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Abstract
For the partially linear errors-in-variables panel data models with fixed effects, we, in
this paper, study asymptotic distributions of a corrected empirical log-likelihood ratio
and maximum empirical likelihood estimator of the regression parameter. In addition,
we propose penalized empirical likelihood (PEL) and variable selection procedure for
the parameter with diverging numbers of parameters. By using an appropriate penalty
function, we show that PEL estimators have the oracle property. Also, the PEL ratio for
the vector of regression coefficients is defined and its limiting distribution is asymptot-
ically chi-square under the null hypothesis. Moreover, empirical log-likelihood ratio
for the nonparametric part is also investigated. Monte Carlo simulations are conducted
to illustrate the finite sample performance of the proposed estimators.

Keywords Panel data · Penalized empirical likelihood · Partially linear model · Fixed
effect · Errors-in-variables

1 Introduction

The analysis of panel data is the subject of one of the most active and innovative
bodies of literature in econometrics. Panel data sets have various advantages over
that of pure time-series or cross-sectional data sets, among which the most important
one is perhaps that the panel data provide researchers a flexible way to model both
heterogeneity among cross-sectional units and possible structural changes over time.
Arellano (2003), Baltagi (2005) and Hsiao (2003) provided excellent overviews of
statistical inference and econometric analysis of parametric panel data models. How-
ever, a misspecified parametric panel data model may result in misleading inference.
Therefore, econometricians and statisticians have developed some flexible nonpara-
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metric and semi-parametric panel data models. For example, Su and Ullah (2007)
proposed a class of two-step estimators for nonparametric panel data with random
effects. Cai and Li (2008) studied dynamic nonparametric panel data models. Hen-
derson et al. (2008) considered nonparametric panel data model with fixed effects.
Rodriguez-Poo and Soberon (2014) considered varying coefficient fixed effects panel
data models, established direct semiparametric estimations. Chen et al. (2013) studied
partially linear single-index panel data models with fixed effects, proposed a dummy
variable method to remove fixed effects and established a semi-parametric minimum
average variance estimation procedure. Baltagi and Li (2002) discussed partially linear
panel data models with fixed effects, developed the series estimation procedure and
the profile likelihood estimation technique. Hu (2014) proposed the profile likelihood
procedure to estimate semi-varying coefficient model for panel data with fixed effects.
The partially linear panel data models with fixed effects are widely used in economet-
ric analysis; see, e.g., Henderson et al. (2008), Horowitz and Lee (2004), Hu (2017)
and Li et al. (2011).

In this paper, we consider the following partially linear panel data models with
fixed effects (e.g. Su and Ullah 2006):

Yit = X τi tβ + g(Zit )+ μi + εi t , i = 1, . . . , n, t = 1, . . . , T , (1.1)

where Yit is the response, (Xit , Zit ) ∈ R p × R are strictly exogenous variables, β =
(β1, . . . , βp)

τ is a vector of p-dimensional unknown parameters, and the superscript
τ denotes the transpose of a vector or matrix. g(Zit ) is a unknown functions and μi is
the unobserved individual effects, εi t is the random model error. Here, we assume εi t

to be i.i.d. with zero mean and finite variance σ 2 > 0. We allow μi to be correlated
with Xit , and Zit with an unknown correlation structure. Hence, model (1.1) is a fixed
effects model.

It is well known that in many fields, such as engineering, economics, biology,
biomedical sciences and epidemiology, observations are measured with error. For
example, urinary sodium chloride level (Wang et al. 1996) and serum cholesterol
level (Carroll et al. 1995) are often subjects to measurement errors. Simply ignoring
measurement errors (errors-in-variables), known as the naive method, would result
in biased estimators. Handing the measurement errors in covariates is generally a
challenge for statistical analysis. For the past two decades, errors-in-variables can be
handled by means of corrected score function (Nakamura 1990), corrected likelihood
method (Hanfelt and Liang 1997), the instrumental variables estimation approach
(Schennach 2007) and so on.

Specifically, we consider the following partially linear errors-in-variables panel
data models with fixed effects{

Yit = X τi tβ + g(Zit )+ μi + εi t ,

Wit = Xit + νi t ,
i = 1, . . . , n; t = 1, . . . , T . (1.2)

where the covariate variables Xit are measured with additive error and are not directly
observable. Instead, Xit are observed Wit = Xit + νi t , where the measurement errors
νi t are independent and identically distributed, independent of (Xit , Zit , εi t ), with
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mean zero and covariance matrix �ν . We will assume that �ν is known, as in the
papers of Zhu and Cui (2003) and You and Chen (2006) and other. When �ν is
unknown, we can estimate it by repeatedly measuring Wit ; see Liang et al. (1999) and
Fan et al. (2013) for details.

It is well-known that high-dimensional data analysis arises frequently in many con-
temporary statistical studies. The emergence of high-dimensional data, such as the
gene expression values in microarray, brings challenges to many traditional statistical
methods and theory. One important aspect of the high-dimensional data under the
regression setting is that the number of covariates is diverging. When dimensionality
diverges, variable selection through regularization has proven to be effective.As argued
in Hastie et al. (2009) and Fan and Lv (2008), penalized likelihood can properly adjust
the bias-variance trade-off so that the performance improvement can be achieved; Var-
ious powerful penalization methods have been developed for variable selection. Fan
and Li (2001) proposed a unified approach via nonconcave penalized least squares
to automatically and simultaneously select variables. Li and Liang (2008) developed
the nonconcave penalized quasilikelihood method for variable selection in semipara-
metric regression model. Recently, a new and efficient variable selection approach,
PEL introduced for the first time by Tang and Leng (2010), was applied to analyze
mean vector in multivariate analysis and regression coefficients in linear models with
diverging number of parameters. As demonstrated in Tang and Leng (2010), the PEL
hasmerits in both efficiency and adaptivity stemming from a nonparametric likelihood
method. Also, the PEL method possesses the same merit of the empirical likelihood
(EL) which only uses the data to determine the shape and orientation of confidence
regions and without estimating the complex covariance. As far as we know, there are
a few papers related to the PEL approach, such as Ren and Zhang (2011) proposed
the PEL approach for variable selection in moment restriction models; Leng and Tang
(2012) applied the PEL approach to parametric estimation and variable selection for
general estimating equations;Wang andXiang (2017) studied PEL inference for sparse
additive hazards regression with a diverging number of covariates.

It is worth pointing out that there is no result available in the literature when the
number of covariates is diverging in partially linear errors-in-variables panel data
models with fixed effects. In this paper, our aim is to extend the results in Fan et al.
(2016) for high-dimensional partially linear varying coefficient model with measure-
ment errors to partially linear error-in-variables panel data models with fixed effects.
Our contribution can be summarized as follows. Following the estimation procedure
proposed by Fan et al. (2005), we first adapt a local linear dummy variable approach
to remove the unknown fixed effects. Moreover, we utilize the EL method to construct
confidence regions of unknown parameter and establish asymptotic normality of max-
imum empirical likelihood (MEL) estimator of the parameter. At last, for building
sparse models, we propose an estimating equation-based PEL, a unified framework
for variable selection in optimally combining estimating equations. More specifically,
this method has the oracle property. Moreover, PEL ratio statistic shows the Wilks’
phenomenon, facilitating hypothesis testing and constructing confidence regions.

The layout of the remainder of this paper is as follows. In Sect. 2, we construct
corrected-attenuation EL ratio and test statistic as well as define the MEL and PEL
estimators of the parameter and give their asymptotic properties. Moreover, empirical
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log-likelihood ratio for the nonparametric part is also investigated. Finally, we briefly
introduce computational algorithm. The simulated example is provided in Sect. 3.
Section 4 summarizes some conclusions and discusses future research. Assumption
conditions and the proofs of the asymptotic results are given in Appendix.

2 Methodology andmain results

2.1 Modified empirical likelihood

We give vector and matrix notations in the following. Let Y = (Y τ1 , . . . ,Y
τ
n )
τ , X =

(X τ1 , . . . , X τn )
τ , Z = (Z τ1 , . . . , Z τn )

τ , μ0 = (μτ1, . . . , μ
τ
n)
τ and ε = (ετ1 , . . . , ε

τ
n )
τ

be nT × 1 vectors, where Yi = (Yi1, . . . ,YiT )
τ , Xi = (Xi1, . . . , XiT )

τ , Zi =
(Zi1, . . . , ZiT )

τ , εi = (εi1, . . . , εiT )
τ , and D0 = In ⊗ iT with ⊗ the Kronecker

product, In denotes the n × n identity matrix, and in denotes the n × 1 vector of ones.
We rewrite model (1.1) in a matrix format which yields

Y = Xβ + g(Z)+ D0μ0 + ε. (2.1)

For the identification purpose, we impose the restriction
∑n

i=1 μi = 0. Letting
D = [−in−1 In−1] ⊗ iT and μ = (μ2, . . . , μn)

τ , model (2.1) can then be rewritten
as

Y = Xβ + g(Z)+ Dμ+ ε. (2.2)

Let Git (z, h) = (1, (Zit − z)/h)τ , Kh(z) = K (·/h)/h with a kernel function K (·)
and a bandwidth h. The diagonal matrices

Kh(Zi , z) =
⎡
⎢⎣

Kh(Zi1, z) · · · 0
...

