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Abstract In this paper, a notion of fuzzy copula function is introduced by defining
joint distribution function of two fuzzy random variables. Using some lemmas, it is
proven that the extended fuzzy copula satisfies many desired properties used for non-
fuzzy data. The proposed fuzzy copula is then applied to construct some common
non-parametric measures of association between two fuzzy random variables. The
proposed methods is then illustrated via some numerical examples.
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1 Introduction

The study of copulas and their applications in statistics is a rathermodern phenomenon.
By the goodness of properties of copula, it has been used in various fields of statis-
tical sciences. Specifically, copula functions have been employed in finance during
the last decades. The goal of financial risk management is to measure and manage
risks across a diverse range of activities used in financial sectors. Within financial risk
management dependencies between random variables play an important role. They
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are a general tool to construct multivariate distributions and to investigate dependence
structure between random variables. One of the main issues in risk management is
the aggregation of individual risks. The problem becomes much more involved when
one wants to model fully dependent random variables or, when one does not know
what the exact joint distribution is, to produce a large set of dependence between the
given individual risks. A powerful and user-friendly tool to describe dependent risks is
provided by the concept of copula. Now suppose the random variables and factors are
fuzzy, using fuzzy copula we can investigate dependence structure of fuzzy random
variables and measure the risks factors. In probability theory and statistics, a copula is
a multivariate probability distribution for which the marginal probability distribution
of each variable is uniform or it can be referred to copulas as “functions that joint
or couple multivariate functions to their one-dimensional marginal distribution func-
tions”. Copulas are used to describe the dependence between random variables and
have been used widely in quantitative finance to model and minimize tail risk (Low
et al. 2013) and portfolio optimization applications (Nelsen 2006). Using Sklar’s The-
orem, any multivariate joint distribution can be written in terms of univariate marginal
distribution functions and a copula which describes the dependence structure between
the variables. Copulas are popular in high-dimensional statistical applications as they
allow one to easily model and estimate the distribution of random vectors by estimat-
ing marginals and copulae separately. By the goodness of properties of copula, it has
been used in various fields of statistical sciences like dependence structures of random
variables, simulation study, quantitative finance, civil and reliability engineering and
also in this line, many papers are available in the literature. Specifically, in statistics
a concept called correlation is often used. Correlation analysis can be employed to
study the nature of the relation between the variables.

The classical approaches often use precise data in statistical analysis. But, in the
real world, different elements in environmental sciences may be imprecisely observed
or defined. In many studies we are faced with the problem of handling imprecision. To
achieve suitable statistical methods dealing with imprecise data, we need to model the
imprecise information and extend the usual approaches to imprecise environments.
Fuzzy sets are often used to handle the imprecision/vagueness that affects some char-
acteristics in environmental sciences. After introducing fuzzy set theory there have
been a lot of attempts for developing fuzzy statistical methods. The fuzzy random
variables were introduced by Kwakernaak (1978,1979) as natural generalization of
random variables in order to represent relationships between the outcomes of a ran-
dom experiment and nonstatistical inexact data. It is interesting to see how the notion
of correlation can be extended to fuzzy sets and fuzzy random variables. In the sequel,
some recent works are briefly reviewed. Murthy et al. (1985) proposed a measure of
correlation between two membership functions based on Pearson correlation coef-
ficient. Sahnoun et al. (1991) present a correlation coefficient using Bhattacharyya
coefficient. Gerstenkorn and Mańko (1991) discussed the correlation of two intuition-
istic fuzzy sets in a finite space. They claimed that their’s presented coefficient of two
fuzzy set A and B is equal to zero iff A and B are non-fuzzy sets. Hung andWu (2002)
by a counter example show that is false. Yu (1993) described the correlation of two
fuzzy sets whose supports are included in a closed interval [a, b]. They proved that
the ρ(A, B) = 1 iff A = B and ρ(A, B) = 0 iff A and B are ordinary non-fuzzy
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sets. This is again showed by Hung and Wu (2002) that is can not be truth. Hung and
Wu (2002) presented a new definition of correlation coefficient of two intuitionistic
fuzzy sets which include (Murthy et al. 1985) and (Sahnoun et al. 1991) coefficients
as a particular case. Bustince and Burillo (1995) introduce correlation coefficient for
two interval-valued fuzzy sets and two interval-valued intuitionistic fuzzy sets in finite
case and prove some properties. Hong (1998) generalized the concept of correlation
of interval-valued intuitionistic fuzzy sets in a general probability space and gen-
eralized the results of Bustince and Burillo (1995) with remarkably simple proofs.
Chiang and Lin (1999) defined a correlation measure using Pearson correlation for
membership values of two fuzzy sets to evaluate correlation between them. Moreover,
Chaudhuri and Bhattacharya (2001) obtained Spearman’s rank correlation coefficient
for two fuzzy sets by ranking the supports according to the membership values of each
set. Hung and Wu (2002) by extending the centroid method to intuitionistic fuzzy
sets introduced a correlation coefficient. Akbari et al. (2009) using support function
of fuzzy random variables and Näther’s (2006) scalar multiplication between two
fuzzy random variables define a correlation coefficient for two fuzzy random vari-
ables. Taheri and Hesamian (2011) and Hryniewicz (2004) proposed a procedure to
extend the Goodman–Kruskal measure to the case when the categories of interest are
imprecise rather than crisp.

