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Abstract Longitudinal data are frequently analyzed using normal mixed effects mod-
els. Moreover, the traditional estimationmethods are based onmean regression, which
leads to non-robust parameter estimation under non-normal error distribution. How-
ever, at least in principle, quantile regression (QR) is more robust in the presence of
outliers/influential observations and misspecification of the error distributions when
compared to the conventional mean regression approach. In this context, this paper
develops a likelihood-based approach for estimating QR models with correlated con-
tinuous longitudinal data using the asymmetric Laplace distribution. Our approach
relies on the stochastic approximation of the EMalgorithm (SAEMalgorithm), obtain-
ing maximum likelihood estimates of the fixed effects and variance components in the
case of nonlinear mixed effects (NLME) models. We evaluate the finite sample per-
formance of the SAEM algorithm and asymptotic properties of the ML estimates
through simulation experiments. Moreover, two real life datasets are used to illustrate
our proposed method using the qrNLMM package from R.
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1 Introduction

Nonlinear mixed-effects (NLME) models are frequently used to analyze grouped,
clustered, longitudinal and multilevel data, among other situations. This is because
this type of model allows dealing with nonlinear relationships between the observed
response and the covariates and/or random effects, and at the same time, takes into
account within- and between-subject correlations in the statistical modeling of the
observed data. In general, NLME models arise as a consequence of the mathematical
modeling of biological, chemical and physical phenomena, using known families
of nonlinear functions with attractive properties such as the presence of asymptote,
uniqueness of maximum value, monotonicity and positive range (Pinheiro and Bates
2000; Davidian and Giltinan 2003; Wu 2010). Although most of the current NLME
model research is focused on estimating of the conditional mean of the response given
some covariates, sometimes the estimation of this quantity lacks meaning, especially
when the conditional distribution of the response (given the covariates) is asymmetric,
multimodal or simply is severely affected by atypical observations (outliers). In this
case, the use of conditional quantile regression (QR) methods (Koenker 2004, 2005)
becomes an appropriate strategy for describing the conditional distribution of the
outcome variable given the covariates. One of the advantages of using QR methods is
that they do not impose any distribution assumption on the error term, except that this
term must have a conditional quantile equal to zero. Moreover, and from a practical
viewpoint, standard QR methods are already implemented in statistical software such
R in its package quantreg() (R Core Team 2017).

QR methods were initially developed under a univariate framework (see for exam-
ple Galarza et al. 2017) but, nowadays, the abundance of correlated data in real-life
applications has generated the study of several extensions of QR methods based on
mixed models. Some of these extensions consider the distribution-free approach (Lip-
sitz et al. 1997; Galvao and Montes-Rojas 2010; Galvao 2011; Fu and Wang 2012;
Andriyana et al. 2016), while others consider the traditional likelihood-based approach
using the asymmetric Laplace (AL) distribution (see for example, Geraci and Bottai
2007;Yuan andYin 2010;Geraci andBottai 2014) andAghamohammadi andMoham-
madi (2017). In this context, Geraci and Bottai (2007) proposed a Monte Carlo EM
(MCEM) algorithm for theQRmodel considering continuous responseswith a subject-
specific univariate random intercept. Recently, Geraci andBottai (2014) extended their
previous work by considering a general QR linear mixed effects (QR-LME) model
with multiple random effects. In that work, the authors considered the estimation of
the fixed effects and the covariance components through an efficient combination of
Gaussian quadrature approximations and nonsmooth optimization algorithms. On the
other hand, Yuan and Yin (2010) extend the QR model proposed by Geraci and Bottai
(2007) to the case of linear mixed effects (LME) models for longitudinal measure-
ments with missing data. In the nonlinear case, Wang (2012) considered a QR-NLME
model from aBayesian perspective, showing that thismodelmay be a better alternative
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than the mean regression estimation in the presence of asymmetric and multimodal
data.

Although some results based on QR-NLME models have recently appeared in the
statistical literature, to the best of our knowledge, there are no studies and contribu-
tions considering an exact inference for QR-NLME models from a likelihood-based
perspective. For that reason, the aim of this paper is to propose a QR-NLME model
using the AL distribution and considering a full likelihood-based inference via the
implementation of the stochastic version of the EM algorithm, a.k.a. SAEM algo-
rithm, proposed by Delyon et al. (1999) for the maximum likelihood (ML) estimation.
The SAEM algorithm has been proved to be more computationally efficient algorithm
than the classic MCEM algorithm due to the recycling of simulations from one itera-
tion to the next in the smoothing phase.Moreover, as pointed out byMeza et al. (2012),
the SAEM algorithm, unlike the MCEM, converges even with a small simulation size.
In this context, Kuhn and Lavielle (2005) showed that the SAEM algorithm is very
efficient for computing the ML estimates in mixed effects models. It is important to
stress that, the empirical results show that the ML estimates based on our proposed
SAEM algorithm provide good asymptotic properties. Moreover, the application of
our method is conducted by using our recent R package, called, qrNLMM().

The paper is organized as follows. Section 2 presents some preliminary results.
Particularly, we present some properties of the AL distribution and an outline of the
SAEM algorithm. Section 3 provides the MCEM and SAEM algorithms for a general
NLME model, while Sect. 4 outlines the likelihood-based estimation and standard
errors of the parameter estimates under the proposed model. Section 5 presents the
results of simulation studies conducted to analyze the performance of the proposed
method with respect to the asymptotic properties of the ML estimates and the con-
sequences of the misspecification of the random effects distribution. The analysis of
two longitudinal datasets is presented in Sect. 6. Finally, Sect. 7 closes the paper by
presenting a brief plan of our future work.

2 Preliminaries

In this section, we provide some useful results related to the AL distribution. We also
present some background on the SAEM algorithm for ML estimation.