. . .
...

0 · · · Kh(ZiT , z)

⎤
⎥⎦ ,

Wh(u) =
⎡
⎢⎣

Kh(Z1, z) · · · 0
...

. . .
...

0 · · · Kh(Zn, z)

⎤
⎥⎦ ,

and ζ = (μτ , βτ )τ . Given ζ , we can estimate the functions g(·) = (g(z), {hg′(z)}τ )τ
by

n∑
i=1

T∑
t=1

{(
Yit − X τi tβ − μi

)
−
[
g(z)+ hg′(z)(Zit − z)

]}2
Kh(Zit − z). (2.3)

Let G(z, h) = [Gτ1(z, h), . . . ,Gτn(z, H)]τ , Gi (z, h) = (Gi1(z, h), . . . ,GiT (z, h))τ ,
g′(z) = ∂g(z)/∂z and z = zit is in a neighborhood of Zit . Then the solution of
problem (2.3) is given by
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Penalized empirical likelihood for partially linear errors… 2355

g(·) = [Gτ (z, h)WH (u)G(z, h)]−1Gτ (z, h)WH (u)(Y − Xβ − Dμ)

= S(z, H)(Y − Xβ − Dμ).

In particular, the estimator for g(z) is given by

ĝ(z) = s(z, h)(Y − Xβ − Dμ). (2.4)

where s(z, h) = (1 0)S(z, h).
Nowwe consider a way of removing the unknown fixed effects motivated by a least

squares dummy variable model in parametric panel data analysis, for which we solve
the following optimization problem:

ζ̂ = argmin
ζ

[
Y − Xβ− Dμ−S(Y − Xβ− Dμ)]τ [Y − Xβ− Dμ−S(Y − Xβ− Dμ)],

(2.5)
where the smoothing matrix S is

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 0)[Gτ (Z11, h)W11(z, h)G(Z11, h)]−1Gτ (Z11, h)W11(z, h)
...

(1 0)[Gτ (Z1T , h)W1T (z, h)G(Z1T , h)]−1Gτ (Z11, h)W1T (z, h)
...

(1 0)[Gτ (ZnT , h)WnT (z, h)G(ZnT , h)]−1Gτ (ZnT , h)WnT (z, h)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

S11
...

S1T
...

SnT

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Supposing that X̃ = (InT − S)X , Ỹ = (InT − S)Y , D̃ = (InT − S)D, we have

μ̃ = (D̃τ D̃)−1 D̃τ (Ỹ −X̃β). Let H = InT −D̃(D̃τ D̃)−1 D̃τ ,wecanobtain H D̃μ = 0.
Hence, the fixed effects term Dμ is eliminated in (2.3). Let eit be the nT × 1 vector
with its {(i − 1)T + t}th element being 1 and others 0. We state the approximate
residuals as the following:


i (β) =
T∑

t=1

X̃ τi t H(Ỹi t − X̃i tβ), i = 1, . . . , n. (2.6)

However, Xit ’s can not be observed in our case and we just have Wit . If we ignore
the measurement error and replace Xit with Wit in (2.4) directly, (2.4) can be used to
show that the resulting estimate is inconsistent. It iswell known that in linear regression
or partially linear regression, inconsistency caused by the measurement error can be
overcomeby applying the so-called “correction for attenuation”, seeLiang et al. (1999)
and Hu et al. (2009) for more details.

123



2356 B.-Q. He et al.

�i (β) =
T∑

t=1

W̃ τ
i t H(Ỹi t − W̃itβ)− (T − 1)�νβ, i = 1, . . . , n. (2.7)

Note that E(�i (β)) = 0, if β is the true parameter. Therefore, similar to Owen
(1990), we define a corrected-attenuation empirical likelihood (CAEL) ratio of β as.

Rn(β) = −max

{
n∑

i=1

ln(npi )|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pi�i (β) = 0

}
. (2.8)

With the assumption that 0 is inside the convex hull of the point (�1(β), . . . , �n(β)),
a unique value for Rn(β) exists. By the Lagrange multiplier method, one can obtain
that

Rn(β) =
n∑

i=1

ln{1 + γ τ�i (β)}, (2.9)

where γ is determined by
1

n

n∑
i=1

�i (β)

1 + γ τ�i (β)
= 0. (2.10)

Theorem 2.1 Suppose that the conditions of (B1)–(B7) in the Appendix hold. Further
assume that E(ε3|X , Z) = 0 almost surely or k ≥ 8. If β0 is the true value of the

parameter vector and
d→ stands for convergence in distribution, p3+2/(k−2)/n → 0

as n → ∞, then (2p)−1/2(2Rn(β0)− p)
d→ N (0, 1).

Define β̂M E = argminβ Rn(β), which is the MEL estimator of the parameter β.

Theorem 2.2 Under the conditions of Theorem 2.1, we have

√
n An

−1/2(β̂M E − β0) d→ N (0,�).

An represents a projection of the diverging dimensional vector to a fixed dimension s,
and An is a s × p matrix such that An Aτn → �,� is a s × s nonnegative symmetric
matrix with fixed s, and  = �−1

0 �1�
−1
0 , �1 = (T − 1)

{
E(ε11 − ν11β0)

2�2 +
σ 2�ν + E[(ν11ντ11 −�ν)β0]2

}
,�2 = E{[X11 − E(X11|Z11)]τ [X11 − E(X11|Z11)]}

and �0 = (T − 1)�2.
Further, �̂−1

2 �̂1�̂
−1
2 is a consistent estimator of �−1

2 �1�
−1
2 where �̂2 =

1
n W̃ τ H W̃ − (T − 1)�ν and �̂1 = { 1n

∑n
i=1

∑T
t=1[W̃ τ

i t H(Ỹi t − W̃it β̂)] + (T −
1)(�νβ̂)}⊕2 and A⊕2 means AAτ . By Theorem 2.2, we obtain that

(β̂M E − β0)τn[�̂−1
2 �̂1�̂

−1
2 ]−1(β̂M E − β0) d→ χ2

s .
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2.2 Penalized empirical likelihood for variable selection

We use the PEL by combining the profile likelihood method and the smoothly clipped
absolute deviation (SCAD) penalized approach. The SCAD penalty is defined in terms
of its first derivative.

We define the penalized empirical likelihood (PEL) as follows,

Ln(β) = Rn(β)+ n
p∑

j=1

pλ(|β j |), (2.11)

where pλ(·) is a penalty function with tuning parameter λ. See Fan and Li (2001) for
example of this function. In this paper, we use the smoothly clipped absolute deviation
penalty, whose first derivative satisfies

p′
λ(θ) = θ

{
I (θ ≤ λ)+ (aλ− θ)+

(a − 1)λ
I (θ > λ)

}
, θ > 0, λ > 0, (2.12)

for some a > 2 and p′
λ(0) = 0. Following Fan and Li (2001), we set a = 3.7 in our

work.
Maximizing the PEL function (2.8) is equivalent to minimizing

Ln(β) =
n∑

i=1

ln{1 + γ τ�i (β)} + n
p∑

j=1

pλ(|β j |), (2.13)

Let B = { j : β0 j } be the set of nonzero components of the true parameter vector β0
and its cardinality |B| = d where d is allowed grow as n → ∞. Without loss of gen-
erality, one can partition the parameter vector as β = (βτ1 , β

τ
2 )
τ where β1 ∈ R

d and
β2 ∈ R

p−d . Hence, the true parameter β0 = (βτ10, 0
τ )τ and we write β̂ = (β̂τ1 , β̂

τ
2 )
τ

called PEL estimator which is the minimizer of (2.13). The matrix  can be decom-

posed as a block matrix according to the arrangement of β0 as  =
(
11 12
21 22

)
.

Theorem 2.3 Suppose that Assumptions (B1)–(B9) hold. If p5/n → 0, then with
probability tending to 1, the PEL estimator β̂ satisfies

(a) (Sparity): β̂2 = 0;

(b) (Asymptotic normality): n1/2Wn
−1/2
p (β̂1−β10) d→ N (0,G), where Wn ∈ Rq×d

such that WnW τ
n → G for G ∈ Rq×q with fixed q andp = 11 −12

−1
22 21.

A remarkable advantage of PEL lies in testing hypotheses and constructing con-
fidence regions for β. To understand this more clearly, we consider the problem of
testing linear hypothesis:

H0 : Lnβ10 = 0 vs H1 : Lnβ10 �= 0
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where Ln is q ×s matrix such that Ln Lτn = Iq for a fixed and finite q. A nonparametric
profile likelihood ratio statistic is constructed as

L̃n(β̂) = −
{
Ln(β̂)− min

β,Lnβ10=0
Ln(β)

}
.

