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Abstract In this paper, a new robust and efficient estimation approach based on local
modal regression is proposed for partially linearmodelswith large-dimensional covari-
ates. We show that the resulting estimators for both parametric and nonparametric
components are more efficient in the presence of outliers or heavy-tail error distri-
bution, and as asymptotically efficient as the corresponding least squares estimators
when there are no outliers and the error distribution is normal. We also establish the
asymptotic properties of proposed estimators when the covariate dimension diverges
at the rate of o

(√
n
)
. To achieve sparsity and enhance interpretability, we develop a

variable selection procedure based on SCAD penalty to select significant parametric
covariates and show that the method enjoys the oracle property under mild regular-
ity conditions. Moreover, we propose a practical modified MEM algorithm for the
proposed procedures. Some Monte Carlo simulations and a real data are conducted
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to illustrate the finite sample performance of the proposed estimators. Finally, based
on the idea of sure independence screening procedure proposed by Fan and Lv (J R
Stat Soc 70:849–911, 2008), a robust two-step approach is introduced to deal with
ultra-high dimensional data.

Keywords Partially linear models · Robust estimation · Variable selection · Oracle
property

1 Introduction

Consider the partially linear models (PLM)

Y=X T β+ f (Z)+ε, (1)

where X = (x1, . . . , x pn )
T ∈ R

pn and Z = (z1, . . . , zq)T ∈ R
q are the covari-

ates in the parametric and nonparametric components, β = (β1, . . . , βpn )
T is a

pn-dimensional vector of unknown parameters, f (·) is an unknown smooth func-
tion, and the random error ε satisfies E (ε |X, Z ) = 0. Ever since first introduced
by Engle et al. (1986), the PLM have been extensively studied in the literature. For
example, see Robinson (1988), Speckman (1988), Zeger and Diggle (1994), Severini
and Staniswalis (1994) and Hardle et al. (2000).

In practice, large amounts of variables are usually included in regression model
to reduce the possible modeling biases. However, inclusion of too many irrelevant
variables can degrade the estimation accuracy and model interpretability. Classical
variable selection procedures such as AIC (Akaike 1973), BIC (Schwarz 1978), Mal-
lows’ Cp (Mallows 1973) and k-fold Cross-Validation (Breiman 1995) all suffered
from the problems of unstability and intensive computation. To address these deficien-
cies, Tibshirani (1996) proposed the least absolute shrinkage and selection operator
(LASSO) penalty to perform simultaneous estimation and variable selection. But just
as Fan and Li (2001) conjectured, the oracle property does not hold for the LASSO
penalty. Later, the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li
2001) and adaptive LASSO penalty (Zou 2006) had been proposed to possess the
oracle property. In recent years, these penalized methods have been widely used for
variable selection in PLM. For instance, Li and Liang (2008) proposed two classes of
penalized procedures for variable selection in PLMwith measurement errors. Ni et al.
(2009) proposed a new type of double-penalized method for PLM with a divergent
number of covariates. Xie and Huang (2009) introduced SCAD-penalized regres-
sion in high-dimensional PLM. Zhou et al. (2010) proposed nonconcave penalized
procedure for fixed-effects PLM with errors in variables. And, Chen et al. (2012)
combined the ideas of profiling and adaptive Elastic-net for variable selection in PLM
with large-dimensional covariates. It is important to note that all these works were
built on the least squares (LS) regression, which is highly sensitive to outliers and
their efficiency may be significantly decreased for many commonly used non-normal
errors. To this end, researchers began to study the robust estimation and variable
selection for PLM in the framework of the least absolute deviation (LAD) method
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(Wang et al. 2007), which is particularly suited to the heavy-tailed error distribu-
tions. To the best of our knowledge, Zhu et al. (2013) proposed a class of penalized
LAD approach in PLMwith large-dimensional covariates. However, the LADmethod
may lose some efficiency when there are no outliers and the error distribution is nor-
mal. Hence, it is highly desirable to develop a robust and efficient method that can
simultaneously conduct estimation and variable selection in PLM for different error
distributions.

More recently, Yao et al. (2012) investigated a new estimation method based on
a local modal regression (LMR) in a nonparametric model. They demonstrated that
the LMR estimator has a great efficiency gain across a wide spectrum of non-normal
error distributions and almost not lose any efficiency for the normal error compared
with the LS estimator. Similar conclusions have also been confirmed in Zhang et al.
(2013), Yang and Yang (2014), Yao and Li (2014) and Zhao et al. (2014). This fact
motivates us to extend the local modal regression to PLM. The main goal of this
paper is to develop a robust and efficient estimation and variable selection procedure
for PLM, in which the covariate dimension diverges at the rate of o(

√
n). We show

that the resulting estimators for both parametric and nonparametric components are
more efficient in the case of outliers or heavy-tail error distribution, and as asymp-
totically efficient as the corresponding LS estimators when there are no outliers and
the error distribution is normal. The main contributions of this paper are threefold.
Firstly, the proposed LMR estimators for both parametric and nonparametric compo-
nents are robust and efficient in PLM with large-dimensional covariates. Secondly,
we develop a variable selection procedure based on SCAD penalty to identify signif-
icant covariates in the parametric component and prove that the method enjoys the
oracle property under mild regularity conditions. Finally, a two-step robust procedure
based on sure independence screening and penalized LMR is proposed to deal with
ultra-high dimensional cases.

The rest of this paper is organized as follows. In Sect. 2, following the idea
of LMR, we propose a new estimation method for PLM with large-dimensional
covariates, and establish the theoretical properties of the resulting LMR estima-
tors for both parametric and nonparametric components. A robust and efficient
variable selection procedure via SCAD penalty is developed to select significant
parametric covariates and its oracle property is also established in Sect. 3. In
Sect. 4, we discuss the details of bandwidth selection and BIC criterion is sug-
gested to select the regularization parameter. Moreover, we introduce a modified
MEM algorithm for implementation. In Sect. 5, some Monte Carlo simulations as
well as a real data example are conducted to show the finite sample performance
of the proposed estimators. In Sect. 6, a two-step robust procedure based on sure
independence screening and penalized LMR is proposed to deal with ultra-high
dimensional cases and a simulation study is also presented in this section. We
conclude with a few remarks in Sect. 7. All the technical proofs are given in the
“Appendix”.
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2 Robust estimation procedure

2.1 Robust LMR for PLM

In this subsection, our strategy is that we first use the profile least squares approach
(Speckman 1988) to transform the semiparametric model to the classic linear model,
and then develop a robust estimation procedure for PLM.

Suppose that {(Xi , Yi , Zi ), i = 1, 2, . . . , n} is an independent identically dis-
tributed sample from model (1). It follows from the profile least squares approach
that

Yi − E(Yi |Zi ) = {Xi − E(Xi |Zi )}T β + εi , i = 1, 2, . . . , n, (2)

which is a standard linear model if E(Xi |Zi ) and E(Yi |Zi ) are known. However, both
E(Xi |Zi ) and E(Yi |Zi ) in model (2) are not observed in practice. Thus, we first need
to estimate E(Xi |Zi ) and E(Yi |Zi ). This can be done through kernel smoothing or
local linear approximation (Speckman 1988; Fan and Gijbels 1996). For example, we
can estimate E(Xi |Zi ) and E(Yi |Zi ) by

Ê(Xi |Zi ) =
∑n

j=1 K
(

Z j −Zi
d1

)
X j

∑n
j=1 K

(
Z j −Zi

d1

) ,

and

Ê(Yi |Zi ) =
∑n

j=1 K
(

Z j −Zi
d2

)
Y j

∑n
j=1 K

(
Z j −Zi

d2

) , (3)

respectively, where K (·) is a q-dimensional kernel function, d1 and d2 are the
bandwidths. In what follows, we denote m X (Z) = E(X |Z), mY (Z) = E(Y |Z),
X̃ = X − E(X |Z), Ỹ = Y − E(Y |Z), ̂̃X = X − Ê(X |Z), and ̂̃Y = Y − Ê(Y |Z).

