Estimates AIC BIC BID p0

MPTBAR(1) α̂ = 0.3240 181.5 189.2 1.45 0.65

β̂ = 0.0233

φ̂ = 0.5655

BAR(1) ρ̂ = 0.255 188.1 193.2 1 0.58

π̂ = 0.013

RZ-BAR(1) ρ̂ = 0.308 189.0 196.7 1.11 0.61

π̂ = 0.016

ω̂ = 0.198

IZ-BAR(1) ρ̂I Z = 0.251 188.1 195.8 1.18 0.62

π̂I Z = 0.013

ω̂ = 0.251

ZIB-AR(1) ρ̂Z I B = 0.271 185.0 192.7 1.31 0.63

π̂Z I B = 0.0013

ω̂α = 0.520

ω̂β = 0.0091

ZT0-BAR(1) π̂0 = 0.008 185.7 190.9 1.10 0.59

π̂ = 0.020

characteristics of the data. The explanation for this phenomenon is that the marginal
distribution of the BAR(1) model is the binomial distribution. While the RZ-BAR(1)
and IZ-BAR(1) processes can capture the zero-inflation and overdispersion of the
data, the two models perform poorly when we consider AIC and BIC. Comparing the
ZIB-AR(1) model with the ZT0-BAR(1) model, we find that the ZIB-AR(1) model
performs better based on each statistics (except BIC). Furthermore, we find that the
MPTBAR(1) and ZIB-AR(1) models provide the most satisfactory results for this data
set. To be specific, the MPTBAR(1) and ZIB-AR(1) models have good performances
and the MPTBAR(1) model gives a best fit when we consider AIC and BIC. Although
the MPTBAR(1) and ZIB-AR(1) models can both describe overdispersion accurately,
the ZIB-AR(1) model performs a little better than the MPTBAR(1) model based on
BID. Since the zero frequency of the two models are very close to the empirical zero
frequency, we conclude that the MPTBAR(1) and ZIB-AR(1) models have the ability
to capture the zero-inflated feature of the data precisely. Based on these considerations,
the MPTBAR(1) and ZIB-AR(1) models are the most appropriate for this data set.

For the models above, we consider their corresponding Pearson residual analysis.
The standardized Pearson residual are defined as

et = Xt − E(Xt |Xt−1)√
Var(Xt |Xt−1)

, t = 2, . . . , T .

As pointed out by Möller et al. (2018), if the model is correctly specified, then the
residuals should have zero mean, unit variance, and no significant serial correlation
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Fig. 4 h-step-ahead forecasting conditional distribution of the prostitution data: (a) h = 1; (b) h = 2; (c)
h = 3; (d) h = 4; (e) h = 5; (f) h = 6

Table 4 Properties of the
standardized Pearson residuals

Model Standardized Pearson residuals

Mean Variance ρ̂et (1) ρ̂e2t
(1)

MPTBAR(1) −0.002 0.94 0.07 − 0.05

BAR(1) −0.037 1.21 0.00 0.06

RZ-BAR(1) −0.022 1.11 0.03 0.06

IZ-BAR(1) −0.023 1.05 0.01 0.06

ZIB-AR(1) −0.025 0.92 − 0.02 0.05

ZT0-BAR(1) −0.027 1.14 − 0.03 0.03

in et and e2t . We compute the mean, variance, first-order autocorrelation coefficient of
the et and e2t in Table 4. Comparing the properties of the residuals in Table 4, ρ̂et (1)
and ρ̂e2t

(1) of the six models are competitive. Based on the mean and variance of the
residuals, we find that the MPTBAR(1) model gives the best performance. Thus, the
MPTBAR(1) process is the most appropriate model for fitting this data set. Based on
the above discussions, we conclude that theMTPBAR(1) process is an useful model to
fit the count data with bounded support and suitable to capture the binomial dispersion
and zero inflation characteristics of the data.