We summarize the property of the test statistic in the following theorem.

Theorem 2.4 Under the conditions of Theorem 2.3. Then under the null hypothesis
H0, we have

2L̃n(β̂)
d→ χ2

q , as n → ∞.
As a consequence of the theorem, confidence regions for the parameter β can be

constructed. More precisely, for any 0 ≤ α < 1, let cα be such that P(χ2
q > cα) ≤

1−α. Then �P E L(α) = {β ∈ R p : L̃n(β) ≤ cα} constitutes a confidence region for β
with asymptotic coverage α because the event that β belongs to �P E L(α) is equivalent
to the event that L̃n(β) ≤ cα .

2.3 Empirical likelihood for the nonparametric part

For model (2.2), we solve the the following optimization problem:

μ̂ = argmin
μ

[
Y − Xβ − g(Z)− Dμ]τ [Y − Xβ − g(Z)− Dμ],

we have μ = (Dτ D)−1Dτ [Y − Xβ − g(Z)]. For given β and z, an auxiliary random
vector for nonparametric part can be stated as

�i {g(z)} =
T∑

t=1

(Ii t − Q)[Yit − Xitβ − g(z)]Kh(Zit − z), i = 1, . . . , n.

where Q = D(Dτ D)−1Dτ . Note that E[�i {g(z)}] = 0 if g(z) is the true parameter.
Thus we can define an empirical log-likelihood ratio statistic for g(z) by using the
methodology in Owen (1988). We introduce an adjusted auxiliary random vector for
g(z) as follows.

�̂i {g(z)} =
T∑

t=1

(Ii t − Q)[Yit − Xit β̂ − g(z)− {ĝ(Zit )− ĝ(z)}]Kh(Zit − z),

i = 1, . . . , n.

By the adjustment in �̂i {g(z)}, we not only correct the bias, but also avoid under-
smoothing the function g(z), as proved in the Appendix. The adjusted empirical
log-likelihood ratio for g(z) can be defined as
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Qn(g(z)) = −max

{
n∑

i=1

ln(n p̃i )| p̃i ≥ 0,
n∑

i=1

p̃i = 1,
n∑

i=1

p̃i �̂i {g(z)} = 0

}
.

By the Lagrange multiplier method, one can obtain that

Qn(g(z)) =
n∑

i=1

ln{1 + φτ �̂i {g(z)}},

where φ is determined by

1

n

n∑
i=1

�̂i {g(z)}
1 + φτ �̂i {g(z)}

= 0.

Theorem 2.5 Suppose that the conditions of (B1)–(B9) in the Appendix hold. For a
given z ∈ Z , if g(z) is the true value of the parameter, then

2Qn(g(z))
d→ χ2

1 .

2.4 Computational algorithm

This section employs the local quadratic approximation algorithm to obtain the mini-
mizer of PEL ratio defined by (2.13). Specifically, for each j = 1, . . . , p, [pλ(|β j |)]′
can be locally approximated by the quadratic function defined as [pλ(|β j |)]′ =
p′
λ(|β j |)sgn(β j ) ≈ {p′

λ(|β j0|/|β j0|)}β j at an initial value β j0 of β j is not close
to 0; otherwise, we set β̂ j = 0. In other words, in a neighborhood of a given nonzero
β j0, we assume that pλ(|β j |) ≈ pλ(|β j0|) + 1

2 {p′
λ(|β j0|/|β j0|}(β2j − β2j0). We then

make use of algorithm (see Owen, 2001) to obtain the minimum through nonlinear
optimization. The procedure is repeated until convergence.

We apply the following Bayesian information criterion (BIC) to select the tuning
parameter λ, which is defined by

B I C(λ) = −2Ln(βλ)+ ln(n)d fλ,

where d fλ is the number of nonzero estimated parameters. Then the optimal tuning
parameter is the minimizer of the BIC.

3 Simulation studies

In this section, we carry out some simulation to study the finite sample performance
of our proposed method. Throughout this section, we choose the Epanechnikov kernel

K (u) = 3
4 (1 − u2)I {|u| ≤ 1} and use the “leave-one-subject-out” cross-validation

bandwidth method to select the optimal handwidth hopt .
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Table 1 Comparison of coverage probability for MEL, PEL, NMEL and NPEL

�v 1 − α p (n, T ) MEL PEL NMEL NPEL

0.2I2 0.90 10 (50,4) 0.818 0.827 0.810 0.834

10 (50,6) 0.852 0.863 0.878 0.879

15 (100,6) 0.865 0.885 0.880 0.895

0.95 10 (50,4) 0.924 0.930 0.918 0.936

10 (50,6) 0.932 0.939 0.926 0.940

15 (100,6) 0.937 0.946 0.929 0.947

0.4I2 0.90 10 (50,4) 0.795 0.807 0.801 0.818

10 (50,6) 0.836 0.846 0.821 0.836

15 (100,6) 0.862 0.851 0.826 0.857

0.95 10 (50,4) 0.914 0.923 0.912 0.921

10 (50,6) 0.925 0.932 0.920 0.928

15 (100,6) 0.928 0.937 0.923 0.939

Firstly, we consider the following partially linear errors-in-variables panel data
models with fixed effects:

{
Yit = X τi tβ + g(Zit )+ μi + εi t ,

Wit = Xit + νi t
i = 1, . . . , n; t = 1, . . . , T . (3.1)

where β = (3, 1.5, 0, 0, 2, 0, . . . , 0)τ , g(Zit ) = cos(2π Zit ), Zit∼U (0, 1), μi =
1
2 Z̄i + wi and wi∼N (0, 0.12) for i = 1, 2, . . . , n, and Z̄i = 1

T

∑T
t=1 Zit . The mea-

surement error νi t∼N (0, �ν) where we take �ν = 0.22 I10 and 0.42 I10 to represent
different levels of measurement error. The covariate Xit is a p-dimensional normal
distribution random vector with mean zero and covariance matrix cov(Xit , X jt ) =
0.5|i− j |.

In our simulations, we take p as the integer part of 10(6n)1/5.1 −20 and the sample
sizes (n, T ) = (50, 4), (50, 6) and (100, 6), respectively. In order to show the per-
formance of the proposed methods, we compare MEL and PEL estimators with the
native maximum empirical likelihood (NMEL) and native penalized empirical like-
lihood (NPEL) estimators that the neglecting the measurement errors with a direct
replacement of X by W in our proposed estimators. In each case the number of sim-
ulated realizations is 500.

Seen fromTable 1, when the nominal level is 0.9 and 0.95, shows the coverage prob-
ability of confidence region for the whole β constructed by MEL and PEL method,
respectively. From the results, we can see that the PEL confidence region has slightly
higher coverage probability than the NEL confidence region, and the coverage prob-
ability tends to the nominal level as the sample size increases.

FromTable 2, we can see the averagemodel errors (ME) and the standard deviations
(SD) of the β1 that is nonzero components of β. based on PEL and MEL estimators
decreases as the sample size increases and the PEL estimator gives the smallest ME
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Table 2 ME and SD of β1 for MEL, PEL, NPEL and NMEL estimators

�v p (n, T ) PEL MEL NPEL NMEL

ME SD ME SD ME SD ME SD

0.2I2 10 (50,4) 0.288 0.177 0.780 0.284 0.344 0.285 0.980 0.241

10 (50,6) 0.287 0.173 0.778 0.389 0.232 0.270 0.847 0.258

15 (100,6) 0.185 0.275 0.790 0.506 0.246 0.296 0.819 0.328

10 (50,4) 0.314 0.162 0.771 0.236 0.232 0.205 0.794 0.211

10 (50,6) 0.282 0.161 0.758 0.279 0.225 0.197 0.771 0.259

15 (100,6) 0.207 0.250 0.799 0.225 0.218 0.145 0.810 0.237

0.4I2 10 (50,4) 0.295 0.207 0.986 0.328 0.334 0.268 0.847 0.376

10 (50,6) 0.236 0.266 0.942 0.336 0.326 0.206 0.829 0.477

15 (100,6) 0.272 0.281 0.926 0.457 0.245 0.190 0.973 0.338

10 (50,4) 0.164 0.173 0.832 0.271 0.293 0.268 0.875 0.296

10 (50,6) 0.155 0.142 0.820 0.260 0.192 0.260 0.815 0.239

15 (100,6) 0.102 0.164 0.883 0.287 0.196 0.170 0.816 0.395

Table 3 Simulation results for variable selection selection based on the PEL and NPEL methods

p (n, T ) PEL (�v = 0.2) EL(�v = 0.2) NPEL(�v = 0.4) NMEL (�v = 0.4)

C I C I C I C I

10 (50,4) 5.98 0 5.79 0 5.44 0 5.24 0.02

10 (50,6) 6.20 0 6.17 0 5.93 0 5.54 0

15 (100,6) 13.13 0 12.82 0 12.66 0 12.32 0

10 (50,4) 6.85 0 6.77 0 6.34 0 6.28 0

10 (50,6) 6.13 0 6.21 0 5.96 0 5.39 0

15 (100,6) 13.53 0 13.22 0 13.45 0 13.33 0

and SD among the estimators based on PEL, MEL, NPEL and NMEL methods for all
settings. The ME is defined as M E(β̂1) = (β̂1 − β1)τ E(X τ X)(β̂1 − β1).