2.1 AL distribution

A random variable Y has an AL distribution (see Kozubowski and Nadarajah 2010)
with location parameterμ, scale parameter σ > 0 and skewness parameter p ∈ (0, 1),
if its probability density function (pdf) is given by

f (y | μ, σ, p) = p(1 − p)

σ
exp

{
−ρp

(
y − μ

σ

)}
,

where ρp(·) is the check (or loss) function defined by ρp(u) = u(p− I{u < 0}), with
I{·} the indicator function. This distribution is denoted by AL(μ, σ, p).
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The random variable Y ∼ AL(μ, σ, p) can be represented hierarchically as

Y | U = u ∼ N(μ + ϑpu, τ 2pσu),

U ∼ Exp(σ ), (1)

where Exp(σ ) denotes the exponential distribution with mean σ, ϑp and τ 2p are con-

stants such that ϑp = 1−2p
p(1−p) and τ 2p = 2

p(1−p) . Note that U | Y ∼ GIG(1/2, δ, γ ),
where GIG(ν, a, b) denotes the Generalized Inverse Gaussian (GIG) distribution
(Barndorff-Nielsen and Shephard 2001) with pdf given by

h(z | ν, a, b) = (b/a)ν

2Kν(ab)
zν−1 exp

{
− 1

2

(
a2/z + b2z

)}
,

with u > 0, ν ∈ R, a, b > 0, where Kν(·) is the modified Bessel function of the third
kind. The moments of the GIG distribution are given by

E[Zk] =
(a
b

)k Kν+k(ab)

Kν(ab)
, k ∈ R. (2)

2.2 The SAEM algorithm

The SAEM algorithm proposed by Delyon et al. (1999) replaces the E-step of the EM
algorithm (Dempster et al. 1977) by a stochastic approximation procedure. Besides
having good theoretical properties, the SAEM algorithm estimates the population
parameters accurately, converging to the global maxima of the ML estimates under
quite general conditions (Allassonnière et al. 2010; Delyon et al. 1999; Kuhn and
Lavielle 2004).

Let θ be the vector of the parameter of interest, y be the observed data and q be
the missing data and/or latent variables. At each iteration, the SAEM algorithm suc-
cessively simulates missing data/latent variables using their conditional distributions,
updating the model parameters. Thus, at iteration k, the SAEM algorithm proceeds as
follows:

E-Step:

– Simulation: draw a sample (q(	,k)), 	 = 1, . . . ,m from the conditional distribution

f
(
q | θ (k−1), y

)
.

– Stochastic approximation: update Q
(
θ | θ̂

(k)
)
as

Q
(
θ | θ̂

(k−1)
)

+ δk

[
1

m

m∑
	=1

	c

(
θ; y,q(	,k)

)
− Q

(
θ | θ̂

(k−1)
)]

,

where m is the number of simulations and δk is a smoothness parameter (Kuhn
and Lavielle 2004), i.e., a decreasing sequence of positive numbers such that∑∞

k=1 δk = ∞ and
∑∞

k=1 δ2k < ∞.
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M-Step:

– Maximization: update θ̂
(k)

as θ̂
(k+1) = argmaxθQ(θ | θ̂

(k)
).

Note that, although the E-Step is similar in the SAEM and MCEM algorithms,
a small number of simulations m (for practical situations, m ≤ 20 is suggested) is
necessary in the first one. This is possible because, unlike the traditional EM algorithm
and its variants, theSAEMalgorithmuses not only the current simulationof themissing
data/latent variables at the iteration k but some or all the previous simulations. In fact,
this ‘memory’ property is set by the smoothing parameter δk . In our case, we suggested
the following choice of the smoothing parameter given as

δk =
{

1, for 1 ≤ k ≤ cW
(k − cW )−1, for cW + 1 ≤ k ≤ W

,

where W is the maximum number of iterations, and c is a cutoff point (0 ≤ c ≤ 1)
which determines the percentage of initial iterations with no memory.

3 The QR nonlinear mixed model

3.1 The model

In this section, we propose the following general mixed-effects model. Let yi =(
yi1, . . . , yini

)� be the continuous response of subject i and η = (η(φi , xi1)
, . . . , η(φi , xini ))

� a nonlinear differentiable function of vector-valued randomparam-
eters φi of dimension r . Moreover, let xi be a matrix of covariates of dimension ni ×r .
The NLME model is defined as

yi = η(φi , xi ) + εi ,

φi = Aiβ p + Bibi , (3)

whereAi andBi are designmatrices (fixed) of dimensions r×d and r×q, respectively,
possibly dependingon elements ofxi and incorporating timevarying covariates infixed
or random effects; β p is the regression coefficient corresponding to the p-th quantile,
bi = (bi1, . . . , biq)� is a q-dimensional random effects vector associated with the i-th
subject and εi is the independent and identically distributed vector of random errors.
We define the p-th quantile function of the response yi j as

Qp(yi j | xi j ,bi ) = η(φi , xi j )

= η(Aiβ p + Bibi , xi j ), (4)

where Qp denotes the inverse of the unknown distribution function F . In this setting,
the random effects bi are independent and identically distributed (i.i.d) as Nq(0,Ψ ),

where the dispersion matrix Ψ = Ψ (α) depends on unknown and reduced parameters

α. The error terms are distributed as εi j
iid∼ AL(0, σ, p), being uncorrelated with the

123



1286 C. E. Galarza et al.

random effects. Then, conditionally on bi , the observed responses for subject i , i.e.,
yi j for j = 1, . . . , ni , are independent following an AL distribution with location,
scale and skewness parameters given by η(Aiβ p + Bibi , xi j ), σ and p, respectively.

The main reason for considering the AL distribution in our approach is that this
distribution proves useful as a unifying bridge between the likelihood inference and the
inference about QR estimation and seems to be very promising within those models,
since it clearly represents a suitable error law for the least absolute estimator (Geraci
and Bottai 2007). In addition, and from the Bayesian standpoint, Yu and Moyeed
(2001) have showed that irrespective of the original distribution of the data, the use of
the AL distribution is a very natural and effective way to model QR. Recently, Sriram
et al. (2013) studied the posterior consistency of model parameters for a QR model
when theAL distribution ismisspecified, concluding that the use of theAL distribution
works for a variety of possibilities of the true likelihood, including location models,
scale models and location-scale models.

3.2 The MCEM algorithm

In this section we develop a MCEM algorithm for ML estimation of the parameters
in the QR-NLME model. This model has a flexible hierarchical representation, which
is useful for deriving interesting theoretical properties. From (1), we have that the
QR-NLME model defined in (3)–(4), can be represented as

yi | bi ,ui ∼ Nni

(
η(Aiβ p + Bibi , xi ) + ϑpui , σ τ 2pDi

)
,

bi ∼ Nq(0,Ψ ),

ui ∼
ni∏
j=1

Exp(σ ),

for i = 1, . . . , n, where ϑp and τ 2p are given as in (1) and Di represents a diagonal

matrix that contains the vector of latent variables ui = (
ui1, . . . , uini

)�. Let yic =(
y�
i ,b�

i ,u�
i

)� and let θ (k) = (β (k)�
p, , σ (k),α(k)�)�, the estimate of θ at the k-th iteration.