This paper introduces a notion of copula between two fuzzy random variables. The
main properties of the proposed fuzzy copula are also put into investigation. However,
the main contribution of the proposed method is to produce a general class of non-
parametric dependence measures between two fuzzy random variables.

This paper is organized as follows: Sect. 2 recalls somenecessary concepts related to
fuzzy numbers, fuzzy random variables, and copula function. A fuzzy copula function
is defined in Sect. 3 and its applications is illustrated in Sect. 4 by extending some
measures of association for fuzzy random variables including fuzzy Spearman’s ρ,
fuzzy Kendall’s τ and fuzzy Gini’s concordance. Finally, the main contributions of
this paper is summarized in Sect. 5.

2 Preliminaries

This section briefly reviews several concepts and terminology related to fuzzy num-
bers, fuzzy random variable and the classical copula used throughout the paper.

2.1 Fuzzy numbers

A fuzzy set ˜A of the universal set X is defined by its membership function μ
˜A :

X → [0, 1]. We denote the α-cut of ˜A is defined as ˜A[α] = {x : μ
˜A(x) ≥ α}

where ˜A[0] is the closure of the set {x : μ
˜A(x) > 0}. A fuzzy set ˜A of R (real line)

is called a fuzzy number if it is normal, that is there exists a unique x∗ ∈ R with
μ

˜A(x∗) = 1, and for every α ∈ [0, 1], the ˜A[α] is a non-empty compact interval in
R. This interval is denoted by ˜A[α] = [˜AL

α , ˜AU
α ], where AL[α] = inf{x : x ∈ ˜A[α]}

and AU[α] = sup{x : x ∈ ˜A[α]}. Notably, a fuzzy number is a quantity whose value is
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non-exact, rather than exact. In fact, any fuzzy number can be thought of as a function
whose domain is a set of real numbers, and whose range is the span of non-negative
real numbers between, and including, 0 and 1. Each numerical value in the domain
is assigned a specific degree of membership where 0 represents the smallest possible
degree, and 1 is the largest possible degree. The set of all fuzzy numbers is denoted by
F(R). As an example of a canonical fuzzy numbers is a LR-fuzzy number which are
very useful in practice. Typically, the LR-fuzzy number ˜A = (x; l, r)LR with central
value x ∈ R, left and right spreads l ∈ R

+, r ∈ R
+, decreasing left and right shape

functions L : R
+ → [0, 1], R : R

+ → [0, 1], with L(0) = R(0) = 1, has the
following membership function:

μ
˜A(t) =

{

L
( x−t

l

)

, if t ≤ x,
R

( t−x
r

)

, if t ≥ x .
(2.1)

The α-cut of ˜A can obtain as:

˜A[α] =
[

AL[α], AU[α]
]

=
[

x − L−1(α)l, x + R−1(α)r
]

, α ∈ [0, 1].

Remark 2.1 Hesamina and Chachi (2015) For a given ˜A ∈ F(R), assume that ˜Aα is
defined for each α ∈ [0, 1] as follows:

˜Aα =
{

˜AL
2α α ∈ [0, 0.5],

˜AU
2(1−α) α ∈ (0.5, 1],

Then, the α-cuts of a fuzzy number ˜A ∈ F(R) is equivalent to:

˜A[α] = [˜Aα/2, ˜A1−α/2]. (2.2)

It is worth to note that ˜Aα is called the α-pessimistic value of ˜A. In addition, ˜Aα is a
increasing function of α ∈ (0, 1] (Peng and Liu 2004).

Example 2.2 Suppose that ˜A = (a; l, r)LR is a LR-fuzzy number, and let x ∈ R,
then:

˜Aα =
{

x − l L−1(2α), 0.0 < α ≤ 0.5,
x + r R−1(2(1 − α)), 0.5 ≤ α ≤ 1.0.

