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Abstract Lee discrepancy has wide applications in design of experiments, which
can be used to measure the uniformity of fractional factorials. An improved lower
bound of Lee discrepancy for asymmetrical factorials with mixed two-, three- and
four-level is presented. The new lower bound is more accurate for a lot of designs than
other existing lower bound, which is a useful complement to the lower bounds of Lee
discrepancy and can be served as a benchmark to search uniform designs with mixed
levels in terms of Lee discrepancy.

Keywords Uniform design · Lee discrepancy · Lower bound

1 Introduction

Fractional factorial designs (Box et al. 1978; Dey andMukerjee 1999) are widely used
in various scientific investigations and industrial applications. A design where all the
level-combinations of the factors appear equally often is called a full factorial design.
In practice, quite often the total number of level-combinations becomes excessively
large so that a full factorial design can not be used. The fractional factorial designs
are recommended for use in such cases. Optimal fractional factorial designs can be
chosen following several criteria, such as the minimum aberration criterion (Fries and
Hunter 1980) and its extension, generalized minimum aberration criterion (see, Tang
and Deng 1999; Xu andWu 2001) and minimum generalized aberration criterion (Ma
and Fang 2001), uniformity criterion, and so on.
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Uniform designs (Fang 1980; Wang and Fang 1981) possess many desirable prop-
erties and are robust against model uncertainty for computer experiments (Bates et al.
1996). In the study of model robustness, the uniform design spreads its experimental
points uniformly over the design domain and permits practitioners to carry out numer-
ical analysis efficiently for their experiments (see, Fang and Wang 1994, Chapter 5).
Uniformity measure (Hickernell 1998a, b) plays a considerable part in the assessment
and construction of uniform designs. Based on Hamming distance, discrete discrep-
ancy proposed by Qin and Fang (2004) has been used to measure the uniformity of
fractional factorial designs. It is easy to show that the Hamming distance can only
distinguish two values to be equal or not, and does not measure the distance between
them. As a popular measure of uniformity, Lee discrepancy (Zhou et al. 2008) based
on the Lee distance possesses nice properties, which overcomes the shortcoming of
discrete discrepancy.

In the present paper, Lee discrepancy is chosen as the measure of uniformity. The
uniformity criterion under Lee discrepancy favors designs with the smallest Lee dis-
crepancy value. A design whose Lee discrepancy value achieves a strict lower bound
is a uniform design under Lee discrepancy. Because of this reason, many authors in the
literature dedicate to find good lower bounds for Lee discrepancy. Zhou et al. (2008)
initiated an attempt towards providing general lower bounds of Lee discrepancy for
symmetrical and asymmetrical fractional factorial designs. Zou et al. (2009) gave an
improved lower bound of Lee discrepancy for two- or three-level symmetrical fac-
torials. Under Lee discrepancy measure, more tight lower bounds were obtained by
Chatterjee et al. (2012) for mixed two- and three-level designs. Recently, Song et al.
(2016) also studied the lower bounds of Lee discrepancy for mixed two- and three-
level factorials. For more details about lower bounds of different discrepancies and
their applications, we can refer to Zhou and Xu (2014), Fang et al. (2008), Lei et al.
(2010) and Ou et al. (2011).

In practice, optimal asymmetrical factorials with mixed two-, three- and four-level
are most demanded, which include a large kind of asymmetrical and symmetrical
factorials. An accurate lower bound for Lee discrepancy value of this kind of asym-
metrical factorials is ponderable. Hence, this paper aims at obtaining a new lower
bound of Lee discrepancy on fractional factorial designs with mixed two-, three- and
four-level.

The rest of this paper is organized as follows. In Sect. 2, some notations and prelim-
inaries are provided. The lower bound for Lee discrepancy of mixed two-, three- and
four-level factorials is provided in Sect. 3. In Sect. 4, we give some numerical exam-
ples to illustrate our theoretical results. We close through conclusion and discussion
in Sect. 5.