For simplicity, we denote ηi = η(Aiβ p + Bibi , xi ). Since bi and ui are independent
for all i = 1, . . . , n, it follows from (1) that the complete-data log-likelihood function
is given by 	c(θ; yc) =∑n

i=1 	c(θ; yic ), where

	c(θ; yic ) = K − 3

2
ni log σ − 1

2
log
∣∣Ψ ∣∣− 1

2
b�
i Ψ −1bi − 1

σ
u�
i 1ni

− 1

2στ 2p
(yi − ηi − ϑpui )�D−1

i (yi − ηi − ϑpui ), (5)

where K denotes a constant that does not depend on the parameter of interest and 1p
is a vector of ones of dimension p. Given the current estimate θ = θ (k), the E-step

calculates the function Q
(
θ | θ̂

(k)
)

=∑n
i=1 Qi

(
θ | θ̂

(k)
)

, where
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Qi

(
θ | θ̂

(k)
)

= E
{
	c(θ; yic ) | θ (k), y

}
∝ −3

2
ni log σ − 1

2
log
∣∣Ψ ∣∣

− 1

2
tr
{
(̂bb�)i

(k)
Ψ −1

}
− 1

2στ 2p

[
y�
i
̂D−1

i

(k)
yi − 2ϑpy�

i 1ni

+ τ 4p

4
ûi (k)�1ni − 2y�

i ( D̂−1η)
(k)
i + 2ϑp1�

ni η̂i
(k) + ( ̂η�D−1η)

(k)
i

]
,

where tr(A) denotes the trace of matrix A. The calculation of this function requires

the expressions η̂i
(k) = E

{
ηi | θ (k), yi

}
, ûi (k) = E

{
ui | θ (k), yi

}
, (̂bb�)i

(k) =
E
{
bib�

i | θ (k), yi
}
,̂D−1

i

(k) = E
{
D−1
i | θ (k), yi

}
, ( D̂−1η)

(k)
i = E

{
D−1
i ηi

(k) | θ (k), yi
}

,

( ̂η�D−1η)
(k)
i = E

{
η�
i D

−1
i ηi | θ (k), yi

}
, which do not have closed forms. Since the

joint distribution of the latent variables
(
b(k)
i ,u(k)

i

)
is unknown and the conditional

expectations cannot be computed analytically, for any function g(·), the MCEM algo-
rithm approximates these expectations using a Monte Carlo approximation given by

E[g (bi ,ui ) | θ (k), yi ] ≈ 1

m

m∑
	=1

g(b(	,k)
i ,u(	,k)

i ), (6)

which depends of the simulations of the two latent variables b(k)
i and u(k)

i from the
conditional density f (bi ,ui | θ (k), yi ). Since E[g(bi ,ui ) | θ (k), yi ] = E[E[g(bi ,ui ) |
θ (k),bi , yi ] | yi ], the expected value given in (6) can be more accurately approximated
by

1

m

m∑
	=1

E[g(b(	,k)
i ,ui ) | θ (k),b(	,k)

i , yi ], (7)

where b(	,k)
i is generated from f (bi | θ (k), yi ). Note that this approximation is more

accurate since it only depends on one Monte Carlo approximation, instead of two (as
is needed in (6)).

To generate random samples from the full conditional distribution f (ui | yi ,bi ),
first note that the vector ui | yi ,bi can be written as ui | yi ,bi = [ui1 | yi1,bi ,
ui2 | yi2,bi , · · · , uini | yini ,bi ]�, since ui j | yi j ,bi is independent of uik | yik,bi ,
for all j, k = 1, 2, . . . , ni and j 	= k. Thus, the distribution of f (ui j | yi j ,bi ) is
proportional to

φ(yi j | ηi j (β p,bi ) + ϑpui j , σ τ 2pui j ) × Exp(σ ),

which, from Sect. 2.1, leads to ui j | yi j ,bi ∼ GIG( 12 , χi j , ψ), where χi j and ψ are
given by χi j = |yi j − ηi j |/τp√σ and ψ = τp/2

√
σ , and ηi j is the component j of

the vector ηi . From (2), and after generating samples from f (bi | θ (k), yi ) (see Sect.
3.4), the conditional expectation E[· | θ,bi , yi ] in (7) can be computed analytically.
Finally, the proposed MCEM algorithm to estimate the parameters of the QR-NLME
model can be summarized as follows:
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MC E-Step: Given θ = θ (k), for i = 1, . . . , n;

– Simulation step: For 	 = 1, . . . ,m, generate b(	,k)
i from f (bi | θ (k), yi ), as

described next in Sect. 3.4.
– Monte Carlo approximation: Using (2) and b(	,k)

i , for 	 = 1, . . . ,m, evaluate
E[g (bi ,ui ) | θ (k), yi ] using the approximation proposed in (7).

M-step: Update θ̂ (k) by maximising Q(θ | θ̂ (k)) ≈ 1
m

∑m
l=1
∑n

i=1 	c(θ; yi ,b(l,k)
i ,ui )

over θ , leading the following estimates:

β̂ p
(k+1) = β̂ p

(k) +
⎡
⎣ n∑
i=1

⎧⎨
⎩

1

m

m∑
	=1

J(k)�
i E(D−1

i )(	,k)J(k)
i

⎫⎬
⎭
⎤
⎦

−1

×
⎡
⎣ n∑
i=1

⎧⎨
⎩

1

m

m∑
	=1

[
2J(k)�

i E(D−1
i )(	,k)

[
yi − η(β̂ p

(k)
,b(	,k)

i ) − ϑpE(ui )
(	,k)
]]⎫⎬
⎭
⎤
⎦ ,

σ̂ (k+1) = 1

3Nτ2p

n∑
i=1

⎧⎨
⎩

1

m

m∑
	=1

⎡
⎣(yi − η(β̂ p

(k+1)
, b(	,k)

i ))�E(D−1)(	,k)(yiη(β̂ p
(k+1)

, b(	,k)
i ))

−2ϑp(yiη(β̂ p
(k+1)

, b(	,k)
i ))�1ni + τ4p

4
E(ui )

(	,k)�1ni

⎤
⎦
⎫⎬
⎭ ,

Ψ̂
(k+1) = 1

n

n∑
i=1

⎡
⎣ 1

m

m∑
	=1

b(	,k)
i b(	,k)�

i

⎤
⎦ ,

where Ji = ∂η(β p,bi )/∂β�
p, N =∑n

i=1 ni and expressions E(ui )(	,k) and E(D−1
i )(	,k)

are defined in Appendix A2.
Note that, for the MC E-step, we need to generate b(	,k)

i , 	 = 1, . . . ,m, from
f (bi | θ (k), yi ) (see Sect. 3.4), where m is the number of Monte Carlo simulations to
be used (a number suggested to be large enough).

