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Abstract
We consider minimax-optimal designs for the prediction of individual parameters
in random coefficient regression models. We focus on the minimax-criterion, which
minimizes the “worst case” for the basic criterion with respect to the covariancematrix
of random effects. We discuss particular models: linear and quadratic regression, in
detail.

Keywords Random coefficient regression · Optimal designs · Prediction · Integrated
mean squarer error · Minimax-criterion

1 Introduction

The subject of this paper is random coefficients regression (RCR) models. These
models have been initially defined in biosciences (see e. g. Henderson 1975) and are
now popular in many other fields of statistical applications. Besides the estimation
of population (fixed) parameters, the prediction of individual random effects in RCR
models are often of prior interest. Locally optimal designs for the prediction have
been discussed in Prus and Schwabe (2016a, b). However, these designs depend on the
covariance matrix of random effects. Therefore, some robust criteria like minimax (or
maximin), which minimize the largest value of the criterion or maximize the smallest
efficiency with respect to the unknown variance parameters, are to be considered.
For fixed effects models, such robust design criteria have been well discussed in the
literature (see e. g. Müller and Pázman 1998; Dette et al. 1995; Schwabe 1997). For
optimal designs in nonlinearmodels see e. g. by Pázman andPronzato (2007), Pronzato
and Walter (1988) and Fackle-Fornius et al. (2015).
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466 M. Prus

Here we focus on the minimax-criterion for the prediction in RCR models, which
minimizes the “worst case” for the basic criterion with respect to the variance param-
eters. We choose the integrated mean squared error (IMSE) as the basic criterion. We
consider particular linear and quadratic regression models in detail.

The structure of this paper is the following: The second part specifies the RCR
models and presents the best linear unbiased prediction of the individual random
parameters. The third part provides the minimax-optimal designs for the prediction.
The paper will be concluded by a short discussion in the last part.

2 RCRmodel

We consider the RCR models, in which observation j of individual i is given by the
following formula:

Yi j = f(x j )�β i + εi j , j = 1, . . . ,m, i = 1, . . . , n, x ∈ X , (1)

where m is the number of observations per individual, n is the number of individuals,
f = ( f1, . . . , f p)� is a vector of known regression functions. The experimental
settings x j come from an experimental region X . The observational errors εi j are
assumed to have zero mean and common variance σ 2 > 0. The individual parameters
β i = (βi1, . . . , βi p)

� have unknown expected value (population mean) E (β i ) = β

and known covariance matrix Cov (β i ) = σ 2D. All individual parameters β i and all
observational errors εi j are assumed to be uncorrelated.

The best linear unbiased predictor for the individual parameter β i is given by

β̂ i = D((F�F)−1 + D)−1β̂ i;ind + (F�F)−1((F�F)−1 + D)−1β̂, (2)

where β̂ i;ind = (F�F)−1F�Yi is the individualized estimator based only on observa-

tions at individual i , β̂ = (F�F)−1F�Ȳ is the best linear unbiased estimator for the
population mean parameter,Yi = (Yi1, . . . ,Yim)� is the individual vector of observa-
tions, Ȳ = 1

n

∑n
i=1 Yi is the mean observational vector and F = (f(x1), . . . , f(xm))�

is the designmatrix,which is assumed to be of full column rank. If the dispersionmatrix
D of individual random effects is non-singular, the best linear unbiased predictor (2)
simplifies to

β̂ i = (F�F + D−1)−1(F�F β̂ i;ind + D−1β̂) (3)

and may be recognized as a weighted average of the individualized estimator β̂ i;ind
and the estimator β̂ for the population parameter.