Lemma 2.3 Let ˜A, ˜B be two fuzzy LR-fuzzy numbers and λ be a real number. Then

1. (˜A ⊕ ˜B)α = ˜Aα + ˜Bα .

2. (λ ⊗ ˜A)α =
{

λ˜Aα, λ ≥ 0,
λ˜A1−α, λ ≤ 0.

3. (˜A ⊗ ˜B)α =
⎧

⎨

⎩

˜Aα × ˜Bα, i f ˜A, ˜B ≥ 0,
˜A1−α × ˜B1−α, i f ˜A, ˜B ≤ 0,
˜A1−α × ˜Bα, i f ˜A ≥ 0, ˜B ≤ 0.
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Proof To see the proof of 1, and 2 refer to Peng and Liu (2004). To prove 3, let: ˜A
and ˜B be nonnegative (i.e. ˜A0, ˜B0 ≥ 0), then we easily get (˜A2)α = (˜Aα)2 which
concludes that:

((˜A ⊕ ˜B)2)α = ((˜A ⊕ ˜B)α)2 = (˜Aα + ˜Bα)2

= ˜A2
α + ˜B2

α + 2(˜Aα × ˜Bα).

On the other hand, by assertions 1, and 2, we get:

((˜A ⊕ ˜B)2)α = ((˜A ⊕ ˜B) ⊗ (˜A ⊕ ˜B))α

= (˜A2 ⊕ ˜B2 ⊕ 2˜A ⊗ ˜B)α = ˜A2
α + ˜B2

α + 2(˜A ⊗ ˜B)α.

Now, let ˜A and ˜B be negative fuzzy numbers. Then, we can write ˜A = (−1)⊗ ˜A′ and
˜B = (−1) ⊗ ˜B ′ in which ˜A′ and ˜B ′ are positive fuzzy numbers. It follows that:

(˜A ⊗ ˜B)α = (

(−1) ⊗ ˜A′ ⊗ (−1) ⊗ ˜B ′)
α

= (˜A′ ⊗ ˜B ′)α
= ˜A′

α × ˜B ′
α.

The last equation in part (3) is proven in similar mannar. This completes the proof. 
�
Definition 2.4 (Hesamina and Chachi 2015) Let ˜A and ˜B be two fuzzy numbers.
Then, it is said that ˜A � ˜B if ˜Aα ≤ ˜Bα. for all α ∈ [0, 1]. In addition, ˜A = ˜B if and
only if ˜Aα = ˜Bα for all 0 ≤ α ≤ 1.

2.2 Copula and joint distribution function and its applications: the classical
approach

In probability theory and statistics, a copula (Sklar 1959) is a multivariate probability
distribution for which themarginal probability distribution of each variable is uniform.
Copulas are used to describe the dependence between random variables. in this section
we give a brief review of copula and its properties.

A copula is a function C from I 2 to I with following properties:

1. For every u, v in I ,

C(u, 0) = C(0, v) = 0,

and

C(u, 1) = u and C(1, v) = v;

2. For every u1, u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0.
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Let H be a joint distribution function with margins F andG. Then there exists (Nelsen
2006) a copula C such that for all x, y ∈ R × R:

H(x, y) = C(F(x),G(y)). (2.3)

Moreover, if F and G are continuous cumulative distribution functions then C is
unique. Conversely, if C is a copula and F and G are distribution functions, then the
function H defined by relation (2.3) is a joint distribution function with margins F
and G. Moreover, if F−1 and G−1 be inverse of F and G, respectively. Then for any
u, v ∈ I 2,

C(u, v) = H(F−1(u),G−1(v)). (2.4)

This relation is very useful to construct a copula using joint distribution function and
its margins. For example if X and Y have joint distribution function as bellow,

H(x, y) = (x + 1)(1 − e−y)

(x − 1)e−y + 2
; (x, y) ∈ [−1, 1] × [0,∞].

Then we get:

C(u, v) = uv

u + v − uv
(2.5)

Let X and Y be continues random variables with copula C . Then X and Y are
independent if and only if C(u, v) = uv. It is also worth noting that a joint dis-
tribution function is a function H with domain R × R such that H is 2-increasing
and H(x,−∞) = H(−∞, y) = 0, H(∞,∞) = 1 (for more discussion see Nelsen
2006).