After profiling, we can focus on the general estimation procedures in the context of
classic linear model. First, we introduce the commonly used LS method. Specifically,
we construct the LS estimator by minimizing the following objective function

n∑

i=1

(
̂̃Y i − ̂̃X T

i β

)2

(4)

with respect to β.
It is well known that the LS method is very sensitive to outliers in the dataset. Then

we can consider the outliers-resistant loss functions such as L1 or, more generally,
Huber’s ψ function (Huber 1981). Without loss of generality, we only introduce the
L1 loss function to obtain the LAD estimator (Wang et al. 2007). One can also refer to
Zhu et al. (2013) for a detailed discussion of this class of estimator. Therefore, instead
of minimizing (4), we minimize
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n∑

i=1

∣∣∣
∣
̂̃Y i − ̂̃X T

i β

∣∣∣
∣ (5)

with respect to β.
However, the LAD method may lose some efficiency when there are no outliers

and the error distribution is normal. Hence, it is highly desirable to develop a robust
and efficient method that can conduct robust estimation in PLM for different error
distributions. In general, the mode is insensitive to the outliers in dataset or the heavy-
tail error distributions. Moreover, the modal regression provides more meaningful
point prediction and larger coverage probability for prediction than themean regression
when the error density is skewed (Zhang et al. 2013). Motivated by this fact, we devote
to extending the local modal regression to PLM.

In this paper, we propose the LMR estimator β̂ by maximizing the following objec-
tive function

1

n

n∑

i=1

φh1

(
̂̃Y i − ̂̃X T

i β

)
, (6)

with respect to β, where φh1(t) = h−1
1 φ(t/h1), φ(t) is a kernel density function, and

h1 plays the role of the bandwidth, which determines the degree of robustness of the
LMR estimator. For the ease of computation, we use the standard normal density for
φ(·) throughout this paper. Similar idea can be seen in Yao et al. (2012), Zhang et al.
(2013), and Yang and Yang (2014).

After obtaining the LMR estimator of β, we can further estimate the unknown
smooth function f (·). In this paper, we adopt local linear approximation (Fan and
Gijbels 1996) to approximate f (·). That is to say, for any fixed Z = z ∈ R

q , we
approximate f (z) by a linear function

f (z0) ≈ f (z) + (z0 − z)T f ′(z) = a + (z0 − z)T b (7)

for z0 in a neighborhood of z. As a consequence, we turn to estimate the intercept term
a. To this end, we propose the LMR estimator f̂ (z) = â by maximizing

n∑

i=1

φh3

(
Yi − X T

i β̂ − a − (Zi − Z)T b
)

K

(
Zi − Z

h2

)
, (8)

with respect to a and b.
It is noteworthy that the bandwidths h1, h2 and h3 are selected by data-driven

method so that the resulting estimators can be adaptively robust, and the detailed
choices of the these bandwidths will be discussed in Sect. 4.

2.2 Theoretical properties

In this subsection, we first will study the theoretical properties of the proposed LMR
estimators. For simplicity, we denote U = (X, Z), and β0 as the true value of β. Let
F(u, h) = E

{
φ′′

h (ε)|U = u
}
, G(u, h) = E

{
φ′

h(ε)2|U = u
}
.
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To obtain the theoretical properties of the LMR estimator β̂, we assume the follow-
ing regularity conditions:

(A1) The matrix cov(X̃ ) is positive-definite, E
(|ε|3 |X, Z

)
< ∞, and

supz E
(‖X‖3 |Z = z

)
< ∞.

(A2) The bandwidth dk in Eq. (3) satisfies nd8
k → 0 and nd2q

k → ∞ for k = 1, 2.

(A3) The kernel function K (·) is a symmetric density functionwith compact sup-
port and satisfies

∫ +∞
−∞ · · · ∫ +∞

−∞ K (t)dt1 · · · dtq = 1,
∫ +∞
−∞ · · · ∫ +∞

−∞ tK (t)

dt1 · · · dtq = 0, where t = (t1, . . . , tq
)T .

(A4) f (·) and m X (·) are continuous on their support sets.
(A5) F(u, h), G(u, h) are continuous with respect to u.
(A6) F(u, h) < 0 for any h > 0.
(A7) E

(
φ′

h (ε) |U = u
) = 0, E

(
φ′

h(ε)3 |U = u
)
, E

(
φ′′

h (ε)2 |U = u
)
, and

E
(
φ′′′

h (ε) |U = u
)
are continuous with respect to u.

Remark 1 The conditions (A1)–(A4) are standard in the semiparametric regression
literature. Condition (A1) is a necessary moment condition. Condition (A2) ensures
that undersmoothing is not needed in order to obtain the root-n/pn consistency and
asymptotic normality. In practice, we can use data-driven approach to select the band-
widths dk , k = 1, 2. Condition (A3) is a common condition on the kernel function.
Condition (A4), together with conditions (A1)–(A3), ensures that the consistency of
the kernel estimation. A detailed discussion of these conditions can be found in Hardle
et al. (2000). The conditions (A5)–(A7) are necessary conditions used in local modal
nonparametric regression in Yao et al. (2012). Condition (A5) is a basic assumption.
Condition (A6) ensures that there exists a local maximizer in the objective function
(6), while condition (A7) is used to control the magnitude of the remainder in a
third-order Taylor expansion of this objective function. In particular, the condition
E
(
φ′

h (ε) |U = u
) = 0 is satisfied if the error density is symmetric about zero, which

ensures that the proposed LMR estimator is consistent.

Theorem 1 Under the regularity conditions (A1)–(A7), if p2n/n → 0 as n → ∞, and
h1 is a constant and does not depend on n, then we have

‖β̂ − β0‖ = Op(
√

pn/n),

where ‖·‖ stands for the Euclidean norm.

Theorem 1 indicates that the LMR estimator β̂ is root-n/pn consistent. Meanwhile,
the following theorem states the asymptotic normality of the LMR estimator β̂ when
pn diverges at the rate of o(n1/2).

Theorem 2 Under the regularity conditions (A1)–(A7), if p2n/n → 0 as n → ∞, and
h1 is a constant and does not depend on n, then we have

√
n(β̂ − β0) → N (0,Σ−1

1 Σ2Σ
−1
1 )

in distribution, where Σ1 = E{F(u, h1)X̃ X̃ T }, and Σ2 = V ar{X̃φ′
h1

(ε)}.
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In this paper, we also provide the asymptotic normality of the LMR estimator f̂ (z)
as follows.
Throughout, let ρ(z) be the density function of Z and g(ȳ|z) be the conditional density
function of Y = Y − X T β0 given Z = z with respect to a measure μ. With a given
constant h that does not depend on n, we let ϕh(t |z) = E{−φh(ε + t)|Z = z}, and
use ϕ′

h(t |z ) and ϕ′′
h (t |z ) to denote ∂(ϕh(t |z ))/∂t and ∂2(ϕh(t |z ))/∂2t , respectively.