The mean squared error matrix of the vector B̂ = (β̂
�
1 , . . . , β̂

�
n )� of all predictors

of all individual parameters is given by the following formula (see e. g. Prus and
Schwabe 2016b):
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MSE

= σ 2
(
1

n
Jn ⊗ (F�F)−1 +

(

In − 1

n
Jn

)

⊗
(
D − D((F�F)−1 + D)−1D

))

,

(4)

where In denotes the identity matrix, Jn is the square matrix of order n with all entries
equal to 1 and ⊗ denotes the Kronecker product. For non-singular covariance matrix
of random effects the mean squared error matrix (4) simplifies to

MSE = σ 2
(
1

n
Jn ⊗

(
F�F

)−1 +
(

In − 1

n
Jn

)

⊗
(
F�F + D−1

)−1
)

. (5)

3 Optimal designs

For this paper we define the exact designs as follows:

ξ =
(
x1 , . . . , xk
m1 , . . . , mk

)

, (6)

where x1, . . . , xk are the distinct experimental settings (support points), k ≤ m, and
m1, . . . ,mk are the corresponding numbers of replications. For analytical purposes
we will focus on the approximate designs, which we define as

ξ =
(
x1 , . . . , xk
w1 , . . . , wk

)

, (7)

where w j = m j/m and only the conditions w j ≥ 0 and
∑k

j=1 w j = 1 have to be
satisfied (integer numbers of replications are not required). Further we will use the
notation

M(ξ) = 1

m

k∑

j=1

m j f(x j )f(x j )� (8)

for the standardized information matrix from the fixed effects model and Δ = m D
for the adjusted dispersion matrix of the random effects. We assume the matrixM(ξ)

to be non-singular. With this notation the definition of the mean squared error matrix
of the prediction [formulas (4) and (5)] can be extended for approximate designs to

MSE(ξ) =
1

n
Jn ⊗ M(ξ)−1 +

(

In − 1

n
Jn

)

⊗
(

� − �
(
M(ξ)−1 + �

)−1
�

)

, (9)

for general dispersion matrix D, and

MSE(ξ) = 1

n
Jn ⊗ M(ξ)−1 +

(

In − 1

n
Jn

)

⊗
(
M(ξ) + �−1

)−1
, (10)
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468 M. Prus

for non-singular D, when we neglect the constant term σ 2

m .

3.1 IMSE-criterion

In thiswork ourmain interest is in the prediction of the individual response curvesμi =
f�β i . Therefore, we focus on the integratedmean squared error (IMSE-) criterion. The
IMSE-criterion for the prediction can be defined (see also Prus and Schwabe 2016b)
as the sum over all individuals

IMSEpred =
n∑

i=1

E

(∫

X
(μ̂i (x) − μi (x))

2ν(dx)

)

(11)

of the expected integrated squared distances of the predicted and the real response,
μ̂i = f�β̂ i and μi , with respect to a suitable measure ν on the experimental region
X , which is typically chosen to be uniform on X with ν(X ) = 1. This criterion may
also be presented as the following function of the mean squared error matrix MSE:

IMSEpred = tr (MSE · (In ⊗ V)), (12)

where V = ∫
X f(x)f(x)�ν(dx), which may be recognized as the information matrix

for the weight distribution ν in the fixed effects model. For an approximate design ξ

the IMSE-criterion has the form

IMSEpred(ξ)

= tr
(
M(ξ)−1V

)
+ (n − 1) tr

((

� − �
(
M(ξ)−1 + �

)−1
�

)

V
)

, (13)

which simplifies for non-singular covariance matrix of individual random parameters
to a weighted sum of the IMSE-criterion for fixed effects models and the Bayesian
IMSE-criterion:

IMSEpred(ξ) = tr
(
M(ξ)−1V

)
+ (n − 1) tr

((
M(ξ) + �−1

)−1
V

)

. (14)

3.2 Minimax-criteria

In this sectionwe consider optimal designs for the prediction in particularRCRmodels:
straight line and quadratic regression. We define the minimax-criterion as the worst
case of the IMSE-criterion with respect to the unknown variance parameters.

