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Abstract
We establish consistency and asymptotic normality of the maximum likelihood esti-
mator in the level-effect ARCH model of Chan et al. (J Financ 47(3):1209–1227,
1992). Furthermore, it is shown by simulations that the asymptotic properties also
apply in finite samples.
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1 Introduction

After Engle (1982) initiated the literature on autoregressive conditional heteroskedas-
ticity (ARCH) and the model proved itself to be very useful in empirical applications,
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an immense amount of research has been directed towards extending Engle’s original
ideas empirically as well as theoretically (see for example Dias-Curto et al. (2009) as
an example of the usefulness of GARCHmodels in practice). Chan, Karolyi, Longstaff
andSanders (1992,CKLS fromnowonwards) proposed to introduce the lagged level of
the spot interest rate in the conditional variance equation, generating the so called level-
effectARCHmodel. Thismodel has subsequently been successfully used and extended
by Brenner et al. (1996), Andersen and Lund (1997), Ball and Torous (1999) among
others. Recently, Maheu and Yang (2016) have estimated with Bayesian methods and
using financial data both CKLS model and also the CKLS model with ARCH distur-
bances; while Bu et al. (2017) have estimated the CKLS in two different regimes also
using financial data. However, despite of its empirical success, the asymptotic behav-
ior of the quasi-maximum likelihood (QML) estimator associated with the level-effect
ARCH model has, to the best of our knowledge, not been formally established yet.
Most papers on conditional heteroskedastic time series, see, e.g., Berkes and Horváth
(2004), Straumann and Mikosch (2006), Hamadeh and Zakoïan (2011) and Francq
et al. (2018), do not allow for the introduction of the level of a series, such as the
interest rate, in the conditional variance equation. The double autoregressive model
of Ling (2004) is an exception. Triffi (2006) illustrates the convergence results for
the Constant Elasticity of Variance (CEV)-ARCH model of Fornari and Mele (2006),
but from the best of our knowledge, the asymptotic normality and consistency of the
QML/ML estimator for the level-ARCHmodel is still unknown. In the following sec-
tionswewill present themodel and provide a simple proof of asymptotic normality and
consistency of the ML estimator within the traditional level-effect ARCH(1) setting.
The simulation section confirms our theoretical results and finally, we conclude.

2 The level-effect ARCHmodel

Consider the discrete-time approximation of the CKLS model

y∗
t = �yt − (a + byt−1) = σt |yt−1|γ zt , (1)

σ 2
t = w + α

(
y∗
t−1

|yt−2|γ
)2

, (2)

for t = 1, . . . , T that we denote the level-effect ARCH.1 Let us denote the parameter
vector of interest by θ = (γ,w, α)´ and let the true parameter values be given by
θ0 = (γ0, w0, α0)

′. Further, in many applications y∗
t is chosen as a transformation of

current and lagged values of yt , such as y∗
t = y∗

t (yt , yt−1, yt−2, . . . ; δ) where δ is
a vector of parameters. One such specification could be y∗

t = �yt − (a + byt−1) ,

where δ = (a, b)′ , such as the one considered in Andersen and Lund (1997, p. 354)

1 Alternative representations for a level-effect ARCH model may be considered such as

yt = σt zt

σ 2
t = w + αy2t−1 + γ yt−1

although they are outside the scope of this paper.
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and in Broze et al (1995, Eq. 2). However, also note that model (1), (2) is not exactly
that of Andersen and Lund (1997), as they use �yt = (a + byt−1)+ σt y

γ
t−1zt instead

of �yt = (a + byt−1) + σt |yt−1|γ zt . The absolute value is needed, as otherwise
the discrete-time model does not ensure that yt is non-negative. In practice, δ can
be pre-estimated in a first stage. This pre-estimation approach is very common in
empirical research, particularly, when modelling spot interest rates, see, for example,
Ball and Torous (1999, p. 2349). In order to avoid additional complexity of the proofs,
we assume throughout this paper that δ is known, see also Remark 2. 2 It should be
noted that (1)–(2) is a generalization of Frydman (1994), who consider a discrete-
time process, but where α0 = 0. Broze, Scaillet and Zakoïan (1995, Eq. 2 in p. 202)
have also analyzed the regular level effect model but without the ARCH component,
but where they introduce also |yt−1|γ zt in (1). Moreover, for the case where γ0 is
known, (1), (2) is the standard linear model for which a complete characterization
of the estimation theory has been developed by Jensen and Rahbek (2004a, b) and in
Kristensen andRahbek (2005, 2008). The “quasi”-log likelihood function (conditional
on past values of yt ) associated with (1), (2) is given as

LT (θ) =
T∑
t=1

lt (θ) = −1

2

T∑
t=1

ln

[
y2γt−1

(
w + α

(
y∗
t−1

|yt−2|γ
)2

)]

−1

2

T∑
t=1

(
y∗
t

)2
y2γt−1

(
w + α

(
y∗
t−1

|yt−2|γ
)2) . (3)

We proceed under the following set of maintained assumptions:

Assumption A A1 zt ∼ N .i .i .d. (0, 1) ,

A2 ∞ > w0 > 0, ∞ > α0 > 0,

A3 E
[(

y∗
t−1

|yt−2|i
)ϕ |ln (|yt−1|)|3

]
< ∞, E

[(
y∗
t−1

|yt−2|i
)ϕ

(ln (|yt−1|))2 |ln (|yt−2|)|
]

< ∞, E
[(

y∗
t−1

|yt−2|i
)ϕ

(ln (|yt−2|))2 |ln (|yt−1|)|
]

< ∞, for both ϕ = 0 and for

some ϕ > 0 for i = 0, 1.