In addition to the conditions in Theorem 1, we further assume the following regularity
conditions:

(B1) The smooth function f (·) has a continuous second derivative.
(B2) The density function ρ (·) is continuous and positive on its support.
(B3) Assume that ϕh(t |zn), ϕ′

h(t |zn) and ϕ′′
h (t |zn) as functions of zn are bounded and

continuous in a neighborhood of z for all small t and that ϕh(0|zn) 	= 0. ϕ′′
h (t |zn)

as a function of t is continuous in a neighborhood of point 0, uniformly for zn

in a neighborhood of z.
(B4) The conditional density function g(ȳ|z) is continuous in z for each ȳ. Moreover,

there exist positive constants ε, σ and a positive function G(ȳ|z) such that

sup
|zn−z|≤ε

g(ȳ|zn) ≤ G(ȳ|z),
∫

|φ′
h(ε)|2+σ G(ȳ|z)dμ(ȳ) < ∞,

and
∫

{φh(ȳ − t) − φh(ȳ) − φ′
h(ȳ)t}2G(ȳ|z)dμ(ȳ) = o(t2), as t → 0.

Remark 2 The conditions (B1)–(B4) follow from the adaptations of the condition A
of Fan et al. (1994) and can be easily ensured or verified. Conditions (B1) and (B2) are
necessary conditions to ensure that the bias and the variance of f̂ (z) have the right rate
of convergence, respectively. Condition (B3) ensures the uniqueness of the solution to
the objective function (8). Conditions (B4) is required by the dominated convergence
theorem and moment calculation in the proof of the asymptotic normality.

Theorem 3 In addition to the conditions in Theorem 1, the regularity conditions (B1)–
(B4) are satisfied. If h2 → 0, nhq

2 → ∞ as n → ∞, and h3 is a constant and does
not depend on n, then for any fixed Z = z ∈ R

q ,

(nhq
2)

1/2{ f̂ (z) − f (z) − bias} → N (0, τ 2(z)),

in distribution, where

bias = (1/2) f ′′(z)h2
2

∫
t2K (t)dt,

τ 2(z) =
∫

K 2(t)dt

ρ(z)

∫ [φ′
h3

(ε)]2g(ȳ|z)dμ(ȳ)

[ϕ′′
h3

(0|z)]2 .
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3 Variable selection procedure

3.1 Penalized LMR for PLM

In this subsection, we aim to develop a variable selection procedure to select significant
parametric covariates for PLM. To this end, we consider the following penalized
function based on LMR

Qλ(β) =
n∑

i=1

φh1

(
̂̃Y i − ̂̃X T

i β

)
− n

pn∑

j=1

pλ(|β j |), (9)

where pλ(·) is a penalty function with regularization parameter λ. One of the most
commonly used penalty is the SCAD penalty, which is defined as follows

pλ(t) =

⎧
⎪⎨

⎪⎩

λ|t |, |t | ≤ λ,
(a2−1)λ2−(|t |−aλ)2

2(a−1) , λn < |t | ≤ aλ,

(a+1)λ2

2 , |t | > aλ,

where a is some constant usually taken to be 3.7 as suggested in Fan and Li (2001).
For given regularization parameter λ, we can get a sparse estimator β̂λ of β and then
conduct the variable selection procedure.

However, as the SCAD penalty function is singular at 0, it is difficult to maximize
the objective function (9). Following Fan and Li (2001), we then apply the local
quadratic approximation (LQA) algorithm to the SCAD penalty function for fixed λ.
Suppose that the initial value β̂λ(0) is very close to the maximizer of the objective
function (9). If β̂

λ(0)
j is very close to 0, then we set β̂λ

j = 0. Otherwise, pλ(β j ) can be
locally approximated as

pλ(β j ) ≈ pλ

(
β̂

λ(0)
j

)
+ 1

2

{
p′
λ

(
β̂

λ(0)
j

)/∣∣
∣β̂λ(0)

j

∣∣
∣
} {

β2
j −

(
β̂

λ(0)
j

)2}
, for β j ≈ β̂

λ(0)
j .

As a consequence, we can obtain the penalized LMR estimator β̂λ by maximizing
the following objective function

Qλ(β) =
n∑

i=1

φh1

(
̂̃Y i − ̂̃X T

i β

)
− n

2

{
p′
λ

(
β̂

λ(0)
j

)/ ∣∣∣β̂λ(0)
j

∣∣∣
} {

β2
j −

(
β̂

λ(0)
j

)2}

(10)
with respect to β.

Then, similar as the objective function (8),weobtain theLMRestimator f̂ λ(z) = âλ

by maximizing

n∑

i=1

φh3(Yi − Xi
T β̂λ − a − (Zi − Z)T b)K

(
Zi − Z

h2

)
, (11)

with respect to a and b.
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3.2 Theoretical properties

In this subsection, we will study the theoretical properties of the penalized LMR esti-
mator β̂λ.We first introduce some notations.Without loss of generality, we decompose
the true parameter vector β0 asβ0 = (βT

0a, βT
0b)

T , whereβ0a = (β01, . . . , β0kn )
T is the

vector corresponding to all the nonzero coefficients and β0b = (β0,kn+1, . . . , β0pn )
T

is the vector corresponding to all the zero coefficients. In the same way, we also
decompose X̃ = (X̃ T

a , X̃ T
b )T and β̂λ = ((β̂λ

a )T , (β̂λ
b )T )T . Denote

an = max
1≤ j≤pn

{∣∣p′
λ(|β0 j |)

∣∣ , β0 j 	= 0
}
, and bn = max

1≤ j≤pn

{∣∣p′′
λ(|β0 j |)

∣∣ , β0 j 	= 0
}
,

sn = {
p′
λ(|β01|)sgn(β01), . . . , p′

λ(|β0kn |)sgn(β0kn )
}T

,

and Ψλ = diag
{

p′′
λ(|β01|, . . . , p′′

λ(|β0kn |)
}
.

Theorem 4 Under the regularity conditions (A1)–(A7), if p2n/n → 0 as n → ∞,

h1 is a constant and does not depend on n, and the penalty function pλ(t) satisfies
an = O(n−1/2), bn → 0 as n → ∞, and there are constants M1 and M2 such that∣∣p′′

λ(t) − p′′
λ(t)

∣∣ ≤ M2 |t1 − t2| for any t1, t2 > M1λ, then we have

∥∥β̂λ − β0
∥∥ = Op

{
p1/2n (n−1/2 + an)

}
,

where ‖·‖ stands for the Euclidean norm.

Theorem 4 indicates that the penalized LMR estimator β̂λ is root-n/pn consistent
with suitable penalty function. Furthermore, the following theorem states the oracle
property of the penalized LMR estimator β̂λ.

Theorem 5 Under the same conditions as in Theorem 4, if λ → 0, (n/pn)1/2λ → ∞
as n → ∞, and the penalty function pλ(t) satisfies

lim infn→∞ lim inf t→0+ p′
λ(t)/λ > 0.

Then, with probability tending to 1, the root-n/pn consistent estimator β̂λ =
((β̂λ

a )T , (β̂λ
b )T )T in Theorem 4 satisfies:

(a) Sparsity: β̂λ
b = 0.

(b) Asymptotic normality:

√
n
(
Σ

(1)
1 + Ψλ

){
β̂λ

a − β0a +
(
Σ

(1)
1 + Ψλ

)−1
sn

}
→ N

(
0,Σ(1)

2

)

in distribution, where Σ
(1)
1 , Σ(1)

2 are the submatrices of Σ1 and Σ2 corresponding
to β0a.