To check the predictability of the MPTBAR(1) model and compare the two fore-
casting methods discussed in Sect. 5, another simulation study is given to investigate
the h-step-ahead forecasting for varying h of the MPTBAR(1) model. We give the
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Fig. 5 Sample path, ACF and PACF of the drunken driving data

plots of the h-step-ahead conditional distribution in Fig. 4 when h = 1, 2, 3, 4, 5, 6.
The median or the mode of h-step-ahead conditional distribution can be both viewed
as the point prediction. For comparison, a standard descriptive measure of forecast-
ing accuracy, namely, predicted mean absolute deviation (PMAD) is adopted. This
measure can be give by

PMAD = 1

H

H∑

h=1

|Xt+h − X̂t+h |.

The conditional expectation and conditional distribution point predictors of the
series are presented in Table 5. FromTable 5, PMADvalue of themode of h-step-ahead
conditional distribution point predictors is smaller than the h-step-ahead conditional
expectation point predictors. Themedian of h-step-ahead conditional distribution point
predictors give a poor performance based on PMAD. The reason is that the median of
one-step-ahead conditional distribution point predictor is ten which is much greater
than the observed value zero. The explanation for this phenomenon may be that the
one-step-ahead conditional distribution in Fig. 4 is heavy tail. Based on these facts,
we conclude that the mode of h-step-ahead conditional distribution point predictors
are more appropriate for the data set.

As pointed out by a referee, we should compare the results obtained by fitting the
MPTBAR(1) and BAR(1) models to the data set, with other competitors capable to
copewith overdispersion andunderdispersion. For this,we conduct another application
of theMPTBAR(1) model to a real data set for comparative purposes. We compare the
MPTBAR(1) model with the BAR(1) and SETBAR(1) (Möller et al. 2016) models.
The SETBAR(1) model with appropriate parameter settings has ability to capture
equidispersion, underdispersion and overdispersion. The second data set is computed
from the file PghCarBeat.csv, which was downloaded fromThe Forecasting Principles
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Table 5 h-step-ahead predictions for the real data

h Observed values h-step conditional expectation h-step-ahead conditional distribution

Median Mode

1 0 0.5983 10 0

2 2 0.5288 1 0

3 1 0.5167 0 0

4 0 0.5146 0 0

5 0 0.5143 0 0

6 0 0.5142 0 0

PMAD 0.6827 2.0000 0.5000

Table 6 Descriptive statistics for the drunken driving data

Minimum Median Mean Variance BID Maximum n

0 3 3.82 5.94 1.71 13 96

Table 7 Comparison of AIC and
BIC for the SETBAR(1) model
with different threshold values

R α1 β1 α2 β2 AIC BIC

3 0.1724 0.0704 0.1922 0.0924 434.1 444.4

4 0.2764 0.0714 0.2808 0.0710 437.5 447.8

5 0.2794 0.0711 0.2709 0.0734 437.5 447.8

6 0.2200 0.0740 0.2461 0.0908 436.3 446.6

7 0.2624 0.0723 0.3036 0.0710 437.4 447.6

site (http://www.forecastingprinciples.com). The data set is given for 42 different car
beats and reach from January 1990 to December 1997. For each month t , the value
xt counts the number of car beats reported at least one case of drunken driving. So
our data have finite range with fixed upper limit n = 42 and the series contains 96
observations.

Figure 5 shows the sample path, ACF and PACFof the observations. The descriptive
statistics for the data are listed in Table 6. Table 7 shows the CML estimates, AIC and
BIC for the SETBAR(1) model with different threshold values. From the sample path
of the observations in Fig. 5, the threshold values R ∈ {3, . . . , 7} is a reasonable
range. By comparing AIC and BIC in Table 7, the SETBAR(1) model with a threshold
R = 3 is the best choice. Table 8 lists the CML estimates, AIC and BIC for the
MPTBAR(1) model, the BAR(1) model and the SETBAR(1) model with a threshold
R = 3. From Table 8, we find that the BAR(1) model gives the worst fit based on AIC
and BIC. Although the SETBAR(1) model gives the best fit when we consider AIC,
the MPTBAR(1) model performs best if considering BIC. Thus, the MPTBAR(1)
and SETBAR(1) models are competitive for fitting this data set. However, we have
to select a suitable threshold by experiments when we decide to use the SETBAR(1)
model. Selecting a suitable threshold sometimes may lead to some inconveniences in
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Table 8 Estimates of the
parameters and statistics for the
drunken driving data

Model Estimates AIC BIC

MPTBAR(1) α̂ = 0.5961 435.2 442.9

β̂ = 0.1120

φ̂ = 0.2560

BAR(1) p̂ = 0.0912 439.6 444.7

ρ̂ = 0.2093

SETBAR(1) α̂1 = 0.1724 434.1 444.4

β̂1 = 0.0704

α̂2 = 0.1922

β̂2 = 0.0924

practice. Based on these considerations, we recommend the use of the MPTBAR(1)
model to fit this data set.