Assumption B B1 E ln
(
α0z2t

)
< 0,

B2 1 ≥ γ0 ≥ 0, |b + 1| < 1, E ln
∣∣b + 1 + α0z2t

∣∣ < 0.

Assumptions A1, A2 and B1 are very common in the traditional ARCH literature (see
e.g. Jensen and Rahbek (2004a, b), p. 1205). In A1 we need to impose Gaussianity as
we make use in our proofs of the results in Broze et al. (1995). Also, A1 implies that

E
((
1 − z2t

)2) = ζ = 2. Note also, A3 -an assumption very specific for the level-

effect ARCHmodel- explains the necessity to introduce |yt−1|γ in (1) as in Broze et al

2 If δ is estimated, this will affect the asymptotic properties of the estimators of the volatility parameters,
but we leave this for further future research.
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(1995, Eq. 2).3 In B2, we require 1 ≥ γ0 ≥ 0-see Broze et al (1995, Proposition 3)
for more details-. The condition for stationarity of σ 2

t ,
(
y∗
t /y

γ
t−1

)
, y∗

t and yt is given
by the following two Lemmas:

Lemma 1 Let Assumption A hold. A necessary and sufficient condition for strict sta-
tionarity of σ 2

t and
(
y∗
t / |yt−1|γ0

)
as generated by (1), (2) is given by

E ln
(
α0z

2
t

)
< 0.

Proof of Lemma 1 Lemma 1 is not a new result in the literature since if
(
y∗
t / |yt−1|γ0

)
is known, the level-effect ARCHmodel reduces to the ARCH(1) and the condition for
strict stationarity is well known (see e.g. Jensen and Rahbek 2004a). ��

Lemma 2 Let Assumption A and B1 hold. A necessary and sufficient condition for
ergodicity and second order stationarity of y∗

t and yt as generated by (1), (2) is given
by

1 > γ0 ≥ 0, |b + 1| < 1, E ln
∣∣∣b + 1 + α0z

2
t

∣∣∣ < 0.

When γ0 = 1, the previous condition is a sufficient condition for second order sta-
tionarity and ergodicity.

Proof of Lemma 2 Given in the proof of Proposition 3 of Broze et al (1995, Appendix
D) but replacing σ0,h in Broze et al. (1995) by the required strict stationarity condition
of σ 2

t that was proved in Lemma 1, and where the Gaussianity of zt is used in the
definition of the transition density.

Next, the main result of the paper regarding the limiting distribution of the ML
estimator in the level-effects ARCH model can be established. ��

Theorem 1 Define u1t (θ0) =
(
ln |yt−1| − w0

(
1

w0
− 1

σ 2
t (θ0)

)
ln |yt−2|

)
, u2t (θ0) =(

1
σ 2
t (θ0)

)
and u3t (θ0) =

(
w0
α0

) (
1

w0
− 1

σ 2
t (θ0)

)
, let Assumptions A and B hold, θ0 is

assumed to be an interior point of the parameter space and assume that δ = (a, b)′
is known. Consider the log likelihood function given by (3). Then, there exists a fixed
open neighborhood U = U (θ0) of θ0 such that with probability tending to one as
T −→ ∞, LT (θ) has a unique maximum point θ̂ in U . In addition, the ML estimator
θ̂ is consistent and asymptotically normal

√
T
[
θ̂ − θ0

]´ d−→ N
(
0,
(
ζ 2/4

)

−1

)
,

3 See for example Brown et al. (1996) and Bouezmarni and Rombouts (2010) as examples showing the
relevance of studying positive time series. See also Broze et al (1995, p. 202) for a discussion of models
that preclude negative values under some parameter restrictions for continuous-time processes.
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where


 = ζ

⎡
⎢⎣

m11
1
2m12

1
2m13

1
2m12

1
4m22

1
4m23

1
2m13

1
4m23

1
4m33

⎤
⎥⎦ > 0,

ζ = 2 and mi j = E
(
uit (θ0) u jt (θ0)

)
for i = 1, 2, 3 and j = 1, 2, 3.4

Proof of Theorem 1 The proof of Theorem 1 is given in the Appendix.
Importantly, Theorem 1 applies to the MLE of the stationary level-effect ARCH(1)

process. However, if γ0 is known under Assumption A but E ln
(
α0z2t

)
> 0 then the

asymptotics for the ML estimator of α can still be established. To see this, simply
notice that the model (1), (2) in this case can be rewritten as

ỹt = σt zt
σ 2
t = ω + α ỹ2t−1

for ỹt ≡ y∗
t|yt−1|γ0 . This representation of the process ỹt is exactly identical to the

model given by equation (1) in Jensen and Rahbek (2004a). Consequently, when
E ln

(
α0z2t−1

)
> 0 (Assumption B fails) then ỹ2t

a.s.−→ ∞ from Lemma 1 as σ 2
t

a.s.−→ ∞
(see also Klüppelberg et al. (2004)) and the asymptotic results follows directly from
Jensen and Rahbek (2004a, Lemmas 1–5).5 The case of E ln

(
α0z2t−1

) = 0 implies, as
shown in Klüppelberg et al. (2004) for an ARCH(1) (under suitable conditions), that

σ 2
t

p−→ ∞ and therefore different arguments are required in this case (see Pedersen
and Rahbek (2016)). Three remarks should be added: ��
Remark 1 It is well known, that the stationary level-effect ARCH model, can be esti-
mated by non-parametric techniques, since the variance function is smooth and only
depends on yt−1. In the nonstationary case, Han and Zhang (2009) consider ARCH
models by applying the results of Wang and Phillips (2009a, b), although they do not
allow for a level-effect.