Table 3 summaries the variable selection results, where important variable have
large effects. The column labeled “C” gives average number of correct zeros and
column labeled “I” gives the average number of incorrect zeros. From Table 3, it can
be seen that variable selection method based on the PEL select all three true predictors
and the average number of correct zeros are close to p − 5 in all settings. Further the
smaller measurement errors lead to better performance. It can also be seen that the
PEL approach perform better than the NPEL method for all settings. These findings
imply that the model selection result based on the PEL approach effectively reduces
model complexity and the selected model is very close to the true model in terms of
nonzero coefficients.

From Fig. 1, We see that the method based on the EL performs slighter better than
the NA method since the EL method gives shorter confidence intervals than the NA
method which is shown in Theorem 4 in Xue and Zhu (2008). Besides, interestingly,
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Fig. 1 95% confidence intervals for g(z) for�v = 0.2 (left panel) and�v = 0.4 (right panel) based on EL
(dotted curve) and NA (dot-dashed curve). The solid curve is the estimated cure of g(z)

seen from Fig. 1,�v = 0.2 gives shorter confidence intervals and narrower confidence
bands than �v = 0.4 for g(z). This shows the empirical likelihood ratio generally
works well.

4 Conclusion remarks

The partially linear panel data models with fixed effects has received a lot of atten-
tion. But there have been few studies about partially linear errors-in-variables panel
data models with fixed effects. We apply empirical likelihood both for parameter and
nonparametric parts. Moreover, we propose PEL and variable selection procedure for
the parameter with diverging numbers of parameters. By using an appropriate penalty
function, we show that PEL estimators has the oracle property. Also, we introduce the
PEL ratio statistic to test a linear hypothesis of the parameter and prove it follows an
asymptotically chi-square distribution under the null hypothesis. We conduct simu-
lation studies to demonstrate the finite sample performance of our proposed method.
Still, more work is needed to extend the method to more complex settings, includ-
ing errors-in-function, cross-sectional dependence and spatial panel data model. The
results presented in this paper provide the foundation for additional work in these
directions.
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comments and suggestions which greatly improved the presentation of the paper. This research is supported
by the National Social Science Fund of China (18BTJ034).

Appendix: Proofs of themain results

We use Frobenius norm of a matrix A, defined as ||A|| = {tr(Aτ A)}1/2. Before we
give the details of the proofs, we present some regularity conditions.

(B1) The random vector Zit has a continuous density function f (·) with a bounded
support Z . 0 < in fz∈Z f (·) ≤ supz∈Z f (·) < ∞.
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(B2) The functions E(Xit |Zit = z) and g(·)have twobounded and continuous deriva-
tives on Z .

(B3) The kernel K (v) is a symmetric probability density function with a continuous
derivative on its compact support Z .

(B4) (μi ,Wit , Zit , εi t ), i = 1, . . . , n, t = 1, . . . , T are i.i.d. E(ε|W , Z , μ) = 0
almost surely. Furthermore, for some integer k ≥ 4, E(||Wε||k) ≤ ∞,
E(||W ||k) ≤ ∞, E(|ε|k) ≤ ∞.

(B5) E |X̆i t |2+δ < ∞, � = E[X̆i t X̆ τi t ] is non-singular, where X̆i t = Xit −
E(Xit |Zit ).

(B6) The bandwidth h satisfies h → 0, Nh8 → 0 and Nh2/(logN )2 → ∞ as
n → ∞.

(B7) �1 and �2 are positive definite matrices with all eigenvalues being uniformly
bounded away from zero and infinity.

(B8) Let �1 = ∑T
t=1

T −1
T (Xit − E(Xit |Uit ))(εi t − νi tβ0), �2 = ∑T

t=1
T −1

T νi tεi t ,

�3 = ∑T
t=1

T −1
T (νi tν

τ
i t −�ν)β0 and�s j , j = 1, . . . , p be the j-th component

of�s . For k of condition (B4), there is a positive constant c such that as n → ∞,
E(||�s/

√
p||k) ≤ c, s = 1, 2, 3.

(B9) The pλ(·) satisfy max
j∈B

p′
λ(|β j0|) = o((np)−1/2) and max

j∈B
p′′
λ(|β j0|) =

o(p−1/2).

Note that the obove conditions are assumed to hold uniformly in z ∈ Z . Conditions
(B1)–(B9) while look a bit lengthy, are actually quite mild and can be easily satisfied.
(B1)–(B2) are standard in the literature on local linear/polynomial estimation. B5
implies E(εi t |Xi , Zi , μi ) = E(εi t |Xit , Zit , μi t ) = 0. (B1)–(B5) can be founded in
Su and Ullah 2006. (B6) and (B7) have been used in Zhou et al. (2010).

For the convenience and simplicity, let ϑk = ∫
zk K (z)dz, cN = {log(1/h)/

(Nh)}1/2 + h2 and M̃D̃ = D̃(D̃τ D̃)−1 D̃τ

an = max
1≤ j≤p

{p′
λ(β j0)|, β j0 �= 0}, bn = max

1≤ j≤p
{p′′
λ(β j0)|, β j0 �= 0},

Bn = {β : ||β − β0|| ≥ dn}, dn = n−1/3−δ + an, 0 < δ < 1/6

Lemma A.1 Suppose that Assumptions (B1)–(B6) hold. Then

Gτ (z, h)Wh(z)G(z, h) = N f (z)×
(
1 0
0 v2

)
{1 + Op(cN )},

Gτ (z, h)Wh(z)X = N f (z)E(X |Z)× (1, 0)τ {1 + Op(cN )},

Proof Note that

Gτ (z, h)Wh(z)G(z, h)

=
( ∑n

i=1
∑T

t=1 Kh(Zit − z)
∑n

i=1
∑T

t=1(
Zit −z

h )Kh(Zit − z)∑n
i=1

∑T
t=1(

Zit −z
h )Kh(Zit − z)

∑n
i=1

∑T
t=1(

Zit −z
h )2Kh(Zit − z)

)
.
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Each element of the above matrix is in the form of a kernel regression. Similar to the
proof of Lemma A.2 in Fan and Huang (2005), we can derive the desired result. ��
Lemma A.2 Suppose that Assumptions (B1)–(B6) hold, we have

E |g(Zit )−
n∑

k=1

T∑
l=1

Skl g(Zkl)|2 = O(h4). (A.1)

Proof Similar to the proof of Lemma 5.1 in He et al. (2017). ��
Lemma A.3 Suppose that Assumptions (B1)–(B6) hold, we have

1

N
W̃ τ H W̃

d→ T − 1

T
(�2 +�ν),

where �2 = E{[X11 − E(X11|Z11)]τ [X11 − E(X11|Z11)]}.
Proof By Lemma A.1, we can obtain

[Iq 0τq ]−1(Gτ (z, h)Wh(z)G(z, h))
−1Gτ (z, h)Wh(z)X = E(X |Z)+ Op(cN ).

Then we have

X̃ = [X11 − E(X11|Z11), . . . , X1T − E(X1T |Z1T ), . . . , XnT − E(XnT |ZnT )]τ
+ Op(cN ),

and
W̃ = X̃ + ν + Op(cN ) � A + Op(cN ).

By the law of large numbers, we have

1

N
W̃ τ W̃ = 1

N

n∑
i=1

T∑
t=1

{[Xit − E(Xit |Zit )]τ [Xit − E(Xit |Zit )] + ντi tνi t
}

+ Op(cN )
p→ �2 +�ν. (A.2)

Hence, to prove the lemma, we consider the limit of N−1W̃ τ M̃D̃W̃ . It is easy to
show that N−1W̃ τ M̃D̃W̃ = N−1Aτ M̃D̃ A + Op(cN ). Let (M̃D̃)ekl ei t � mekl eit and
(A)i t � ait = W̃it , where ekl = (k − 1)T + l. Then

1

N
Aτ M̃D̃ A = 1

N

n∑
i=1

T∑
t=1

n∑
k=1

T∑
l=1

aklmekl eit ait = 1

N

n∑
i=1

T∑
t=1

ait meit ei t ait

+ 1

N

∑
ekl �=eit

n∑
k=1

T∑
l=1

aklmekl eit ait � I1 + I2.
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For the term I2, we have

E I 22 = 1

N 2 E

⎡
⎣ ∑

ekl �=eit

n∑
k=1

T∑
l=1

∑
ers �=euv

n∑
r=1

T∑
s=1

aklmekl eit ait arsmers euvauv

⎤
⎦ .

