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Abstract

The statistical inference of multicomponent stress-strength reliability under the adap-
tive Type-II hybrid progressive censored samples for the Weibull distribution is
considered. It is assumed that both stress and strength are two Weibull independent ran-
dom variables. We study the problem in three cases. First assuming that the stress and
strength have the same shape parameter and different scale parameters, the maximum
likelihood estimation (MLE), approximate maximum likelihood estimation (AMLE)
and two Bayes approximations, due to the lack of explicit forms, are derived. Also, the
asymptotic confidence intervals, two bootstrap confidence intervals and highest poste-
rior density (HPD) credible intervals are obtained. In the second case, when the shape
parameter is known, MLE, exact Bayes estimation, uniformly minimum variance unbi-
ased estimator (UMVUE) and different confidence intervals (asymptotic and HPD)
are studied. Finally, assuming that the stress and strength have the different shape and
scale parameters, ML, AML and Bayesian estimations on multicomponent reliability
have been considered. The performances of different methods are compared using the
Monte Carlo simulations and for illustrative aims, one data set is investigated.
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1 Introduction

Among various censoring schemes, Type-I and Type-II censoring schemes are two
most effective schemes. Type-1 scheme finished the test at the pre-chosen time and
Type-II scheme finished the test at the pre-determined number of failures. The hybrid
scheme which is a mixing of Type-I and Type-II schemes has been introduced by
Epstein (1954). This censoring scheme finished the test at time 7* = min{X,,.,, T},
where X,,., is the m-th failure times from » items and 7 > 0. Because the above
schemes cannot remove active units during the test, the progressive censoring scheme
is introduced. In this scheme, the active units can be ejected during the test. Combining
the Type-II and progressive schemes, the progressive Type-II censoring is obtained.
Also, mixing the hybrid and progressive schemes, the progressive hybrid censoring
is provided. In a progressive hybrid censoring scheme which was initiated by Kundu
and Joarder (2006), N units are put on the experiment and Xi.,,:8 < -+ < Xpu:N
come from a progressive censoring scheme, with the censoring scheme (Ry, ..., Ry)
and halting time 7* = min{X,,.,.5, T}, T > 0. If X,,.,.xy < T, the test finished at
time X,,.,.y and n failures happen. Also, if Xj.,.xy < T < Xj+1:1:N, the test finished
at time 7 and J failures happen. It is obvious that the sample size in progressive
hybrid censoring is random. So, with a small number of samples, statistical inference
is not applicable in practical situations. To solve this problem, Ng et al. (2009) have
been provided the adaptive hybrid progressive scheme. In this paper, we work on the
adaptive Type-II hybrid progressive censoring (AT-IIl HPC). In AT-II HPC scheme, let
XN < -+ < Xp:p:n be a progressive censoring sample with scheme (R, ..., R,)
and 7 > 0 is fixed. If X,,.,.y < T, the experiment proceeds with the progressive
censoring scheme (R, ..., R,) and stops at the X,,.,.y (see Fig. 1). Otherwise, once
the experimental time passes time 7' but the number of observed failures has not
reached n, we would want to terminate the experiment as soon as possible for fixed
value of n, then we should leave as many surviving items on the test as possible.
Suppose J is the number of failures observed before time T, i.e. Xy < T <
Xi+1n:N, J =0, .-+, n. After passed time 7', we do not withdraw any items at all
except for the time of the n-th failure where all remaining surviving items are removed.

So, we set
J

Rjy1=--=R,1 =0, R, =N—n—ZR,-.
i=1

In Fig. 2, the schematic representation of this situation is given. From now
on, a AT-II HPC sample will be denoted with {Xi, ..., X,;} under the scheme
{N,n,T,Ry,...R,} such that X;j < T < Xj4i. Getting the effective number of
failures n is one of the most advantages of AT-II HPC scheme. Also, this scheme can
be reduced to Type-II progressive censoring and Type-II censoring by setting 7 = 0
and T = oo, respectively. By this approach, the tester will be able to control the test.
Very recently, Nassar and Abo-Kasem (2017) estimated the inverse Weibull parame-
ters and AL Sobhi and Soliman (2016) studied the estimation of exponentiated Weibull
model under this scheme.

In recent years much attention has been paid to the multicomponent stress-strength
model. A multicomponent system is arranged of common stress and k independent
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Ry Rs Ry
Xl:n:N X2:n:N Xn:n:N T
End

Fig.1 Experiment ends before time T (X,.,,.y < T)

Ry R Ry R,
Xl:n:N XQ:n:N XJ:n:N T XJ+1:n:N anlzn:N Xn:n:N
End

Fig.2 Experiment ends after time 7' (X,,.,.y > T)

and identical strengths component. This system is reliable when s (1 < s < k) or more
of k components simultaneously survive. This model corresponds to the G system:
s-out-of-k. Some examples can be given that is consistent with the G system. For
example, in a suspension bridge, the wind loading, heavy traffic, corrosion, etc. can be
regarded as stresses and the k number of vertical cable pairs, which support the bridge
deck, can be considered as strengths. The bridge will only survive if a minimum s
number of vertical cable through the deck is not damaged. As another example of the
G system: 4-out-of-8, we can point to a V-8 engine of an automobile. As a contractor,
if at least 4 cylinders are firing then the automobile may be to derive.
Bhattacharyya and Johnson (1974) improved the multicomponent reliability as

Rs x = Platleast s of (X1, ..., Xx) exceed Y]

k
k o0
-3 :(p) / [ — Fx I [Fx W1 Pd Fy (),
p=s

—0o0

when the strengths (X1, ..., Xj) are independent and identically distributed ran-
dom variables with cdf Fx(.) and the stress Y is a random variable with the cdf
Fy(.). Estimation of the multicomponent stress-strength parameter has been stud-
ied for different distributions like for example exponential (Hanagal 1999), bivariate
Kumaraswamy (Kizilaslan and Nadar 2018) and Marshall-Olkin Bivariate Weibull
(Nadar and Kizilaslan 2016).

The multicomponent stress-strength parameter, in the case of complete samples,
has been estimated by many authors. But, in the case of censored samples, not many
studies have been done for inference about multicomponent reliability, whereas, in
some practical situations, we deal with different censoring schemes. For example, we
consider the following situation. If the water capacity of a reservoir in a region on
December of the previous year is less than the amount of water achieved on Aguste at
least two years out of the next 5 years, we claim that there will be no excessive drought
afterward. In this example, it is very likely, we observe censored samples rather than
complete samples from both populations.
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In reliability theory, the Weibull distribution is one of the most widely used lifetime
distributions with respect to other distributions. The probability density, cumulative
distribution and failure rate functions of the Weibull distribution with the shape and
scale parameters « and 6, respectively, are as follows:

_x%

f(x)=%x°‘71e 7, x>0, a,0>0, (1)

Fx)=1—e"7, x>0, a,60>0,
o a1
H(x)=5x , x>0, a,0 >0, 2)

respectively. Hereafter, we denote the Weibull distribution, with the probability distri-
bution function in (1), by W (e, 0). As we see, the failure rate function of W (¢, 6) is an
increasing, constant or decreasing functions fora > 1, = 1 and @ < 1, respectively.
Because of this, many researchers may be used the Weibull distribution to analyze the
data sets.

In this paper, on the basis of AT-II HPC samples, we study the statistical infer-
ences for multicomponent stress-strength reliability model R,y = PJatleast s of
(X1, ..., Xp) exceed Y. Therefore, {X;1,..., X}, i =1,...,n,and {Yy,...,Y,}
can be considered as n + 1 AT-II HPC samples from two different Weibull dis-
tributions, which one of them for stress and the other for strength. The censoring
schemes for {X;i,..., Xy}, i = 1,...,n, and {Yy,...,Y,} can be studied as
{K,k, T, Ri1,...Rip}, i=1...,nand {N,n, T1, S, ... Sp}, respectively.

This paper is arranged as follows: In Sect. 2, we infer Ry ; when the stress and
strength have the common and unknown shape parameter «. First, we obtain the ML
estimation of R; ;. As we will see, because the different equations to obtain the MLE
cannot be solved explicitly, we derive the AMLE’s of R, which has explicit forms.
Also, we provide the asymptotic and two bootstrap confidence intervals for the mul-
ticomponent stress-strength parameter. The Bayesian estimation is another estimate
which we obtain for R; . Because the Bayesian estimation cannot be obtained in a
closed form, we use two approximation method: Lindley approximation and MCMC
method. By using the MCMC method, we derive the HPD credible intervals. In Sect. 3,
when the stress and strength have the common and known shape parameter «, we derive
the MLE, asymptotic confidence interval, exact Bayes estimate, HPD credible interval
and UMVUE of R; k. In Sect. 4, when all parameters are different and unknown, we
infer on Ry ;. In this section, we obtain the MLE, AMLE and Bayesian inference of
multicomponent stress-strength reliability parameter. In Sect. 5, simulation results and
data analysis are provided. Finally, we conclude the paper in Sect. 6.

2 Inference on R; i if @, 6 and A are unknown
2.1 Maximum likelihood estimation of R;

Suppose that X ~ W(«, 0) and Y ~ W(«, 1) are two independent random variables
with unknown common shape parameter « and different scale parameters 6 and A. For
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Weibull distribution using (1) and (2), the multicomponent stress-strength reliability
is given by

/\

o 1 - o
) Yl (G (1 — e~ T )Y Pdy (Put:t = ")

IIM” IIM’*

/-\\

) teﬂ_l(l N

1 ! m_;,_l_l
S (3, e [t
{OICUSEER
qg )O+rp+q)

The MLE of Ry will be obtained by deriving the MLE of 6, A and «. It is known
that n systems are put on the life-testing experiment. So, to constructing the likelihood
function, the samples can be shown as

gM

<

IIM

Observed stress variables Observed strength variables
Y1 X1 ... Xk

: and T
Y, D, CS . ¢4

where {Y,...,Y,} is a AT-II HPC sample from W (x, A) under the scheme
{N,n,T1,81,...,8)} such that Y;, < T1 < Yy,41. Also, {X;1,.... Xk}, i =
1,...,n, is a AT-II HPC sample from W(w, 0) under the AT-II HPC scheme
{K.k, T2, Ri1, ..., Rix} such that X;;, < T» < X;,+1. Therefore, the likelihood
function of 0, A and « can be obtained as

L((X,BMdata)—Cll_[ cz]‘[fm,)]‘[ — Fx ()11 = Fx (i) 1% |y (i)

Ji
< [0 = Frol® 11 = Fy (na)1>

Regrading the advantages of this likelihood function, this function is a general like-
lihood function. For example, in the case 71 = T» = oo, the likelihood function
for Ry in the progressive censored sample is obtained. When £ = 1 the likelihood
function for R = P(X < Y) in the adaptive hybrid progressive censored scheme (by
making a few changes in symbols) is obtained. Also, when k =l and 77 = T, = oo
the likelihood function for R = P(X < Y) in the progressive censored scheme (by
making a few changes in symbols) is derived. Moreover, when 71 = 7> = oo and
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R;j =0, S; = 0 the likelihood function for Ry  in complete sample is earned. Fur-
thermore, when k = 1,71 = T, = oo and R;; = 0, S; = 0, the likelihood function
for R = P(X < Y) in complete sample is achieved.

Based on the observed data, the likelihood function is as

1 n Ji
—X[Zy?‘ +) Sy Snyfi]
i=1 i=1

Q" k+1) 1
L(a, B, Aldata) = clch(Hqu_ >e
1

n
[szlj + ZZRUXU + Zlexzki|
X(l_[l_[xlqj—l>e i=1j=1 i=1 j=1 .