2 Notations and preliminaries

An asymmetricalU -type design D(n;m1,m2, . . . ,ms) corresponds to an n×s matrix
X = (x1, x2, . . . , xs), xi = (x1i , x2i , . . . , xni )T , such that each column xi equally
often takes values from a set of mi integers, say{0, 1, 2, . . . ,mi − 1}. Evidently, the
number of runs n is a multiple of mi , i = 1, . . . , s. If some m,

i s are equal, we denote
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this asymmetrical U -type design by D(n;ms1
1 ,ms2

2 , . . . ,mst
t ), where s = ∑t

i=1 si .
Moreover, it becomes a symmetrical U -type design D(n;ms) when all the m,

i s are
equal.Denote byU(n;m1,m2, . . . ,ms) the set of all D(n;m1,m2, . . . ,ms). AU -type
design d ∈ U(n;m1,m2, . . . ,ms) is optimal (or uniform) under a given measure of
uniformity provided if it has the best uniformity measure over U(n;m1,m2, . . . ,ms).

For any design d ∈ U(n; 2s13s24s3), where s = s1 + s2 + s3, the Lee discrepancy
measure of uniformity for d, denoted as LD(d), can be expressed by the following
formula (Zhou et al. 2008):

[LD(d)]2

= −
(
3

4

)s1+s3 (
7

9

)s2

+ 1

n2

n∑

i=1

n∑

j=1

⎡

⎣
s1∏

k=1

(1 − αk
i j )

s1+s2∏

k=s1+1

(1 − βk
i j )

s∏

k=s1+s2+1

(1 − ϕk
i j )

⎤

⎦ , (1)

where αk
i j = min

{ |xik−x jk |
2 , 1 − |xik−x jk |

2

}
, βk

i j = min
{ |xik−x jk |

3 , 1 − |xik−x jk |
3

}
,

ϕk
i j = min

{ |xik−x jk |
4 , 1 − |xik−x jk |

4

}
.

For any design d ∈ U(n; 2s13s24s3), from (1), when 1 ≤ k ≤ s1,

αk
i j =

{
0, xik = x jk;
1
2 , xik �= x jk;

when s1 + 1 ≤ k ≤ s1 + s2,

βk
i j =

{
0, xik = x jk;
1
3 , xik �= x jk;

when s1 + s2 + 1 ≤ k ≤ s,

ϕk
i j =

⎧
⎨

⎩

0, xik = x jk;
1
4 , (xik, x jk) ∈ �1;
1
2 , (xik, x jk) ∈ �2,

where �1 = {(0, 1), (1, 0), (1, 2), (2, 1), (2, 3), (3, 2), (0, 3), (3, 0)}, �2 = {(0, 2),
(2, 0), (1, 3), (3, 1)}, i, j = 1, 2, . . . , n.

The next section provides the lower bound of Lee discrepancy for mixed two-,
three- and four-level U -type designs.

3 Main results

Denote λi j = |{(i, j) : xik = x jk, 1 ≤ k ≤ s1}|, ψi j = |{(i, j) : xik = x jk, s1 + 1 ≤
k ≤ s1 + s2}|, ξi j = |{(i, j) : xik = x jk, s1 + s2 + 1 ≤ k ≤ s}|, ηi j = |{(i, j) :
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(xik, x jk) ∈ �1}|, γi j = |{(i, j) : (xik, x jk) ∈ �2}|, and |�| means the cardinality of
�.

The following lemma is easy to be observed by the definition ofU -type design and
λi j , ψi j , ξi j , ηi j , γi j .

Lemma 1 For any design d ∈ U(n; 2s13s24s3), we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

n∑

j ( �=i)=1
λi j = n(n−2)s1

2 , λi i = s1;
n∑

i=1

n∑

j ( �=i)=1
ψi j = n(n−3)s2

3 , ψi i = s2;
n∑

i=1

n∑

j ( �=i)=1
ξi j = n(n−4)s3

4 , ξi i = s3;
n∑

i=1

n∑

j ( �=i)=1
ηi j = n2s3

2 , ηi i = 0;
n∑

i=1

n∑

j ( �=i)=1
γi j = n2s3

4 , γi i = 0;
ξi j + ηi j + γi j = s3.

Now, in view of Lemma 1, λi i +ψi i + ξi i = s1 + s2 + s3, γi j = s3 − ξi j −ηi j . Then,
after some arrangements, (1) can be expressed in a new form as given in Lemma 2.

Lemma 2 For a design d ∈ U(n; 2s13s24s3), we have

[LD(d)]2 = 1

n
−

(
3

4

)s1+s3 (
7

9

)s2
+ 2s2−s1−s3

3s2n2

n∑

i=1

n∑

j ( �=i)=1

eθi j , (2)

where θi j = ln 2 · δi j + ln
( 3
2

) · τi j , δi j = λi j + ξi j , τi j = ψi j + ηi j .