Note that (X11, Z11), . . . , (XnT , ZnT ) are i.i.d. and E(ait |Zit ) = 0, when ekl �= ers

and eit �= euv , we have

E(aklmekl eit ait arsmers euvauv)

= E[mekl eit mers euv E(aklait arsauv|Zkl , Zit , Zrs, Zuv)]
= E[mekl eit mers euv E(ait arsauv|Zit , Zrs, Zuv)E(akl |Zkl)] = 0.

Using the same argument and mekl eit = meit ekl , we have

E I 22 = 1

N 2

∑
ekl �=eit

n∑
k=1

T∑
l=1

E(aklmekl eit ait )
2+ 1

N 2

∑
ekl �=eit

n∑
k=1

T∑
l=1

E(m2
ekl ei t

aklait ait akl).

By Conditions (B3), we obtain

E I 22 ≤ 2c

N 2

∑
ekl �=eit

E(mekl eit )
2 ≤ 1

N 2 tr(M̃2) ≤ 2c

N
,

where c is a constant. Hence
E I2 = op(1). (A.3)

Note that I1 can be decomposed as

I1= 1

N

n∑
i=1

T∑
t=1

meit eit [ait ait − E(ait ait )] + 1

N

n∑
i=1

T∑
t=1

meit eit E(ait ait ) � �1 +�2.

By the definition of S, it is easy to show that

S = (S11, . . . , S1T , S21, . . . , SnT )
τ [I + diag{Op(cn)}],

where

Sit =
(

Kh(Z11 − Zit )

N f (Zit )
, . . . ,

Kh(Z1T − Zit )

N f (Zit )
, . . . ,

Kh(ZnT − Zit )

N f (Zit )

)τ
.
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Let D1 is the first column vector of D, thus we have

Dτ1 (I − Sτ )(I − S)D1 =
{

T − 2
T∑

t=1

[
T∑

l=1

Kh(Z1l − Z1t )

N f (Z1t )

]

+
n∑

i=1

T∑
t=1

[
T∑

l=1

Kh(Z1l − Zit )

N f (Zit )

]2⎫⎬
⎭ {1 + Op(cN )}.

Because

T∑
t=1

[
T∑

l=1

Kh(Z1l − Z1t )

N f (Z1t )

]
{1 + Op(cN )} = Op

(
1

Nh

)
,

and

n∑
i=1

T∑
t=1

[
T∑

l=1

Kh(Z1l − Zit )

N f (Zit )

]2
{1 + Op(cN )} = Op

(
1

Nh

)
,

we have

Dτ1 (I − Sτ )(I − S)D1 = T

[
1 + Op

(
1

Nh

)]
.

Consider the projection matrix, for i = 1, . . . , T , we obtain

(M̃D̃1
)i i = (I − S)D1[Dτ1 (I − Sτ )(I − S)D1]−1Dτ1 (I − Sτ )

= 1

T

[
1 + Op

(
1

Nh

)][
1 −

T∑
l=1

Kh(Z1l − Zit )

N f (Zit )
{1 + Op(cN )}

]2

= 1

T
+ Op

(
1

Nh

)
.

Because D̃1 is the first column vector of D̃. It is easy to show that M̃D̃ M̃D̃1
=

M̃D̃1
M̃D̃ = M̃D̃1

. Hence, M̃D̃ − M̃D̃1
is also a projection matrix. Thus M̃D̃ − M̃D̃1

=
(M̃D̃ − M̃D̃1

)2 ≥ 0. We obtain (M̃D̃)i i ≥ (M̃D̃1
)i i = 1

T + Op(
1

Nh ), i = 1, . . . , T .

By a similar argument, we can show that (M̃D̃)i i ≥ 1
T + Op(

1
Nh ), i = T + 1, . . . , N .

Thus, we have

1 ≥ meit eit ≥ 1

T
+ Op

(
1

Nh

)
,

then, it is easy to show that

tr(M̃D̃) =
n∑

i=1

T∑
t=1

meit eit ≥ N

T
+ Op

(
1

Nh

)
.
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Hence, we have

�2 = 1

N

n∑
i=1

T∑
t=1

meit eit E(ait ait ) = 1

T
(� +�η)+ Op

(
1

Nh

)
. (A.4)

By (A.2), it is easy to show that

1

N

n∑
i=1

T∑
t=1

(meit eit − T −1) = Op

(
1

Nh2

)
,

By the law of large numbers, �1 is bounded as

�1 = 1

N

n∑
i=1

T∑
t=1

(meit eit − T −1)(ait ait − E(ait ait ))

+ 1

N T

n∑
i=1

T∑
t=1

(ait ait − E(ait ait ))

≤ 1

N

[
n∑

i=1

T∑
t=1

(meit eit − T −1)2

]1/2
+ op(1) = op(1). (A.5)

By (A.4) and (A.5), we have

I1 = 1

T
(�2 +�η)+ op(1). (A.6)

By (A.2), (A.3) and (A.6), the lemma holds. ��
Lemma A.4 Under the conditions of Theorem2.1, ifβ is the true value of the parameter,
we have

n∑
i=1

T∑
t=1

νi t H g̃it = op(N
1/2), (A.7)

n∑
i=1

T∑
t=1

εi t H g̃it = op(N
1/2), (A.8)

Proof Since the proof of (A.8) is similar of (A.7), we prove only (A.7)here. Let ζN =
N 1/2/log(N ),

P

(
|

n∑
i=1

T∑
t=1

νi t H g̃it | > ζN

)
≤ P

(
|

n∑
i=1

T∑
t=1

νi t H g̃it | > ζN ,maxi,t |̃git | ≤ ch4

)

+P(maxi,t |̃git | ≥ ch4) (A.9)
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The second term is op(1) by Lemma A.2. For the first term, let Rit be the event that
|̃git | ≤ ch4. Then

P

(
|

n∑
i=1

T∑
t=1

νi t H g̃it | > ζN , {I (Rit ) = 1,∀i, t}
)

≤ ζ−2
N

n∑
i=1

T∑
t=1

E[νi t H g̃it {I (Rit ) = 1}]2

+ ζ−2
N

n∑
i �=k

T∑
t �=s

E[νi t H g̃itνksg̃ks{I (Rks) = 1}].

Since g̃i t {I (Rit ) = 1} ≤ ch4 is independent of νi t , the first term is O{Nζ−2
N c2h8} =

o(1). The second term is easily seen to equal zero. ��
Lemma A.5 Under the conditions of Theorem 2.1, if β0 is the true value of the param-
eter, we have

max
1≤i≤n

||�i (β0)|| = op(
√

n/p), (A.10)

{N−1/2∑n
i=1 �

τ
i (β0)}�−1

1 {N−1/2∑n
i=1 �i (β0)} − p√

2p
d→ N (0, 1). (A.11)

Proof From the definition of �i (β) by (2.7), and a simple calculation, yields

1√
N

n∑
i=1

�i (β0) = 1√
N

n∑
i=1

T∑
t=1

{
X̃i t H g̃it − X̃i t H ν̃i tβ0 + X̃i t H ε̃i t

+ ν̃i t H g̃it − ν̃i t H ν̃τi tβ0 + ν̃i t H ε̃i t +�νβ0
}
.

By Lemma A.1, we have Sε = Op(cN ). Similar to the proof of Lemma A.3 and under
Assumption (B7), we have 1√

N
X̃ τ H Sε = O(

√
Nc2N ) = op(1). Therefore

1√
N

n∑
i=1

T∑
t=1

X̃i t H ε̃i t = 1√
N

n∑
i=1

T∑
t=1

T − 1

T
(Xit − E(Xit |Zit ))εi t (A.12)

Similar to the proofs of (A.12), we can derive that

1√
N

n∑
i=1

T∑
t=1

X̃i t H ν̃i t = 1√
N

n∑
i=1

T∑
t=1

T − 1

T
(Xit − E(Xit |Uit ))νi t ,

1√
N

n∑
i=1

T∑
t=1

ν̃i t H ν̃τi t = 1√
N

n∑
i=1

T∑
t=1

T − 1

T
νi tνi t ,
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1√
N

n∑
i=1

T∑
t=1

ν̃i t H ε̃i t = 1√
N

n∑
i=1

T∑
t=1

T − 1

T
νi tεi t ,

which combining with Lemma A.4, it is easy to obtain

1√
N

n∑
i=1

�i (β0)

= 1√
N

n∑
i=1

T∑
t=1

T − 1

T

{[(Xit − E(Xit |Uit ))(εi t − νi tβ0)] + νi tεi t

+ (�ν − νi tν
τ
i t )β0]

}+ op(1)

= 1√
N

n∑
i=1

Gi (β0)+ op(1). (A.13)

Therefore, we have

�i (β0) = T − 1

T

T∑
t=1

{[(Xit − E(Xit |Uit ))(εi t − νi tβ0)] + νi tεi t

+ (�ν − νi tν
τ
i t )β0]

}+ op(1)

=
T∑

t=1

{
T − 1

T
(Xit − E(Xit |Uit ))(εi t − νi tβ0)+ T − 1

T
νi tεi t

+ T − 1

T
(νi tν

τ
i t −�ν)β0

}
+ op(1) = �1 +�2 +�3 + op(1). (A.14)

Let � ∗
s = max

1≤i≤n
||�si ||, s = 1, 2, 3, and {�si , i = 1, . . . , n} is a sequence of

independent random variables with common distribution. for any ε ≥ 0, then

P{� ∗
1 ≥ (p)1/2n1/kε} ≤

n∑
i=1

P{||�1i || ≥ (p)1/2n1/kε}

≤ 1

npk/2εk

n∑
i=1

E ||�1i ||k

≤ 1

εk
E ||�11/p1/2||k .