Built upon the results on the penalized LMR estimator β̂λ, we provide the asymp-
totic normality of the LMR estimator f̂ λ(z) as follows:
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Theorem 6 In addition to the conditions in Theorem 5, the regularity conditions (B1)–
(B4) are satisfied. If h2 → 0, nhq

2 → ∞ as n → ∞, and h3 is a constant and does
not depend on n, then for any fixed Z = z ∈ R

q ,

(
nhq

2

)1/2 {
f̂ λ(z) − f (z) − bias

}→ N (0, τ 2(z)),

in distribution, where

bias = (1/2) f ′′(z)h2
2

∫
t2K (t)dt,

τ 2(z) =
∫

K 2(t)dt

ρ(z)

∫ [φ′
h3

(ε)]2g(ȳ|z)dμ(ȳ)

[ϕ′′
h3

(0|z)]2 .

4 Bandwidth selection and estimation algorithm

In this section, we first discuss the selection of bandwidths both in theory and in prac-
tice. Then, BIC criterion is suggested to select the regularization parameter. Finally,
we introduce a modified MEM algorithm to obtain our proposed estimators.

4.1 Asymptotic optimal bandwidth

Based on Theorem 2 and the asymptotic variance of the LS estimator given in Zhu
et al. (2013), we can that the ratio of the asymptotic variance of the LMR estimator β̂

to that of the corresponding LS estimator is given by

R(u, h1) = G(u, h1)F−2(u, h1)

σ 2(u)
,

where V ar(ε |U = u ) = σ 2(u).
We can see that the ratio R(u, h1) depends only on u and h1, and it plays an

important role in efficiency and robustness of the LMR estimator β̂. Therefore, the
asymptotic optimal bandwidth of h1 can be chosen as

h1,opt = argmin
h1

R(u, h1) = argmin
h1

G(u, h1)F−2(u, h1),

which indicates that h1,opt does not depends on n and only depends on the conditional
error distribution of ε given U . It follows from Theorem 2.4 in Yao et al. (2012) that
infh1 R(u, h1) ≤ 1 for any error distribution, and if the error term follows normal
distribution, R(u, h1) > 1 and infh1 R(u, h1) = 1. That is to say, the LMR estimator
β̂ is more efficient than the corresponding LS estimator when there exist outliers and
heavy-tail error distribution and does not lose efficiency under normal error distribu-
tion.
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Similarly, the asymptotic optimal bandwidth of h3 is given by

h3,opt = argmin
h3

R(u, h3) = argmin
h3

G(u, h3)F−2(u, h3).

Moreover, according to Theorem 3, we can see that the optimal bandwidth for h2
is of order n−1/(4+q). If q = 1, the order of the optimal bandwidth for h2 is n−1/5,
which is a common requirement for semiparametric models in the kernel literature.

4.2 Bandwidth selection in practice

In this subsection,wewill address how to select the bandwidths for theLMRestimators
in practice. For simplicity, we further assume that ε is independent of U . Thus, we
can estimate F(u, h1) and G(u, h1) by

F̂(h1) = 1

n

n∑

i=1

φ′′
h1 (̂εi ) and Ĝ(h1) = 1

n

n∑

i=1

{φ′
h1 (̂εi )}2,

respectively, where ε̂i = ̂̃Y i − ̂̃X T
i β̂.

Then, we can estimate R(h1) by R̂(h1) = Ĝ(h1)F̂(h1)
−2/σ̂ 2, where σ̂ is estimated

based on the pilot estimator. In this paper, we use the grid search method to find h1,opt
to minimize R̂(h1). According to the suggestion of Yao et al. (2012), the possible grids
points for h1 can be 0.5σ̂ × 1.02 j , j = 0, 1, . . . , k, for some fixed k, such as k = 50
or k = 100. Similarly, we can find the optimal bandwidth for h3.

Finally, we suggest to use k-fold Cross-Validation (Breiman 1995) or generalized
Cross-Validation (Tibshirani 1996) to select the optimal bandwidth for h2.

4.3 Selection of regularization parameter

To produce a sparse estimator of β0, it remains to select the regularization parameter
λ. In this paper, we propose a modified BIC-type criterion to choose the optimal λ,
which minimizes the following objective function

BIC(λ)= −log

{
1

n

n∑

i=1

φh1

(
̂̃Y i−̂̃X T

i β̂λ

)}

+ log(n)

n
d f λ, (12)

where d f λ is the number of non-zero coefficients of β̂λ.

4.4 Estimation algorithm

In this subsection, we propose a modified modal expectation-maximization (MEM)
algorithm, proposed by Li et al. (2007), for the proposed estimators. The algorithm
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has two iterative steps similar to the expectation and the maximization steps in EM
(Dempster et al. 1977).

Step 1 We first calculate the LMR estimator β̂. Let β̂(0) = (β̂
(0)
1 , . . . , β̂

(0)
pn )T be

the initial value and set k = 0.
(E-step): Update π1( j |β̂(k)) by

π1( j |β̂(k)) =
φh1

(
̂̃Y j − ̂̃X T

j β̂(k)

)

∑n
i=1 φh1

(
̂̃Y i − ̂̃X T

j β̂(k)

) , j = 1, 2, . . . , n.

item (M-step): Update β to obtain β̂(k+1) by

β̂(k+1) = argmax
β

n∑

i=1

{
π1

(
i |β̂(k)

)
logφh1

(
̂̃Y i − ̂̃X T

j β

)}

=
(
̂̃X

T
W (k)

1
̂̃X
)−1

̂̃X
T

W (k)
1
̂̃Y,

where ̂̃X = (̂̃X1, . . . ,
̂̃Xn)T , ̂̃Y = (̂̃Y 1, . . . ,

̂̃Y n)T andW (k)
1 = diag{π1(1|β̂(k)), . . . ,

π1(n|β̂(k))}. Iterate the E-step and M-step until convergence.

Remark 3 When φ (t) is the standard normal density, the M-step has a unique
maximum. Similar as in the EM algorithm, it is usually much easier to maximize
∑n

i=1 {π1(i |β)logφh1(
̂̃Y i − ̂̃Xiβ)} than the original objective function (6).

Step 2 Similarly, we then calculate the LMR estimator f̂ (z). Let θ̂ (0) =
(̂a(0)T , b̂(0)T )T be the initial value and set k = 0.
(E-step): Update π2( j |θ̂ (k)) by

π2

(
j |θ̂ (k)

)
=

K
(

Z j −Z
h2

)
φh3

(
Y ∗

j − X∗
j
T θ̂ (k)

)

∑n
i=1 K

(
Zi −Z

h2

)
φh3

(
Y ∗

i − X∗
i

T θ̂ (k)
) , j = 1, 2, . . . , n,

where Y ∗
i = Yi − X T

i β̂, and X∗
i = {1, (Zi − Z)T }T .

(M-step): Update θ to obtain θ̂ (k+1) by

θ̂ (k+1) = argmax
β

n∑

i=1

{
π2

(
i |θ̂ (k)

)
logφh3

(
Y ∗

i − X∗
i

T
θ
)}

=
(
X∗T W (k)

2 X∗)−1
X∗T W (k)

2 Y∗,

where X∗ = (X∗
1, . . . , X∗

n)T , Y∗ = (Y ∗
1 , . . . , Y ∗

n )T and W (k)
2 = diag{π2(1|θ̂ (k)),

. . . , π2(n|θ̂ (k))}. Iterate the E-step and M-step until convergence.
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With the aid of the LQA algorithm, we can obtain the penalized LMR estimator β̂λ

by a revision of Step 1 as follows:

Step 1’ Let β̂λ(0) = (β̂
λ(0)
1 , . . . , β̂

λ(0)
pn )T , and set k = 0.

(E-step): Update π1( j |β̂λ(k)) by

π1

(
j |β̂λ(k)

)
=

φh1

(
̂̃Y j − ̂̃X T

j β̂λ(k)

)

∑n
i=1 φh1

(
̂̃Y i − ̂̃X T

j β̂λ(k)

) , j = 1, 2, . . . , n.