We additionally assume the diagonal covariance structure of random effects. Then
the IMSE-criterion [(13) and (14)] will increase with increasing values of variance
parameters. However, if all these parameters will be large, the criterion function will
tend to the IMSE-criterion in the fixed effects model (multiplied by the number of
individuals n). Therefore, we fix some of the variances and consider the behavior of
minimax-optimal designs in the resulting particular cases.
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Note that for special RCR, where only the intercept is random, optimal designs for
fixed effects models retain their optimality (see Prus and Schwabe 2016b).

Straight line regression

We consider the linear regression model

Yi j = βi1 + βi2x j + εi j (15)

on the experimental regions X = [0, 1] with the diagonal covariance structure of
random effects: D = diag(d1, d2). For the IMSE-criterion we choose the uniform
weighting ν = λ[0,1], which leads to

V =
∫ 1

0
f(x)f(x)�dx =

(
1 1

2
1
2

1
3

)

. (16)

As proved in Prus (2015, ch. 5), IMSE-optimal designs for the prediction in model
(15) are of the form

ξ =
(

0 1
1 − w w

)

, (17)

where w denotes the optimal weight of observations at the support point x = 1.
Consequently, standardized information matrix (8) is given by:

M(ξ) =
(
1 w

w w

)

. (18)

Using formula (14), we obtain the following form of the IMSE-criterion:

IMSEpred(ξ) = m

3
(Φ1(ξ) + (n − 1)Φ2(ξ, d1, d2)) , (19)

where

Φ1(ξ) = 1

mw(1 − w)
, (20)

which is independent of the variance parameters and coincides (neglecting the constant
term) with the IMSE-criterion for the linear regression model without random effects,
and

Φ2(ξ, d1, d2) = 3d1 + d2 + md1d2
1 + m(d1 + wd2) + m2w(1 − w)d1d2

, (21)

which depends on both the weight w of the observations at the support point x = 1
and the variance parameters d1 and d2.

Further we focus on the situation with small values of the intercept dispersion d1
or equivalently small intercept variance σ 2d1. In this case, the IMSE-criterion may be
computed as limiting criterion (19) for d1 → 0:

IMSEpred(ξ) = m

3

(
1

mw(1 − w)
+ (n − 1)

d2
1 + mwd2

)

. (22)
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Fig. 1 Minimax-optimal weight
w∗
max in dependence of number

of individuals n for linear
regression
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Note that for very large values of the observational errors variance σ 2 the assump-
tion, d1 → 0 and d2 > 0, may be interpreted in the following way: the intercept
variance σ 2d1 has a positive value and the slope variance σ 2d2 tends to infinity.

Note also that for fixed intercept (d1 = 0) the IMSE-criterion may be determined
using formula (13). In this case we would obtain the same result (22).

It is easy to see that criterion (22) increases with increasing values of the slope
dispersion d2. The latter property allows us to define the minimax-criterion as follows:

IMSEmax (ξ) := limd2→∞IMSE(ξ), (23)

which results in

IMSEmax (ξ) = 1

3

(
1

w(1 − w)
+ (n − 1)

1

w

)

(24)

and leads to the following optimal weight:

w∗
max = n − √

n

n − 1
. (25)

Figure 1 illustrates the behavior of the optimal design with respect to the number of
individuals n for all integer values in the interval [2, 500]. As we can see in Fig. 1, the
optimal weight increases with increasing number of individuals. Figure 2 presents the
efficiency of the minimax-optimal design w∗

max with respect to the locally optimal
designs in dependence of the rescaled slope variance ρ = d2/(1 + d2) for fixed
numbers of individuals n = 10, n = 50 and n = 500. For all numbers of individuals
the efficiency is high and increases with increasing slope variance.
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Fig. 2 Efficiency of
minimax-optimal designs for
linear regression for n = 10
(solid line), n = 50 (dashed
line), n = 500 (dotted line)
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Quadratic regression