Proof From Lemma 1 and (1), we have

[LD(d)]2

= −
(
3

4

)s1+s3 (
7

9

)s2
+ 1

n2

n∑

i=1

n∑

j=1

(
1

2

)s1−λi j
(
2

3

)s2−ψi j
(
3

4

)ηi j
(
1

2

)s3−ξi j−ηi j

= 1

n
−

(
3

4

)s1+s3 (
7

9

)s2
+ 2s2−s1−s3

3s2n2

n∑

i=1

n∑

j ( �=i)=1

2λi j+ξi j

(
3

2

)ψi j+ηi j

= 1

n
−

(
3

4

)s1+s3 (
7

9

)s2
+ 2s2−s1−s3

3s2n2

n∑

i=1

n∑

j ( �=i)=1

2δi j

(
3

2

)τi j

= 1

n
−

(
3

4

)s1+s3 (
7

9

)s2
+ 2s2−s1−s3

3s2n2

n∑

i=1

n∑

j ( �=i)=1

e
ln 2·δi j+ln

(
3
2

)
·τi j

,

this completes the proof. ��
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Following two lemmas will be helpful in establishing the new lower bound of Lee
discrepancy in the rest of this section.

Lemma 3 (Chatterjee et al. 2012) Suppose
∑n

i=1 zi = c and zi are nonnegative
integers, then

n∑

i=1

zti ≥ pwt + q(w + 1)t ,

where w = �c/n	 means the largest integer contained in c/n, p and q are integers
such that p + q = n andpw + q(w + 1) = c.

Lemma 4 Suppose
∑n

i=1 xi = c1 and
∑n

i=1 yi = c2, where xi and yi are nonnegative
real numbers. Let zi = axi +byi for i = 1, . . . , n, c = ac1+bc2, where a > 0, b > 0.
Denote z(1), z(2), . . . , z(l) the ordered arrangements of the distinct possible values of
z1, z2, . . . , zn, where 1 ≤ l ≤ n, then

n∑

i=1

zti ≥ pzt(k) + qzt(k+1),

where k is the largest integer such that z(k) ≤ c/n < z(k+1), p and q are nonnegative
real numbers such that p + q = n and pz(k) + qz(k+1) = c.

Zhou et al. (2008) obtained a lower bound of Lee discrepancy for generally asym-
metrical factorials. In particular, we have the following result for mixed two-, three-
and four-level U -type designs.

Lemma 5 Let d ∈ U(n; 2s13s24s3), the uniformity of d, measured through [LD(d)]2,
has the lower bound [LD(d)]2 ≥ LB1, where

LB1 = 1

n
−

(
3

4

)s1+s3 (
7

9

)s2
+ n − 1

n

(
1

2

) n(2s1+s3)

4(n−1)
(
2

3

) 2ns2
3(n−1)

(
3

4

) 2ns3
4(n−1)

. (3)

A new lower bound of Lee discrepancy can be obtained from Lemmas 2 and
4, which is given in the following theorem. For simplicity, let us denote � =∑n

i=1
∑n

j ( �=i)=1 θi j , from Lemmas 1 and 2 we have

� =
n∑

i=1

n∑

j ( �=i)=1

[

ln 2 · δi j + ln

(
3

2

)

· τi j

]

= ln 2 ·
(
n2(2s1 + s3) − 4n(s1 + s3)

4

)

+ ln

(
3

2

)

·
(
n2(2s2 + 3s3) − 6ns2

6

)

.
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Theorem 1 Let d ∈ U(n; 2s13s24s3), the uniformity of d, measured through
[LD(d)]2, has the lower bound [LD(d)]2 ≥ LB2, where

LB2 = E + 2s2−s1−s3

3s2n2
(
peθ(k) + qeθ(k+1)

)
, (4)

here E = 1
n −( 3

4

)s1+s3 ( 7
9

)s2 , k is the largest integer such that θ(k) ≤ �
n(n−1) < θ(k+1),

p andq are nonnegative real numbers such that p+q = n(n−1) and pθ(k)+qθ(k+1) =
�.