(M-step): Update β to obtain β̂λ(k+1) by

β̂λ(k+1) = argmax
β

n∑

i=1

⎧
⎨

⎩
π1

(
i |β̂λ(k)

)
logφh1

(
̂̃Y i − ̂̃X T

j β̂λ(k)

)

−n

2

pn∑

j=1

{
p′
λ

(
β̂

λ(k)
j

)
/|β̂λ(k)

j |
}

β2
j

⎫
⎬

⎭

=
{
̂̃X

T
W (k)

1
̂̃X + nΣλ

(
β̂λ(k)

)}−1
̂̃X

T
W (k)

1
̂̃Y,

where Σλ(β) = diag
{

p′
λ(|β1|), . . . , p′

λ(|βpn |)
}
, ̂̃X, ̂̃Y, and W (k)

1 are the same as in
Step 1. Iterate the E-step and M-step until convergence.

5 Simulation studies

5.1 Monte Carlo simulations

In this subsection, we will provide some Monte Carlo simulations to evaluate the
finite-sample performance of the proposed estimators in terms of robust estimation
and variable selection. Without loss of generality, we consider following four models:

(I): Y=X T β + 2 sin(γ T Z) + ε;
(II): Y=X T β + ∣∣(γ T Z) + 1

∣∣+ ε;
(III): Y=X T β + exp{(γ T Z)/2}/2 + ε;
(IV): Y=X T β + 2(γ T Z) + ε.

In eachmodel, we generate Z = (z1, z2)T from a two-dimensional normal distribution
with mean zero and identity covariance matrix, and X from X j = γ T Z + 2e j for
j = 1, 2, . . . , pn , where γ = (1/

√
2,1/

√
2)T and e j ’s are independently generated

from standard normal distribution. Similar models were also considered in Zhu et al.
(2013). We choose β = (1kn , 0pn−kn )

T , where kn = pn/4, indicating that the size of
significant parametric covariates is also divergingwith the sample size. To examine the
robustness and efficiency of our proposed LMR estimators, we compare the simulation
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results with corresponding LS estimators and LAD estimators. In our simulations, we
considered the following error distributions: N (0, 1) distribution; t (3) distribution
which is used to produce heavy-tailed error distribution; mixed normal distribution
0.9N (0, 1)+0.1N (0, 10)which is used to produce outliers. Similar error distributions
were also considered in Yao et al. (2012), Zhang et al. (2013), and Zhao et al. (2015).
The simulations are repeated 200 times with sample size n = 400 and dimension
pn = 2n1/2 = 40.

For sake of evaluation, the estimation accuracy of the parametric estimators is
measured by the mean and median of the mean squared errors (MeanMSE and
MedianMSE) over the 200 simulated datasets. Meanwhile, the performance of the
nonparametric estimators is assessed by themedian absolute prediction error (MAPE),
which is defined by

MAPE = median
{∣∣ f̂ (Zi ) − f (Zi )

∣∣ , i = 1, 2, . . . , n
}
,

and the sample mean and standard deviation (SD) of the MAPE’s are presented in the
last columns of Tables1 and 2. In addition, we adopt the notation (C, IC) to identify the
performance of the variable selection in Table3. Here C means the average number
of zero regression coefficients that are correctly estimated as zero, IC presents the
average number of non-zero regression coefficients that are incorrectly set to zero.

From Table1, we can see that the LMR estimator β̂ performs best in the case of
non-normal error distributions, and as asymptotically efficient as the corresponding
LS estimator when the error is normal distribution. Meanwhile, the LMR estimator
f̂ (z) seems to perform no worse than the corresponding LAD estimator for t3 error
distribution and 10% outliers, and is comparable to the corresponding LS estimator
when the error is drawn from the normal distribution. Similar conclusion can be draw
from Table2 for the penalized LMR procedure. Furthermore, the penalized LMR
estimator β̂λ outperforms the other estimators in terms of C and IC. Finally, we provide
the plots of the LMR estimator f̂ (z). For illustration, we only present the figures when
the robust LMR procedure is applied for model (I). From Figs. 1, 2, and 3, we find the
LMR estimator f̂ (z) performs favorably compared to other estimators.

5.2 A real data example

As an illustration, we apply the proposed procedures to analyze an automobile dataset
(Johnson 2003),which had been analyzed byZhu et al. (2012) andZhu et al. (2013).We
intend to investigate how the manufactures suggested retail price (MSRP) of vehicles
depends upon different factors. Thus, it is appropriate to treat theMSRPas the response
variable (Y ). This dataset contains 412 available observations in total, after removing
sixteen observations with missing values. There are seven important factors which
possibly affect the MSRP of vehicles, such as engine size (x1), number of cylinders
(x2), horsepower (x3), weight in pounds (x4), wheel base in inches (x5), average city
miles per gallon (z1) and average highway miles per gallon (z2). Similar as Zhu et al.
(2013), we choose Z = (z1, z2)T as the nonparametric covariate. In the subsequent
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Table 1 Simulation results for robust estimation procedure

Model Error Method MeanMSE MedianMSE MAPE

(I) N (0, 1) LS 0.1193 0.1173 0.2507(0.0923)

LAD 0.1825 0.1799 0.2837(0.0824)

LMR 0.1211 0.1190 0.2517(0.0925)

t (3) LS 0.3349 0.3133 0.4443(0.1981)

LAD 0.2589 0.2530 0.4315(0.2038)

LMR 0.2381 0.2182 0.4343(0.2071)

0.9N (0, 1) + 0.1N (0, 10) LS 0.2270 0.2223 0.3284(0.1171)

LAD 0.2324 0.2273 0.3265(0.1103)

LMR 0.1775 0.1657 0.3141(0.1171)

(II) N (0, 1) LS 0.1216 0.1204 0.2611(0.1199)

LAD 0.1875 0.1834 0.2923(0.1120)

LMR 0.1278 0.1237 0.2618(0.1199)

t (3) LS 0.3553 0.3309 0.3957(0.1502)

LAD 0.2686 0.2547 0.3745(0.1521)

LMR 0.2371 0.2155 0.3700(0.1550)

0.9N (0, 1) + 0.1N (0, 10) LS 0.2451 0.2334 0.3121(0.1131)

LAD 0.2293 0.2261 0.3019(0.1040)

LMR 0.1754 0.1645 0.2943(0.1108)

(III) N (0, 1) LS 0.1217 0.1202 0.2622(0.1231)

LAD 0.1870 0.1860 0.2930(0.1146)

LMR 0.1265 0.1238 0.2627(0.1227)

t (3) LS 0.3280 0.3107 0.3921(0.1514)

LAD 0.2465 0.2360 0.3654(0.1626)

LMR 0.2181 0.2000 0.3673(0.1566)

0.9N (0, 1) + 0.1N (0, 10) LS 0.2165 0.2159 0.3805(0.1321)

LAD 0.2175 0.2114 0.3815(0.1313)

LMR 0.1677 0.1593 0.3728(0.1363)

(IV) N (0, 1) LS 0.1221 0.1185 0.2350(0.0778)

LAD 0.1918 0.1866 0.2709(0.0720)

LMR 0.1264 0.1217 0.2358(0.0780)

t (3) LS 0.3337 0.2973 0.3875(0.1203)

LAD 0.2520 0.2506 0.3605(0.1297)

LMR 0.2390 0.2238 0.3622(0.1173)

0.9N (0, 1) + 0.1N (0, 10) LS 0.2340 0.2289 0.3263(0.1302)