3.3 The SAEM algorithm

As was mentioned in Sect. 2.2, the SAEM circumvents the problem of simulating a
large number of latent values at each iteration, leading to a faster and efficient solution
to the MCEM algorithm. In summary, the SAEM algorithm proceeds as follows:

E-step: Given θ = θ (k) for i = 1, . . . , n;

– Stochastic approximation: Update theMonte Carlo approximations using stochas-
tic ones, given by

S(k)
1,i = S(k−1)

1,i + δk

[
1

m

m∑
	=1

J(k)�
i E(D−1

i )(	,k)J(k)
i − S(k−1)

1,i

]
,

S(k)
2,i = S(k−1)

2,i + δk

[
1

m

m∑
	=1

[
2J(k)�

i E(D−1
i )(	,k)

[
yi − η(β̂ p

(k)
,b(	,k)

i )
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− ϑpE(ui )(	,k)
]]

− S(k−1)
2,i

]
,

S(k)
3,i = S(k−1)

3,i + δk

[
1

m

m∑
	=1

[
(yi − η(β̂ p

(k+1)
,b(	,k)

i ))�E(D−1)(	,k)

(yi − η(β̂ p
(k+1)

,b(	,k)
i )) − 2ϑp(yi − η(β̂ p

(k+1)
,b(	,k)

i ))�1ni

+ τ 4p

4
E(ui )(	,k)�1ni

]
− S(k−1)

3,i

]
,

S(k)
4,i = S(k−1)

4,i + δk

[
1

m

m∑
	=1

[
b(	,k)
i b(	,k)�

i

]
− S(k−1)

4,i

]
.

M-step: Update θ̂ (k) by maximizing Q
(
θ | θ̂ (k)

)
over θ , which leads to the following

expressions:

β̂ p
(k+1) = β̂ p

(k) +
[

n∑
i=1

S(k)
1,i

]−1 n∑
i=1

S(k)
2,i ,

σ̂ (k+1) = 1

3Nτ 2p

n∑
i=1

S(k)
3,i ,

Ψ̂ (k+1) = 1

n

n∑
i=1

S(k)
4,i ,

provided that the inverse of the matrix S(k)
1,i exists. Given a set of suitable initial values

θ̂
(0)

(a simple strategy for specifying θ̂
(0)

is described in Appendix A1), the SAEM

iterates until convergence at iteration k, if maxi

{
|θ̂ (k+1)
i − θ̂

(k)
i |

|θ̂ (k)
i | + δ1

}
< δ2, where δ1 and

δ2 are pre-established small values. As suggested on page 269 in Searle et al. (1992),
we used δ1 = 0.001 and δ2 = 0.0001. In addition, we also used a second convergence

criterion defined by maxi

{
|θ̂ (k+1)
i −θ̂

(k)
i |√

v̂ar(θ(k)
i )+δ1

}
< δ2, as proposed by Booth and Hobert

(1999).

3.4 Simulation of random effects

In order to generate samples from f (bi | yi ), we use the Metropolis-Hastings
(MH) algorithm (Metropolis et al. 1953; Hastings 1970), noting that the condi-
tional distribution f (bi | yi ) can be represented as f (bi | yi ) ∝ f (yi | bi ) f (bi ) ,

where bi ∼ Nq(0,Ψ ) and f (yi | bi ) = ∏ni
j=1 f (yi j | bi ), with yi j | bi ∼

AL
(
η(Aiβ p + Bibi , xi j ), σ, p

)
. Since this function is a product of two distributions
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1290 C. E. Galarza et al.

(with support inR
q ), a suitable choice for the proposed density is amultivariate normal

distribution with mean and variance-covariance matrix given by μ̂bi = E(b(k−1)
i | yi )

and Σ̂bi = Var(b(k−1)
i | yi ) respectively. These quantities are obtained from the last

iteration of the SAEM algorithm. Note that this candidate generates a high acceptance
rate, making the algorithm fast.

4 Estimation of the likelihood and standard errors

4.1 Likelihood estimation

Given an observed data, the likelihood function 	o(θ | y) of the model defined in
(3)-(4) is given by

n∑
i=1

log
∫
Rq

f (yi | bi ; θ) f (bi ; θ)dbi , (8)

where the integral can be expressed as an expectation with respect to bi , i.e., E[ f (yi |
bi ; θ)]. The evaluation of this integral is not possible analytically, so it is often replaced
by its Monte Carlo approximation involving a large number of simulations. However,
alternative importance sampling (IS) procedures might require a smaller number of
simulations than the typical Monte Carlo procedure. FollowingMeza et al. (2012), we
compute this integral using an IS scheme for any continuous distribution f̂ (bi ; θ) of
bi , having the same support as f (bi ; θ). Re-writing (8) as

n∑
i=1

log
∫
Rq

f (yi | bi ; θ)
f (bi ; θ)

f̂ (bi ; θ)
f̂ (bi ; θ)dbi ,

we can express it as an expectation with respect to b∗
i , where b

∗
i ∼ f̂ (b∗

i ; θ). Thus,
the likelihood function can be approximated as

n∑
i=1

log

⎧⎨
⎩

1

m

m∑
	=1

⎡
⎣ ni∏

j=1

[ f (yi j | b∗(	)

i ; θ)] f (b
∗(	)

i ; θ)

f̂ (b∗(	)

i ; θ)

⎤
⎦
⎫⎬
⎭ ,

where {b∗(	)
i }, l = 1, . . . ,m, is a Monte Carlo sample from f̂ (b∗

i ; θ), and f (yi |
b∗(	)
i ; θ) is expressed as

∏ni
j=1 f (yi j | b∗(	)

i ; θ) due to the conditional independence

assumption. An efficient choice for f̂ (b∗(	)

i ; θ) is f (bi | yi ). Therefore, we use the

same proposed distribution discussed in Sect. 3.4, generating b∗(	)
i ∼ Nq(μ̂bi , Σ̂bi ).

4.2 Standard error approximation

At the kth iteration, the empirical score function s(yi | θ)(k) for the i-th subject can
be computed as
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s(yi | θ)(k−1) + δk

[
1

m

m∑
	=1

s(yi ,q(k,	); θ (k)) − s(yi | θ)(k−1)

]
, (9)

where q(	,k), 	 = 1, . . . ,m, are the simulated values of the conditional distribution
f (· | θ (k−1), yi ). Using Louis’smethod (Louis 1982), the observed informationmatrix
at iteration k, can be approximated as Ie(θ | y)(k) = ∑n

i=1 s(yi | θ)(k)s�(yi | θ)(k).
Expressions for the elements of the score vector are given in Appendix A3.