From conditions (B4) and (B7) and Cauchy-Schwarz inequality yields that � ∗
1 =

op(
√

pn1/k). By the condition p = o(n(k−2)/(2k) in Theorem 2.1, it is easy to check
that� ∗

1 = op(
√

n/pn2−k/(2k) p) = op(
√

n/p). Similar to the proof, we obtain� ∗
2 =

op(
√

n/p) and � ∗
3 = op(

√
n/p). Then max1≤i≤n ||�i (β0)|| = op(

√
n/p).

By applying the martingale central limit theorem as give in Hall and Heyde (1980)
and (A.13), it is easy to obtain (A.11). The proof of Lemma A.5 is thus completed. ��
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Lemma A.6 Under the conditions of Theorem 2.1. DenoteDn = {β : ||β−β0|| ≤ can}
Then ||γ (β)|| = Op(an), for β ∈ Dn.

Proof For β ∈ Dn , letγ (β) = ρθ , whereρ ≥ 0, θ ∈ R p, and ||θ || = 1. Set

J (β) = 1

n

n∑
i=1

�i (β)�
τ
i (β). �̄(β) = 1

n

n∑
i=1

�i (β), �
∗(β) = max

1≤i≤n
||�i (β)||.

From (2.7), we can obtain

0 = 1

n

n∑
i=1

�i (β)

1 + γ τ�i (β)
= 1

n

n∑
i=1

θτ�i (β)− ρ 1
n

n∑
i=1

(θτ�i (β))
2

1 + ρθτ�i (β)

≤ θτ �̄(β)− ρ

1 + ρ�∗ θ
τ J (β)θ.

Then

ρ

[
θτ J (β)θ − max

1≤i≤n
||�i (β)||n−1

∣∣∣∣∣
n∑

i=1

θτ�i (β)

∣∣∣∣∣
]

≤ |θτ �̄(β)|.

Observe that

�∗(β) ≤ �∗(β0)+ | max
1≤i≤n

∥∥∥∥∥ 1

N

n∑
i=1

T∑
t=1

W̃it H W̃it (β − β0)
∥∥∥∥∥

Let Xi t = W̃it H W̃it According to Condition (B.7) and Minkowski inequality, we
have

V ar(||Xi t ||r/2) ≤ E(||Xi t ||r ) = E

⎡
⎢⎣
⎛
⎝ p∑

j=1

X 2
i t j

⎞
⎠

r/2
⎤
⎥⎦

≤
⎧⎨
⎩

p∑
j=1

E[X r
i t j ]2/r

⎫⎬
⎭

r/2

= O(pr/2).

Then we obtain that

max
1≤i≤n

||Xi t ||

≤
[
{V ar(||Xi t ||r/2)}1/2 max

1≤i≤n

{ ||Xi t ||r/2)− E ||Xi t ||r/2)
{V ar(||Xi t ||r/2)}1/2 + E ||Xi t ||r/2

]r/2

≤ op(
√

pn1/r )+ Op(
√

p) = op(
√

pn1/r ).

which combining with (A.11)

�∗(β) = op(n/p) (A.15)
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For �̄(β), it is easy to see that

�̄(β) = �̄(β0)+ 1

N

n∑
i=1

T∑
t=1

W̃it H W̃it (β − β0)

Similar to the proofs of (A.10) in Fan et al. (2016), we obtain

θτ �̄(β) = Op(an) (A.16)

Therefore, it follows from (A.15) and (A.16), we have max1≤i≤n ||�i (β)|| =
n−1|∑n

i=1.
From (2.7), similar to the proof (A.11) in Fan et al. (2016) and Lemma B.4 in

Li et al. (2012), we can derive tr [(J (β0)−�1)
2] = Op(p2(c4n + 1/n)) which means

that all the eigenvalues of J (β0) converge to thoseof�1 at the rate of Op(p2(c4n+1/n)).
Therefore, by Lemma A.2, (2.7), (A.16), together with Condition (B7), we have

J (β) = 1

n

n∑
i=1

T∑
t=1

{
W̃it H(Ỹi t − W̃itβ0)− (T − 1)�νβ0 − W̃it H W̃ τ

i t (β − β0)

+ (T − 1)�ν(β − β0)
}⊕2

= J (β0)+ 1

n

n∑
i=1

T∑
t=1

{
W̃it H W̃ τ

i t (β − β0)+ (T − 1)�ν(β − β0)
}⊕2

− 2

n

n∑
i=1

T∑
t=1

{
W̃it H(Ỹi t − W̃itβ0)− (T − 1)�νβ0

}{
W̃it H W̃ τ

i t (β − β0)

+ (T − 1)�ν(β − β0)
}

= �1 + Op(p
2(c4n + 1/n)). (A.17)

we can obtain θτ J (β)θ = θτ�1θ
P→ c. Therefore, we obtain ρ ≤ c|θτ �̄(β)| =

Op(an), then ||γ (β)|| = Op(an). ��

Lemma A.7 Under the conditions of Theorem 2.1. as n → ∞, with probability tending
to 1, Rn(β) has a minimum in Dn.

Proof For β ∈ Dn ,

H1n(β, γ ) = 1

n

n∑
i=1

�i (β)

1 + γ τ�i (β)
= 0

According to Lemma A.6, we have γ τ�i (β) = op(1). Apply Taylor expansion to
H1n(β, γ ), we obtain �̄(β) − J (β)γ + δn = 0, where �̄(β) = 1

n

∑n
i=1 �i (β),

δn = 1
n

∑n
i=1 �i (β)(γ

τ�i (β))
2/[1 + ζi ]3 for some |ζi | ≤ |γ τ�i (β)|. We have
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γ = J (β)−1�̄(β)+ J (β)−1δn . Substituting γ into (2.6), it is easy to see that

2Rn(β) = n�̄(β)τ J (β)−1�̄(β)− nδτn J (β)−1δn + 2

3

n∑
i=1

(γ τ�i (β))
3(1 + ζi )−4

(A.18)
For β ∈ ∂Dn , where ∂Dn denotes the boundary of Dn , we write β = β0 + canφ

where φ is a unit vector, we have a decomposition as 2Rn(β) = �0+�1+�2, where
�0 = n�̄(β0)τ�

−1
1 �̄(β0), �1 = n(�̄(β) − �̄(β0))τ J (β)−1(�̄(β) − �̄(β0)), �2 =

n[�̄(β0)τ (J (β)−1−�−1
1 )�̄(β0)+2�̄(β0)τ J (β)−1(�̄(β)− �̄(β0)]−nδτn J (β)−1δn +

2
3

∑n
i=1(γ

τ�i (β))
3(1 + ζi )−4 As n → ∞, we see that

�1 = n

{[
1

n
W̃ τ H W̃ − (T − 1)�ν

]
(β − β0)

}τ
J (β)−1

{[
1

n
W̃ τ H W̃

− (T − 1)�ν] (β − β0)}
= c2na2

nφ
τ�0�

−1
1 �0φ{1 + op(1)} = Op(na2

n),

�2/�1
P→ 0 and 2Rn(β0)−�0 = op(1). This implies that for any c given, as n → ∞,

Pr{2[Rn(β)− Rn(β0)] ≥ c} → 1. In addition, note that for n large,

Ln(β)− Ln(β0) = Rn(β)− Rn(β0)+ n
p∑

j=1

{pλ(|β j |)− pλ(|β j0|)

≥ Rn(β)−Rn(β0)+n
∑
j∈B

{pλ(|β j |)− pλ(|β j0|) ≥ Rn(β)−Rn(β0),

where the last inequality holds due to Conditions (B9) and the unbiased property of
the SCAD penalty so that j ∈ B, pλ(|β j |) = pλ(|β j0|) when n is large. Hence,
Pr{Ln(β) ≥ Ln(β0)} → 1 for β ∈ ∂Dn , which establishes Lemma A.7. ��
Proof of Theorem 2.1 Let Ui = γ τ�i (β0). Apply Taylor expansion to (2.10), we have

0 = 1

n

n∑
i=1

�i (β0)

(
1 − Ui + U 2

i

1 + Ui

)
= �̄(β0)− J (β0)γ + δn, (A.19)

where δn = 1
n

∑n
i=1 �i (β0)U 2

i − 1
n

∑n
i=1 �i (β0)

U3
i

1+Ui
.