LAD 0.2332 0.2251 0.3208(0.1210)

LMR 0.1742 0.1705 0.3105(0.1315)
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Table 2 Simulation results for penalized estimation procedure

Model Error Method MeanMSE MedianMSE MAPE

(I) N (0, 1) LS 0.0293 0.0266 0.2056(0.0427)

LAD 0.0704 0.0594 0.2426(0.0435)

LMR 0.0452 0.0274 0.2058(0.0429)

t (3) LS 0.0847 0.0776 0.3166(0.0624)

LAD 0.0842 0.0763 0.3014(0.0581)

LMR 0.0560 0.0589 0.2978(0.0608)

0.9N (0, 1) + 0.1N (0, 10) LS 0.0564 0.0491 0.2689(0.0607)

LAD 0.0845 0.0687 0.2717(0.0532)

LMR 0.0407 0.0369 0.2506(0.0598)

(II) N (0, 1) LS 0.0308 0.0299 0.2045(0.0425)

LAD 0.0689 0.0578 0.2372(0.0380)

LMR 0.0307 0.0293 0.2049(0.0419)

t (3) LS 0.0913 0.0838 0.3107(0.0641)

LAD 0.0869 0.0713 0.2865(0.0550)

LMR 0.0526 0.0476 0.2827(0.0589)

0.9N (0, 1) + 0.1N (0, 10) LS 0.0591 0.0570 0.2614(0.0500)

LAD 0.0829 0.0725 0.2616(0.0531)

LMR 0.0417 0.0377 0.2452(0.0497)

(III) N (0, 1) LS 0.0308 0.0298 0.2050(0.0439)

LAD 0.0702 0.0596 0.2382(0.0396)

LMR 0.0308 0.0297 0.2051(0.0427)

t (3) LS 0.0813 0.0736 0.3069(0.0625)

LAD 0.0788 0.0612 0.2842(0.0497)

LMR 0.0444 0.0412 0.2848(0.0582)

0.9N (0, 1) + 0.1N (0, 10) LS 0.0524 0.0492 0.3074(0.0483)

LAD 0.0779 0.0655 0.3236(0.0507)

LMR 0.0378 0.0355 0.3006(0.0490)

(IV) N (0, 1) LS 0.0285 0.0262 0.2079(0.0416)

LAD 0.0830 0.0622 0.2512(0.0498)

LMR 0.0292 0.0268 0.2076(0.0417)

t (3) LS 0.0769 0.0722 0.3017(0.0576)

LAD 0.0839 0.0589 0.2817(0.0552)

LMR 0.0482 0.0448 0.2783(0.0498)

0.9N (0, 1) + 0.1N (0, 10) LS 0.0554 0.0516 0.2667(0.0531)

LAD 0.0792 0.0634 0.2695(0.0462)

LMR 0.0397 0.0388 0.2517(0.0513)
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Table 3 Simulation results for variable selection

Model Error Method C IC

(I) N (0, 1) LS 29.9000 0

LAD 29.3200 0

LMR 29.9800 0

t (3) LS 29.9600 0

LAD 29.2800 0

LMR 30.0000 0

0.9N (0, 1) + 0.1N (0, 10) LS 29.9700 0

LAD 29.3000 0

LMR 30.0000 0

(II) N (0, 1) LS 29.8800 0

LAD 29.3100 0

LMR 29.9700 0

t (3) LS 29.7700 0

LAD 29.5400 0

LMR 30.0000 0

0.9N (0, 1) + 0.1N (0, 10) LS 29.8400 0

LAD 29.1600 0

LMR 29.9800 0

(III) N (0, 1) LS 29.8800 0

LAD 29.3300 0

LMR 29.9700 0

t (3) LS 29.7800 0

LAD 29.4000 0

LMR 30.0000 0

0.9N (0, 1) + 0.1N (0, 10) LS 29.8900 0

LAD 29.3200 0

LMR 30.0000 0

(IV) N (0, 1) LS 29.9200 0

LAD 29.4200 0

LMR 29.9600 0

t (3) LS 29.9400 0

LAD 29.4600 0

LMR 29.9800 0

0.9N (0, 1) + 0.1N (0, 10) LS 29.8700 0

LAD 29.5100 0

LMR 30.0000 0
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Fig. 1 Plots for the nonparametric estimators (N (0, 1) error distribution): the true curve (dotted line), the
estimated values (small circles) a LS, b LAD, c LMR
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Fig. 2 Plots for the nonparametric estimators (t (3) error distribution): the true curve (dotted line), the
estimated values (small circles) a LS, b LAD, c LMR
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Fig. 3 Plots for the nonparametric estimators (0.9N (0, 1)+ 0.1N (0, 10) error distribution): the true curve
(dotted line), the estimated values (small circles) a LS, b LAD, c LMR

analysis, we first standardize the response variable Y and the parametric covariate
vector X = (x1, . . . , x5)T , respectively.

From the histogram and boxplot of the standardized Y presented in Figs. 4 and 5,
we can see that the distribution of the standardized Y is highly skewed and that there
exist a number of outliers in the standardized Y . Then, we apply the three different
estimation procedures (LS, LAD, LMR) to analyze the dataset by a partially linear
model stated as (1). The prediction performance is measured by the median absolute
prediction error (MAPE), which is the median of {|Yi − Ŷi |, i = 1, 2, . . . , 412}. The
corresponding estimation results are summarized in Table4, from which we can see
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Fig. 4 Histogram of the standardized Y for real data
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Fig. 5 Boxplot of the standardized Y for real data

that the LMR method has smaller MAPE than the other methods in the presence of
outliers. Based on the previous analysis by Zhu et al. (2013), we further include other
seven binary variables as auxiliary covariates, which have little contributions to the
MSRP of vehicles. These auxiliary covariates are sport car (x6), sport utility vehicle
(x7), wagon (x8), mini-van (x9), pickup (x10), all-wheel drive (x11), and rear-wheel
drive (x12). In this way, the dimension of the covariate vector X becomes 12, and
then we consider the problem of variable selection. From Table5, we can see that
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Table 4 Estimation for real
data

LS LAD LMR

x1 −0.2770 −0.2293 −0.2915

x2 0.1709 0.1169 0.0871

x3 0.8556 0.5957 0.5066

x4 0.2501 0.3171 0.4087

x5 −0.2390 −0.1731 −0.1760

MAPE 0.2743 0.2198 0.1949

Table 5 Variable selection for
real data

LS LAD LMR

x1 0 0 −0.1970

x2 0 0 0

x3 0.8362 0.5300 0.6532

x4 0.2368 0.4051 0.4176

x5 −0.2775 −0.2462 −0.1732

x6 0 0.0256 0

x7 0 0 0

x8 0 0 0

x9 0 0 0

x10 0 0 0

x11 0 0 0

x12 0 0.1031 0

MAPE 0.2668 0.2029 0.2114

all three penalized procedures identify x3, x4, and x5 as important variables, which
coincides with Zhu et al. (2012) that x3 is seems to be the most important factor that
affects the MSRP, followed by x4. In addition, the penalized LMR procedure selects
x1 as important variable, which has negative connection with the MSRP. However, the
LAD penalized procedure selects two auxiliary covariates, x6 and x12. To conclude,
the penalized LMR procedure is better than the penalized LS procedure in terms of
MAPE, and is sparse than the penalized LAD procedure by shrinking all the auxiliary
covariates to zeros.