Remark 2 In model (1), (2), we are assuming that δ = (a, b)′ is known. In practice,
δ can be pre-estimated in a first stage. If δ and θ are estimated jointly in mean and
variance equation (contrary to Ball and Torous (1999)), then our proof will need to
be extended to account for the joint estimation. At this stage we do not know if this
would require stronger assumptions than those in Assumptions A and B.

4 Note that the data generating process (DGP) is assumed to be ergodic. It might be possible to relax this
assumption about ergodicity and simply assume that the DGP is initiated in some fixed value and that the
DGP has an ergodic solution (see e.g. Kristensen and Rahbek (2005) and Jensen and Rahbek (2007)) and
we leave that for further research.
5 We let

a.s.−→ denote convergence “almost surely” as T → ∞. Also note that in this case

∂
∂α

LT (θ) = −∑T
t=1

1
2

(
1 − ỹ2t

σ2
t

)
ỹ2t−1
σ2
t

; ∂2

∂α2
LT (θ0) = 1

2
∑T

t=1

(
1 − 2

ỹ2t
σ2
t

)
ỹ4t−1
σ4
t

; ∂3

∂α3
LT (θ0) =

−∑T
t=1

(
1 − 3

ỹ2t
σ2
t

)
ỹ6t−1
σ6
t

as shown in Results 1, 2 and 3 in the Technical Appendix and they do correspond

to Eqs. (4), (5) and (6) of Jensen and Rahbek (2004a).
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Remark 3 The generalization of the asymptotic results when going from ARCH(1) to
GARCH(1,1) can most likely be provided in a similar fashion as the extension from
Jensen and Rahbek (2004a) to Jensen and Rahbek (2004b), with the added complexity
in the proofs.

3 Simulations

In this section we evaluate and discuss, based on simulations, how well the asymptotic
results of θ̂ given by Theorem 1 can approximate the finite sample properties. We also
report simulation results to check the consequences when some of the assumptions
are violated. We set δ = (a, b)′ = (0,−1)′ in all simulations and we do not estimate
it.

In Panel A of Table 1, results are reported on point estimates, their associated biases
and the root mean squared errors (RMSE’s) when Assumption B1 holds, i.e., the
volatility process is stationary. In Panel A, three alternative data generating processes
are considered: The first is characterized by having standard Gaussian distributed
innovationswhereas the two remaining processes have fatter tails as the innovations are
standard t-distributed with 5 degrees of freedom. The results show that under all three
data generating processes, the MLE is relatively accurate with small biases and small
RMSE’s even at small sample sizes, i.e., T = 1000 . As expected from Theorem 1, the
biases and the RMSE’s are decreasing for all the estimators as sample sizes increase.
Note that in Theorem 1, we show the asymptotic theory for the MLE, however in this
simulation section we also showwhat happens under alternative distribution functions
for the innovations.

In Panel B of Table 1, two data generating processes, both in violationwithAssump-
tion B1, are considered. As noted in Jensen and Rahbek (2004a, b) ω is not identified
in this case hence is fixed at its true value in the population. The results of Panel B,
Table 1, clearly illustrates that the consistency properties of the MLE of α still holds
when σ 2

t and
(
y∗
t /y

γ0
t−1

)
are nonstationary. The main theoretical results of this paper

are silent about the asymptotic properties of γ when B1 is violated. This is due to
the complexity of the expressions of the first, second and third order derivatives of
the loglikelihood with respect to γ , and we can only analyze the case when B1 holds.
However the simulations seem to indicate strongly that consistency of the MLE of γ

is maintained also when Assumption B1 does not hold.
In Table 2, consistency of the estimated standard errors of theMLE in finite samples

is illustrated. The term SE (γ̂ ) denotes the “feasible” standard error of γ̂ computed
according to the expression for the asymptotic variance-covariance function derived in
Theorem 1, but where all the population parameters are replaced by sample estimates
(sample analogy estimation). ASE (γ̂ ) denotes the asymptotic standard error of γ̂ . It
is defined similar to SE (γ̂ ) but computed based on the true populations parameters.