Notably, dependence properties andmeasures of association are interrelated, and so
there aremany placeswherewe could begin this study. Because themostwidely known
measures of association are the population versions of Kendall’s τ and Spearman’s ρ,
both of which “measure” a form of dependence known as concordance, we will begin
there. In formally, a pair of random variables are concordance if “large” values of one
tend to be associated with “large” values of the other and “small” values of one with
“small” values of the other. Here two commonmeasure of associations are introduced.
The papulation version of the measure of association known as Spearman’s ρ is based
on concordance and discordance. If X and Y are continuous random variables whose
copula is C , the population version of Spearman’s ρ for X and Y is given by Nelsen
(2006) as:

ρs(X,Y ) = 12
∫ ∫

I 2
C(u, v)dudv − 3. (2.6)

Note that the grades u and v are observations from the uniform (0, 1) random variables
U = F(X) and V = G(Y ) whose joint distribution function is C , where F and G
are the distribution functions of X and Y respectively. In addition, let (X1,Y1) and
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(X2,Y2) be independent and identically distributed random vectors, each with joint
distribution function H. Then the population version of Kendall’s τ is defined as the
probability of concordance minus the probability of discordance:

τk(X,Y ) = 4
∫ ∫

I 2
C(u, v)c(u, v)dudv − 1

It is also worth nothing that Gini (1936) introduced a measure of association g that he
called the indic di cograduazione semplice: if pi and qi denote the ranks in a sample
of size n of two continuous random variables X and Y , respectively. This measure is
defined as follows:

g = 1

�n2/2�

[

n
∑

i=1

|pi + qi − n − 1| −
n

∑

i=1

|pi − qi |
]

,

where �t� denotes the integer part of t . Let γ denote the population parameter estimated
by this statistic, and as usual, let F and G denote the marginal distribution functions
of X and Y , respectively. Nelsen (2006) shows that γ is also a measure of association
based upon concordance which is defined by:

γg(X,Y ) = 2
∫ ∫

I 2
(|u + v − 1| − |u − v|) dC(u, v). (2.7)

2.3 Fuzzy random variables

There are many situation in real life applications in which the value assigned to each
possible out come of a random experiment can be described by means of a fuzzy
set. From a probabilistic point of view, fuzzy random variables were introduced as
an extension of ordinary random variables to model such kind data. Therefore, in the
context of random experiments whose outcomes are not numbers (or vectors in R

p)
but they are expressed in non-exact terms, the concept of fuzzy random variable turns
out to be useful. In this regard, different notions of fuzzy random variable have been
introduced and investigated in the literature (Colubi et al. 2001; Feng 2000; Gil et al.
2006; González-Rodríguez et al. 2006; Grzegorzewski 2009; Krätschmer 2001; Kruse
and Meyer 1987; Kwakernaak 1978, 1979; Puri and Ralescu 1985, 1986; Shapiro
2009; Hesamina and Chachi 2015). Suppose that a random experiment is described
by a probability space (�,A, P), where � is a set of all possible outcomes of the
experiment, A is a σ -algebra of subsets of � and P is a probability measure on
the measurable space (�,A). Utilizing the concept of α-pessimistic, Hesamina and
Chachi (2015) presented a revised version of a common definition of fuzzy random
variable as follows.

Definition 2.5 The fuzzy valued mapping ˜X : � → F(R) is called a fuzzy random
variable if for any α ∈ [0, 1], the real valued mapping ˜Xα : � → R is a real valued
random variable on (�,A,P). Two fuzzy random variables ˜X and ˜Y are said to be
independent if ˜Xα and ˜Yα are independent, for all α ∈ [0, 1]. In addition, we say
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that two fuzzy random variables ˜X and ˜Y are identically distributed if ˜Xα and ˜Yα are
identically distributed, for all α ∈ [0, 1]. Consequently, ˜X = (˜X1, . . . , ˜Xn) is said to
be a fuzzy random sample if ˜Xi ’s are independent and identically distributed.

It is worth noting that a fuzzy random variable my be realized as a vague concept
of a known ordinary random variable (Grzegorzewski 2009; Hesamina and Chachi
2015; Shapiro 2009).

3 Fuzzy copula

This section extends the most commonly used copulas based on fuzzy random vari-
ables. In this regard, there is a need to extend a concept of cumulative joint distribution
function for two fuzzy random variables. For this purpose, we use an approach similar
to Hesamina and Chachi (2015) to extend a concept of cumulative joint distribution
function. It is worth noting that they proposed a concept of a fuzzy cumulative distri-
bution function of a fuzzy random variable with the following α-cuts:

˜F
˜X (x)[α] = [

P(˜X1−α/2 ≤ x), P(˜Xα/2 ≤ x)
]

.

They employed the notion of fuzzy cumulative distribution function to construct a
fuzzyKolmogorov–Smirnov hypothesis test for fuzzy randomvariables.Now, inspired
by the aforementionedmethod,we define a fuzzy joint cumulative distribution function
between two fuzzy random variables as follows.