7 Discussion

The aim of the present work is to introduce a mixture INAR(1) process to model count
data with a finite range {0, 1, . . . , n}. Parameter estimation, forecasting and diagnostic
checking for the newmodel are investigated. Applications to real data sets are given to
show the application of the new model. However, more research is still needed for one
aspect of the MPTBAR(1) model. The issue is pointed out by a referee: from (5), the
MPTBAR(1) model encounters the problem that the impossible one-step transitions
exist. For example, P(Xt = n|Xt−1 = 1) = 0, P(Xt = n − 1|Xt−1 = 2) = P(Xt =
n|Xt−1 = 2) = 0. Following the referee’s suggestion, we consider another mixture
INAR(1) model {Xt } below to fix the problem.

Definition 4 Let φ, α ∈ (0; 1). Fix n ∈ N and the initial value of the process X0 ∈
{0, 1, . . . , n}. The new model {Xt } is defined by the recursion

Xt = (φ, α ◦ Xt−1) ∗ (1 − φ, εt ), (9)

where ◦ and ∗ are the binomial and mixing Pegram thinning operators, respectively.
{εt } is a sequence of iid discrete random variables on {0, 1, . . . , n}. We suppose that
the mean and variance of {εt } are με and σ 2

ε .

The one-step transition probabilities of this model are given by

P(Xt = i |Xt−1 = j) = I{i≤ j}
(

φ

(
j

i

)
αi (1 − α) j−i + (1 − φ)P(εt = i)

)

+ I{ j<i}(1 − φ)P(εt = i)

= I{i≤ j}φ
(

j

i

)
αi (1 − α) j−i + (1 − φ)P(εt = i). (10)
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From (10), all one-step transition probabilities are positive.
Next, we consider the one-step marginal conditional moments. We obtain

E(Xt |Xt−1) = αφXt−1 + (1 − φ)με,

E(X2
t |Xt−1) = α2φX2

t−1 + (αφ − α2φ)Xt−1 + (1 − φ)(μ2
ε + σ 2

ε ).

Based on the one-step marginal conditional moments, the mean and variance are given
by

E(Xt ) = (1 − φ)με

1 − αφ
,

Var(Xt ) = με(αφ − α2φ)(1 − φ)

(1 − αφ)(1 − α2φ)
+ (1 − φ)(μ2

ε + σ 2
ε )

1 − α2φ
− μ2

ε(1 − φ)2

(1 − αφ)2
.

The binomial dispersion index of the model is given by

BID = nμε(αφ − α2φ)(1 − φ)(1 − αφ)

[nμε(1 − φ)(1 − αφ) − μ2
ε(1 − φ)2](1 − α2φ)

+ n(1 − φ)(1 − αφ)2(μ2
ε + σ 2

ε )

[nμε(1 − φ)(1 − αφ) − μ2
ε(1 − φ)2](1 − α2φ)

− nμ2
ε(1 − φ)2

nμε(1 − φ)(1 − αφ) − μ2
ε(1 − φ)2

.

We verify that the autocovariance function of the process defined in (9) is given by

Cov(Xt , Xt+h) = (αφ)hVar(Xt ), h ∈ {0, 1, . . .}. (11)

From (11), the autocorrelation function is given by Corr(Xt , Xt+h) = (αφ)h for
h ∈ {0, 1, . . .}.

7.1 Special cases

Now, we will consider two special cases of the process defined by (9). The first special
case is that {εt } in (9) is assumed to follow binomial distribution B(n, p). Then the
mean and variance of {εt } are

E(εt ) = np, Var(εt ) = np(1 − p).