We see that for all the models presented in Table 2, there is a very close correspon-
dence between SE (γ̂ ) and ASE (γ̂ ). These results are very encouraging, implying
that the asymptotic variance covariance matrix provides a good approximation of the
parameter estimation uncertainty also in finite sample. It is also noticeable, that in
the cases of relative fat tailed t-distributed innovations (when using the misspecified
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Table 2 Simulation results on the standard errors of the QMLE

SE (γ̂ ) SE (ω̂) SE (̂α) ASE (γ̂ ) ASE (ω̂) ASE (̂α)

Panel A: Assumption B1 holds

(γ, ω, α) = (0.6, 0.05, 2.0) , z ∼ N (0, 1)

T = 1000 0.0323 0.01867 0.1320 0.0343 0.01762 0.1366

T = 2000 0.0231 0.01267 0.0935 0.0242 0.01241 0.0964

T = 4000 0.0165 0.00904 0.0666 0.0170 0.00874 0.0677

(γ, ω, α) = (0.6, 0.05, 2.0) , z ∼ t(d f = 5)/
√
5/3

T = 1000 0.0399 0.02275 0.1737 0.0446 0.02295 0.1838

T = 2000 0.0287 0.01570 0.1232 0.0317 0.01631 0.1306

T = 4000 0.0211 0.01161 0.0896 0.0224 0.01155 0.0924

(γ, ω, α) = (0.6, 0.05, 3.7) , z ∼ t(d f = 5)/
√
5/3

T = 1000 0.0218 0.01811 0.1966 0.0222 0.01624 0.202

T = 2000 0.0151 0.01243 0.1382 0.0157 0.01147 0.142

T = 4000 0.0110 0.00809 0.0988 0.0111 0.00808 0.100

Panel B: Assumption B1 fails

(γ, ω, α) = (0.6, 0.05, 3.7) , z ∼ N (0, 1)

T = 1000 0.01632 · 0.1657 0.01618 · 0.1659

T = 2000 0.01154 · 0.1176 0.01152 · 0.1173

T = 4000 0.00848 · 0.0852 0.00841 · 0.0836

(γ, ω, α) = (0.6, 0.05, 5.0) , z ∼ t(d f = 5)/
√
5/3

T = 1000 0.0166 · 0.234 0.0164 · 0.237

T = 2000 0.0119 · 0.170 0.0116 · 0.168

T = 4000 0.0108 · 0.146 0.0110 · 0.167

The reported results are based on M = 1000 replications. The term SE (γ̂ ) denotes the “feasible” standard
error of γ̂ computed according to the expression for the asymptotic variance-covariance function derived
in Theorem 1, but where all the population parameters are replaced by sample estimates (sample analogy
estimation). ASE (γ̂ ) denotes the asymptotic standard error of γ̂ . It is defined similar to SE (γ̂ ) but computed
based on the true populations parameters. SE (ω̂), SE (̂α), ASE (ω̂) and ASE (̂α) are defined similarly

Gaussian quasi-likelihood) the standard errors of the MLE increase as expected, rela-
tive to the cases where innovations are normally distributed. But the observed increase
in parameter estimation uncertainty seems to be only of limited magnitude. Similar
results hold for SE (ω̂), SE (̂α), ASE (ω̂) and ASE (̂α).6

4 Conclusion

In this paper we establish consistency and asymptotic normality of the ML estimator
in the level-effect ARCH model. We also show in simulations that the asymptotic
theory provides a good approximation in finite samples.

6 In a SupplementaryAppendix that is available upon request from any of the authors, we provide additional
simulation results, where δ = (a, b)′ is estimated jointly with the variance parameters. According to those
simulation results, when δ is also estimated and assumptions A and B hold, we conjecture that the ML
estimator seem to follow also an asymptotically normal distribution.
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Appendix

The analytical expressions for the first, second and third order derivatives of the quasi
log likelihood function are given in a Supplementary Appendix available upon request
from any of the authors. We provide now three important propositions that we need in
order to prove Theorem 1. The proof technique for theMLE utilizes the classic Cramér
type conditions for consistency and asymptotic normality (central limit theorem for
the score, convergence of the Hessian and uniformly bounded third-order derivatives);
see e.g. Lehmann (1999).

Proposition 1 Let u jt (θ0) be defined as in Theorem 1. Under Assumptions A and B,
the joint distribution of the score functions evaluated at θ = θ0 are asymptotically
Gaussian,

1√
T

∂

∂θ
LT (θ0)

d→ N (0,
) ,

where


 = ζ

⎡
⎢⎣

m11
1
2m12

1
2m13

1
2m12

1
4m22

1
4m23

1
2m13

1
4m23

1
4m33

⎤
⎥⎦ > 0,

and mi j = E
(
uit (θ0) u jt (θ0)

)
for i = 1, 2, 3 and j = 1, 2, 3.

Proof of Proposition 1 For the proof of Proposition 1, we need first the following 2
Lemmas. ��
Lemma A Let Assumptions A and B hold and define u1t (θ0) = (ln |yt−1| −
w0

(
1

w0
− 1

σ 2
t (θ0)

)
ln |yt−2|

)
,

u2t (θ0) =
(

1
σ 2
t (θ0)

)
and u3t (θ0) =

(
w0
α0

) (
1

w0
− 1

σ 2
t (θ0)

)
. Then uit (θ0) is a sta-

tionary and ergodic sequence. In addition 1
T

∑T
t=1 uit (θ0)

p→ E (uit (θ0)) ≡ ui and
1
T

∑T
t=1 u

2
i t (θ0)

p→ E
(
u2i t (θ0)

) ≡ mii for i = 1, 2, 3.