5 Simulated data

In order to examine the performance of the proposed method, we conduct some sim-
ulation studies. The first simulation study shows that the ML estimates based on the
SAEM algorithm provide good asymptotic properties. The second study investigates
the consequences on population inferences when the normality assumption of the ran-
dom effects is not considered. To do that, we used a heavy tailed distribution for the
random effect term, testing the robustness of the proposed method in terms of the
parameter estimation.

5.1 Finite sample properties

As in Pinheiro and Bates (1995), we performed the first simulation study with the
following three parameter nonlinear growth-curve logistic model:

yi j = β1 + b1i
1 + exp (−[ti j − β2]/β3)

+ εi j , i = 1, . . . , n, j = 1, . . . , 10, (10)

where ti j = 100, 267, 433, 600, 767, 933, 1100, 1267, 1433, 1600 for all i . The
goal is to estimate the fixed effects parameters β’s for a grid of percentiles p =
{0.50, 0.75, 0.95}. A Gaussian random effect b1i , for i = 1, . . . , n is added to the first
growth parameter β1 and its effect on the growth-curve is shown in Fig. 1.

Parameter interpretation of this model is discussed in Sect. 6. The random effect

b1i and the error term εi = (εi1 . . . , εi10)
� are non-correlated. In fact, b1i

iid∼ N(0, σ 2
b )

and εi j
iid∼ AL(0, σe, p). We set β p = (β1, β2, β3)

� = (200, 700, 350)�, σe = 0.5
and σ 2

b = 10. Using the notation in (3), the matrices Ai and Bi are given by I3 and
(1, 0, 0)� respectively. For different sample sizes, say, n = 25, 50, 100 and 200, we
generate 100 datasets for each scenario. In addition, we choose m = 20, c = 0.25
andW = 500 for the SAEM algorithm convergence parameters. For all scenarios, we
compute the square root of themean square error (RMSE), bias (Bias) andMonteCarlo
standard deviation (Sd) for each parameter over the 100 replicates. These quantities

are defined as RMSE(θ̂i ) =
√
Sd2(θ̂i ) + Bias2(θ̂i ),Bias(θ̂i ) = θ̂i − θi and Sd(θ̂i ) =√

1
99

∑100
j=1

(
θ̂i

( j) − θ̂i
)2, where θ̂i = 1

100

∑100
j=1 θ̂

( j)
i is the Monte Carlo mean (Mean)

with θi
( j) the estimate of θi from the j-th sample, j = 1 . . . 100. Based on Fig. 2,

we conclude that the bias in the estimation of fixed effects converges to zero when
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Fig. 1 Effect of including a
random effect b1 in the first
parameter of the nonlinear
growth-curve logistic model
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Fig. 2 Bias, Sd and RMSE for β2 (upper panel) and β3 (lower panel) for different sample sizes over the
quantiles p = {0.50, 0.75, 0.95}

n increases, i.e. the estimators are asymptotically unbiased for the parameters. The
values of Sd and RMSE decrease monotonically when n increases, indicating that the
estimators are consistent. Note that for quantile p = 0.95 (an extreme quantile), the
standard deviation ismuch higher than quantiles p = 0.50 and p = 0.75. As an overall
conclusion, we can say that, in general, the proposed SAEM algorithm provides good
asymptotic properties for the ML estimates.
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Table 1 Simulation 1: Monte Carlo mean and RMSE for fixed effects β and scale parameter σe obtained
after fitting the QR-NLME model under different settings of quantiles and sample sizes

Quantile n β1 β2 β3 σe

Mean RMSE Mean RMSE Mean RMSE Mean RMSE

50% 25 199.75 1.554 700.19 1.428 350.13 1.170 0.503 0.186

50 199.79 1.315 700.09 1.139 350.03 0.931 0.498 0.145

100 200.16 1.085 700.08 0.965 350.06 0.856 0.497 0.131

200 200.02 0.866 699.96 0.803 349.98 0.710 0.499 0.111

75% 25 203.77 4.086 700.18 1.449 350.15 1.262 0.499 0.186

50 203.90 4.125 700.20 1.279 350.16 1.069 0.495 0.157

100 204.19 4.347 699.83 1.054 349.88 0.874 0.499 0.131

200 204.34 4.445 700.00 0.836 350.01 0.703 0.498 0.106

95% 25 201.15 2.029 700.26 2.567 350.14 1.986 0.506 0.186

50 201.77 2.299 700.53 2.263 349.74 1.704 0.508 0.156

100 201.93 2.303 700.18 1.894 349.73 1.549 0.505 0.123

200 202.11 2.341 700.06 1.714 349.98 1.241 0.502 0.109

The results are based on 100 simulated datasets

Table 2 Simulation 1: Sd, Monte Carlo mean of the approximate standard error obtained through the
information-based method described in Sect. 4.2 (IM SE) and Monte Carlo coverage probability at 95%
(CP %) obtained after fitting the QR-NLME model for quantiles p = 0.50 and p = 0.75 and sample of
size n = 50

Q β2 β3 σe

Sd IM-SE CP % Sd IM-SE CP % Sd IM-SE CP %

50% 0.644 0.559 92 0.504 0.477 93 0.012 0.012 95

75% 0.699 0.608 92 0.495 0.516 95 0.011 0.012 96

The results are based on 100 simulated samples

Table 1 shows the estimation of the model parameters. Note that the intercept (β1)
increases along the quantiles. This is a natural property of the intercept in QR models.
As a consequence, the bias and RMSE increase significantly for extreme quantiles. In
general, and for all the model parameters, good asymptotic properties in terms of bias
and RMSE are observed.