“)
The log-likelihood function ignoring the additive constant, from (4), is

(o, B, A|data) = n(k + 1) log(er) — nk log(6) — nlog(r)

+ (o — 1)<Zlog<yz) + Z Z 1og<x,,>)

i=1 j=1

S PDICE WIS WY

i=1 j=1 i=1 j=1

1 l
— X[Zy? + S+ Sny,?]
i=1 i=1

So, with solving the following equations, the MLE of 6, A and «, say § 7 and o,
respectively, can be resulted

%___ [ZZXU+ZZRUXU+ZRII(X,](:|’ 5)

i=1 j=I i=1 j=I
e no1 IR "
ﬁz_x+ﬁ[;yi +;Siy,' + Suyy |, (6)
az_n(k+1)+ilo(.) 1 Z “ log(yr)
Ey o - ZlYi 3 - y; 1oglyi

Ji
+ Z Siqu log(y;) + Snyg log(yn)i|
i=1
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n k n k n .
1
- ZZlog(xij) - g[Zfo‘j log(xij) + ZZRijx;f‘, log(xij)
i=1j=1 i=1 j=1 i=1j=1
n
+ ) Ry log<xik)] =0. )

i=1

Obviously, we can obtain from (5) and (6)

6(a) = [ZZxUJrZZR,x”JFZR,kak}

i=1j=1 i=1 j=1

~ 1 J1

(@) = ;[_X;yf‘ +X;Siy? +Sny2‘]'
i= i=

To find the solution of Eq. (7), a simple iterative procedure, for example, the Newton-
Raphson method, can be applied. So, once the value of @ should be derived and then
6 and X can result. Consequently, the MLE of Ry ; becomes

k k—p -~
RMLE k—P> (D70 8
RO

p=s g=0 q
2.2 Approximate maximum likelihood estimation

As we have seen in the previous section, based on AT-II HPC samples, the MLE of 6,
A, o and hence Ry ; cannot be obtained in a closed form. To solve this problem, we
try to obtain AMLEs of the parameters.

Let Z” has Extreme value distribution, in symbols Z” ~ EV (u, o), if it has the
pdf as follows:

—u
Sfzr(2) = —eTl_e 7, zeR, peR,o>0.

It is obvious that if Z' ~ W(«, 6) and Z” = log(Z’), then Z” ~ EV(u, o), where
w = élog(@) and 0 = % Now, suppose that {Y7, ..., Y,} be a AT-Il HPC sample
from W (a, A) under the scheme {N,n, T1, S1,...,S,}suchthat Y, < T < Yy, 41.
Also, {Xi1,..., Xik}, i = 1,...,n,is a AT-Il HPC sample from W («, ) under the
AT-ITHPCscheme {K, k, T, R;1, ..., Rix}suchthat X;;, < T, < X, j,41.Moreover,
let U;; = log(X;;) and V; = log(Y;). So, Ujj ~ EV(u1,0) and V; ~ EV(u2,0),
where

1 1 1
u1 = —log(@), wr» = —log(r), o = —.
o o o
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So, with ignoring the constant value, based on the observed data {U;1, ..., Ujt}, i =
1,...,nand {Vq, ..., V,}, the log-likelihood function can be obtained by

n

n k n k
£*(w1, pno, o|data) = ZZIU — ZZe”’-” — ZZ Rije'i — Z Rjelik

i=1 j=1 i=1 j=1 i=1 j=1
n n Ji

+ Zzi - Zez" - ZS,-eZ" — Spe — (nk 4 n)log(o),
j=1 i=1 i=1

wij — [ Vi —
where f;; = —and 7= —

2 The usual equations, with taking derivatives
of the above equatlon with respect to 1, 12 and o, can be derived by

n
ge* = —l nk — Zzet” - ZZszet’/ - ZRtke ] =0,
M1 o i=1 j=1 i=1 j=1
_ Ji
fo e fe sl
et [ k - tij - lij
e [ 305710 3 ST 3 oIV ST

i=1 j=1 i=1j=1 i=1 j=1

n
+ZZ, Zz, ZS,z,e’—Snzne ]=O.
i=1

We derive the AMLEs of 6, A, o and Rq 1, by expanding the functions ¢’/ and €%, in

Taylor series around the points v; = log (—log(l —qi)) and vlfj = log (—log(l —ql.’j)),
respectively, where

n
n m+ > S

w=1- [ — it
m=n—i+1m + 1 + Z Sy
I=n—m+1
and
k
a;=1- T[] ’:""":1 =1,k i=1,...n
m=k=jitlm4+14+ Y R
I=k—m+1

Then, we keep only the first-order derivatives in Taylor series and obtain the following
results:

t.. 4] - =
e =ajj + Pijtij and e = a; + Bizi,
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where
/ / -
Qjj = e"i (1 — vl{j), Bij = e and & = e (1 —v), Bi=e".

The AMLE:s of u1, 2 and o, say ,lil, ,&2 and é, respectively, by applying the linear
approximations, can be provided as

i =A +6B1, f1n=A1+6B,
—(D1 + D2) + /(D1 + D2)2 +4(Cy + Co)(E1 + E»)

6=
2(C1 + )
where
n k
Z Z ﬂl ujj + Z Z le,Bljulj + Z RixBikuixr
i=1j=1 i=1j=1
Al = — ,
Z Z ,8,, + Z Z Rl]ﬁl] + Z Rik Bik
i=1j=1 i=1j=
n Ji _ _
Z +ZS,~,3iv,~+Snﬂnv,,
i=1

i=1
A — —
Z IBi + Z Silgi + Sn,Bn
j i=1

=

—nk + Z Z ajj + Z Z Rijaij + Z Rirair

i=1j=1 i=1j=1
B = n k n ’
Z Z ﬂlj + Z Z leﬂl/ + Zle,Blk
i=1j=1 i=1j=1
n
—n+Z5li+ZSi5li+Sn5ln
i=1 i=1
By = ;
n -
Zﬂ +ZS1,31 +S11/3n
i=1 i=1
n
Cl_nk_nkBl+BIZZaz]+BIZZRUaz]+BIZleazk
i=1 j=1 i=1 j=1
n J n
_B%ZZﬁij_B%ZZﬂinij_BlzZRikﬁik,
i=1 j=1 i=1 j=1 i=1
Ji

Cz—n—nBz—i-BzZa,—i—BzZSoz,—i—BzS an
i=1 i=1

n Ji
~B3) Bi—B5) BiSi— BiSibu,
i=1 i=1
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n ok n k
= ZZ(I — aij)(uij — A1) 4+ 2By ZZ,Bij(uij —Ap)

i=1 j=1 i=1 j=1

n b
- ZZRijOlij(uij —Ay)

i=1 j=1

n ) n
+2B1 ) D RijBij(uij — A — Y Ripaix(uix — Ar)

i=1 j=1 i=1

n
+2B1 ) RiPik (uix — Av),
i=1

n n Ji
=Y (1—a)( —A2) +2By Y fi(vi — A2) = Y S;ai(vi — As)
= i=1 i=1
Ji
+2B; Z SiBi(vi — A2) — Spay(vy — A2) + 2828, B, (v — A2),
i=1

ZZﬁ,,(u,, —AD 4+ Z RijBij(uij — AD)* + Z RiBin(uix — A1)?,

i=1 j=1 i=1j=1

E; = Zﬁi(vi — A"+ Z SiBi(vi — A2)* + SuPu(vn — A2)%.

i=1 i=1

After deriving [ Ml, /,LQ and 0 a the AMLEs of 6, A, o and so Ry g, sayé k & and Iés,k,

TR Mz

respectively, can be evaluated by 9 =es, h=e5, q= L. and so
0’
k k—p A
2 k\(k—p (=16
=), ®
p=s g=0 p 4 9+)u(p+CI)

2.3 Confidence intervals
2.3.1 Asymptotic confidence interval

In this section, we derive the asymptotic confidence interval of R; . To reach this aim,
by using the multivariate central limit theorem, we obtain the asymptotic distribution
of unknown parameters, i.e. «, 6, A, and by applying the delta method, we provide the
asymptotic distribution of Rj .

We denote the expected Fisher information matrix of ® = (61, 62, 63) = («, 6, 1)
by J(®) = —E(I(®)), where [(®) = [I;;] = [azz/(aeiaej)], i,j=1,2,3,is the
observed information matrix. In our case, the observed Fisher information matrix is
obtained by
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nk+1) 1< d
e —[21:)’? log? (yi) + 2}&')’? log? (i) + Suy2 10g2(yn)]
1= 1=

1 n k n ) n
— 3 [ DO aflog? (i) + Y > Rijxlog® (xij) + > Rikxfy logz(xz'k)},

i=1 j=1 i=1 j=1 j=1

1 n k n J n
Iy = _2[2 D xflogxip) + Y > Rijxilog(xij)+ Y Rigx log(xik)} =D,

i=1 j=1 i=1 j=1 i=1

)

1 n J1
Iy =5 [ D i log(yvi) + ) Siv log(yi) + Sy log<yn)} = I,
i=1 i=1

n
== B[S+ Y + Ykt |
i=1 j=1 i=1 j=1

n 2 1
By =1 - F[Zymzsiymsnys}
i=1 i=1

I3 =0 = I,

Lemma 1 Suppose that {Z,, ..., Z,} is a AT-Il HPC sample from W («, 0) with cen-
sored scheme {N,n, T, Ry, ..., R,}, then

l .
() E(Z%) =0Ci_1 Y %,
d=1 Ta

(i) E(Z% log(Z:)) = =L Z “"—f[x/f(Z) — log(%4)],

(iii) E(Z¢ log?(Z;)) = 2551 Z “’d{[vf(z) log(2)1? +¢(2,2)},

where ¥ (x), ¢(x,y) are Euler s psi and Riemann’s zeta functions, respectively. Also,
na=N-—d+1+ 2?:11 R, Cioy = Hiz’:l Nd, di,d = 1_[7:1 ﬁ
I#i

Proof As given in Ng et al. (2009), if we let {Zy, ..., Z,} be a AT-Il HPC sample
from W(«, 6), then the pdf of Z; is

i i
_ o _ _ald
fr:0=Ci1 Y _aiafz@Il = Fz(@)" ' = 5 Ci- > iz e
d=1

d=1

(i) A simple method is presented for proving this part.
(i) We use the table of the integrals from Gradshteyn and Ryzhik (1994) (formula
4.352(1)) and prove this part as

E(Z{ log(Zi)) =/O 7%10g(2) fz,(2)dz
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o i o n4
= G0 L | opoe s

1 S g (1))

d=1 'ld

(iii)) We use the table of the integrals from Gradshteyn and Ryzhik (1994) (formula
4.358(2)) and prove this part as

E(Z% log*(Z)) =/ 2% log?(2) f2,(2)dz
0

o i > g
= gCi,l Zai’dfo zz"‘_llog2(z)e_Z 0 dz

-0 o [y - ()] + s

d=1 'd

By using Lemma 1,

Jit = —n(ka—; D + aiz[zci—l Z (j;—’zd {[W(Z) — log (779_01)]2 +¢(2, 2)}

i=1 d=1 "d

+ZSZCZ lzald

dl"d

x {[1//(2) —log (;")] +22 2)} + 85,Cpi
x ;";’dd {[w(z) log (%")]2“(2, 2)”
LSS et e -] o)

d
" a
+ZZRUC/ IZ L
j=1

zl]
i=1

X {1/(2) — log(EOI + £ 2.2} + Y Ry

i=1
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x ;a'd {[1//(2) log (’79—‘1)]2+§(2,2)”,
JlZ:%[Xn: CHZ [10g( ) (2)]+XH:ZR,JC,1Z“M

i=1j=1 i=1j=1

<[ (%) - v+ - rucir 3222 e () - 2] | =
J13=$[ici_li%[log(nd> (2)] ZSzCz 12(1”1

i=1 d=1

x [1og (24) - w(z>]+scnl§“;“’[log(’f) w<2>H=131,

A0 DO I S0 3 SRS o

i=1 j=I i=1 j=I
ai g
DNTE |
dlnd
Jo3 =0 = Js,
ai qd ai.d An,d
=t A2[;@12 +Zsc,12 +sc,“;nd}

By using the multivariate central limit theorem, (@, 8, ») ~ N3((«, 6, ), TV (e, 6, 1)),
where J~1(«, B, A) is a symmetric matrix which has the following representation:

. J2nJ33 —J12J33 ) —Ji3J»
J e, 0,0) = ——— JuJdsz = Jiz JizJia ,
[J(c, 0, A)] Ji1do — J]22

where
(e, B, M| = —J11Jnds3 — T J3 — J5 .