Proof of LemmaA Define It = {yt , zt,yt−1, zt−1,yt−2, zt−2,...}. Note first that

|u1t (θ0)| ≤ |ln |yt−1|| + w0 |ln |yt−2||
(

1

w0
+ 1

σ 2
t (θ0)

)
≤ |ln |yt−1|| + 2 |ln |yt−2|| ,

hence

E |u1t (θ0)| ≤ 3E(ln |yt |) < ∞,

where we have used assumptions A and B and where the last inequality follows from
A3 where the first two moments of ln |yt | are assumed to be bounded. Hence we can
write
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u1t (θ0) ≡ g1
(
yt−1, yt−2, σ

2
t (θ0)

)
,

where g1 is a It -measurable function and where all arguments yt−1, yt−2 and σ 2
t (θ0)

are stationary and ergodic as a consequence of Lemmas 1 and 2. This implies that
u1t (θ0) is stationary and ergodic by Theorem 3.35 in White (1984). Consequently
1
T

∑T
t=1 u1t (θ0)

p→ E (u1t (θ0)) follows by the Ergodic Theorem. Similarly, it fol-

lows straightforwardly that E |u2t (θ0)| ≤
(

1
w0

)
and E |u3t (θ0)| ≤

(
2
α0

)
. We can

write u2t (θ0) ≡ g2
(
σ 2
t (θ0)

)
and u3t (θ0) ≡ g3

(
σ 2
t (θ0)

)
and as above conclude

that (u2t (θ0) , u3t (θ0)) is stationary and ergodic, and hence 1
T

∑T
t=1 uit (θ0)

p→
E (uit (θ0)) for i = 2, 3. Second, notice that

∣∣∣u21t (θ0)
∣∣∣ = | ln2 |yt−1| − 2w0

(
1

w0
− 1

σ 2
t (θ0)

)
ln |yt−2| ln |yt−1|

+ (ln |yt−2|)2 w2
0

(
1

w0
− 1

σ 2
t (θ0)

)2

|

≤ ln2 |yt−1| + 4w2
0

σ 4
t (θ0)

ln2 |yt−2| + 4
w0

σ 2
t (θ0)

|ln |yt−1| ln |yt−2||

≤ ln2 |yt−1| + 4 ln2 |yt−2| + 4 |ln |yt−1| ln |yt−2|| ,

such that

E
∣∣∣u21t (θ0)

∣∣∣ ≤ 5E
(
(ln |yt |)2

)
+ 4E |ln |yt | ln |yt−1|| < ∞.

On the right hand side of the first inequality we have used Lemmas 1 and 2 and
the second inequality follows from A3 (existence of second order moments). In

addition, E
∣∣u22t (θ0)∣∣ ≤

(
1

w2
0

)
and E

∣∣u23t (θ0)∣∣ ≤
(

4
α2
0

)
. We can therefore con-

clude, by Theorem 3.35 in White (1984), that since uit (θ0) is stationary and ergodic
then so is u2i t (θ0) for i = 1, 2, 3. Furthermore as E |u2i t (θ0) | is bounded then
1
T

∑T
t=1 u

2
1t (θ0)

p→ E
(
u21t (θ0)

)
for i = 1, 2, 3 follows from the ergodicity theo-

rem. This completes the proof of Lemma A. ��

Lemma B Under Assumptions A and B, the marginal distributions of the score func-
tions given by Eqs. (9)–(11) evaluated at θ = θ0 are asymptotically Gaussian,

1√
T

∂

∂γ
LT (θ0) = −1√

T

T∑
t=1

(
1 − z2t

)
u1t (θ0)

d→ N (0, ζm11) , (4)

1√
T

∂

∂w
LT (θ0) = −1√

T

T∑
t=1

1

2

(
1 − z2t

)
u2t (θ0)

d→ N (0, ζm22) , (5)
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1√
T

∂

∂α
LT (θ0) = −1√

T

T∑
t=1

1

2

(
1 − z2t

)
u3t (θ0)

d→ N (0, ζm33) , (6)

where mii , i = 1, 2, 3 and ζ are defined by Lemma A and A3 respectively.

Proof of Lemma B We will prove (4) in detail. The results in (5) and ( 6) hold by
identical arguments. Define again It = {yt , zt,yt−1, zt−1,yt−2, zt−2,...} and recall
from Result 1 that

s1t (θ0) = −
(
1 − z2t

)
u1t (θ0) .

Consequently

E (s1t |It−1) = −E
((

1 − z2t
)
u1t (θ0) |It−1

)
= −E

((
1 − z2t

))
u1t (θ0)

= 0. (7)

Since {s1t , It } is an adapted stochastic sequence the result in (7) implies that {s1t , It }
is a martingale difference sequence according to Definition 3.75 in White (1984).
Further, notice that

V 2
1T (θ0) =

T∑
t=1

E
(
s21t (θ0) |It−1

)
=

T∑
t=1

E

((
1 − z2t

)2)
u21t (θ0) = ζ

T∑
t=1

u21t (θ0) .

Hence,

E(V 2
1T (θ0)) = ζ

T∑
t=1

E
(
u21t (θ0)

)
= T ζm11.

Furthermore, according to Lemma A we have that

1

T

T∑
t=1

u21t (θ0)
p→ m11,

implying that

1

T
V 2
1T (θ0)

p→ ζm11.