From (A.11) and Lemma A.6, we have

max
1≤i≤n

|Ui | ≤ ||γ (β)|| max
1≤i≤n

||�i (β0)|| = Op(p/n
1/2−1/r ).

Similar to the proof of (A.19) in Li et al. (2012), we can get ||δn|| = op(p5/2n−1(n−1/2

+c2n))+op(p2n−1cn). From (A.19), we obtain that γ = J (β0)−1�̄(β0)+ J (β0)−1δn .
Taylor expansion implies ln(1 + Ui ) = Ui − U 2

i /2 + U 3
i /3(1 + ςi )

4, for some ςi
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such that |ςi | ≤ |Ui |. Therefore, combining (A.16) and some elementary calculation,
we have

2Rn(β0) = 2
n∑

i=1

ln{1 + Ui } = n�̄τ (β0)J (β0)
−1�̄(β0)− nδτn J (β0)

−1δn

+ 2

3
Rn{1 + op(1)}

= n�̄τ (β0)�
−1
1 �̄(β0)+ n�̄τ (β0)(J (β0)

−1 −�−1
1 )�̄(β0)− nδτn J (β0)

−1δτn

+ 2

3
Rn{1 + op(1)} (A.20)

where Rn = ∑n
i=1[γ τ�i (β0)]3, By using the proving method of (A.22) and

Lemma B.6 in Li et al. (2012), we can easily derive nδτn J (β0)−1δn = op(
√

p) and
n�̄τ (β0)(J (β0)−1 −�−1

1 )�̄(β0) = op(
√

p). The proof of Theorem 2.1 is concluded
from the above results together with (A.11). ��
Proof of Theorem 2.2 Let H1n(β, γ ) = 1

n

∑n
i=1

�i (β)
1+γ τ �i (β)

and H2n(β, γ ) = 1
n

∑n
i=1

�i (β)
1+γ τ �i (β)

(
∂�i (β)
∂β

τ
)τ γ . Note that β̂ and γ̂ satisfy H1n(β̂, γ̂ ) = 0 and H2n(β̂, γ̂ ) = 0

Let ϕ = (βτ , γ τ )τ , ϕ0 = (βτ0 , 0)
τ and ϕ̂0 = (β̂τ0 , γ̂

τ
0 )
τ . Then by

0 = Hjn(β̂, γ̂ ) = Hjn(β
τ
0 , 0)+

∂�i (β, 0)

∂β
(β̂ − β0)+ ∂�i (β, 0)

∂γ
(γ̂ − 0)+ δ jn,

where δ jn with δ jn = 1
2 (ϕ̂0−ϕ0)τ H ′′

jn(ϕ)(ϕ̂0−ϕ0) for j = 1, 2. Here H ′′
jn(ϕ) denotes

the Hessian matric of Hjn(ϕ). Then

(
γ̂

β̂ − β0
)

=
[
∂H1n(β,γ )

∂γ
∂H1n(β,γ )

∂β
∂H2n(β,γ )

∂γ
∂H2n(β,γ )

∂β

]−1

(β0,0)

(
H1n(β0, 0)+ δ1n

H2n(β0, 0)+ δ2n

)
,

from Lemma A.3, we have

n−1
n∑

i=1

∂�i (β, 0)

∂β
= 1

n
W̃ τ H W̃−(T −1)�ν

d→ (T −1)�2{1+op(1)}=�0{1+op(1)}.
(A.21)

Note that ||γ̂ (β)|| = Op(an) by Lemma A.6 and ||β̂−β0|| = Op(an) by Lemma A.7.
Then using the Cauchy-Schwarz inequality, we find

||δ1n||2 =
p∑

k=1

δ1n,k ≤ c
p∑

k=1

||ϕ̂0 − ϕ0||4||H ′′
jn(ϕ)||2 = Op(a

4
n p3). (A.22)

and Condition (B9) yields that

||√N�−1
0 δ1n||2 ≤ N�−2

0 ||δ1n|| = Op(Na4
n p3) = op(1).
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and combining with H1n(β0, 0) = n−1∑n
i=1 �i (β0) , we have

√
n(β̂ − β0) = �−1

0 · 1
n

n∑
i=1

�i (β0)+ op(1)

= �−1
0 · 1

n

n∑
i=1

T∑
t=1

T − 1

T

{[(Xit − E(Xit |Uit ))(εi t − νi tβ0)] + νi tεi t

+ (�ν − ντ ν11)β0]
}+ op(1) = �−1

0 · 1
n

n∑
i=1

�i (β0)+ op(1).

Note that

Cov(�i (β0)) = (T − 1)
{

E[(X11 − E(X11|U11))(ε11 − ν11β0)]2 + E[ντ11ε11]2
+ E[(�ν − ντ ν11)β0]2

}
.

Therefore,

lim
n→∞ Cov(�i (β0)) = (T − 1)

{
E(ε11 − ν11β0)2� + σ 2�ν

+ E[(ν11ντ11 −�ν)β0]2
} = �1.

Invoking the Slutsky theorem and the central limit theorem, we can prove
Theorem 2.2. ��
Proof of Theorem 2.3 From the Lemma A.7, we note that the minimizer of Ln(β) is in
Dn . Considering β ∈ Dn , we have that for each of its components

1

n

∂Ln(β)

∂βi
= 1

n

n∑
i=1

γ
[∑T

t=1 W̃it H W̃it +(T − 1)�ν
]

1 + γ τ�i (β)
+ p′

λ(|β j |)sign(β j )= I j + I I j ,

(A.23)
First, max j∈B |I j | ≤ γ� j (1 + op(1)) = Op(an), because γ τ�i (β) = op(1),where
� j denotes the j th column of�. as τ(n/p)1/2 → ∞. Pr(max j∈B |I j | > τ/2) → 0.

it can be seen that p′
λ(|β j |)sign(β j ) dominates the sign of ∂Ln(β)

∂βi
asymptotically for

all j /∈ B, as n → ∞, for any j /∈ B, with probability tending to 1,

∂Ln(β)

∂βi
> 0, β j ∈ (0, can); ∂Ln(β)

∂βi
< 0, β j ∈ (0,−can)

which implies that β̂ j = 0 for all j /∈ Bc, with probability tending to 1. Thus part (a)
of Theorem 2.3 follows.

Next, we establish part (b), Let  1 and  2 be matrices such that  1β = β1 and
 2β = β2. As we have shown that as n → ∞, Pr(β̂2 = 0) → 1, thus by the Lagange
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multiplier method, finding the minimizer of Ln(β) is asymptotic equivalent to solve
the minimization of the following objective function

1

n

n∑
i=1

log{1 + γ τ�i (β)} + n
p∑

j=1

pλ(|β j |)+ vτ 2β, (A.24)

where v is p − s dimensional column vector of an other Lagrange multiplier. Define

Q̃1n(β, γ, v) = 1

n

n∑
i=1

�i (β)

1 + γ τ�i (β)
,

Q̃2n(β, γ, v) = 1

n

n∑
i=1

γ

1 + γ τ�i (β)
+ b(β)+ τ2 v,

and Q̃3n(β, γ, v) =  2β. where

b(β) = {p′
λ(|β1|)sign(β1), p′

λ(|β2|)sign(β2), . . . , p′
λ(|βp|)sign(βp), 0

τ }τ .

The minimizer (β, γ, v) of (A.24) satisfies Q̃in(β, γ, v) = 0, (i = 1, 2, 3). Since
||γ || = Op(an) for β ∈ B, we can obtain that ||v|| = Op(an) from Q̃2n(β, γ, v) = 0,
In order to expand Q̃in(β, γ, v)(i = 1, 2, 3) around the value (β0, 0, 0), we first give
the following partial derivatives,

∂ Q̃1n(β0, 0, 0)

∂γ
= −J (β0),

∂ Q̃1n(β0, 0, 0)

∂β
= �(β0),

∂ Q̃1n(β0, 0, 0)

∂v
= 0,

∂ Q̃2n(β0, 0, 0)

∂γ
= �(β0),

∂ Q̃2n(β0, 0, 0)

∂β
= b′(β), ∂ Q̃2n(β0, 0, 0)

∂v
=  τ2 ,

∂ Q̃3n(β0, 0, 0)

∂γ
= 0,

∂ Q̃3n(β0, 0, 0)

∂β
=  2,

∂ Q̃3n(β0, 0, 0)

∂v
= 0.