We investigate the quadratic regression model

Yi j = βi1 + βi2x j + βi3x
2
j + εi j (26)

on the standard symmetric design region X = [−1, 1] with a diagonal covariance
matrix of random effects: D = diag(d1, d2, d3). For the IMSE-criterion we apply the
uniform weighting ν = 1

2λ[−1,1], which results in

V =
⎛

⎝
2 0 2

3
0 2

3 0
2
3 0 2

5

⎞

⎠ . (27)

In Prus (2015, ch. 5), it has been established that in model (26) optimal designs are of
the form

ξ =
(−1 0 1

w 1 − 2w w

)

, (28)

where w denotes the optimal weight of observations at the support points x = −1 and
x = 1, and standardized information matrix (8) is of the form

M(ξ) =
⎛

⎝
1 0 2w
0 2w 0
2w 0 2w

⎞

⎠ . (29)

Then using formula (14) we obtain the IMSE-criterion

IMSEpred(ξ) = 1

15
(Φ1(ξ) + (n − 1) (Φ2(ξ, d1, d3) + Φ3(ξ, d2))) , (30)
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472 M. Prus

where

Φ1(ξ) = 8

w(1 − 2w)
, (31)

which is independent of the variance parameters and coincideswith the IMSE-criterion
for the fixed effects model (neglecting the constant),

Φ2(ξ, d1, d3) = 2m (m(10w + 3)d1d3 + 15d1 + 3d3)

2m2w(1 − 2w)d1d3 + m(d1 + 2wd3) + 1
, (32)

which depends on the variance parameters d1 and d3 and is independent of d2, and

Φ3(ξ, d2) = 10md2
2mwd2 + 1

, (33)

which depends on the dispersion d2 of the slope and is independent of other variance
parameters.

Further we fix some of the variance parameters and consider minimax-criteria for
the resulting particular cases.

Case 1 d1 → 0 and d2 → 0
If both the intercept and the slope dispersions d1 and d2 are very small, IMSE-

criterion (30) simplifies to

IMSEpred(ξ) = 1

15
(Φ1(ξ) + (n − 1)Φ2(ξ, 0, d3)) , (34)

where

Φ2(ξ, 0, d3) = 6md3
2mwd3 + 1

. (35)

Note that for fixed intercept and fixed slope (d1 = 0 and d2 = 0) the IMSE-criterion
may be computed using formula (13), which leads to the same result (34).

IMSE-criterion (34) increases with increasing variance parameter d3. Therefore,
we define the minimax-criterion as

IMSEmax (ξ) := limd3→∞IMSEpred(ξ), (36)

which results in

IMSEmax (ξ) = 6w(n − 1) − 3n − 5

15w(2w − 1)
. (37)

We minimize criterion (37) directly and obtain the following optimal weight:

w∗
max = 3n + 5 − 2

√
6n + 10

6(n − 1)
. (38)

Figure 3 illustrates the behavior of the optimal design with respect to the number of
individuals n.
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Fig. 3 Minimax-optimal weight
w∗
max in dependence of number

of individuals n for quadratic
regression, case 1
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Note that for given observational errors variance σ 2, the assumption of very small
intercept and slope dispersions (d1 → 0 and d2 → 0) is equivalent to the assumption
of very small variances (σ 2d1 → 0 and σ 2d2 → 0). However, if σ 2 becomes very
large, the assumption may be interpreted as follows: the intercept and slope variances
σ 2d1 and σ 2d2 are positive and the variance σ 2d3 of the coefficient of the quadratic
term tends to infinity. The next assumptions (in cases 2–5) may also be interpreted in
a similar way.