From this we see that

(
V 2
1T (θ0)

) (
E(V 2

1T (θ0))
)−1 p→ 1. (8)
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Importantly, the result given by equation (8) corresponds to Condition (1), p. 60 in
Brown (1971).7

Finally, we need to prove that the Lindeberg type condition, which is Condition (2)
in Brown (1971). In particular, we need to show that

(
E(V 2

1T (θ0))
)−1 T∑

t=1

E

(
s21t (θ0) 1

{
|s1t (θ0)| > ε

√
E(V 2

1T (θ0))

})
p→ 0,

for all ε > 0. By inserting the expression for s21t and E(V 2
1T (θ0)) we get

lim
T→∞

1

T ζm11

T∑
t=1

E
(
s21t (θ0) 1

{
|s1t (θ0)| > ε

√
T ζm11

})
= lim

T→∞
1

ζm1

E

(((
1 − z2t

)2
u21t (θ0)

)
1

{∣∣∣∣
(
1 − z2t

)2
u21t (θ0)

∣∣∣∣ >
√
T ζm11

})
→ 0,

for all ζm11 because, from Lemma A and A1, u21t (θ0) and z2t have finite moments
and are stationary and ergodic. Consequently, the Lindeberg condition holds.

According to Theorem 2, p. 60, in Brown (1971) we can therefore conclude that

1√
T ζm11

T∑
t=1

s1t (θ0)
d→ N (0, 1),

which completes the proof. ��
Along the same lines

1

T

T∑
t=1

E
(
s22t | It−1

)
= 1

T

T∑
t=1

ζ

4

1(
w0 + α0

(
y∗
t−1

|yt−2|γ
)2) p−→ ζ

4w2
0

> 0,

1

T

T∑
t=1

E
(
s23t | It−1

)
= 1

T

T∑
t=1

ζ

4

(
y∗
t−1

|yt−2|γ
)2

(
w0 + α0

(
y∗
t−1

|yt−2|γ
)2) p−→ ζ

4α2
0

> 0.

and

1

T

T∑
t=1

E
(
s22t1

{
|s2t | >

√
T δ

})

≤ E

(((
1 − z2t

)2
4w2

0

)
1

{∣∣∣∣∣
(
1 − z2t

)
2w0

∣∣∣∣∣ >
√
T δ

})
→ 0,

7 Note that since s1t (θ0) is a martingale difference sequence, we may use Billingsley (1961)’s Central
Limit Theorem (CLT) instead of Brown (1971)’s CLT.
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1

T

T∑
t=1

E
(
s23t1

{
|s3t | >

√
T δ

})

≤ E

(((
1 − z2t

)2
4α2

0

)
1

{∣∣∣∣∣
(
1 − z2t

)
2α0

∣∣∣∣∣ >
√
T δ

})
→ 0,

for some δ > 0 and as T tends to ∞ . ��
Proof of Proposition 1 In order to fully characterize the asymptotic distribution we
need to determine the off-diagonal elements of the variance covariance matrix of
the score vectors given by 
. In particular, because u1t (θ0) , u2t (θ0) and u3t (θ0)
are all stationary and ergodic with finite first moments (from Lemma A) it follows
straightforwardly that

1

T

T∑
t=1

s1t (θ0) s2t (θ0) = 1

T

T∑
t=1

(
1 − z2t

)2
u1t (θ0) u2t (θ0)

p→ 1

2
ζm12,

1

T

T∑
t=1

s1t (θ0) s3t (θ0) = 1

T

T∑
t=1

1

2

(
1 − z2t

)2
u1t (θ0) u3t (θ0)

p→ 1

2
ζm13,

1

T

T∑
t=1

s2t (θ0) s3t (θ0) = 1

T

T∑
t=1

1

4

(
1 − z2t

)2
u2t (θ0) u3t (θ0)

p→ 1

4
ζm23.

Since all the elements in the score vector are asymptotically normal (see LemmaB), the
result follows directly from application of the Cramer-Wold device, see for example
Proposition 5.1 in White (1984), which completes the proof. ��
Proposition 2 Let u jt (θ0) be defined as in Theorem 1. Under Assumptions A and B,
the observed information evaluated at θ = θ0 converges in probability, i.e.,

− 1

T

∂2

∂θ∂θ ′ LT (θ0)
p→ �,

where

� =
⎡
⎢⎣
2m11 m12 m13

m12
1
2m22

1
2m23

m13
1
2m23

1
2m33

⎤
⎥⎦ > 0,

and mi j = E
(
uit (θ0) u jt (θ0)

)
for i = 1, 2, 3 and j = 1, 2, 3.

Proof of Proposition 2 Recall from Result 2 (see Supplementary Appendix) that

− 1

T

∂2

∂γ 2 LT (θ0) = 2
1

T

T∑
t=1

z2t u
2
1t (θ0) − 2

T

T∑
t=1

(
1 − z2t

)
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(ln |yt−2|)2 w2
0

(
1

w0
− 1

σ 2
t (θ0)

)2

+ 2

T

T∑
t=1

(
1 − z2t

)
w0

(
1

w0
− 1

σ 2
t (θ0)

)
(ln |yt−2|)2 .