The one-step transition probabilities of the model are

P(Xt = i |Xt−1 = j) = I{i≤ j}φ
(

j

i

)
αi (1 − α) j−i + (1 − φ)

(
n

i

)
pi (1 − p)n−i .
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Following the referee’s suggestion andMöller et al. (2016), since the transition matrix
is primitive and the state space of the model is finite, the process is ergodic with
uniquely determined stationary marginal distribution.

The one-step conditional moments of the process are given by

E(Xt |Xt−1) = αφXt−1 + (1 − φ)np,

E(X2
t |Xt−1) = α2φX2

t−1 + (α − α2)φXt−1 + np(np + 1 − p)(1 − φ).

The mean and variance of the model are given by

E(Xt ) = (1 − φ)np

1 − αφ
,

Var(Xt ) = np(α − α2)φ(1 − φ)

(1 − αφ)(1 − α2φ)
+ np(np + 1 − p)(1 − φ)

1 − α2φ
− (np)2(1 − φ)2

(1 − αφ)2
.

The binomial dispersion index of the model is given by

BID = n2 p(α − α2)φ(1 − φ)(1 − αφ)

[n2 p(1 − φ)(1 − αφ) − (np)2(1 − φ)2](1 − α2φ)

+ n2 p(1 − φ)(1 − αφ)2(np + 1 − p)

[n2 p(1 − φ)(1 − αφ) − (np)2(1 − φ)2](1 − α2φ)

− n(np)2(1 − φ)2

n2 p(1 − φ)(1 − αφ) − (np)2(1 − φ)2
.

The second special case is that we assume {εt } in (9) follows zero-inflated binomial
distribution ZIB(n, p, π). The probability mass function of ZIB(n, p, π) is given by

P(εt = k) =
{

π + (1 − π)(1 − p)n, k = 0,
(1 − π)

(n
k

)
pk(1 − p)n−k, k = 1, 2, . . .

The mean and variance of ZIB(n, p, π) are

E(εt ) = np(1 − π), Var(εt )=(1 − π)np(1 − p)+(1 − π)(np)2 − (1 − π)2(np)2.

The one-step transition probabilities of the model are

P(Xt = i |Xt−1 = j) = I{i≤ j}φ
(

j

i

)
αi (1 − α) j−i

+ (1 − φ)

(
π I{i=0} + (1 − π)

(
n

i

)
pk(1 − p)n−i

)
.

Similarly, the model is ergodic with uniquely determined stationary marginal distri-
bution.
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The one-step conditional moments of the model are given by

E(Xt |Xt−1) = αφXt−1 + np(1 − φ)(1 − π),

E(X2
t |Xt−1) = α2φX2

t−1 + (αφ − α2φ)Xt−1

+ np(1 − p)(1 − φ)(1 − π) + (np)2(1 − φ)(1 − π).

The mean and variance of the model are

E(Xt ) = np(1 − φ)(1 − π)

1 − αφ
,

Var(Xt ) = np(α − α2)φ(1 − φ)(1 − π)

(1 − αφ)(1 − α2φ)

+ np(np + 1 − p)(1 − φ)(1 − π)

1 − α2φ
− (np)2(1 − φ)2(1 − π)2

(1 − αφ)2
.

The binomial dispersion index BID of the model is given by

BID = n2 p(α − α2)(1 − αφ)φ(1 − φ)(1 − π)

[n2 p(1 − αφ)(1 − φ)(1 − π) − (np)2(1 − π)2(1 − φ)2](1 − α2φ)

+ n2 p(1 − φ)(1 − αφ)2(1 − π)(1 − p + np)

[n2 p(1 − π)(1 − φ)(1 − αφ) − (np)2(1 − π)2(1 − φ)2](1 − α2φ)

− n(np)2(1 − π)2(1 − φ)2

n2 p(1 − π)(1 − φ)(1 − αφ) − (np)2(1 − π)2(1 − φ)2
.

Also, themarginal distributions of the two specialmodels can be obtained by solving
the invariance equation�

′ = �
′
P

′
, where�

′
and P

′
are the marginal distribution and

transition matrix of the process.
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