Case 2 d1 → 0 and d3 → 0
For small dispersions of the intercept and of the coefficient of the quadratic term

d1 and d3, IMSE-criterion (30) simplifies to

IMSEpred(ξ) = 1

15
(Φ1(ξ) + (n − 1)Φ3(ξ, d2)) , (39)

which is increasing in d2. Hence, we define the minimax-criterion as limiting criterion
(39) for d2 → ∞:

IMSEmax (ξ) := limd2→∞IMSEpred(ξ) (40)

and obtain

IMSEmax (ξ) = 10w(n − 1) − 5n − 3

15w(2w − 1)
, (41)

which leads to the following optimal design:

w∗
max = 5n + 3 − 2

√
10n + 6

10(n − 1)
. (42)

The behavior of the design is described by Fig. 4.
Note that for fixed intercept and fixed coefficient of the quadratic term (d1 = 0 and

d3 = 0), using formula (13) we would also obtain criterion (39).

Case 3 d3 → 0
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Fig. 4 Minimax-optimal weight
w∗
max in dependence of number

of individuals n for quadratic
regression, cases 2 and 3
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If only the dispersion d3 of the coefficient of the quadratic term is small, the IMSE-
criterion is given by

IMSEpred(ξ) = 1

15
(Φ1(ξ) + (n − 1) (Φ2(ξ, d1, 0) + Φ3(ξ, d2))) , (43)

where

Φ2(ξ, d1, 0) = 30md1
md1 + 1

, (44)

which is independent of w and d2, increasing in d1 and converges to 30 for d1 → ∞.
Φ3(ξ, d2) increaseswith increasing values of d2. Thenwe define theminimax-criterion
as

IMSEmax (ξ) := limd1,d2→∞IMSEpred(ξ), (45)

which equals to

IMSEmax (ξ) = 10w(n − 1) − 5n − 3

15w(2w − 1)
+ 2(n − 1) (46)

and coincides with minimax-criterion (41) for case 2 (neglecting the constant term
2(n − 1)).

Case 4 d2 → 0
If only the slope dispersion is small, the IMSE-criterion has the form

IMSEpred(ξ) = 1

15
(Φ1(ξ) + (n − 1)Φ2(ξ, d1, d3)) , (47)

which is increasing in d1 and d3. Then we define the minimax-criterion as

IMSEmax (ξ) := limd1,d3→∞IMSEpred(ξ) (48)
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Fig. 5 Minimax-optimal weight
w∗
max in dependence of number

of individuals n for quadratic
regression, case 4 ●
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and obtain

IMSEmax (ξ) = 10w(1 − n) − 3n − 5

15w(2w − 1)
, (49)

which results in

w∗
max = −3n − 5 + 2

√
6n2 + 10n

10(n − 1)
. (50)

Case 5 d1 → 0
For small intercept dispersion d1, the IMSE-criterion simplifies to

IMSEpred(ξ) = 1

15
(Φ1(ξ) + (n − 1) (Φ2(ξ, 0, d3) + Φ3(ξ, d2))) . (51)

The criterion increases with both variance parameters d2 and d3. Therefore, we define
the minimax-criterion as the limiting IMSE-criterion (51):

IMSEmax (ξ) := limd2,d3→∞IMSEpred(ξ), (52)

which results in

IMSEmax (ξ) = 8(2w(n − 1) − n)

15w(2w − 1)
, (53)

and leads to the minimax-optimal weight

w∗
max = n − √

n

2(n − 1)
. (54)

The behaviors of the optimal designs in cases 4 and 5 are illustrated by Figs. 5 and
6.

Note that for d3 = 0, d2 = 0 or d1 = 0 we would obtain the same results, (43),
(47) or (51), respectively, using formula (13).
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Fig. 6 Minimax-optimal weight
w∗
max in dependence of number

of individuals n for quadratic
regression, case 5
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Fig. 7 Efficiency of
minimax-optimal designs for
quadratic regression, case 1, for
n = 10 (solid line), n = 50
(dashed line), n = 500 (dotted
line)
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Aswe can see on the graphics, the optimal weights increase with increasing number
of individuals n in cases 1, 2, 3 and 5 and decrease in case 4. The specific behavior in
case 4 is caused by the joint influence of the intercept dispersion d1 and the dispersion
of the coefficient of the quadratic term d3, which are included in part Φ2(ξ, d1, d3) of
the IMSE-criterion. If at least one of these variance parameters is zero (cases 1, 2, 3
and 5), Φ2(ξ, d1, d3) simplifies much and the co-action of d1 and d3 is getting lost,
which leads to completely different behaviors of the optimal designs.