As was suggested by a reviewer, Table 2 shows the coverage probability and the
theoretical standard errors (obtained using the approximation proposed in Sect. 4.2)
for the QR-NLME model (10) considering, for computational time reasons, a sample
of size n = 50 and quantiles p = 0.50 and p = 0.75. From these results, one can see
that the empirical (Sd) and theoretical (IM-SE) standard errors are similar. Moreover,
the Monte Carlo coverage probability (CP %) is high, showing the good behavior
of the obtained estimates. We have omitted the results for the intercept β1, because
this parameter varies the quantile, capturing the location of the different quantiles of
the conditional distribution. This evidence indicates that the AL assumption does not
generate an important bias in the results.
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Fig. 3 50 simulated curves from the growth-curve logistic model using different distributions for the
random effect term: normal (right), Student’s-t with ν = 4 (center), contaminated normal with ν1 = 0.1
and ν2 = 0.1 (left). In all cases the location and scale parameters are μ = 0 and σ 2

b = 10, respectively

5.2 Robustness study

The aim of this simulation scheme is to study the behavior of the parameter esti-
mates when the distribution of random effects is misspecified. We consider a similar
simulation scheme as in the previous subsection, but considering a set of quantiles
p = {0.50, 0.75} and a fixed sample size n = 50. We consider 100 Monte Carlo
samples, generating the random effect term from (a) a Student’s-t distribution with
ν = 4 degrees of freedom (t4) and from (b) a contaminated normal distribution with
parameters ν1 = 0.1 and ν2 = {0.1, 0.2, 0, 3}), i.e., three scenarios of contamination,
say, 10% (C 10%), 20% (C 20%) and 30% (C 30%). We set the value of parameters
as follows: β p = (200, 700, 350)�, σe = 0.5 and σ 2

b = 10.
Figure 3 shows the simulated curves from the growth-curve logisticmodel assuming

different probability distributions for the random effect term, say, normal, Student’s-t
with ν = 4 and contaminated normal with ν1 = 0.1 and ν2 = 0.1.

From Table 3 we can see that the proposed model is robust even when the level
of contamination is high. For quantile p = 0.75, naturally, the parameter β1 tends to
increase for higher levels of contamination. As expected, the Sd and RMSE increase
when the distribution of the random effects is heavy-tailed.

6 Illustrative examples

In this section, we illustrate the application of our method by analyzing two longitu-
dinal datasets.

6.1 Growth curve: Soybean data

For the first application, we consider the soybean genotype data analyzed previously
by Davidian and Giltinan (1995) and Pinheiro and Bates (2000). The experiment
consists of measuring (along time) the leaf weight (in grams) as a measure of growth
of two soybean genotypes, namely, a commercial variety called Forrest (F) and an
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Table 3 Simulation 2: Mean, Bias, Sd and RMSE for the fixed effects β and scale parameter σe obtained
after fitting the QR-NLME model for quantiles p = 0.50 and p = 0.75 using four different distribution
settings for random effects

Model Quantile 50% Quantile 75%

β1 β2 β3 σe β1 β2 β3 σe

(200) (700) (350) (0.5) (200) (700) (350) (0.5)

t4 Mean 200.22 700.00 349.99 0.501 204.43 700.39 350.18 0.501

Bias 0.22 0.00 − 0.01 0.001 4.43 0.39 0.18 0.001

Sd 1.41 1.13 0.99 0.024 1.47 1.30 1.04 0.024

RMSE 1.42 1.13 0.99 0.024 4.67 1.36 1.06 0.024

C 10% Mean 199.87 700.10 349.9 0.499 205.02 700.18 350.05 0.501

Bias − 0.13 0.10 − 0.1 − 0.001 5.02 0.18 0.05 0.001

Sd 1.38 1.12 0.94 0.024 1.39 1.34 1.08 0.024

RMSE 1.38 1.13 0.94 0.024 5.21 1.35 1.08 0.024

C 20% Mean 200.05 699.91 350.08 0.497 205.35 700.20 350.11 0.496

Bias 0.05 − 0.09 0.08 − 0.003 5.35 0.20 0.11 − 0.004

Sd 1.40 1.13 0.95 0.024 1.41 1.24 1.09 0.023

RMSE 1.40 1.13 0.95 0.024 5.53 1.26 1.10 0.023

C 30% Mean 200.16 700.06 350.07 0.496 206.63 699.91 350.01 0.497

Bias 0.16 0.06 0.07 − 0.004 6.63 − 0.09 0.01 − 0.003

Sd 1.45 1.02 0.96 0.024 1.61 1.26 1.03 0.022

RMSE 1.46 1.03 0.97 0.024 6.82 1.27 1.03 0.023

The results are based on 100 simulated samples

experimental strain called Plan Introduction #416937 (P). The samples were taken
approximately weekly during 8 to 10 weeks. Plants were planted for three consecutive
years (1988, 1989 and 1990) in 16 plots (8 per genotype) and the mean leaf weight of
six randomly selected plants was measured.

We use the three parameter logistic model in (10), introducing a random effect term
for each parameter and a dichotomic covariate (gen) as

yi j = ϕ1i

1 + exp (−[ti j − ϕ2i ]/ϕ3i )
+ εi j , i = 1, . . . , 412, j = 1, . . . , ni ,

where,ϕ1i = β1+β4geni+b1i , ϕ2i = β2+b2i andϕ3i = β3+b3i .The observed value
yi j represents themeanweight of leaves (in grams) fromsix randomly selected soybean
plants in the i-th plot, ti j days after planting; geni is a dichotomic variable indicating
the genotype of plant i (0=Forrest, 1= Introduction) and εi j is the measurement error
term. Moreover, β p = (β1, β2, β3, β4)

� and bi = (b1i , b2i , b3i )� are the fixed and
random effects vectors respectively.

The matrices Ai and Bi are defined as
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Fig. 4 Soybean data: Leaf weight profiles versus time by genotype (left panel). Ten randomly selected leaf
weight profiles versus time (right panel)

Ai =
⎛
⎝1 0 0 geni
0 1 0 0
0 0 1 0

⎞
⎠ and Bi =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ .

The interpretation of parameters is as follows: ϕ1 is the asymptotic leaf weight,
ϕ2 is the time at which the leaf reaches half its asymptotic weight and ϕ3 is the time
elapsed between the leaf reaching half and 0.7311 = 1/(1 + e−1) of its asymptotic
weight. Since the aim of the study is to compare the final (asymptotic) growth of the
two kinds of soybeans, the covariate geni was incorporated in the first component of
the growth function. Therefore, the coefficient β4 represents the difference (in grams)
of the asymptotic leaf weight between the introduction plan and Forrest type (control).
Figure 4 shows the leaf weight profiles.

Figure 5 shows the fitted regression lines for quantiles 0.10, 0.25, 0.50, 0.75 and 0.90
bygenotype. From this figurewe can see how the extremequantile estimation functions
capture the full data variability, detecting some atypical observations (particularly for
the Introduction genotype).