Also, by using the delta method, the asymptotic distribution of Rg x can be resulted as
RMLE ~ N(Rs k. B) where B =bTJ1(a, 6, )b, in which

b [0Rsk ORvk ORT" [, ORuk 3R]
L da 80 ax | | 88 o |
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with
k k—p
IR 1 k\ (k— P) (=D7A(p+q)
= —_— 10
96 22(1)( q ) ©O+Mp+q)? 1o
Rk _ NN <k> (k—p) (=D 0(p +¢q) an
o =i \p/\ a ) @+rp+q)?
consequently,

1 IRk ) IR\ 2
- |J(a, B )\.)|[< S’k) (111]33_‘]123)%-(8—;’]() (J11]22—]122)

b (OB ) (ORsk Ny
30 Toa ) B

Therefore, a 100(1 — y)% asymptotic confidence interval for Ry x is constructed as
( RMLE _ 21—y \ﬁ RMLE + zl_%\/f’?) )

where z, is 100y -th percentile of N (0, 1).

2.3.2 Bootstrap confidence interval

All we know with certainty is that the asymptotic confidence intervals, for small sample

size, do not perform very well. So the asymptotic confidence intervals can be replaced

by bootstrap confidence intervals as an alternative method. In this section, we propose

two bootstrap parametric methods: (i) percentile bootstrap method which denoted by

Boot-p, based on the original idea of Efron (1982) and (ii) bootstrap-t method which

denoted by Boot-t, based on the idea of Hall (1988).

(i) Boot-p method

1. Provide the AT-II HPC bootstrap sample {yy, ..., y,} from W(«, A) under the
scheme {N,n, T1, Sy, ..., Sy}, provide the AT-Il HPC sample {x;1, ..., xjx}, i =
1,. n from W («, 0) under the scheme {K,k, T5, R;1, ..., R;j;} and estimate
(@, 0 A)

2. Provide the AT-II HPC bootstrap sample {yy, ..., yi} from W (@, /):) under the
scheme {N, n, T1, S1, ..., S} and provide the AT-II HPC sample {x;1, ..., xik},
i =1,...,n from W(a, /9\) under the scheme {K, k, T5, R;1, ..., Rix} and by
them compute the bootstrap estimate Eﬁ‘f’kLE *, using (8).

3. Reiterate step 2 NBOOT times.

4. Allow G*(x) = P(RMIF* < x) be the cdf of RM/F* and define RV} (x) =
G*! (x) for a given x. The 100(1 — y)% Boot-p confidence interval of Ry j is

provided by
sBp (V\ #Bp 14
(®%(3) &% (1-3))-
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(ii) Boot-t method

1. Provide the AT-IT HPC bootstrap sample {y, ..., y,} from W(x, A) under the
scheme {N,n, Ti, S, ..., Sy}, provide the AT-II HPC sample {x;i, ..., Xit},
i = 1 ,n from W(a 6) under the scheme {K, k, T, R;1, ..., Rj}, estimate
@,0, A) and compute RM LE

2. Provide the AT-II HPC bootstrap sample {y}, ..., y;} from W (@, '):) under the
scheme {N, n, T1, S1, ..., Sy}, provide the AT-II HPC sample {x;1, ..., xit},i =
1,...,n from W(a /9\) under the scheme {K, k, 7>, R;1, ..., Rjx}, compute the
bootstrap estimate RM LE* and the statistic:

PMLE DMLE
(Rs,k *_Rs,k )
PMLE
\/V(Rs,k *)

where V(I’Q\sﬁflkLE *) is given in the previous section.
Reiterate step 2 NBOOT times.
4. Allow H(x) = P(T* < x) be the cdf of T*, and define RB Lx) = RMLE +

l(x)1 / V(RMLE) for a given x. The 100(1 — y)% Boot-t confidence interval

of Ry x is given by
=Bt (V =B Y
(R4 () R%(1-3))-

2.4 Bayes estimation of R;

T" =

(O8]

In this section, when the unknown parameters «, 6 and A are independent random
variables, we improve the Bayesian inference about Ry ;. In details, the Bayes estimate
and the corresponding credible intervals of R; , under the squared error loss function,
are derived. To reach this aim, we assume that o has the gamma distribution with the
parameters (ai, b1), 6 and A have the inverse gamma distributions with the parameters
(az, by) and (as, b3), respectively, such that we show in symbols, « ~ I'(ay, b1),
6 ~ 1II'(az, by) and A ~ II" (a3, b3). The joint posterior density function of «, 6 and A
is proportion with the likelihood function based on the observed sample and the prior
distributions of each unknown parameters, i.e.

(o, 0, Aldata) o< L(a, 0, A|data)my ()2 (0)m3(A), (12)
where
@) e e MY my0) o 0 e F | my(h) o APl R
From the Eq. (12), it is obvious that the Bayes estimates of «, 6, A and R; ; cannot

be obtained in a closed form. Therefore, we propose two approximation methods to
obtain them:

e Lindley’s approximation,
e MCMC method.

@ Springer



324 A. Kohansal, S. Shoaee

2.4.1 Lindley’s approximation

Lindley (1980) has proposed one of the most common numerical techniques to derive
the Bayes estimate, in 1980. It is known that the Bayes estimate of U (®) under the
squared error loss function is the posterior expectation of U (®), such that

() data) — [u(©)el®de

(u(®)|data) = feQ(—(”))d@’
where Q(®) = £(0) + p(®), £(®) and p(®) are the logarithm of the likelihood
function and logarithm of the prior density of ®, respectively. Lindley suggested that
E(u(®)|data) would be approximated by

E(u(©)|data) = u—i—% Z Z(ui,-+2uip,-)oij+% Z Z Xk: Zp: €03 Okplt
i J i J

)

=060

where ® = (O0y,...,0y), 1, j,k,p = 1,...,m, © is the MLE of O, u = u(®),
u, = au/ae,', Ujj = 82u/(39539‘/), e,'jk = 333/(39139/39/{), pj = 3,0/89], and
oij = (i, j)th element in the inverse of matrix [—¢;;] all evaluated at the MLE of
the parameters. Therefore, in the case of three parameters ® = (61, 62, 03), after
simplifying the above equation we get
Eu(9)|data) = u + (u1dy + uzds + uzds + dy + ds)
1
+ E[A(Mlall + u012 + u3013)
+ B(u1021 + up022 + u3023) + C(u1031 + uz032 + uzosz)], (13)

which their elements are presented in detail in “Appendix A”. Therefore, the Bayes
estimate of Ry y is

. 1
REY = Rk + [uady + uzdy + dy + ds] + 5[ A2012 + u3013)
+ B(u2022 + u3023) + C(u2023 + u3033)]. (14)
It is notable that all parameters are computed at (, 3, ’):).
Because by applying the Lindley’s method, constructing the credible interval is not

available, so, by using the Markov Chain Monte Carlo (MCMC) method, we obtain
the Bayes estimate and the corresponding HPD credible interval.

2.4.2 MCMC method

After simplifying the Eq. (12), the posterior pdfs of 6, A and « can be easily obtained
as
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n
0|, data ~ IT" nk—l—az,bz—l—ZZxU+ZZR,]xU+Zlextk ,

i=1 j=1 i=1j=1

Ji
Mo, data ~ IT (n—i—ag,bz—i—Zyl +ZSlyl +Snyn>,
i=1 i=1

1 n J1 -
,, )blaX[ny‘wLZSiy?Hny,‘f
e i=1 i=1 -

7(alf, A, data) oc @ k+DFar-1 <1—[ yaol

As we see above, generating samples from the posterior pdfs of 6 and A can be
easily done. On the other hand, because the posterior pdf of o cannot be reduced
analytically to a well-known distribution, generating a sample from 7 («|0, A, data)
is not available, directly. Consequently, with normal proposal distribution, we use the
Metropolis-Hastings method to generate a sample from 7 (|6, A, data). So, the Gibbs
sampling algorithm is as follows:

1. Begin with an initial conjecture (@), 6(0), A(0))-

2. Sett =1.

3. Generate o) from 7 (|01, As—1), data) with the N (o;—1), 1) as the proposal
distribution, using Metropolis-Hastings method

4. Generate 0 from II'(nk + az, by + Z ZJ 1% o 4 Yo 12 Rijx Z(” +
Zi:l lextk(t))
n
5. Generate A¢y from IT'(n + a3, b3 + Y y?m + Z,lel Siyfl(’) + Sy ™).
i=1

k k—p

k — —1)49
6. Evaluate R(;ys x = Z Z < )( p) (=D70a)
q

pliar: 0wy + (P +q)

7. Sett =1+ 1.
8. Reiterate steps 3—7, T times.

Using this algorithm, the Bayes estimate of R; x is given by

T
~ 1
RYE =20 Ruosk (15)
t=1

Also, by applying the method of Chen and Shao (1999), the HPD 100(1 —y)% credible
interval of Rj j is provided.
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3 Inference on R,  if @ is known, 8 and 1 are unknown
3.1 Maximum likelihood estimation of R,

Let {Yy,...,Y,} is a AT-I HPC sample from W(x,A) under the scheme
{N,n,T1,S1,...,S8.} such that Y;;, < T1 < Yy41. Also, {X;1,.... Xk}, | =
1,...,n, is a AT-Il HPC sample from W(«, #) under the AT-II HPC scheme
{K,k, T2, Ri1, ..., Rix} such that X; 5, < T> < X;j,+1. Now, we consider the case
that the common shape parameter « is known. From Sect. 2.1, it can be easily obtained
that the MLE of Rj j is as follows:

. k k—p
5
p=s q=0
-1

k(p+q>[§ £35S +Snyn}

i=1

(16)
lexl] + Z R’kxzki|

By applying a similar method in Sect. 2.2, (ﬁykLE — Rs k) ~ N(0, C), where

o (PRek 2 ELY 2
“\ 80 ) ) Jx
Consequently, a 100(1 — y)% asymptotic confidence interval for R; j is constructed
as
(R?f’kLE — Zl—y/Z\/E, R‘ykLE + Zl—y/Z\/E> ,

where z,, is 100y -th percentile of N (0, 1).

3.2 Bayes estimation of R,

In this section, when the unknown parameters 6 and A are independent random vari-
ables, we improve the Bayesian inference about R; . In details, the Bayes estimate
and the corresponding credible intervals of R; ., under the squared error loss function,
are derived. To reach this aim, we assume that 6 and A have the inverse gamma dis-
tributions with the parameters (a», ) and (a3, b3), respectively. The joint posterior
density function of 6 and A is as follows:

k 7
VA D)™ 2 D)™ - @by

(0, Ala, data) =
©, Al ) antastlgnkta+1T (nk + a))T(n + a3)
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where

n
V= ZZx”—i—ZZR,JxU—f—ZR,kxlk, and U = Zy +ZS,yl + Spys.

i=1 j=1 i=1 j=1
a7

The Bayes estimate of Ry x, under the squared error loss function, can be obtained by
solving the double integral as follows:

RS k —/ / Ry xm(0, Aler, data)dO@d

k k—p

— k — P q/ / L
ZZ( >< )( . 9+)\.(p+q)”(9 A, data)dOd ..

=5 g=0

Using the idea of Kizilaslan and Nadar (2018), the exact Bayes estimate is

k k—p ta
2 (ﬁ)(k;p)wiw 2Fi(w,n+az+Lw+1,7) if |z] <1,
A p=s q=0
RS, =
£ISE ko k) (D ras) o
Z (p)( q )(],,)nk+az 2F1(w nk+ay,w+1, T— Z) if z <—1,
p=s q=0 <
(18)
U+b
where w =nk +n+ax +az, z =1 _wand
V + by
—1 : B-1 p—1
2F1(Ola /3; Y, Z) = / P~ (1 _t))/— — (1 —IZ)_adl, |Z| <1
BB,y —B) Jo

The function 2 Fi(a, B; y, z) is known as the hypergeometric series and is quickly
evaluated and readily available in standard software such as Matlab. Also, by applying
the method of Chen and Shao (1999), the HPD 100(1 — y)% credible interval of Ry &
is provided.