Since z2t and u21t (θ0) are independent, the first term on the right hand side con-

verges to 2m11 by Lemma A. Furthermore, since (ln |yt−2|)2 w2
0

(
1

w0
− 1

σ 2
t (θ0)

)2
and

w0

(
1

w0
− 1

σ 2
t (θ0)

)
(ln |yt−2|)2 have bounded moments, they are ergodic and stationary

and since E
(
1 − z2t

) = 0, it follows from the ergodic theorem that the last term on the
right hand side converges in probability to zero. Therefore, the result follows. Using
identical arguments we find

− 1

T

∂2

∂w2 LT (θ0) = −1

2

1

T

T∑
t=1

(
1 − 2z2t

)
u22t (θ0)

p→ 1

2
m22,− 1

T

∂2

∂α2 LT (θ0)

= −1

2

1

T

T∑
t=1

(
1 − 2z2t

)
u23t (θ0)

p→ 1

2
m33,− 1

T

∂2

∂γ ∂w
LT (θ0)

= 1

T

T∑
t=1

z2t u1t (θ0) u2t (θ0)

+ 1

T

T∑
t=1

(
1 − z2t

)(
(ln |yt−2|)

(
w0

σ 2
t (θ0)

)(
1

w0
− 1

σ 2
t (θ0)

))
p→ m12,

− 1

T

∂2

∂γ ∂α
LT (θ0) = 1

T

T∑
t=1

z2t u1t (θ0) u3t (θ0)

− 1

T

T∑
t=1

(
1 − z2t

)
w0 (ln |yt−2|)

(
w0

α0

)(
1

w0
− 1

σ 2
t (θ0)

)2

p→ m13,− 1

T

∂2LT (θ0)

∂w∂α
= −1

2

1

T

T∑
t=1

(
1 − 2z2t

)
u2t (θ0) u3t (θ0)

p→ 1

2
m23.

We proceed now to show that 
 is positive definite. 
 will be positive definite if for
any non-zero column vector z with entries a, b and c, we show that zT
z > 0. In our
case

zT
z = ζ

⎛
⎜⎜⎝

aE
(
u21t

) + b
2 E (u1t u2t ) + c

2 E (u1t u3t )

a
2 E (u1t u2t ) + b

4 E
(
u22t

) + c
4 E (u2t u3t )

a
2 E (u1t u3t ) + b

4 E (u2t u3t ) + c
4 E

(
u23t

)

⎞
⎟⎟⎠

T ⎛
⎝a
b
c

⎞
⎠

= ζ

[
a2E

(
u21t

)
+ ab

2
E (u1t u2t ) + ac

2
E (u1t u3t ) + ab

2
E (u1t u2t )

+ b2

4
E
(
u22t

)
+ bc

4
E (u2t u3t )
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+ ac

2
E (u1t u3t ) + bc

4
E (u2t u3t ) + c2

4
E
(
u23t

) ]

= ζ

[
a2E

(
u21t

)
+ b2

4
E
(
u22t

)
+ c2

4
E
(
u23t

)

+ abE (u1t u2t ) + acE (u1t u3t ) + bc

2
E (u2t u3t )

]

where we have written uit (θ0) = uit for simplicity reasons. Since ζ, by Assumption
A1, is always positive and larger than zero, and from Lemma A we have that

u3t =
(

w0

α0

)(
1

w0
− u2t

)
,

then, we need to show if the following term is strictly positive

a2E
(
u21t

)
+ b2

4
E
(
u22t

)
+
(
cw0

2α0

)2

E

((
1

w0
− u2t

)2
)

+abE (u1t u2t ) + acw0

α0
E

(
u1t
w0

− u1t u2t

)

+bcw0

2α0
E

(
u2t
w0

− u22t

)
= a2E

(
u21t

)
+ 1

4

(
b − cw0

α0

)2

E
(
u22t

)
+
(

c

2α0

)2

+ ac

α0
E (u1t )

+ c

2α0

(
b − cw0

α0

)
E (u2t ) + a

(
b − cw0

α0

)
E (u1t u2t )

= a2E
(
u21t

)
+ 1

4

(
b − cw0

α0

)2

E
(
u22t

)
+ a

(
b − cw0

α0

)
E (u1t u2t )

+ c

α0

[
aE (u1t ) + 1

2

(
b − cw0

α0

)
E (u2t )

]
+
(

c

2α0

)2

= E

[
a2u21t + 1

4

(
b − cw0

α0

)2

u22t + a

(
b − cw0

α0

)
u1t u2t

+ c

α0

[
au1t + 1

2

(
b − cw0

α0

)
u2t

]
+
(

c

2α0

)2
]

= E

[(
au1t + 1

2

(
b − cw0

α0

)
u2t

)2
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+ c

α0

[
au1t + 1

2

(
b − cw0

α0

)
u2t

]
+
(

c

2α0

)2
]

= E

(
au1t + 1

2

(
b − cw0

2α0

)
u2t + c

2α0

)2

> 0.

Finally notice that since � = 2
ζ−1 = 
, then � > 0. This completes the proof of
Proposition 2. ��

Proposition 3 Define the lower and upper values for each parameter in θ0 as γL <

γ0 < γU , wL < w0 < wU , and αL < α0 < αU , respectively and the neighborhood
N (θ0) around θ0 as

N (θ0) = {θ\γL ≤ γ ≤ γU , wL ≤ w ≤ wU , and αL ≤ α ≤ αU } .

Under Assumptions A and B, there exists a neighborhood N (θ0) for which for
i, j, k = 1, 2, 3

sup
θ∈N (θ0)

∣∣∣∣ 1T
∂3

∂θi∂θ j∂θk
LT (θ)

∣∣∣∣ ≤ 1

T

T∑
t=1

wi jkt ,

where wi jkt is stationary. Furthermore
1
T

∑T
t=1 wi jkt

a.s.−→ E
(
wi jkt

)
< ∞ for ∀i jk.