Proof From (2) and Lemma 4, we have

[LD(d)]2 = E + 2s2−s1−s3

3s2n2

n∑

i=1

n∑

j ( �=i)=1

eθi j

= E + 2s2−s1−s3

3s2n2

n∑

i=1

n∑

j ( �=i)=1

(

1 +
∞∑

t=1

θ ti j

t !

)

= E + 2s2−s1−s3

3s2n2

⎡

⎣n(n − 1) +
∞∑

t=1

1

t !
n∑

i=1

n∑

j ( �=i)=1

θ ti j

⎤

⎦

≥ E + 2s2−s1−s3

3s2n2

[

n(n − 1) +
∞∑

t=1

1

t !
(
pθ t(k) + qθ t(k+1)

)
]

= E + 2s2−s1−s3

3s2n2
[
n(n − 1) + p

(
eθ(k) − 1

) + q
(
eθ(k+1) − 1

)]

= E + 2s2−s1−s3

3s2n2
(
peθ(k) + qeθ(k+1)

)
,

which completes the proof. ��
If one or two of s1, s2, s3 equal(s) to 0, Theorem 1 still holds. As a consequence,

we can easily get the following corollary.

Corollary 1 For any design d ∈ U(n;ms) and d∗ ∈ U(n;ms1
1 m

s2
2 ),

(1) when m = 2,

[LD(d)]2 ≥ 1

n
−

(
3

4

)s

+ 1

n22s
(p1 · 2w1 + q1 · 2w1+1), (5)

where w1 = � (n−2)s
2(n−1)	 means the largest integer contained in (n−2)s

2(n−1) , p1 = n(n −
1)(1 + w1) − n(n−2)s

2 , q1 = n(n−2)s
2 − n(n − 1)w1.

(2) When m = 3,

[LD(d)]2 ≥ 1

n
−

(
7

9

)s

+ 1

n2

(
2

3

)s
[

p2 ·
(
3

2

)w2

+ q2 ·
(
3

2

)w2+1
]

, (6)
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Table 1 Parameters of cases (3)–(6) in Corollary 1

Case E∗ �∗

m = 4 1
n −

(
3
4

)s
ln 2 · n(n−4)s

4 + ln
(
3
2

)
· n2s

2

m1 = 2,m2 = 3 1
n −

(
3
4

)s1 (
7
9

)s2
ln 2 · n(n−2)s1

2 + ln
(
3
2

)
· n(n−3)s2

3

m1 = 2,m2 = 4 1
n −

(
3
4

)s1+s2
ln 2 · n2(2s1+s2)−4n(s1+s2)

4 + ln
(
3
2

)
· n2s2

2

m1 = 3,m2 = 4 1
n −

(
7
9

)s1 (
3
4

)s2
ln 2 · n(n−4)s2

4 + ln
(
3
2

)
· n2(2s1+3s2)−6ns1

6

where w2 = � (n−3)s
3(n−1)	, p2 = n(n − 1)(1+ w2) − n(n−3)s

3 , q2 = n(n−3)s
3 − n(n −

1)w2.
(3) When m = 4,

[LD(d)]2 ≥ E∗ + 1

2sn2
(
peθ(k) + qeθ(k+1)

)
. (7)

(4) When m1 = 2, m2 = 3,

[LD(d∗)]2 ≥ E∗ + 2s2−s1

3s2n2
(
peθ(k) + qeθ(k+1)

)
. (8)

(5) When m1 = 2, m2 = 4,

[LD(d∗)]2 ≥ E∗ + 1

2s1+s2n2
(
peθ(k) + qeθ(k+1)

)
. (9)

(6) When m1 = 3, m2 = 4,

[LD(d∗)]2 ≥ E∗ + 2s1−s2

3s1n2
(
peθ(k) + qeθ(k+1)

)
. (10)

For (3)–(6) above, where k is the largest integer such that θ(k) ≤ �∗
n(n−1) <

θ(k+1), p and q are nonnegative real numbers such that p + q = n(n − 1) and
pθ(k) + qθ(k+1) = �∗, parameters E∗ and �∗ are shown in Table 1.

Remark 1 It is to be remarked that for any U -type design, lower bounds of the right-
hand side of inequality (5) and (6) have also been given by Song et al. (2016). Some
examples have been given in that paper to illustrate that the new lower bound is tighter
than earlier ones and also can be attained. Meanwhile, for U -type designs, lower
bounds in the right-hand side of inequality (7), (8), (9) and (10) are new consequences.