6 Extension

In this section, we further discuss how the penalized LMR procedure can be applied
to ultra-high dimensional data in which pn > n. Based on correlation learning, Fan
and Lv (2008) proposed sure independence screening (SIS) to reduce dimensionality
from high to a moderate scale that is below the sample size. They further established
the sure screening property for SIS. Inspired by the results of Fan and Lv (2008), we
propose a two-stage approach combinedSIS andpenalizedLMRtodealwith ultra-high
dimensional data. We first apply SIS to reduce the model dimensions to dn = o

(√
n
)
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Table 6 Simulation results for ultra-high dimensional data based on 100 replications

Error Method MeanMSE MedianMSE MAPE C IC

N (0, 1) SIS+LS 0.0340 0.0329 0.2035(0.0448) 989.3000 0.2200

SIS+LAD 0.0828 0.0638 0.2443(0.0469) 988.8200 0.2200

SIS+LMR 0.0356 0.0309 0.2041(0.0450) 989.6600 0.2200

t (3) SIS+LS 0.1140 0.0718 0.2936(0.0571) 989.0400 0.2600

SIS+LAD 0.0827 0.0669 0.2743(0.0470) 988.6000 0.2800

SIS+LMR 0.0545 0.0452 0.2665(0.0526) 989.6200 0.3000

0.9N (0, 1) + 0.1N (0, 10) SIS+LS 0.0602 0.0506 0.2771(0.1144) 989.5400 0.1500

SIS+LAD 0.0827 0.0698 0.2746(0.0987) 989.0700 0.1500

SIS+LMR 0.0415 0.0352 0.2587(0.1102) 989.8400 0.1500

and then fit the data using the penalized LMR to obtain the final estimation. We call
this two-step procedure SIS+LMR.

To demonstrate SIS+LMR, we consider the commonly used model (I) in Sect. 5.1,
except that pn = 1000. From Table6, we see that when the error is normally dis-
tributed, SIS+LMR is comparable to SIS+LS. However, in the case of 10% outliers
or t3 error distribution, SIS+LMRoutperforms the other procedures in terms of param-
eter estimation and variable selection.

7 Concluding discussion

In this paper, we adopt the local modal regression for robust estimation in partially
linearmodels with large-dimensional covariates.We show that the resulting estimators
for both parametric and nonparametric components are more efficient in the case of
outliers or heavy-tail error distribution, and as asymptotically efficient as the corre-
sponding least squares estimators when there are no outliers and the error is normal
distribution. We also develop the variable selection procedure to select significant
parametric covariates and and establish its oracle property under mild regularity con-
ditions.

In some applications, the parametric covariate X may be in much higher dimension
than o

(√
n
)
. To this end, we introduce a robust two-step approach based on the idea

of sure independence screening procedure to deal with ultra-high dimensional data.
However, how to apply the proposed procedure directly in such high dimensional
scenario without feature screening is of both theoretical and practical importance.

Furthermore, the proposed procedures may encounter the curse of dimensionality
when the dimension of nonparametric covariate Z is large, although we complete the
theoretical results when Z is allowed to be multivariate. In practice, we may consider
the partially linear single-index model to solve this issue. But such an extension is by
no means of trivial and needs additional investigations in the future.
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Appendix: Proofs of Theorems

Proof of Theorem 1 We want to show that for any given δ > 0, there exists a large
constant C such that

P

{

sup
‖v‖=C

R(β0 + μnv) < R(β0)

}

≥ 1 − δ, (13)

where R(β) = 1
n

n∑

i=1
φh1(

̂̃Y i − ̂̃X T
i β), μn = pn

1/2n−1/2. For simplicity, we define

Dn(v) = R(β0 + μnv) − R(β0) and then obtain that

Dn(u) = 1

n

n∑

i=1

{
φh1

(
̂̃Y i − ̂̃X T

i (β0 + μnv)
)

− φh1

(
̂̃Y i − ̂̃X T

i β0

)}

= 1

n

n∑

i=1

{
φh1

(
εi − σi − μnvT ̂̃Xi

)
− φh1(εi − σi )

}

= 1

n

n∑

i=1

{
−φ′

h1(εi − σi )
(
μnvT ̂̃Xi

)
+ 1

2
φ′′

h1(εi − σi )
(
μnvT ̂̃Xi

)2

−1

6
φ′′′

h1(ti )
(
μnvT ̂̃Xi

)3}

= I1 + I2 + I3,

whereσi = Ỹi −̂̃Y i −(X̃i − ̂̃Xi )
T β0, and ti is between εi −σi and εi −σi −μnvT ̂̃Xi . By

the regularity conditions (A1)–(A4), the consistence of the kernel estimation implies
that max1≤i≤n‖σi‖ = op(1) almost surely, which will repeatedly be used in our proof.
A detailed discussion on this argument can be found in the Lemma 3.5.1 and Lemma
A.1 of Hardle et al. (2000).

Based on the fact ξ = E(ξ) + Op(
√

V ar(ξ)), the regularity condition (A7)

and the uniform convergence of vT ̂̃Xi entail that I1 = Op(
Cμn√

n
). One can refer

to Rao (1983) and Zhu and Fang (1996) for these technical details. Similarly, we
have I3 = Op(C3μn

3). For I2, we have I2 = 1
2μn

2vT Σ1v(1 + op(1)), where
Σ1 = E{F(U, h1)X̃ X̃ T }. By the condition p2n/n → 0 as n → ∞, we can show
that I1 = op (I2), and I3 = op (I2). Similar practice can been in Li et al. (2011).

By the regularity condition (A6), F(v, h1) < 0; hence, Σ1 is a negative matrix.
Noting ‖v‖ = C , we can getC large enough such that I2 dominates both I1 and I3 with
a probability of at least 1 − δ. It follows that Eq. (13) holds. Hence, β̂ is a root-n/pn

consistent estimator of β. �
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Proof of Theorem 2 Let γ̂i = ̂̃X
T
i (β̂ − β0). If β̂ maximizes Eq. (6), then β̂ satisfies

the following equation:

0 =
n∑

i=1

̂̃Xiφ
′
h1

(
̂̃Y i − ̂̃X T

i β̂

)
=

n∑

i=1

̂̃Xiφ
′
h1(εi − σi − γ̂i )

=
n∑

i=1

̂̃Xi

{
φ′

h1(εi ) − φ′′
h1(εi )(σi + γ̂i ) + 1

2
φ′′′

h1(ε
∗
i )(σi + γ̂i )

2
}

= I4 + I5 + I6,

where ε∗
i is between εi and εi − σi − γ̂i .

For I5, we have

−
n∑

i=1

̂̃Xiφ
′′
h1(εi )(σi + γ̂i ) = −

n∑

i=1

φ′′
h1(εi )

{
̂̃Xi
̂̃X

T
i (β̂ − β0) + op(1)

}

= −nΣ1(β̂ − β0) + op(1),

where Σ1 = E{F(u, h1)X̃ X̃ T }, and the last equality is derived from the regularity
conditions (A5) and (A7).
Based on |γ̂i |2 = Op(‖β̂ − β0‖2) and p2n/n → 0 as n → ∞, we have I6 = op(I5).

It can be shown, by easy calculation, that
√

n(β̂ − β0) = 1√
n
Σ−1

1

∑n
i=1
̂̃Xiφ

′
h1

(εi ) +
op(1).
Note that E

(
φ′

h(ε) |U = u
) = 0, and by the central limit theorem, we have

√
n(β̂ − β0)

d→ N (0,Σ−1
1 Σ2Σ

−1
1 ),

where Σ2 = V ar{X̃φ′
h1

(ε)}. This completes the proof. �
Proof of Theorem 3 Since Theorem 3 is parallel to Theorem 6, we will only present
detailed proof for Theorem 6. �
Proof of Theorem 4 It is sufficient to show that for any given δ > 0, there exists a
large constant C such that

P

{

sup
‖v‖=C

Qλ (β0 + ωnv) < Qλ (β0)

}

≥ 1 − δ, (14)

where ωn = p1/2n (n−1/2 + an).