Then by Taylor expansion, we immediately derive that

⎛
⎝ Q̃1n(β0, 0, 0)

0
0

⎞
⎠ =

⎛
⎝−�1 �0 0
�τ0 0  τ2
0  2 0

⎞
⎠
⎛
⎝ γ̃β̃
ṽ

⎞
⎠+ Rn, (A.25)

where �(β0) = n−1∑n
i=1 ∂�i (β0)/∂β, Rn = ∑5

l=1 R(l)n , R(1)n = (Rτ11n , Rτ12n , 0)
τ ,

Rτ1jn ∈ R p and the kth component of Rτ1jn for j = 1, 2 is given by

R(1)jn,k = 1

2
(ϑ̂ − ϑ0)τ ∂

2 Q̃ jn,k(ϑ̃)

∂ϑ∂ϑτ
(ϑ̂ − ϑ0),
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ϑ = (β, γ )τ , ϑ̃ = (β̃, γ̃ )τ satisfying ||ϑ̃ −ϑ0|| ≤ ||ϑ̂ −ϑ0||. R(2)n = (0, bτ (β0), 0)τ ,
R(3)n = [0, {b′(ϑ̃)(ϑ̂ − ϑ0)}, 0]τ , R(4)n = [{(J (β0) − �1))γ̂ }τ + (�(β0) − �0)(β̂ −
β)}τ , 0, 0]τ and R(5)n = [0, {(�(β0) − �0)γ̂ }τ , 0]τ . Similar to the proof of (A.22),
we can get R(1)n = op(n−1/2). Given Condition (B8) and (B9), we see that

R(2)n = op(n−1/2) and R(3)n = op(n−1/2). By (A.21) and (A.17) which together

with Lemma A.6 yields that R(4)n = op(n−1/2) and R(5)n = op(n−1/2). Hence, we can

get R(k)n = op(n−1/2), k = 1, . . . , 5.
Define K11 = −�1, K12 = [�0, 0] and K21 = K τ

12,

K22 =
(

0  τ2
 2 0

)
, K =

(
K11 K12
K21 K22

)

and let κ = (βτ , vτ )τ . Then by inverted (A.25), we find

(
γ̂

κ̂ − κ0
)

= K −1
{(−Q̃1n(β0, 0, 0)

0

)
+ Rn

}
, (A.26)

As matrix K is partitioned into four blocks, it can be inverted blockwise as follows

K −1 =
[

K −1
11 + K −1

11 K12A−1K21K −1
11 −K −1

11 K12A−1

−A−1K21K −1
11 A−1

]
,

where A = K22 − K21K −1
11 K12 =

[
−1  τ2
 2 0

]
and � is defined in Theorem 2.2.

Thus, we get

κ̂ − κ0 = A−1K21K −1
11 Q̃1n(β0, 0, 0)+ op(n

−1/2).

Matric A can also be inverted blockwise by using the analytic inversion formula,ie.,

A−1 =
[
− τ2 ( 2 

τ
2 )

−1 2  τ2 ( 2 
τ
2 )

−1

( 2 
τ
2 )

−1 2 −( 2 
τ
2 )

−1

]
,

Further, we have

β̂ − β0 = [− τ2 ( 2 
τ
2 )

−1 2](�0�1�̄(β0)+ op(n
−1/2)).

It follows by an expansion of β̂1 that

β̂1 − β0 = [ 1− 1 
τ
2 ( 2 

τ
2 )

−1 2](�0�1�̄(β0)+ op(n
−1/2)). (A.27)

Then similar to the proof of Theorem 2.3 in Fan et al. (2016), we have n1/2Wn
−1/2
p

(β̂1 − β10) d→ N (0,G), which completes the proof of Theorem 2.3. ��
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Proof of Theorem 2.4. Let β̂ be theminimizer (2.13) andUi = γ̂ τ �i (β). Taylor expan-
sion gives

Ln(β) =
n∑

i=1

Ui −
n∑

i=1

U 2
i /2 +

n∑
i=1

U 3
i /3(1 + ξi )4 + op(1),

where |ξi | → |Ui | and op(1) is due to the penalty function. From (A.26), we have
γ̂ = [�−1

1 +�−1
1 �0{− τ2 ( 2 

τ
2 )

−1 2}�τ0�−1
1 ][�̄(β0)+ op(n−1/2)].

Similar to Tang and Leng (2010), Substituting the expansion of γ̂ and β̂ given by
(A.24) into Ui , we show that

2Ln(β̂) = n�̄(β0)
τ τ2 ( 2

−1 τ2 )
−1 2�̄(β0)+ op(1) (A.28)

Under the null hypothesis, because Ln Lτn = Iq , there exists  ̃2 such that  ̃2β = 0
and  ̃2 ̃

τ
2 = Ip−d+q . Now by repeating the proof of Theorem 2.3, we establish that

under the null hypothesis, the estimation of β can be obtained by minimizing (A.27),
where  2 is replaced by  ̃2, we can easily obtain that

2Ln(β̃) = n�̄(β0)
τ  ̃τ2 ( ̃2

−1 ̃τ2 )
−1 ̃2�̄(β0)+ op(1).

Combining Eqs. (A.28), we have

Ln = n�̄(β0)
τ−1/2(P1 − P2)

−1/2�̄(β0)+ op(1).

where
P1 = −1/2 τ2 ( 2

−1 τ2 )
−1 2

−1/2,

and
P2 = −1/2 ̃τ2 ( ̃2

−1 ̃τ2 )
−1 ̃2

−1/2,

are two idempotent matrices. As the rank of P1 − P2 is q, P1 − P2 can be written as
ϒτϒ , where ϒ is q × p matrix such that ϒτϒ = Iq , further, we see that

√
nϒ−1/2�̄(β0)

d→ N (0, Iq).

Then
n�̄(β0)

τ−1/2(P1 − P2)
−1/2�̄(β0)

d→ χ2
q .

and the proof of Theorem 2.4 is finished. ��
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Lemma A.8 Under the conditions of Theorem 2.5. For a given z, if g(z) is the true
value of the parameter, then

1√
Nh

n∑
i=1

�̂i {g(z)} − b(z)
d→ N (0, R). (A.29)

1

Nh

n∑
i=1

�̂i {g(z)}�̂τi {g(z)} P→ R. (A.30)

max
1≤i≤n

||�̂i {g(z)}|| = op(
√

Nh), φ = Op(N
−1/2). (A.31)

where b(z) = ( N
h

)1/2 T −1
T E[g(Zit ) − g(z)] f (z)

∫
K (z)dz and R = σ 2 f (z)

∫
K 2

(z)dz.

Proof Observe that

1√
Nh

n∑
i=1

�̂i {g(z)} − b(z) = S1(z)+ S2(z)+ S3(z)

where

S1(z) = 1√
Nh

n∑
i=1

T∑
t=1

(Ii t − Q)Kh(Zit − z)εi t ,

S2(z) = 1√
Nh

n∑
i=1

T∑
t=1

(Ii t − Q){[g(Zit )− g(z)]Kh(Zit − z)− (h/N )1/2b(z)},

S3(z) = 1√
Nh

n∑
i=1

T∑
t=1

(Ii t − Q)X τi t (β − β̂)Kh(Zit − z).

It is not difficult to prove E[S1(z)] = 0 and V ar [S1(z)] = R +o(1). S1(z) satisfies
the conditions of the Cramer–Wold theorem and the Lindeberg condition. Therefore,
we get

S1(z)
d→ N (0, R). (A.32)

We can also prove that
S2(z) = op(1). (A.33)

Theorems 2.2 and condition (B8) imply that β − β̂ = Op(N−1/2). Therefore, we get
S3(z) = Op(h1/2). This together with (A.32) and (A.33) proves (A.29).
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Analogously to the proof of (A.30). We can verify (A.30) easily. As to (A.31), we
find

max
1≤i≤n

||�̂i {g(z)}|| ≤ max
1≤i≤n

||(Ii t − Q)Kh(Zit − z)εi t ||
+ max

1≤i≤n
||(Ii t − Q)[g(Zit )− g(z)]Kh(Zit − z)||

+ max
1≤i≤n

||(Ii t − Q)X τi t (β − β̂)Kh(Zit − z)|| = J1 + J2 + J3

From Markov inequality and conditions (B3) and (B4), one can obtain

P(J1 ≥ √
Nh) ≤ (Nh)−s

n∑
i=1

E[(Ii t − Q)εi t Kh(Zit − z)]2s ≤ C(Nh)1−s → 0

which implies that J1 = op(
√

Nh). Using some arguments similar to those used in the
proof of Lemma A.6, we can prove J2 = op(

√
Nh) and J3 = op(

√
Nh). Therefore

we obtain that max1≤i≤n ||�̂i {g(z)}|| = op(
√

Nh).
Applying (A.30) and theproof inOwen (1990), one canderive thatφ = Op(N−1/2),

which completes the proof of Lemma A.8. ��
Proof of Theorem 2.5. Invoking some arguments similar to those used in the proof of
can be proved Theorems 2.4, we can proof

2Qn(g(z)) =
[

1

Nh

n∑
i=1

�̂2
i {g(z)}

]−1 { 1√
Nh

n∑
i=1

�̂i {g(z)} − b(z)
}2

From Lemma A.8, we can prove that 2Qn(g(z))
d→ χ2

1 . ��
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