Proof of Proposition 3 Let us start from the components of
∣∣∣ 1T ∂3

∂γ 3 LT (θ)

∣∣∣ defined in

Result 3 (see Supplementary Appendix). Part I (which is also defined in Result 3) can
be written as

∣∣∣∣∣∣∣∣
4

T

T∑
t=1

α
(

y∗
t−1

|yt−2|γ
)2

(ln (|yt−2|))3(
w + α

(
y∗
t−1

|yt−2|γ
)2)

⎛
⎜⎜⎝1 −

(
y∗
t

)2
y2γt−1

(
w + α

(
y∗
t−1

|yt−2|γ
)2)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
4

T

T∑
t=1

((
w + α

(
y∗
t−1

|yt−2|γ
)2) − w

)
|ln (|yt−2|)|3(

w + α
(

y∗
t−1

|yt−2|γ
)2)

×

⎛
⎜⎜⎝

(
y∗
t

)2
y2γt−1

(
w + α

(
y∗
t−1

|yt−2|γ
)2) + 1

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
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≤

∣∣∣∣∣∣∣∣
4

T

T∑
t=1

⎛
⎜⎜⎝

(
y∗
t

)2
y2γt−1

(
w + α

(
y∗
t−1

|yt−2|γ
)2) + 1

⎞
⎟⎟⎠ |ln (|yt−1|)|3

∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
4

T

T∑
t=1

⎛
⎜⎜⎝

⎛
⎜⎜⎝
y2γ0t−1

(
w0 + α0

(
y∗
t−1

|yt−2|γ0
)2)

y2γt−1

(
w + α

(
y∗
t−1

|yt−2|γ
)2)

⎞
⎟⎟⎠ z2t + 1

⎞
⎟⎟⎠ |ln (|yt−1|)|3

∣∣∣∣∣∣∣∣

≤
∣∣∣∣∣
4

T

T∑
t=1

((
w0

w
y2(γ0−γ )
t−1 + α0

α

(
y∗
t−1

|yt−2|
)2(γ0−γ )

)
z2t + 1

)
|ln (|yt−1|)|3

∣∣∣∣∣
≤
∣∣∣∣∣
4

T

T∑
t=1

({
wU

wL

t−1 + αU

αL

t−2

}
z2t + 1

)
|ln (|yt−1|)|3

∣∣∣∣∣
≤
∣∣∣∣∣
4

T

T∑
t=1

({
wU

wL

t−1 + αU

αL

t−2

}
z2t + 1

)
|ln (|yt−1|)|3

∣∣∣∣∣
≤
∣∣∣∣∣
4

T

T∑
t=1

({
wU

wL

t−1 + αU

αL

t−2

}
z2t + 1

)
|ln (|yt−1|)|3

∣∣∣∣∣ ,

where we can define the lower bound for all t, yL ≤ |yt−1| , yL ≤ |yt−2| ,

t−1 = max

{
y2|γU−γL |
L , y2|γU−γL |

t−1

}
, 
t−2 = max

{
1,
(

y∗
t−1

|yt−2|
)2|γU−γL |}

and the

result follows by setting 2 |γU − γL | = ϕ, Assumptions A and B and the law of large
numbers (see Jensen and Rahbek (2004a), Lemma 5). Part II requires also assumption
A3 since

∣∣∣∣∣∣∣∣∣
8

T

T∑
t=1

α3
(

y∗
t−1

|yt−2|γ
)6

(ln (|yt−2|))3(
w + α

(
y∗
t−1

|yt−2|γ
)2)3

⎛
⎜⎜⎝1 − 3

(
y∗
t

)2
y2γt−1

(
w + α

(
y∗
t−1

|yt−2|γ
)2)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
8

T

T∑
t=1

⎛
⎜⎜⎝ 3

(
y∗
t

)2
y2γt−1

(
w + α

(
y∗
t−1

|yt−2|γ
)2) − 1

⎞
⎟⎟⎠ |ln (|yt−2|)|3

∣∣∣∣∣∣∣∣

≤
∣∣∣∣∣
8

T

T∑
t=1

(
3

{
wU

wL

t−1 + αU

αL

t−2

}
z2t + 1

)
|ln (|yt−1|)|3

∣∣∣∣∣ .

Parts III, IV, V and VI follow the same argument.
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Along the same lines for
∣∣∣ 1T ∂3

∂α3 LT (θ)

∣∣∣

∣∣∣∣ 1T
∂3

∂α3 LT (θ)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1

T

T∑
t=1

⎛
⎜⎜⎝3

(
y∗
t

)2
y2γt−1

(
w + α

(
y∗
t−1

|yt−2|γ
)2) − 1

⎞
⎟⎟⎠

(
y∗
t−1

yγ
t−2

)6

(
w + α

(
y∗
t−1

|yt−2|γ
)2)3

∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
1

T

T∑
t=1

⎛
⎜⎜⎝3

(
y∗
t

)2
y2γt−1

(
w + α

(
y∗
t−1

|yt−2|γ
)2) − 1

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
1

α3
L

≤ 1

T

T∑
t=1

(
3

{
wU

wL

t−1 + αU

αL

t−2

}
z2t + 1

)
1

α3
L

.

The rest of the cases follow directly using the same argument. This completes the
proof of Proposition 3. ��
Proof of Theorem 1 Given the conditions provided by Propositions 1–3, Theorem 1
follows from Lumsdaine (1996, pp. 593–595, Theorem 3), the ergodic theorem and
Lemma 1, p. 1206 in Jensen and Rahbek (2004b). ��
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