Let I7 = −∑kn
j=1 {pλ(

∣∣β0 j + ωnv j
∣∣) − pλ(

∣∣β0 j
∣∣)}, where kn is the number of com-

ponents of β0a . Note that pλ(0) = 0 and pλ(|β j |) ≥ 0 for all β j . By the proof of
Theorem 1, we have

1

n
{Qλ (β0 + ωnv) − Qλ (β0)} ≤ Ī1 + Ī2 + Ī3 + I7, (15)
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where Ī1, Ī2, and Ī3 are the same as I1, I2 and I3 except the factor μn replaced by ωn .
By the Taylor expansion and the Cauchy–Schwarz inequality, I7 is bounded by

√
knωnan ‖v‖ + ω2

nbn‖v‖2.

Consequently, asbn → 0, I7 is dominated by Ī2 = 1
2ω

2
nv

T Σ1v(1+op(1)), provided
C is taken to be sufficiently large. Hence, for large C, Ī2 dominates all other three
terms in Eq. (15). Based on the fact Ī2 < 0, Eq. (14) holds. Consequently, the result in
Theorem 4 holds.

To prove Theorem 5, we need the following lemma. �
Lemma 1 Under the conditions in Theorem 5, with probability tending to 1, for any
given βa satisfying ‖βa − β0a‖ = Op(

√
pn/n) and any constant C, we have

Qλ

{(
βa

0

)}
= max

‖βb‖≤C(pn/n)1/2
Qλ

{(
βa

βb

)}
, (16)

Proof of Lemma 1 From the proof of Theorem 2, we have

R
′
j (β) = ∂ R(β)

∂β j
= 1

n

∑n

i=1
̂̃Xiφ

′
h1(εi ) − Σ1(β − β0) + o(ωn).

It can be shown that 1
n

∑n
i=1
̂̃Xiφ

′
h1

(εi ) = Op(n−1/2). By the assumption that
‖βa − β0a‖ = Op(

√
pn/n), then we have R′

j (β) = Op(
√

pn/n). Therefore, for
β j 	= 0 and j = kn + 1, . . . , pn ,

∂ Qλ(β)

∂β j
= n R

′
j (β) − np′

λ(
∣∣β j
∣∣)sgn(β j )

= −nλ

{
λ−1 p′

λ(
∣∣β j
∣∣)sgn(β j ) + Op

(√
pn/n

λ

)}
.

Since lim infn→∞ lim inf t→0+ p′
λ(t)/λ > 0 and (n/pn)1/2λ → ∞, then the sign

of the derivative for β j ∈ (−C
√

pn/n, C
√

pn/n) is completely determined by that
of β j . Therefore, Eq. (16) holds. �
Proof of Theorem 5 From Lemma 1, it follows that β̂λ

b = 0. We will next show the
asymptotic normality of β̂λ

a . By Theorem 4, it can be shown easily that there exists

a β̂λ
a that is a root-n/pn consistent local maximizer of Qλ{

(
βT

a , 0
)T }, which satisfies

the following equations:

∂ Qλ(β)

∂β j

∣
∣∣
β=((β̂λ

a )T ,0)
T = 0, for j = 1, 2, . . . , kn .

Therefore,

n R′
j (β̂

λ) − np′
λ(|β̂λ|)sgn(β̂λ)
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=
n∑

i=1

̂̃Xi

{
φ′

h1 (εi ) − φ′′
h1 (εi ) (σi + γ̂i ) + 1

2
φ′′′

h1

(
ε∗

i

)
(σi + γ̂i )

2
}

− n
{

p′
λ(
∣∣β0 j

∣∣)sgn(β0 j ) + (p′′
λ(
∣∣β0 j

∣∣) + op(1)
)
(β̂λ − β j )

}
,

where ε∗
i is between εi and εi − γ̂i .

By the similar proof in Theorem 2, it follows by the central limit theorem and the
Slutsky’s theorem that

√
n(Σ

(1)
1 + Ψλ){β̂λ

a − β0a + (Σ
(1)
1 + Ψλ)

−1sn} → N (0,Σ(1)
2 )

in distribution, where Σ
(1)
1 , Σ(1)

2 are the submatrices of Σ1 and Σ2 corresponding to
β0a . �
Proof of Theorem 6 For notational clarity, we let Ki = K (

Zi −Z
h2

) and l (r) =
−φh3(r). Then, Eq. (11) can be rewritten as

(̂aλ, b̂λ) = argmin
a,b

n∑

i=1

l(Yi − X T
i β̂λ − a − (Zi − Z)b)Ki .

Let θ = (
nhq

2

)1/2[a − f (Z), h2(b − f ′(Z))], z∗
i = [1, (Zi − Z)T /h2]T , si =

X T
i (β0 − β̂λ), δi = Yi − X T

i β̂λ − f (Z) − f ′(Z)(Zi − Z), δ∗
i = Yi − X T

i β0 −
f (Z) − f ′(Z)(Zi − Z) and fi = f (Zi ) − f (Z) − f ′(Z)(Zi − Z). Then, θn =(
nhq

2

)1/2 [̂aλ − f (Z), h2(̂bλ − f ′(Z))] minimizes the function

Jn(θ) =
n∑

i=1

{
l(Yi − X T

i β̂λ − a − b(Zi − Z)) − l(δi )
}

Ki

=
n∑

i=1

{l(δi − (nhq
2)

−1/2
(θT z∗

i )) − l(δi )}Ki .

Since the function Jn(θ) is convex in θ , it is sufficient to prove that Jn(θ) converges
pointwise to its conditional expectation (Pollard 1991).

Given X = (X1, . . . , Xn)T and Z = (Z1, . . . , Zn)T , we can obtain that

E (Jn(θ) |Z ) = − (nhq
2)

−1/2
n∑

i=1

ϕ′
h3( fi + si |Zi )(θ

T z∗
i )Ki

+ 1

2
(nhq

2)
−1

n∑

i=1

ϕ′′
h3( fi + si |Zi )(θ

T z∗
i )

2
Ki (1 + op(1))

= − (nhq
2)

−1/2
n∑

i=1

ϕ′
h3( fi |Zi )(θ

T z∗
i )Ki
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+ 1

2
(nhq

2)
−1

n∑

i=1

ϕ′′
h3(0|Zi )(θ

T z∗
i )

2
Ki + op{(nhq

2)
−1},

where the last equality is derived from the regularity condition (B3). Similar arguments
can be also seen in (D.2) and (D.3) of Zhu et al. (2013).

Then, we can obtain that

Jn(θ) = (nhq
2)

−1/2
n∑

i=1

φ′
h3( fi + εi )(θ

T z∗
i )Ki

+ 1

2
(nhq

2)
−1

n∑

i=1

ϕ′′
h3(0|Zi )(θ

T z∗
i )

2
Ki + op{(nhq

2)
1/2}

= (nhq
2)

−1/2
n∑

i=1

φ′
h3(δ

∗
i )(θT z∗

i )Ki

+ 1

2
(nhq

2)
−1

n∑

i=1

ϕ′′
h3(0|Zi )(θ

T z∗
i )

2
Ki + op{(nhq

2)
1/2}

which is parallel to (4.6) of Fan et al. (1994). The rest of the proof follows literally
from Fan et al. (1994) by treating the dimension of Z as fixed, so the detail is omitted
here. �
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