Figure 8 in Appendix A4 shows a summary of the obtained results. It can be seen
that the effect of the genotype is significant for all the quantile profiles. Moreover, the
difference varies with respect to the conditional quantile being more significant for
lower quantiles. Using the information provided by the 95th percentile, we conclude
that the soybean plants have a mean leaf weight around 19.35 grams for the Forrest
genotype and 23.25 grams for the Introduction genotype. Therefore, the asymptotic
difference for the two genotypes is about 4 grams. Finally, it is important to stress that
the convergence of the fixed effect estimates and variance components was analyzed
using graphical criteria as shown in Figure 10 (Appendix A4).
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Fig. 5 Soybean data: Fitted
quantile regression for several
quantiles
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6.2 HIV viral load study

The dataset analyzed in this section comes from a clinical trial (ACTG 315), studied
in previous works by Wu (2002) and Lachos et al. (2013). In this study, the HIV viral
load of 46 HIV-1 infected patients under antiretroviral treatment (protease inhibitor
and reverse transcriptase inhibitor drugs) is analyzed. The viral load and some other
covariates were measured several times after the start of treatment. Wu (2002) found
that the only significant covariate formodeling the virus loadwas CD4. Figure 6 shows
the profile of viral load in log10 scale and CD4 cell count/100 per mm3 versus time (in
days/100) for six randomly selected patients. As can be seen, an inverse relationship
exists between the viral load and the CD4 cell count, i.e., high CD4 cell count leads to
lower levels of viral load. This is because the CD4 cells (also called T-cells) alert the
immune system in case of invasion by viruses and/or bacteria. Consequently, a lower
CD4 count means a weaker immune system.

In order to fit the ACTG 315 data, we propose a bi-phasic nonlinear model consid-
ered byWu (2002) and also used by Lachos et al. (2013). The proposed NLMEmodel
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Fig. 6 ACTG315 data. Profiles of viral load (response) in log10 scale andCD4 cell count (in cells/100mm3)
for six randomly selected patients

is given by,

yi j = log10
(
e(ϕ1i−ϕ2i ti j ) + e(ϕ3i−ϕ4i ti j )

)
+ εi j , (11)

for i = 1, . . . , 46, j = 1, . . . , ni with ϕ1i = β1 + b1i , ϕ2i = β2 + b2i , ϕ3i =
β3+b3i , ϕ4i j = β4+β5CD4i j +b4i ,where the observed value yi j represents the log-
10 transformation of the viral load for the i-th patient at time j,CD4i j is the CD4 cell
count (in cells/100mm3) for the i-th patient at time j and εi j is the measurement error
term.As in the previous case,β p = (β1, β2, β3, β4, β5)

� andbi = (b1i , b2i , b3i , b4i )�

denote the fixed and random effects vectors respectively, and CD4i = (CD4i1, . . . ,
CD4ini )

�. The matrices Ai and Bi are defined as

Ai =
(
I3 0 0
0 1ni CD4i

)
and Bi =

(
I3 0
0 1ni

)
.

The parameters ϕ2i and ϕ4i are the two-phase viral decay rates, which represent the
minimum turnover rates of productively infected cells and that of latent or long-lived
infected cells if therapy was successful, respectively. For more details about the model
in (11) see Grossman et al. (1999) and Perelson et al. (1997).

Figure 7 shows the fitted regression lines for quantiles 0.10, 0.25, 0.50, 0.75 and
0.90 for the ACTG 315 data. In order to plot this, first, we have fixed the CD4 covariate
using the predicted sequence from a linear regression (including a quadratic term) for
explaining the CD4 cell count over time. It can be seen how the quantile estimated
functions follow the data behavior and make it easy to estimate a specific viral load
quantile at any time of the experiment. Extreme quantile functions bound most of the
observed profiles and evidence possible influential observations.

The results after fitting the QR-NLME model over the grid of quantiles p =
{0.05, 0.10, . . . , 0.95} are shown in Fig. 9 in Appendix A4. The first phase viral decay
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Fig. 7 ACTG 315 data: Fitted quantile regression functions

rate is positive and its effect tends to increase proportionally along quantiles. More-
over, the second phase viral decay rate is positively correlated with the CD4 count and
therefore with the duration of therapy. Consequently, more days of treatment imply a
higher CD4 cell count and therefore a higher second phase viral decay. The CD4 cell
process for this model has different behavior than for the expansion phase (Huang and
Dagne 2011). The significance of the CD4 covariate increases positively with respect
to quantiles (until quantile p = 0.60 approximately) and its effect becomes constant
for greater quantiles. As in the previous case, the convergence of estimates for all
parameters was also assessed using the graphical criteria.

7 Conclusions

In this paper, we investigate quantile regression under nonlinear mixed effects mod-
els from a likelihood-based perspective. The AL distribution and SAEM algorithm
are combined efficiently to propose an exact ML estimation method. We evaluate the
robustness of estimates, as well as the finite sample performance of the algorithm and
the asymptotic properties of the ML estimates through empirical experiments. To the
best of our knowledge, this paper is the first attempt at exact ML estimation in the
context of QR-NLMEmodels. The methods developed can be readily implemented in
R through the package qrNLMM(), making our approach quite powerful and acces-
sible to practitioners. We apply our method to two datasets from longitudinal studies,
obtaining interesting results from the point of view of quantile estimation. Moreover,
in the two considered applications, similar conclusions to the previous analyses of
these datasets were obtained.

As was observed by a referee, Mu&He (2007) (see also Liu and Bottai 2009) noted
that nonlinear QR models can be modeled using a monotone transformation over the
QR linear models. Although this approach is very interesting and easy to understand,
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our problem considers not only a nonlinear behavior of the response but also on the
random effects. In addition, we consider the assumption of the AL distribution to
estimate the model parameters. In this context, an in-depth study of the properties of
parameter estimation of fixed effects within the context of mixed effect models seems
to be an interesting topic for future research.

Finnaly, there are a large number of possible extensions of the current work. For
modeling both skewness and heavy tails in the randomeffects, the use of scalemixtures
of skew-normal (SMSN) distributions (Lachos et al. 2010) is a feasible choice. Also,
HIV viral loads studies include covariates (CD4 cell counts) that often come with
substantial measurement errors (Wu 2002). How to incorporate measurement errors
in covariates within our robust framework can also be part of future research. An in-
depth investigation of such extensions is beyond the scope of the present paper, but
certainly is an interesting topic for future research.
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Appendix

A1: Specification of initial values

It is well known that a smart choice of the initial values for the ML estimates can
assure a fast convergence of the algorithm to the global maxima solution. Without
considering the random effect term, i.e., bi = 0, let yi ∼ AL(η(β p, 0), σ, p). Next,
considering the ML estimates for β p and σ as defined in Yu and Zhang (2005) for this
model, we follow the steps below for the QR-LME model implementation:

1. Compute an initial value β̂
(0)

p as

β̂
(0)

p = argminβp∈Rk
n∑

i=1

ρp(yi − η(β p, 0)).

2. Using the initial value of β̂
(0)

p obtained above, compute σ̂ (0) as

σ̂ (0) = 1

n

n∑
i=1

ρp(yi − η(β p, 0)).