3.3 UMVUE of R,

Let{Yy,---,Y,}isa AT-II HPC sample from W («, 1) under the scheme {N, n, Ty, S1,
,Spysuchthat Yy, < T < Yy 41. Also, { X1, -+, X}, i =1, ,n,is a AT-
II HPC sample from W («, 6) under the AT-II HPC scheme {K, k, T2, Ri1, - - - , Rix}

such that X;;, < To < X;j,+1. When common shape parameter « is known, the
likelihood function is as follows:

o) no k | L1y
L(a|9,k,data)—c1c2 T Hy l_[l_[x;xj_ e 8737, (19)

i=1j=1
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where V and U are given in (17). From Eq. (19), when « is known, we conclude that V
and U are the complete sufficient statistics for 6 and A, respectively. By transforming

Yi* =Y* i =1,...,n, we derive one AT-Il HPC sample from the exponential

distribution with mean A. Now, let

Z) = NY},
Zy=(N -8 — (Y5 —Y7),

Ji—1

N — Z S; — Ji + 1) (Y; —v;_)).
-3s-

) Y]1+l le)’

(
o

ZS, —n+2> ,:"72),
i=1

By Balakrishnan and Aggarwala (2000), we result that Zy, - - - , Z, are independent
and identically random variables which come from an exponential distribution with
mean 1. So, U =Y ", Z; ~ T'(n, %).

Lemma?2 Let Xl*/ = X?}, j=1,...,k, i =1,...,n. By this notation, the condi-
tional pdfs of Y| given U = u and X7, given V = v are respectively as follows:

(u— Ny)"?
Jriv=u(y) = N(n — l)u”—*l’ 0<y<u/N,
(U _ Kx)nk—Z
S v=o @) = K(nk = =25, 0 < x <v/K.
Proof By a similar method as in Kohansal (2017), we prove the lemma. O

Theorem 1 fb\U 0, A), UMVUE of (0, 1) = m, based on the complete suffi-
cient statistics V and U, for 0 and A, respectively, is as follows:

n—1 1 (n 1)
v .
I_Z( l)l (u(p_l_q)> (nk-ﬁ—ll 1) lfU<M(p+q),

-~ =0

Yu®.4) = nk—1 nk—1
Z(—l)’(”“’”)) G fos o
=0 v ( 1 )
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Proof 1t is easy to see that Y| and X7, are two random variables which come from
the exponential distributions with means % % and & 6 , respectively. So,

. * *
¢( 115 Yl) {1 %f KX}FI g N(p+q)Y*,
0 if KX7, <N(p+q)Y},

is an unbiased estimate of (6, 1). Therefore,
Yy 6, r) = E[¢p(X];. Y])IV =v,U =u] / Ixt v=o(X) friju=u(y)dxdy,

where A = {(x,y):0<x <v/K,0<y <u/N,N(p+q)y < Kx}, Ixs v=v(x)
and fy]ﬂU:u (y) are defined in Lemma 2. For v < u(p + ¢), we have

~ - - v/K  Kx/(N(p+q))
Tu©,0) = N(f:HD % / P Ny 2 — Ky dyd
u v
_ v/K n—1
:1_% (U—Kx)nkfz(u— Kx ) dx {Put:ﬁ:t}
Ml’l* Ull — 0 p+q v
1 n—1
=1— _ k=2 _ vt
Sk 1)/0 =0 (1 u(p+q)) a
_l—(nk_1)/1(1_t)nk—znil(_l)[<n—l>( vt )ldt
- 0 1=0 l u(p+q)
l (n—l)
=1- (—)’( - )nl_.
,ZO ulp+q)) (41
nk—1 nk—1
Similarly, forv > u(p-+q), we obtain 1//U 6,2 = Z( 1! (M(P +Q)> ( )
v n+l 1)
=0 ( l
O

Consequently, k, UMVUE of Ry k, is

k k—p
R&—ZZ( )( )( D990, 1). (20)

p=s q=0

4 Inference on R; i if a1, a3, 6 and 1 are unknown

4.1 Maximum likelihood estimation of R;

Suppose that X ~ W(«q,0)andY ~ W(wy, A) are two independent random variables
with different unknown parameters. For Weibull distribution using (1) and (2), the

multicomponent stress-strength reliability is given by
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k

k (0%) o0 1 _Pya_ 1.« _ﬂ k—[?
RSJC:Z(p)T/(; y(xz le Fyi—5 %2 (l—e [ ) dy

p=s

This integral cannot be evaluated in closed form expression, so the numerical solution
is required. Now, let {Y7, ..., Y,} is a AT-Il HPC sample from W («1, A) under the
scheme {N,n, Ti, S1, ..., Sp}suchthatY;, < T1 < Yy, 4+1.Also, {X;1, ..., Xix}, i =
1,...,n, is a AT-II HPC sample from W (w3, 0) under the AT-II HPC scheme
{K,k, T2, Ri1, ..., Rix} such that X;;, < T» < X;j,+1. The likelihood function
based on observed data is

L(ay, a2, 0, A|data)

Ji
l n
_X[ > VY Sy +Snyff2]
i=1 i=1

1 n n
(fif1er S PDITED RS WY
x l_[l_[x;le— )e i=1 j=1 i=1 j=1 ,

i=1j=1
and the log-likelihood function is

£(ay, an, 0, A|data)
= Constant + nk log(a) + nlog(an) — nklog(6) — nlog(i)

n n Ji
1
+ (2= 1) Zlog(yi) - X[Zy,qz + E Sivi® + Sny,?z]
i=1 i=1

i=1

n k n k n
+l—1DYY logxij) — é[ZZx +ZZR,,x +ZR,kx,‘.’,;]

i=1 j=1 i=1 j=1 i=1 j=1
Therefore, the MLEs of 6 and A denoted by % and @ are obtained by

n k
é\(al)zi[ZZx —I—ZZR,jx +ZRsz]

i=1 j=1 i=1 j=1
1 n Ji
AMag) = ;I:Zquz + Z Siy;yz + Snygz:|'
i=1 i=1
Also, the MLEs of & and «; are the solution of the following equations, respectively:

o nk o "
do1  a Zzlog(x”) [ZZX” toettu)

i=1j=1 i=1 j=1
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n ) n
+ YD Rijx{tlog(xij) + Y Rixxfy! log(xz'k)],

i=1j=1 i=1

Froialw Z log(yi)—~ [ Z vt 10g(yz)+2 Siv;? log(yi)+Suyy? 10g(yn)}

30(2

Then, in view of the MLE’s invariance property, the MLE of Ry x is given by

k —~ _~

kNoo [ o~ | _z2a_Ly® o

R%E—EZQ)TA Yl TR T Tk ray. @1
p=s

4.2 Approximate maximum likelihood estimation of R;

In this section, we obtain the AMLEs of 6, A, a1, o2 and Ry ;. Let {Y1, ..., Y,}isa
AT-II HPC sample from W («1, A) under the scheme {N, n, Ty, S1, ..., S,} such that
Y <Ty <Yjp41.Also, {X1, ..., Xik}, i =1,...,n,is a AT-Il HPC sample from
W (o2, 6) under the AT-II HPC scheme {K, k, T2, R;1, ..., Rix} such that X;;, <
T < X;j,+1.Moreover, let U;; = log(X;;) and V; = log(Y;). So, U;; ~ EV (u1, 01)
and V; ~ EV (2, 02), where

1 1 1
pu1 = —log(0), pz=—1log(X), oy =—, op = —.
o] [2%] o] (2%)

So, with ignoring the constant value, based on the observed data {U;1, ..., Uik}, i =
1,...,nand {Vy,..., V,}, the log-likelihood function can be obtained by

n k n
E*(Mlv n2, 01, oz2|data) = Zztu ZZg’l] - ZZRUEU - ZRzke

i=1 j=I i=1 j=I i=1 j=I

n 1
DRESES WL
j=I i=1 i=1
— Spe™ — nklog(oy) — nlog(os),

uij — vi —

2 . . . .
andz; = . The usual equations, with taking derivatives

where #;; =
} o
of the above equation with respect to (41, (2, o1 and o3, can be derived by:

aer M_Zzw_zz%w_ZMe}

Em
Ml i=1 j=1 i=1 j=1

o ! Z G i:s G~ Sue | =0
—_— = ——\n — et — iew — S,e n | — s
o2 i=1 i=1

2
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n
gil |:nk+zzt” Zzt’/ " _Zleﬂu g _ZR;khkelk} =0,

i=1 j=1 i=1 j=1 i=1 j=1
arx

1 |: ‘ , .
s ZZ" B Zziea - ZSiZieZ’ - Snzne“”] =0.
902 o2 =1 =l i=1

Quite similar to Sect. 2.2, we can obtain AMLEs of 11, 12, o1 and o2, say [t1, {12, 01
and &5, respectively, by

/301=A1+C§131, 1302=A2+(§”232,

. —Dy +,/D12+4C1E1 R —D2+,/D%+4C2E2

o] = , or = ,
2C 2C,

where Al, Az, Bl, B>, Cl, C,, Dy, D2, E1 and Ez are given in Sect. 2.2. After

denvmg m uz, 01 and 02, the values 9 A al, az and RS x can be evaluated by

2 g I "
=en , A=e%,d = +,d = + and
a1 e}
~ k—p
A k\ay [ 5, —L2yn—_Llyn L
RvFZ( =) e l—e 0] dy. @
s p/ ) Jo

4.3 Bayes estimation of R;

In this section, we assume that the unknown parameters o1, o have the gamma distri-
butions with the parameters (a1, b1) and (a4, b4) and 6 and X have the inverse gamma
distributions with the parameters (a2, by) and (a3, b3), respectively. We improve the
Bayesian inference about Rj  in this section. The joint posterior density function of
a1, 2,0 and A is proportion with the likelihood function based on the observed sample
and the prior distributions of each unknown parameters, i.e.

m(ay, an, 0, Aldata) o< L(ay, az, 0, Aldata)my (a1)m2(0)73(A)ms(02), (23)
From the Eq. (23), itis obvious that the Bayes estimates of a1, o2, 6, A and R; ; cannot

be obtained in a closed form. Therefore, we utilize the MCMC method. The posterior
pdfs of 0, A, a1 and « are respectively:

n k n
Olay, data ~ IT nk—l—az,bz—i-zz:x +ZZR,jx —i—ZR,kx

i=1 j=1 i=1 j=1

n Ji
Ao, data ~ IT (n +az. b3y ¥+ Y Sy + Sny;72> .
i=1

i=1
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7 (116, data) oc ok~ (]‘[ ]_[ x“l‘l)

i=1j=1

b ——[ZZX +Xn:ZR”xU +Zlexlk:|

i=1 j=1 i=1 j=1

n
7 (aa| A, data) o a£'+“4_1 ( 1_[ yf‘z_1>

i=1

J
1< ‘

—bsor — X[;quz + ;Si)’flz + Snyff{|
e i= i=

As we see above, generating samples from the posterior pdfs of 6 and A can be easily
done. On the other hand, because the posterior pdfs of @1 and « cannot be reduced
analytically to a well-known distribution, generating a sample from 7 (1 |6, data) and
7 (2|1, data) are not available, directly. Consequently, with normal proposal distribu-
tion, we use the Metropolis-Hastings method to generate a sample from 7 (o]0, data)
and 7 (2|2, data). So, the Gibbs sampling algorithm is as follows:

1. Begin with an initial conjecture (@1(0), ®2(0), 90> A(0))-

2. Setr=1.

3. Generate o) from 7 (or1 |0 —1), data) with the N (a1(;—1), 1) as the proposal dis-
tribution, using Metropolis-Hastings method.