We can now obtain an improved lower bound of [LD(d)]2 from Theorem 1 and
Lemma 5.
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Theorem 2 For any design d ∈ U(n; 2s13s24s3), the uniformity of d, mea-
sured through [LD(d)]2, has the lower bound [LD(d)]2 ≥ LB, where LB =
max {LB1, LB2} .

4 Illustrative examples

Some numerical examples are presented in this section to illustrate our theoretical
results. Let us denote E f f as the efficiency for any given design d, where E f f =
LB/[LD(d)]2. If a design’s efficiency equals or nearly equals to 1, then we can say
the design is uniform or at least nearly uniform.

Example 1 Consider the design d2 ∈ U(12; 2113141), given below, with n = 12,
s1 = 11, s2 = 1 and s3 = 1,

d1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 0 0 0 1 1 1 0 1 0 1
1 0 0 1 0 0 0 1 1 1 0 0 2
0 1 0 0 1 0 0 0 1 1 1 0 3
1 0 1 0 0 1 0 0 0 1 1 1 0
1 1 0 1 0 0 1 0 0 0 1 1 1
1 1 1 0 1 0 0 1 0 0 0 1 2
0 1 1 1 0 1 0 0 1 0 0 1 3
0 0 1 1 1 0 1 0 0 1 0 2 0
0 0 0 1 1 1 0 1 0 0 1 2 1
1 0 0 0 1 1 1 0 1 0 0 2 2
0 1 0 0 0 1 1 1 0 1 0 2 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We have [LD(d1)]2 = 0.06650, LB1 = 0.06624, LB2 = 0.06629 and E f f =
0.99673. Lower bound LB2 is also tighter than LB1 in this case, and d1 is a nearly
uniform design.

Example 2 Consider the design d2 ∈ U(12; 2123342), given below, with n = 12,
s1 = 12, s2 = 3 and s3 = 2,

d2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1
1 0 0 1 0 0 0 1 1 1 0 0 0 1 2 0 2
0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 1 3
1 0 1 0 0 1 0 0 0 1 1 0 1 2 1 1 0
1 1 0 1 0 0 1 0 0 0 1 0 1 2 2 1 1
1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 2 2
0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 2 3
0 0 1 1 1 0 1 0 0 1 0 1 2 1 2 2 0
0 0 0 1 1 1 0 1 0 0 1 1 2 1 0 3 1
1 0 0 0 1 1 1 0 1 0 0 1 2 2 1 3 2
0 1 0 0 0 1 1 1 0 1 0 1 2 2 2 3 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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We have [LD(d2)]2 = 0.077439, LB1 = 0.076978, LB2 = 0.076983 and E f f =
0.994108. It is clear that lower bound LB2 is tighter than LB1, and d2 is a nearly
uniform design.

As a matter of fact, lower bound LB2 is tighter than LB1 in many cases(e.g., when
one or two of s1, s2, s3 equal(s) to 0). For simplicity, we give one more example here.

Example 3 Consider the design d3 ∈ U(4; 2443), given below, with n = 4, s1 = 4,
s2 = 0 and s3 = 3,

d3 =

⎡

⎢
⎢
⎣

0 0 1 0 0 3 2
1 1 0 0 2 0 1
0 1 1 1 1 2 0
1 0 0 1 3 1 3

⎤

⎥
⎥
⎦ .

We have [LD(d3)]2 = 0.151672, LB1 = 0.149736, LB2 = 0.151672 and E f f = 1.
The numerical results show that lower bound LB2 is tighter than LB1 and also can be
achievable, and d3 is a uniform design.

5 Concluding remarks

Lee discrepancy has been widely used to assess the uniformity of fractional factori-
als. Many authors in the literature dedicate to find more tight lower bounds for Lee
discrepancy measure. In this paper, a new lower bound of Lee discrepancy for mixed
two-, three- and four-level U -type designs is provided. The new lower bound is more
accurate than other exiting lower bound for mixed two-, three- and four-level designs
in the literature. Some illustrative examples are provided to lend further support to our
theoretical results. The new lower bound is a useful complement to the lower bound
of discrepancies and can be served as a benchmark to search uniform designs with
mixed two-, three- and four-level in terms of Lee discrepancy.
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