3. Use a q × q identity matrix Iq×q for the the initial value Ψ (0).
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A2: Computing the conditional expectations

Due to the independence between ui j | yi j ,bi and uik | yik,bi , for all j, k=1, 2, . . . , ni
and j 	= k, we can write ui | yi ,bi = [ ui1 | yi1,bi ui2 | yi2,bi · · · uini | yini ,bi ]�.
Using this fact, we are able to compute the conditional expectations E(ui ) and E(D−1

i )

in the following way:

E(ui ) = [E(ui1) E(ui1) · · · E(uini )
]�

, (12)

E(D−1
i ) =

⎡
⎢⎢⎢⎣
E(u−1

i1 ) 0 . . . 0
0 E(u−1

i2 ) . . . 0
...

...
. . .

...

0 0 . . . E(u−1
ini

)

⎤
⎥⎥⎥⎦ . (13)

We have ui j | yi j ,bi ∼ GIG( 12 , χi j , ψ), where χi j and ψ are defined in Sect.
3.2. Then, using (2), we compute the moments involved in the equations above as
E(ui j ) = χi j

ψ
(1+ 1

χi jψ
) and E(u−1

i j ) = ψ
χi j

. Thus, for the k-th iteration of the algorithm

and for the 	-th Monte Carlo realization, we can compute E(ui )(	,k) and E[D−1
i ](	,k)

using equations (12)-(13) where

E(ui j )
(	,k) = 2|yi j − ηi j (β

(k)
p ,b(	,k)

i )| + 4σ (k)

τ 2p
,

E(u−1
i j )(	,k) = τ 2p

2|yi j − ηi j (β
(k)
p ,b(	,k)

i )| .

A3: The empirical information matrix

Using (5), the complete log-likelihood function can be rewritten as

	ci (θ) = −3

2
ni logσ − 1

2στ 2p
ζ�
i D−1

i ζi − 1

2
log
∣∣Ψ ∣∣− 1

2
b�
i Ψ −1bi − 1

σ
u�
i 1ni ,

where ζi = yi −η(β p,bi )−ϑpui and θ = (β�
p , σ,α�)�. Differentiating with respect

to θ , we have the following score functions:

∂	ci (θ)

∂β p

= ∂η

∂β p

∂ζi

∂η

∂	ci (θ)

∂ζi
= 1

στ 2p
J�
i D−1

i ζi ,

with Ji as defined in Sect. 3.2. and

∂	ci (θ)

∂σ
= −3ni

2

1

σ
+ 1

2σ 2τ 2p
ζ�
i D−1

i ζi+ 1

σ 2 u
�
i 1ni .
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Let α be the vector of reduced parameters from Ψ , the dispersion matrix for bi .
Using the trace properties and differentiating the complete log-likelihood function,
we have that

∂	ci (θ)

∂Ψ
= ∂

∂Ψ

[
−n

2
log
∣∣Ψ ∣∣− 1

2
tr{Ψ −1bib�

i }
]

= −1

2
tr{Ψ −1} + 1

2
tr{Ψ −1Ψ −1bib�

i }

= 1

2
tr{Ψ −1(bib�

i − Ψ )Ψ −1}.

Next, taking derivatives with respect to a specific α j from α based on the chain rule,
we have

∂	ci (θ)

∂α j
= ∂Ψ

∂α j

∂	ci (θ)

∂Ψ

= ∂Ψ

∂α j

1

2
tr{Ψ −1(bib�

i − Ψ )Ψ −1}.

where, using the fact that tr{ABCD} = (vec(A�))� (D� ⊗ B)(vec(C)), (14) can be
rewritten as

∂	ci (θ)

∂α j
= (vec( ∂Ψ

∂α j

�
))� 1

2
(Ψ −1 ⊗ Ψ −1)(vec(bib�

i − Ψ )). (14)

LetDq be the elimination matrix (Lavielle 2014), which transforms the vectorized
Ψ (written as vec(Ψ )) into its half-vectorized form vech(Ψ ), so that Dqvec(Ψ ) =
vech(Ψ ). Using the fact that for all j = 1, . . . , 1

2q(q + 1), the vector (vec( ∂Ψ
∂α j

)�)�
corresponds to the j-th row of the elimination matrix Dq , we can generalize the
derivative in (14) for the vector of parameters α as

∂	ci (θ)

∂α
= 1

2
Dq(Ψ

−1 ⊗ Ψ −1)(vec(bib�
i − Ψ )).

Finally, at each iteration, we can compute the empirical informationmatrix by approxi-
mating the score for the observed log-likelihood by the stochastic approximation given
in (9).
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A4: Figures
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Fig. 8 Soybean data: Point estimates (center solid line) and 95% confidence intervals for model parameters
after fitting the QR-NLME model. The interpolated curves are spline-smoothed
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Fig. 9 ACTG 315 data: Point estimates (center solid line) and 95% confidence intervals for model param-
eters after fitting the QR-NLME model. The interpolated curves are spline-smoothed
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Fig. 10 Graphical summary for the convergence of the fixed effect estimates, variance components of the
random effects, and nuisance parameters performing a median regression (p = 0.50) for the soybean data.
The vertical dashed line delimits the beginning of the almost sure convergence as defined by the cut-point
parameter c = 0.25

A5: Sample output from R package qrNLMM()

---------------------------------------------------
Quantile Regression for Nonlinear Mixed Model
---------------------------------------------------

Quantile = 0.5
Subjects = 48 ; Observations = 412

- Nonlinear function

nlmodel = function(x,fixed,random,covar=NA){
resp = (fixed[1] + random[1])/(1 + exp(((fixed[2] + random[2]) - x)/
(fixed[3] + random[3])))
return(resp)}
-----------
Estimates
-----------

- Fixed effects

Estimate Std. Error z value Pr(>|z|)
beta 1 18.58381 0.55089 33.73433 0
beta 2 54.26468 0.28691 189.13608 0
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beta 3 8.23245 0.08848 93.04351 0

sigma = 0.31615

Random effects Variance-Covariance Matrix matrix
b1 b2 b3

b1 23.75098 11.43940 2.58884
b2 11.43940 14.91302 2.86235
b3 2.58884 2.86235 0.55971

------------------------
Model selection criteria
------------------------

Loglik AIC BIC HQ
Value -623.899 1267.798 1308.009 1283.704

-------
Details
-------

Convergence reached? = TRUE
Iterations = 694 / 1000
Criteria = 8e-05
MC sample = 20
Cut point = 0.25
Processing time = 54.04346 mins
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