4. Generate o) from 7 (o2 |A(;—1), data) with the N (aa;—1), 1) as the proposal dis-
tribution, using Metropolis-Hastings method.

n J
5. Generate 6y from IT (nk + ay, by + Z Z xa“’) Z Z ij Zl(”
i=1j=1 i=l j=1
+ i R I(t)>
Xik .
i=1
n Ji
6. Generate A(y from IT'(n + a3, b3 + Y y?z(’) +> Siy;xz(') + Spyn2®).
i=1 i=1
k QL) — L 22() _yo
y ¥ -
7. Evaluate Rys x = ; (% )Of(g? > ynn=le o o7 (1—e "0 Yk=rdy,
8 Settr=1t+1.
9 Reiterate steps 3-8, T times.
Using this algorithm, the Bayes estimate of R; j is given by
T
RME = Z ()5 k- (24)

Also, by applying the method of Chen and Shao (1999), the HPD 100(1 —y)% credible
interval of Rj j is provided.
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Table 1 Censoring schemes (k. K) CS. (n, N) C.S.

(5, 10) Ry 0,0,0,0,5  (5,10) M 0,0,0,0,5)

Ry  (5,0,0,0,0) Sy (5,0,0,0,0)
Ry (I,1,1,1,1) S5 (LL, L1
(10,200 Ry (0%, 10) 10,20) S84 (0%, 10)
Rs (10, 0%9) S5 (10,0%)
Re (1*10) Se (1*10)

5 Data analysis and comparison study

In this section, to compare the performance of the different methods which described
in the preceding sections, we display some results based on Monte Carlo simulations
and real data.

5.1 Numerical experiments and discussions

In this subsection, the performance of ML, AML and Bayes estimates under different
adaptive hybrid progressive censoring schemes are investigated by the Monte Carlo
simulation. For this purpose, the performances of the different estimates are compared
in terms of biases and mean squares errors (MSEs). Also, the different confidence
intervals, namely the asymptotic confidence intervals, two bootstrap confidence inter-
vals and the HPD credible intervals are compared in terms of the average confidence
lengths, and coverage percentages. The simulation results for the different parameter
values, the different hyperparameters and different sampling schemes are calculated.
The utilized censoring schemes are given in Table 1. Also, we provide 71 = T = 2,
and we consider s = 2 and s = 4. All the results are based on 2000 replications.

In the simulation study, when the common shape parameter « is unknown, the
parameter value ® = (0, A, o) = (1, 1, 3) is used to compare the MLE, AMLE and
different Bayes estimators, in all cases. Three priors are assumed for computing the
Bayes estimators and HPD credible intervals as follows:

Prior 1 : a; =0, b; =0, i=1,2,3.
Prior2: a; =0.1, b; =0.2, i=1,2,3.
Prior 3 : a; =1, b; =2, i=1,2,3.

For different priors and different censoring schemes, the average biases, and MSEs
of the MLE and AMLE using (8) and (9) and Bayes estimates of R, ; via Lindley’s
approximation and MCMC method using (14) and (15) are derived, respectively. The
results are reported in Table 2. From Table 2, it is observed that the biases and MSEs of
the ML and AML estimates are almost similar in most schemes. The Bayes estimates
have less MSEs. Comparing the different Bayes estimates indicates that the best per-
formance in term of MSEs belongs to the Bayes estimates based on Prior 3. Moreover,
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comparing two approximate Bayes methods shows that the biases and MSEs of the
MCMC method are generally smaller than those obtained from the Lindley’s approx-
imation. Actually, with increasing n, for fixed s and &, the biases and MSEs of the ML
and Bayes estimates of Ry ; decrease in all cases. Perhaps one of the most important
reasons is the fact that when n increases, some additional information is gathered and
the number of observed failures increases.

Also, we calculate the 95% confidence intervals for Ry x, based on the asymptotic
distribution of the MLE. Furthermore, the Boot-p, Boot-t confidence intervals and the
HPD credible intervals are computed. In the simulation study, the bootstrap intervals
are computed based on 350 re-sampling. Also, the Bayes estimates and the associated
credible intervals are computed based on 3000 sampling, namely Tpuyes = 3000.
These results include the average confidence or credible lengths, and the corresponding
coverage percentages and they are reported in Table 3. From Table 3, we show that
the bootstrap confidence intervals have the widest average confidence lengths and the
HPD intervals provide the smallest average credible lengths for different censoring
schemes and different priors. Also, the asymptotic confidence intervals are the second
best confidence intervals. Comparing the different confidence and credible intervals
show that the best performance belongs to HPD credible interval based on the Prior 3
and it is evident that the HPD intervals provide the most coverage percentages in most
considered cases. Also, with increasing n, for fixed s and k, the average confidence
or credible lengths decrease and the associated coverage percentages increase in all
cases.

Now let us consider the case when the common shape parameter « is known, the
parameter value ® = (0, A, @) = (2,2,5) is used mainly to compare the MLEs,
different Bayes estimators and UMVUEs. Three priors are assumed for computing
the Bayes estimators and HPD credible intervals as follows:

Prior 4 : a; =0, b; =0, i=1,2.
Prior 5 : a; =02, bj=04, i=1,2.
Prior 6 : a; =2, b, =3, i=1,2.

For different priors and different censoring schemes, the average biases, and MSEs
of the MLE using (16), Bayes estimate via exact method using (18) and UMVUE
of Ry  using (20) are derived. We reported the results in Table 4. From Table 4, it is
observed that the performances of UMV U and ML estimates are quite close to those of
the Bayes estimates, in most cases. Comparing the different Bayes estimates indicates
that the best performance in term of MSEs belongs to the Bayes estimates based on
Prior 6.

Also, based on the asymptotic distribution of the MLE, we computed the 95%
confidence intervals for Ry . Furthermore, we computed the HPD credible intervals.
The simulation results included the average confidence or credible lengths, and the
corresponding coverage percentages are reported in Table 5. The nominal level for the
confidence intervals or the credible intervals is 0.95 in each case. From Table 5, we
observed that the HPD intervals provide the smallest average credible lengths and the
asymptotic confidence intervals are the second best confidence intervals. Also, com-

@ Springer



339

Bayesian and classical estimation of reliability...

00260 69SF0  O¥88°0  TI9%'0  06/80  T8SFO  00¥8'0 08080  Ov060  080S0 OIS0  LItFO (55 %)
0P16'0  SI¥F0  0L88°0  869¥'0  0S880  €89¥0  OFP80 T8I0 09160  086¥'0  0LS80  9¥SH0 (5§ *Sy)
0026'0  LSTFO 09680  ISK0  06L80  [IPF0  08¢8°0  I¥I80  0S68°0  6£87°0  0I€80  vevv0 (T8 *Sy)
00€6'0  S8OF'0  0L98°0  LIOVO  OLY8'0  €86£0  06¥80  €CZ80  0S68°0  899¥'0  0S¥80  Ivvy0 (5§ ‘Ty)
0ST6'0  TLLEOD  0TS80  €S8€0  06£80  I€8€0  09¥8'0  86L80  OEI60  €hLbO  0TE80  S8SH0 (L8 ‘ty)
06T6'0  LLYFO  0L88°0  8TSK'0  08L8'0  STSKO  0€P80  LTS80  OEI60  10LK0  0cy80 1190  (I§‘ty)  (2818°0°C S 01
0S96'0  888¢'0  0TS6'0  SE6E0  09S6'0  I€6£0  08L8°0  ¥TOS0  OVT60  SHTH0 0680  8¥0r0 (95 ‘€y)
09v6'0  886£0  0I€6'0  890¥'0  OLEGD  I80F0  0L88°0  TTISO 0660  LSSKO 06060 9010 (9§ ‘Cy)
0£56'0  PE6E0  OPF6'0  066£0 08760  666£0  09L8°0 9060  00€60  I91%'0 00160 1800 (5§ °Cy)
0Tr6'0  ISSE0 09880  69S€0 06980  S9SE0  06¥80 9860 00060  680F0  00.80  8¥0r0 (OS5 ‘ly)
08760  SPPED 06,80  8EFE0  OIL80  €pb€0  00L80  ITISO  OVE60  #SPP0 00680  ToTk0  (5S*1y)
09960  806£0  0TS6'0 68650 06560  €00F0  00L80  TTOSO  OLI6O  00I¥0  0L88°0  €90¥0  (YS*Ly) (L9990 ‘T 0T °S)
0€€6'0 1860 0980  +00SO 08980  886F0  OLF80  €6080 08680  8TPSO 0P80  86£S0 (5 ‘€y)
0S16'0  TSOS'0  06L8°0  €TISO  0L980  TOISO  OLP80  €1080  0S060  +LSSO  06S80  €8¥S0 (8§ °Cy)
0L26'0  $00S0  OLL8'0  1€0S0  0L980  010SO  06¥80  TTO80  OVO6'0  80SSO  0T980  0cys0 (T8 ‘Cy)
0626'0  SLLFO  OLP80  IELV0  OPP80  60LFO  0TP8'0  TS08'0 09880  OLPSO  0Ty80  0bes0 (5 ‘1y)
06T6'0  P6LFO  09S8°0  8TLYO0  OLY8'0  869¥0  OrP80 18780  OEI60  LI9SO OIS0 9,560 (T8 ‘ly)
06160 16870 02060  9S6¥'0 09680  SH6F0  0TS80  0SE8'0 09680  SESO  06c80  Lteso  (Jsthy) (£999°0 ‘TS *S)
dD  wsuey dD  wsue dD  wsue dD  wsueg dD  wsueg dD  wSuog
€ Toug T toug [ Joug 1100 d-j00g TN ‘SO (4 ‘s uy)

“UMOUNUN ST 0 pue 7 = 7 = |7 udym Sowoyos SULIOSUID SNOLILA IOpun ¥ Sy Jo sI0jewnsd 10§ 93e3u01od 0581000 pue [SUI[ A[qIPIIO/AOUIPYUOD 9FLIAY € 3|qe)

pringer

Qs



A. Kohansal, S. Shoaee

340

0L26'0  E€I1€0 09060  €9C€0  0€06'0  L8TEO  OF680  T8LEOD  OI160  I¥SE0 02060  6£€€0 (55 “Ey)
0SS6'0  ¥86T0  06£6'0  19I€0  00€6'0  99I€0  0TT6'0  L8LED  0€€6'0  TISE0 01160  69¢€0 (55 “Ty)
00v6'0 9660  0T680  YIIE0D 0680  SLIEO0 01060  +TLEOD  0IT6'0  TISE0  00T6'0  8Te€0 (5§ °Ty)
06¥6'0  TTEEO0  0LT6'0  69¥€0  0I1T6'0  98¥€0 06680  L6LEOD  OLT6'0  99S€°0  0OFI60  Lebe0  (OS “Ta)
09v6'0  6£€€0  0€T6'0  PLPED  OLI6'0  T10SE0  0S06'0  LLSEO  OI16'0  9¥SE0  0TI60  OLbE0 (5§ 1)
0T€6'0  0SOE0 09680  8LIEOD 00680  €8I€0 0680  608€0  OLI60  S8S€0 09060  Lece0 (VS “T) (€€€€°0°7 ‘01 °9)
0LT6'0  9¥6£0  0T680  L8TY'0  0S88'0  9I¢¥’0  OLL8O 89790 00160  +IISO  OFI60  199%°0 (6§ ‘&)
0TT6'0  6L8€0  0L88'0  TETYO0  0I880  OLTYO0 00880  +6£9°0 08680 €SIS0 09160 0670 (£ °TY)
0£26'0  SS6£0  OPL80  TOGTYO  0L98°0  €Tev’0 09980  €1T90  0€880  OKOSO 01680  669v°0 (TS ‘TY)
0S16'0  TLTY0  09L8'0  vLSY'O 00980 96540 08680  0€S9°0 00060  66£S0  0L060  60Lv'0 (£ “Ty)
0ST6'0  6IEP’0 09980  009%'0  0F98'0  0€9Y'0  O0IS80  TI¥90  0F06'0  68I1S0  0€880  969v°0 (T ‘1)
0026'0  vIOY0  0€680  €0E’0  OFP88'0  SEEV0  OFPL80  YESO0  0L06'0  6£LS0 06680 99t 0 (1§ Ty) (E€EE0 VS °S)
0LS6'0  86PE0  0¢v6'0  TOSE0  08¥6'0  0TSE0  00L80  6L8%°0  0SI6'0  0S8E0 07880  0£s€0 (55 %)
0L£6'0  8STED  06T6'0  18TE'0  0SE6'0  8LTEO  OF88'0  I1€0S0  0LT6'0  TISEO 08680  LSee0 (55 “S¥)
0SS6'0  TTTEOD  06¥6'0  €6¥E0  0SP6'0  €8¥E0 06880 06870 06160  I1€8€0 07880  €bee0 (5§ °5¥)
0Tr6'0  169T0 0680  S99T0 09680  T99TO  0I680  6T6¥'0 06160  S9LE0 09880  Steeo (55 ‘T)
0Tr6'0  €ISTO  0FE6'0  ¥8YT0  0€€6'0  1TSTO 08680  IS6Y°0 09160  S69€0  OFL80  €The0 (55 °7)
0LS6'0  t6EE0  06V6'0  TLPEOD  00¥6'0  S8PED 06680  €06V°0  0S060  PEGED 06980  81s€0 (VS ty) (28180 T 0l ‘01)
dD  ysuag 4o wldua dD  ysuwg dD  ysuag 4D wlue dD  ysug
€ Joud ¢ loug [ Joug 1-100g d-jo0g TN ‘SO (s u9y)