For cases 1 and 2 we consider the efficiency of the minimax-optimal designs with
respect to the locally optimal designs in dependence of the rescaled variances ρ =
d3/(1 + d3) and ρ = d2/(1 + d2), respectively, for fixed numbers of individuals
(Figs. 7 and 8). The efficiency turns out to be high and increasing with increasing
variance parameters for both cases 1 and 2 and all values of the number of individuals
(n = 10, n = 50, n = 500).
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Fig. 8 Efficiency of
minimax-optimal designs for
quadratic regression, case 2, for
n = 10 (solid line), n = 50
(dashed line), n = 500 (dotted
line)
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4 Discussion

In this paper we have considered minimax-optimal designs for the IMSE-criterion
for the prediction in particular RCR models: linear and quadratic regression. We have
assumed the diagonal structure of the covariance matrix of random effects. In this case
the IMSE-criterion is increasingwith increasing values of all variance parameters. If all
variances converge to infinity, the limiting criterion coincides with the IMSE-criterion
in fixed effects models and, consequently, the optimal designs in fixed effects models
retain their optimality for the prediction. If some of variance parameters are small,
the minimax-optimal designs in RCR depend on the number of individuals and differ
from the optimal designs in fixed effects models. For some particular cases we have
considered the efficiency of the minimax-optimal designs with respect to the locally
optimal designs. The efficiency turns out to be high and increase with increasing
variance parameters.

Acknowledgements The author is grateful to two anonymous referees and the guest editor for helpful
comments which improved the presentation of the results.

References

Dette H, Heiligers B, Studden WJ (1995) Minimax designs in linear regression models. Ann Stat 23:30–40
Fackle-Fornius E, Miller F, Nyquist H (2015) Implementation of maximin efficient designs in dose-finding

studies. Pharm Stat 14:63–73
Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics

31:423–477
Müller CH, Pázman A (1998) Applications of necessary and sufficient conditions for maximin efficient

designs. Metrika 48:1–19
Pázman A, Pronzato L (2007) Quantile and probability-level criteria for nonlinear experimental design. In:

Fidalgo JL, Rodríguez-Díaz JM, Torsney B (eds) mODa 8–advances in model-oriented design and
analysis. Heidelberg, Germany, pp 157–164

Pronzato L, Walter E (1988) Robust experimental design via maximin optimality. Math Biosci 89:161–176
Prus M (2015) Optimal designs for the prediction in hierarchical random coefficient regression models.

Ph.D. thesis, Otto-von-Guericke University, Magdeburg

123



478 M. Prus

PrusM, Schwabe R (2016) Interpolation and extrapolation in random coefficient regressionmodels: optimal
design for prediction. In: Müller CH, Kunert J, Atkinson AC (eds) mODa 11–advances in model-
oriented design and analysis. Springer, Berlin, pp 209–216

Prus M, Schwabe R (2016) Optimal designs for the prediction of individual parameters in hierarchical
models. J R Stat Soc 78:175–191

Schwabe R (1997) Maximin efficient designs. Another view at D-optimality. Stat Probab Lett 35:109–114

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Optimal designs for minimax-criteria in random coefficient regression models
	Abstract
	1 Introduction
	2 RCR model
	3 Optimal designs
	3.1 IMSE-criterion
	3.2 Minimax-criteria
	Straight line regression
	Quadratic regression


	4 Discussion
	Acknowledgements
	References