panunuod ¢ 3jqe]

pringer

as



341

Bayesian and classical estimation of reliability...

0Tr6'0 9160 09680  186£0 0680  166€0  0CTL80 <T80SO  0OFT6'0  THPPO 06060  L81¥'0 (55 “9%)
0I¥6'0  LP6E0 08880  920¥'0  0T88'0  8TO¥'0  OIL80  8FISO  0€T6'0  ¥SPPO  0L06'0  LTey' 0 (55 *5¥)
06£6'0  PE6E0 06680  €86£0  0S680 0000  0S680  YLOSO  OLZ60  9THHO0 0060 68140 (5§ S¥)
08¥6'0  6TLEO0  0SO8'0  9TLEOD  0S680  80LEOD  0SS80  TOISO  0SI60  SSPPO0 0680  981+'0 (55 ‘T¥)
01€6'0  09LE0  0L06'0  TOLEOD 06060  vLLEO  OFP88'0  8TCSO  0FC6'0  OLPY'O 00060  tLey'0 (5 “Td)
09€6'0  T88E0 06160  8F6E0 00160  €96£0  0£98°0  SPISO  00T6'0  L9FPO 09680  €81%'0  (YSty)  ($9€9°0 ¥ ‘01 ‘01)
00T6'0  9L0S0  OFP88'0  L9ISO 00880  S9ISO  0SO80  08¥8'0 0060  S98S°0 09980  T8SSO (S %)
0€16'0  L80S0 08980  TOISO 06580  TOISO  OFO80  €9S8°0  0S680 €080  0S98°0  L09SO (S ‘S¥)
0P16'0  S60S0  0S88'0  TOISO  OIL80  9S0S0  0€I80  €T€80  0S680  808S0 09980 8¢SO (TS “5)
0ST6'0  L86¥'0  0S98'0  666¥'0 06580  886¥'0 09180  £TS80 00060  €S8S0  08S80 01950 (£ ‘Ty)
00260 SE6¥'0  06S80 06870  09¥80  €S8%°0 0080  SI980 00160  SISSO  0€980  SL9S0 (TS ‘Py)
0L06'0  €€0S0  0€88°0  6TISO 08980  €TISO 09080 90980  0T680 1880 09980  €L5s0  (I§‘7y) (#9€9°0 ‘v ‘S ‘0O1)
dD  ysuag 4O wldua dD  ysuwg dD  ylduag do  wsug dD  ysuwg
€ Joud ¢ loug [ Joug 1-100g d-jo0g TN ‘SO (s u9y)

penunuod ¢ a|qel

pringer

A's



A. Kohansal, S. Shoaee

342

7100 €000°0 08000 10100 0€10°0 TTE00 8E10°0 0£€0°0 0v10°0 9500°0 (ts %)
6v10°0 £000°0 £800°0 ST10°0 9€10°0 LEEO'O S¥10°0 Y00 S¥10°0 8€00°0 (ts*5y)
SP10°0 £200°0 18000 $600°0 TE10°0 v1€00 0r10°0 TTE00 w100 £900°0 (T *S)
9100 TLO0'0 88000 €L10°0 S710°0 11700 ¥S10°0 12700 09100 8£00°0 (£ %)
9100 8100°0 76000 9L10°0 ¥S10°0 P00 £910°0 YTroo 69100 $700°0 (& “7y)
0v10°0 L2000 8L00°0 (AR 62100 8¥£0°0 LEIO'0 95£0°0 6£10°0 0£00°0 (s %) (¢818°0°T°S ‘0D
§TIoo §200°0 LLOOO £900°0 6000 1€00°0 L600°0 0£00°0 9010°0 82100 s &)
T 1€00°0 6L00°0 L2000 66000 TEN0°0 20100 T€10°0 8010°0 TT00°0 s @)
12100 €100°0 08000 02000 0010°0 2100 ¥010°0 §TI0'0 01100 6200°0 (5 "ay)
12100 ¥100°0 8L00°0 11000 L6000 9600°0 00100 96000 L0100 0900°0 s 1)
81100 8100°0 LLOOO $500°0 6000 £700°0 L600°0 17000 9010°0 L1100 (s 1)
12100 L0000 LLO0O $€00°0 96000 SE10°0 00100 8€10°0 $010°0 91000 (s L) (L999°0 T 01 °S)
85200 £000°0 L2100 LEOOO L810°0 9610°0 66100 £610°0 12200 L600°0 (G
95200 11000 €100 £€00°0 £910°0 S¥10°0 PL100 wioo 56100 ¥S10°0 (G
09200 20000 01100 65000 £910°0 7200 PL10°0 9200 06100 7700°0 (G
15200 £000°0 01100 LEOOO 19100 6v10°0 1L10°0 8710°0 6100 8710°0 (s Ty
6v20°0 €100°0 oo 19000 0810°0 6£20°0 16100 8€20°0 6020°0 0500°0 (G
L¥20'0 $100°0 02100 $€00°0 9L10°0 L1200 L8100 L1200 50200 TLO0'0 (151 (L9990 TS *9)
s Iserg| ENA [sere] EN Iserg| ENA Iserg] LN Iserg|
ANANN 9 toud ¢ toud v 1oud HIN ‘SO (s uy

7= T = LI pue umouy I 0 USyM SOWYDS JULIOSUID SNOLIBA 1opun ¥ Sy Jo N AJA[] PUB SOJeWNSS SoAeg “TTIN 9Ul JO ASIAL pue |saserg| ajqel

pringer

as



343

Bayesian and classical estimation of reliability...

08000 20000 £900°0 TLI00 SLO0'0 12100 6L00°0 LTI0°0 $800°0 99100 (9 &)
£800°0 1€00°0 09000 L¥Y10°0 TLO00 #6000 SL000 6600°0 1800°0 8€10°0 (95 )
LLOO0 €100°0 85000 €€10°0 0L00°0 SLOO0 €L00°0 0800°0 8L00°0 81100 (55 Q)
9800°0 12000 $900°0 G810°0 8L00°0 LETO0 78000 #7100 6800°0 #810°0 9“1y
78000 01000 1900°0 8810°0 €L00°0 LETO0 9L00°0 €710°0 78000 #810°0 (55 1)
£800°0 #1000 #9000 70200 8L00°0 SS10°0 1800°0 19100 88000 70200 s 1) (€€€€°0 ¥ ‘01 )
SS10°0 0+00°0 $800°0 6€20°0 €210°0 #810°0 SE10°0 S020°0 8510°0 €620°0 (£ *€y)
L910°0 60000 €010°0 7620°0 0S10°0 05200 S910°0 €L20°0 €610°0 99€0°0 ()
S910°0 €200°0 $600°0 €L20°0 17100 S€T0°0 95100 0920°0 €810°0 T5€0°0 (Cs Ty)
09100 21000 L8000 £420°0 ¥210°0 6L10°0 9€10°0 8610°0 8S10°0 68200 (s 1)
TLI00 60000 £600°0 79200 LETO0 #120°0 1S10°0 LETO0 9L10°0 LTEO0 (s 1)
69100 11000 26000 LTT0°0 €€10°0 99100 1710°0 S810°0 0L10°0 1L20°0 (Is 1) (E€€€°0 7S Q)
9L00°0 01000 $500°0 L£00'0 TLO00 75100 #L00°0 ¥S10°0 8L00°0 LS00°0 (95 %)
LLOO'0 €700°0 €500°0 L¥00°0 0L00°0 #910°0 TLO00 9910°0 SL00'0 9000 (9 *Sa)
6L00°0 €200°0 $500°0 L600°0 €L00°0 02200 9L00°0 €220°0 8L00°0 21000 (55 *Sa)
SLO0'0 05000 75000 6500°0 6900°0 LLIO0 1L00°0 0810°0 TLO00 7€00°0 (9 *v)
6L00°0 S1000 LS00°0 9L00°0 9L00°0 ¥610°0 8L00°0 9610°0 6L00°0 #100°0 (55 ‘)
6L00°0 $200°0 75000 6000 69000 $910°0 TLOO0 L9100 0800°0 #7000 (s 7y) (28180 T ‘01 ‘01)
ASIN [serg| ASIN |serg]| ASIN [serg| ASIN |serg]| ASIN [serg|
ANANN 9 loug G loud  oug TN ‘SO (s ‘uy)

panunuod { 3jqe]

pringer

As



A. Kohansal, S. Shoaee

344

SP10°0 £500°0 #8000 0900°0 S010°0 65000 8010°0 8500°0 81100 #010°0 (9 %)
8510°0 60000 68000 1900°0 9010°0 $S00°0 01100 ¥500°0 0Z10°0 60100 (9 *S)
87100 07000 #8000 06000 €010°0 92000 90100 ¥200°0 L1100 or10°0 (55 “Sa)
€100 02000 L8000 1900°0 8010°0 $500°0 TI100 £500°0 7100 01100 (9 “7y)
0S10°0 01000 78000 £800°0 1010°0 S€00°0 S010°0 €€00°0 SI10°0 0€10°0 (55 V)
SS100 72000 L8000 8900°0 8010°0 05000 TIoo 8%00°0 TTI0°0 #110°0 (s 1) (#9€9°0 ¥ ‘01 ‘01)
$920°0 20000 €210°0 75000 78100 SP10°0 #610°0 1100 12200 L910°0 (€59
1,200 LE000 #2100 $600°0 18100 00100 €610°0 $600°0 7200 #120°0 (€5 *S)
18200 91000 ST10°0 6600°0 78100 L6000 #610°0 £600°0 %2200 61200 (T *Sa)
€L20°0 #100°0 €210°0 ¥S10°0 18100 72000 ¥610°0 ¥100°0 62200 20€0°0 (€5 *vy)
18200 000 ST10°0 L¥Y10°0 18100 €€00°0 €610°0 $200°0 LTT0°0 0620°0 (Ts %)
€L20°0 S¥00°0 8210°0 LTI0°0 88100 6000 20200 1¥00°0 S€T0°0 TLT00 (Is*7y) (#9€9°0 ‘¥ ‘S “01)
ASIN [serg| ASIN |serg]| ASIN [serg| ASIN |serg]| ASIN [serq]|
ANANN 9 loug G loud  Joug TN ‘SO (s ‘uy)

ponunuod {9|qel

pringer

as



345

Bayesian and classical estimation of reliability...

0SS6°0 091€0 0LY6'0 9SE0 0S¥6°0 S8YE0 0%06°0 98€€°0 (€5 *9)
00560 SPIE0 0rv6'0 L¥YE0 00%6°0 99%€°0 0L06°0 L9EE0 (€5 *S¥)
0SS6°0 STIE0 0S¥6°0 LOYE0 0S¥6°0 TEVE0 01680 YTEE0 (CE)
0¥S6°0 I€1€°0 0960 YOrE0 0S¥6°0 6EVE0 05880 62€€°0 (€5 1)
0TS6'0 LTIE0 06760 SIVE0 00760 LEVEO 02880 7EEE0 (Cs vy)
0LS6°0 I77€°0 0960 62rE0 0760 657€°0 07880 67€€°0 (Is *vy) (28180 °C ‘01 ‘0D)
00960 90870 0SS6°0 91620 0€S6°0 SS6T°0 0S€6°0 95620 (% &)
09560 66LT0 01S6'0 LO6T0 0TS6'0 80670 0¥26'0 9620 s ap
06¥6°0 €082°0 0Ev6'0 80620 0r¥6'0 7620 0£26'0 ¥S62°0 (5s ‘a)
02560 S082°0 01S6'0 S162°0 09¥6°0 02620 0€26°0 $S6T°0 s 1)
0ZS6'0 LO8TO 0T¥6'0 S16T°0 01%6°0 ¥T6T°0 0L£6°0 LS6T0 (55 1)
0£S6°0 T08C°0 01560 80670 0rr6'0 91620 06160 75620 (rs 1) (L9990 ‘T 0T “S)
0SS6°0 10LE0 00S6°0 956€°0 08760 086€°0 0L06°0 67070 (€5 *€y)
0660 TILEO 0960 856€°0 06£6°0 S86€°0 0968°0 79070 (€5 Q)
0¥76°0 80LE0 0EV60 956€°0 09€6°0 €L6E0 05060 1S0%°0 (Ts @)
0LY6'0 €0LE0 0960 SS6€°0 0EY6'0 6L6€°0 02060 85070 (ts 1)
0LS6'0 T0LE0 0LY6'0 SS6€°0 0760 S86€°0 0116'0 SS0¥°0 (C'))
08560 669€°0 08760 T6€0 0T¥6'0 0L6€°0 0016°0 [S7040] (Is 1) (L999°0 T ‘01 *S)
dD p3ue] do ySue] dD p3ue] dD m3ue]
9 1oL ¢ loud  1oLd 1N ‘SO (q s ‘uy)

"UMOUY ST 0 UM SIWAYDS SULIOSUSD SNOLIBA Jopun ¥ $y Jo sI0jewnss 10§ 95ejudotad 938I0A00 pue YISUS] S[qIPAId/E0UIPPU0d dFLIOAY  § 3|qel

pringer

Qs



A. Kohansal, S. Shoaee

346

0096°0 82TT0 06%6°0 Y670 09%6°0 00€2°0 09%6°0 6£€T°0 (9 &)
0656°0 0€2T0 0S$6°0 S6TT0 01$6°0 €0€C0 06¥6°0 THET0 (9 )
0¥$6°0 9€7T0 0L¥6°0 T0€T°0 0L¥6°0 01€2°0 0076°0 1S€T0 (5s “a)
0€96°0 0eT0 0S$6°0 S0€T0 0t56°0 SIET0 01S6°0 ¥SET0 (CY)
08S6°0 8€TT0 0S$6°0 LOET0 0t56°0 LIETO 00S6°0 TS€T0 (5s 1)
0LS6°0 SETTO 0SS6°0 L6TTO 0S$6°0 90€T°0 09%6°0 9€T0 (s *1p) (€€€€°0 ¥ 0T )
0%$6°0 TI0€0 00S6°0 LLIE0 0S¥6°0 T02€°0 08€6°0 €0€€0 (€5 *€y)
0LS6°0 T10€°0 0r6°0 0LIE0 0rr6°0 ¥61€°0 0LT6°0 T0€€°0 (¢5 Q)
01S6°0 $20€°0 0Zr6°0 161€°0 0Tr6°0 ¥12€°0 0¥26'0 12€€°0 (Ts *Ty)
0656°0 9€0€°0 06%6°0 861€°0 0876°0 92TE0 0S€6°0 62E€0 (€5 1)
0956°0 ¥20€°0 0676°0 6LIE0 0676°0 602€°0 0€€6°0 SIEE0 (Ts 1)
05S6°0 LT0E0 0876°0 981€°0 0£76°0 LOTEO 0626°0 €IEE0 (Is 1) (€€€€°0 ¥ ‘01 S)
0656°0 6LET0 0S76°0 96¥C°0 0t#6°0 (48740 01260 YLYT0 (9 “9%)
0TS6°0 6€€T°0 09%6°0 65¥T0 0E76°0 Y9¥T0 06680 STYT0 (s *S¥)
0956°0 LLETO 06%6°0 S6¥T0 09%6°0 70ST°0 0T26°0 69¥C°0 (55 *S)
0196°0 0LEE0 01$6°0 L8YT0 00$6°0 66¥CT°0 0L16°0 8SHT0 (s ‘vy)
06S6°0 SYET0 0LS6°0 €9YT°0 0€$6°0 SLYTO 0L16°0 YEYTO (55 ‘1)
0£96'0 0S€T0 0816°0 8LYCT0 0St6°0 ¥8¥C°0 0026°0 SPPT0 (Ys “7) (28180 T ‘0T ‘01)
d 3ua] o) p3ua] dd pSua] d 3ua]
9 101 G Joud  Joud TN ‘SO (s u9y)

panunuod g 3jqe]

pringer

as



347

Bayesian and classical estimation of reliability...

08560 68870 08S6'0 S667°0 00560 £00€°0 09€6°0 870€°0 (s %)
08560 6L8C°0 00560 L86T0 08%6°0 9662°0 0626°0 €70€°0 (s *S)
09560 ¥L8T0 06760 L8620 01S6°0 L66T0 05260 70€°0 (CE))
0¥S6°0 9.8C°0 00S6°0 166C°0 0€S6°0 66620 00£6°0 #0€0 (s ‘)
0LS6°0 €887°0 0S76°0 68620 0S¥6°0 200€°0 01£6°0 1S0€°0 (5 “7)
0LS6°0 €887°0 08760 98620 0LY6'0 000€°0 01£6°0 SY0E0 (Ys *vy) (#9€9°0 ‘¥ “0T *01)
0SS6°'0 #08€°0 0LY6'0 65070 0S¥6°0 160%°0 0816°0 1020 (€5 %)
0£S6°0 L6LEO 0LY6'0 SHOY'0 08%6°0 TLOY0 0968°0 LLI¥0 (€5 *S¥)
09560 ¥8LE0 0660 v 0€€6'0 0L0%°0 0006°0 TLIT0 (T *S¥)
02560 108€°0 0T¥6'0 v 09%6°0 ¥LO¥'0 0016°0 9LIH0 (€5 ‘1)
0LS6°0 96LE°0 0rr6°0 6%0%°0 00%6°0 8L0%0 0016°0 6L17°0 (T vy)
05560 $08€°0 0L¥6°0 65S0%°0 0S¥6°0 160%°0 08160 1020 (s *7a) (#9€9°0 ‘¥ ‘01 ‘01)
d 3ua] o p3ua] dD pSua] dD 3ua]
9 1oug G Joud  Joud TN ‘SO (s u9y)

panunuod g 3jqe]

pringer

As



348 A.Kohansal, S. Shoaee

0.06 0.03 :
—— MLE MLE -
R ) ---- UMVUE ---- UMVUE| -7 7T
M| — Bayes

0.04
w
.©
o

0.02

0 0
0 0 0.2 0.4 0.6 0.8 1
Ros
0.03 0.015
T, MLE
---- UMVUE

0.02
2]
S
o

0.01

0
0 0 0.2 0.4 0.6 0.8 1
Rz,s R2,5

Fig.3 Biases and MSEs of R 5, when T = T = 2, for scheme (R3, $3) (first row) and (R3, S¢) (second
TrowW)

paring the confidence and credible intervals show that the best performance belongs
to HPD credible interval based on the Prior 6 and it is evident that the HPD intervals
provide the most coverage percentages in most considered cases. Same as before, with
increasing n, for fixed s and k, the average confidence or credible lengths decrease
and the associated coverage percentages increase in all cases.

Also, we can compare Biases and MSEs of the estimators by plotting them for
some censoring plans. For this aim, we consider « = 5 and (A, 6)=(6,1), (6,2), (6,3),
(6,4), (6,6), (6,8), (6,10), (6,12), (6,15), (6,18), (6,20), (6,22) and (6,24). The true
values of reliability in multicomponent stress-strength with the given combinations
for (s, k) = (2,5) are 0.1876, 0.3324, 0.4459, 0.5359, 0.6667, 0.7540, 0.8144, 0.8571,
0.9005, 0.9286,0.9419, 0.9522 and 0.9603. Also, we study Bayesian case witha; = 1,
bi =2,i = 1,2, for hyperparameters Figure 3 demonstrates the Biases and MSEs
of RﬁWkLE RB  and RY . for the different schemes. We observe that with increasing
sample size, the Biases and MSEs of the estimates decrease, as expected. Moreover,
the MSE is large when R; x is about 0.5 and it is small for the extreme values of Ry k.
Furthermore, the MSEs of UMVUE are greater than that of MLE when Rj ; is about
0.5 and MSEs of UMVUE are small than that of MLE for the extreme values of R; .

In this part, when the shape parameters «; and « are different, the parameter
value ® = (0, 1, a1, 2) = (1,1, 3,5) is used to compare the MLEs and different
Bayes estimators, in all the cases. Three priors are assumed for computing the Bayes
estimators as follows:

@ Springer
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Prior 7 : a; =0, b; =0, i=1,2,3,4.
Prior 8 : a; =01, bj=02, i=1,2,73,4.
Prior 9 : a =1, b; =2, i=1,2,3,4.

In this case, the average biases, and MSEs of the MLE using (21), AMLE using (22)
and Bayes estimate of R ; using (24) are derived. We reported the results in Table 6.
From Table 6, it is observed that the biases and MSEs of the ML estimates are quite
close to those of the Bayes estimates, in most cases. Comparing the different Bayes
estimates indicates that the best performance in term of MSEs belongs to the Bayes
estimates based on Prior 9. Also, with increasing n, for fixed s and k, the biases and
MSEs of the different estimates of R; ; decrease in all cases.

5.2 Data analysis

For illustrative purposes, in this section, the analysis of a pair of real data sets is
provided. In agriculture, it is very important that we all understand drought. Drought
occurrence has a lot of damage to production. On the other hand, there are several
ways to manage these damages. One of the most important is the use of drought-
insurance products. In the following, one scenario concerning the excessive drought
is constructed. If the water capacity of a reservoir in a region on Aguste at least two
years out of next five years is more than the amount of water achieved on December
of the previous year, we demand that there will be no excessive drought afterward. So,
multicomponent reliability is the probability of non-occurrence drought. Estimation
of this parameter is important in agriculture. We cannot ignore the effect of drought on
farm production and livestock holdings. The most immediate consequence of drought
is a fall in crop production, due to inadequate and poorly distributed rainfall. Low
rainfall causes poor pasture growth and may also lead to a decline in fodder supplies
from crop residues. In fact, by this probability, we can plan to prevent damage from
drought, which included the safety of instruments that might be damaged. In this
scenario, it is very likely that the researcher confronts the censored samples from both
populations rather than complete samples. There are some reasons that we can face
the censored data, in water capacity. These reasons may be natural disasters, such as
flood, earthquake and storm or caused by human activities, such as financial pressures,
unwanted errors and etc. Many authors have studied the application of censoring data in
drought and environmental conditions, for more details see Antweiler (2015), Siiriicii
(2015) and Tate and Freeman (2000). The data which we study in this section is the
monthly water capacity of the Shasta reservoir in California, USA. We consider the
months of August and December from 1975 to 2016. These data sets can be found
here http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA. Some authors have been
studied these data previously, for more details see Kizilaslan and Nadar (2016, 2018)
and Nadar et al. (2013).

When we confront complete data, X11, ..., X5 are the capacities of August from
1976 to 1980, X>71, ..., X»5 are the capacities of August from 1982 to 1986 and so on
X71, ..., X75 are the capacities of August from 2012 to 2016. Also, Y is the capacity
of December 1975, Y5 is the capacity of December 1981 and so on Y7 is the capacity
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Fig.4 Empirical distribution function (left) and the PP-plot (right) for X

of December 2011. Just for simplify calculations, we divide all the data points by the
total capacity of Shasta reservoir which is 4,552,000 acre-foot. This work will not
have any effect on statistical inference.

To implement the theoretical methods, first, we fitted the Weibull distribution on
two data sets, separately. Based on the results, for X, the estimated parameters are
ap = 3.5427, 6 = 0.1891, the Kolmogorov-Smirnov distance and associated p-
value are 0.1550 and 0.3345, respectively. Also, for Y, the estimated parameters are
ar = 11.0172, » = 0.0341, the Kolmogorov-Smirnov distance and associated p-
value are 0.2833 and 0.4604, respectively. From the p-values, it is obvious that the
Weibull distribution is an adequate fit for these data sets. For the X and Y data sets,
we provided the empirical distribution functions and the PP-plots in Figs. 4 and 5,
respectively. Because the scale parameters of two data sets are not same, we consider
the general case.

To obtain the MLE of unknown parameters o1 and «», we use the Newton-Raphson
method. The initial value for this algorithm is obtained by maximizing of profile log-
likelihood function. So, we plot the profile log-likelihood function of «; and a2 in
Fig. 6 and we see that the approximate initial values for «; and o, should be close 3
and 11, respectively.

For the complete data sets, the MLEs of 0, A, a1, ap are 0.1891, 0.0341, 3.5427,
11.0172, the MLE of Ry 5is0.6727 and the MLE of R» 5is0.3333. Also, the AMLEs of
0, A, a1, ap are 0.1277,0.0146, 3.0498, 11.6436, the AMLE of R; s is 0.4306 and the
AMLE of R» 5 is 0.1347. Moreover, the Bayes estimate of R 5 with non-informative
priors assumption, via the MCMC method is 0.6795 and the 95% credible interval
is (0.3885,0.8954). Furthermore, the Bayes estimate of R, 5 with non-informative
priors assumption, via the MCMC method is 0.5774 and the 95% credible interval is
(0.3136,0.8155).
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Empirical CDF PP-Plot for Y
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Fig. 5 Empirical distribution function (left) and the PP-plot (right) for ¥
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Fig. 6 Profile log-likelihood function of oy (left) and «p (right)

For illustrative purposes, two different AT-Il HPC samples have been generated
from the above data sets:

Scheme 1: R =1[0,1,0,0], $=10,0,0,1,0,0], T1 =T =05 (k =5,5s =1,2).
Scheme 2: R =[1,1,0], S=1[1,0,0,0,1], T =T, =09 (k =3,5s = 1).

To obtain the censored data from X and Y, we perform as follows. First, using the
method which has been explained in Sect. 1, we censor some elements from the Y
vector and for any data of ¥ which has been censored, we remove the same row of X
matrix. In the remaining matrix of X, we apply the censoring scheme for each row.

Based on Scheme 1, the MLEs of 0, A, «p, ap are 0.2449, 0.0892, 2.9631, 9.0491,
the MLE of Rj 4 is 0.5850 and the MLE of R» 4 is 0.2378. Also, the AMLEs of
0, A, a1, ap are 0.2055, 0.0861, 2.8030, 8.8085, the AMLE of Rj 4 is 0.4758 and the
AMLE of R 4 15 0.1615. Moreover, the Bayes estimate of R 4 with non-informative
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priors assumption, via the MCMC method is 0.6348 and the 95% credible interval
is (0.3322,0.8813). Furthermore, the Bayes estimate of Ry 4 with non-informative
priors assumption, via the MCMC method is 0.4904 and the 95% credible interval is
(0.2249,0.7482).

Similarity, based on Scheme 2, the MLEs of 0, A, o1, ap are 0.2168, 9.2e-5,2.9518,
25.3593 and the MLE of R 3 is 0.5432. Also, the AMLEs of 6, A, o, a2 are 0.1249,
5.9e-5,2.9740,26.1505 and the AMLE of R 315 0.2355. Moreover, the Bayes estimate
of R 3 with non-informative priors assumption, via the MCMC method is 0.5792 and
the 95% credible interval is (2552,0.8520).

To see the effect of the hyperparameters on the Bayes estimators and also on cred-
ible intervals, we utilize the informative priors. By using the re-sampling method, the
hyperparameters can be obtained as a; = 46.302, b1 = 0.0792, a, = 33.7983, by, =
0.1665, a3 = 0.0375, b3 = 0.0001, a4 = 6.3566, by = 2.3182. Based on this, for
complete data, Bayes estimator of Ry 5 with MCMC method is 0.5373 and 95% cred-
ible interval is (0.2942,0.7623). Also, Bayes estimator of R, 5 with MCMC method is
0.4128 and 95% credible interval is (0.2073,0.6443). For Scheme 1, Bayes estimator
of Ry 4 with MCMC method is 0.4469 and 95% credible interval is (0.2162,0.6881).
Moreover, Bayes estimator of Ry 4 with MCMC method is 0.3466 and 95% credi-
ble interval is (0.1459,0.5971). For Scheme 2, Bayes estimator of R 3 with MCMC
method is 0.3605 and 95% credible interval is (0.1420,0.6140). As we see, by the above
scenario, the estimation of non-occurrence probability of drought, in most cases, is
less than 0.6. So, in this example, we can conclude that the rainfall is not very good
and dehydration may occur. Therefore, in order to avoid possible damage, planning
must be done in this regard.

Comparing the two schemes with informative and non-informative priors, it is
obvious that in Scheme 1, estimators have smaller standard errors than Scheme 2,
as expected. Also, comparing Bayes estimators, it is observed that they depend on
hyperparameters. Because the HPD credible intervals based on informative priors are
slightly smaller than the corresponding length of the HPD credible intervals based on
non-informative priors, therefore, if prior information is available it should be used.
Moreover, comparing the estimators in the complete data set or in Scheme 1, it is
observed that, in s = 1, estimators are smaller than s = 2, as expected.

6 Conclusions

In this paper, the estimation of multicomponent reliability for Weibull distribution
based on AT-II HPC schemes is studied. In fact, we solved the problem in three cases.
Firstly, when the common shape parameter is unknown, we derived the MLEs of the
unknown parameters and R; ;. Because the MLEs cannot be obtained in closed forms,
we derived the approximate MLEs of the parameters and Ry . Also, by earning the
asymptotic distribution of the R; j, we constructed the asymptotic confidence intervals.
Moreover, two bootstrap confidence intervals are proposed which their performance
are quite satisfactory. Furthermore, we approximated the Bayes estimate of Ry x by
applying two methods: Lindley’s approximation and MCMC method. We constructed
the HPD credible intervals by using the MCMC method. Secondly, when the common
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shape parameter is known, the ML, exact Bayes and UMVU estimates are computed.
Also, asymptotic and HPD credible intervals are constructed in this case. Finally, in
general case, when two shape parameters are different and unknown, the statistical
inferences about R; ; such as ML, AML and Bayesian estimations are obtained and
the HPD credible intervals are constructed.

From the simulation results, it is obvious that the ML and AML estimates are
almost similar in most schemes. Also, comparing the Bayes estimators shows that the
estimates based on informative priors perform better than the ones which obtained
using the non-informative prior. Furthermore, the MCMC method approximates the
Bayes estimate better than the Lindley method. Moreover, comparing the different
confidence intervals indicates that HPD intervals provide the smallest credible lengths
and the bootstrap intervals provide the widest lengths for different censoring schemes
and different parameter values. Also, comparing two bootstrap confidence intervals
shows that Boot-p intervals perform better than the Boot-t intervals.

Appendix A

For three parameters case, we compute 13 at 0= (51, é}, é}), where

di = p10i1 + p20i2 + p30i3, i =1,2,3,
dy = u12012 + 113013 + 123023,

1
ds = §(M11011 + 122022 + 133033),

A = Lino11 + 20121012 + 28131013 + 20231023 + £221022 + £331033,
B = {£y12011 + 2£122012 + 28132013 + 2€232023 + €220020 + €332033,
C = L1301 + 2123012 + 2£133013 + 2£233023 + £223022 + £333033.

In our case, for (01, 62, 63) = (o, 0, 1) and u = u(«x, 6, 1) = R, as provided in (3),
we have

_a1—1 b _ a2+1+b2 _ az+ 1 b3
p1 = 1, P2= ) 92 p3 = 3 2
nk+1) 1
===~ f[Zy, log (y,)+ZS,yl log”(yi) + Suyg log ()’n):|

i=1

_ E[ZZ)CU log (x’l)+ZZR’fle log (‘xlj)+ZR’kxlk log (x,k):|

lljl lljl j=1

1
o= [ > Zx” log(x;;) + Z Z Rijxf log(xij) + Z Rigx? log(x,k)] = ly,

i=1 j=1 i=1 j=1

1
s = [ >y log(yi) + Z Siy§ log(vi) + Sy log<yn>] = {31,
i=1 i=1
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n
£y = 02 - 93[22)@] +ZZRUXU +ZR’kxzk]

i=1 j=1 i=1 j=1
b3 = 0= {3,

Ji
n 2 1<
£33 = 2 )\*3|: E yf’+ZSiy? +Sn)’ffi|-
i=1 i=1

Also, by using ¢;;,i, j =1,2,3,0;,i, j = 1,2, 3 can be obtained and

2nk+1) 1
i = 05—3 |:Zy1 IOg (i) + Zszy, 10g (yi) + Snyn log’ (yn)j|

i=1

1 |:Z Zx” log (xij) + Z Z R,un lOg (xij) + Z Rthzk log (x,k)i|

i=1 j=I i=1 j=I
1 n
ti = S o)+ 305 R log ) + z Rt log w}
-i=1 j=I i=1 j=I

=11 = {121,

r n Ji
s = 55| 2y log? () + D Sift log? () + Suyy lng(yn)]
-i=1 i=1

= {311 = 4131,
2 n k n J2 n
tin=—73 [ DO xfloglai) + Y Rijxilog(xij) + Y Rikxfy log(xik)]
i=1 j=I i=1 j=1 i=1
= {1 = L212,
li33 = [ZY, log(yi) + Z Siyi log(yi) + Suyy log()’n)] = {331 = 313,

i=1

n
42222—293 I:ZZXU-{-ZZR,ij—i-ZRzkxlk}

i=1j=1 i=1 j=1
2n
i=1

and other ¢;j; = 0. In addition, u; = 0Ry /0 = 0, u;; = 82R5,k/(89,~8a) =0,
i =1,2,3,and uy, u3 are given in (10) and (11), respectively. Also,
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k k—p
B K\ [k — p\ (=D4H124(p + )
“ZZ_ZZ< )( ) O@+rp+a)

e AV AN
k_
£ R (k= p\ (=D (p + ) 0(p + q) — 6)
3=y ). ; = u3.
s oo \P q @+Ar(p+q)
A\ q_
k k—p 2
K\ (k = p\ (=1)720(p + q)
w=3 5 (), ") Gt
Pt AVVANN p+q
Hence,
1
dy = ux023, ds= 5(“22022 + 133033),

A = L1011 + 2121012 + 28131013 + €a21022 + £331033,
B = {12011 + 28122012 + £222022, C = £113011 + 2€133013 + £333033.
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