Definition 3.1 The fuzzy cumulative joint distribution of two fuzzy random variable
˜X and ˜Y at (x, y) ∈ R × R is defined as fuzzy set ˜H(x, y) with the following α-cut:

˜H(x, y)[α] =
[

H
˜X1− α

2
,˜Y1− α

2
(x, y), H

˜X α
2
,˜Y α

2
(x, y)

]

(3.1)

where, for all α ∈ [0, 1], H
˜Xα,˜Yα

(x, y) = P(˜Xα ≤ x, ˜Yα ≤ y).

Definition 3.2 We say that ˜F
˜X (x) is the fuzzy marginal distribution of ˜H(x, y) if

˜F
˜X (x) = limy→∞ ˜H(x, y) that is |(˜F

˜X (x))α − limy→∞( ˜H(x, y))α| = 0 for any
α ∈ [0, 1].
Lemma 3.3 Let ˜H(x, y) be the fuzzy cumulative joint distribution of two fuzzy random
variable ˜X and ˜Y at (x, y) ∈ R × R. Then, ˜F

˜X (x) and ˜G
˜Y (y) are the fuzzy marginal

distributions of ˜H(x, y), respectively.

Proof It is readily to see that:

lim
y→∞( ˜H(x, y))α = lim

y→∞ H
˜X1−α,˜Y1−α

(x, y)

= H
˜X1−α,˜Y1−α

(x,∞) = F
˜X1−α

(x) = (˜F(x))α.

and similarly we have ˜G
˜Y (y) = limx→∞ ˜H(x, y). 
�
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Lemma 3.4 If fuzzy random variables ˜X and ˜Y are independent fuzzy random vari-
ables, then ˜H(x, y) = ˜F

˜X (x) ⊗ ˜G
˜Y (y) for any x, y.

Proof If fuzzy random variables ˜X and ˜Y are independent fuzzy random variables,
then we easily have ( ˜H(x, y))α = (˜F(x))α × (˜G(y))α for all α ∈ [0, 1] which
completes the proof. 
�
Example 3.5 Let ˜X = ˜	 + X and ˜Y = ˜
 + Y , where X and Y have joint distribution
function as bellow,

H(x, y) = (x + 1)(1 − e−y)

(x − 1)e−y + 2
; (x, y) ∈ [−1, 1] × [0,∞]. (3.2)

Thus, Y is exponential random variable with mean one and X has uniform distribution
on interval [−1, 1]. Now, let ˜	 and ˜
 be two constant fuzzy numbers. For instance,
suppose that ˜	 and ˜
 are two LR-fuzzy numbers, i.e. ˜	 = (θ; a, b)LR and ˜
 =
(γ ; c, d)LR with known θ, γ, a, b, c, d, and fixed functions L and R. Therefor, we
have ˜X = (X + θ; a, b)LR , ˜Y = (Y + γ ; c, d)LR and for each ω, ˜X(ω) = (X (ω) +
θ; a, b)LR , and ˜Y (ω) = (Y (ω) + γ ; c, d)LR are fuzzy observations related to ˜X and
˜Y , respectively. Therefore, we get:

˜Xα =
{

X + θ − aL−1(2α) for 0.0 < α ≤ 0.5,
X + θ + bR−1(2(1 − α)) for 0.5 < α ≤ 1.0,

and

˜Yα =
{

Y + γ − cL−1(2α) for 0.0 < α ≤ 0.5,
Y + γ + dR−1(2(1 − α)) for 0.5 < α ≤ 1.0.

It is clear that ˜Yα is a random variables from Weibull distribution function, and ˜Xα

has a uniform distribution, for each α ∈ [0, 1], which means:

˜Xα ∼
{

Weibull(θ − aL−1(2α), 1, 1) for 0.0 < α ≤ 0.5,
Weibull(θ + bR−1(2(1 − α)), 1, 1) for 0.5 < α ≤ 1.0.

and

˜Yα ∼
{

Uni f orm(γ − cL−1(2α) − 1, γ − cL−1(2α) + 1) for 0.0 < α ≤ 0.5,
Uni f orm(γ + dR−1(2(1 − α)) − 1, γ + dR−1(2(1 − α)) + 1) for 0.5 < α ≤ 1.0.

Therefore, according toDefinition 2.5 , ˜X and˜Y are two fuzzy randomvariableswhose
α-pessimistic values relevant to their fuzzy joint cumulative distribution function is
evaluated as below:

( ˜H(x, y))α = H
˜X1−α,˜Y1−α

(x, y)

= (x + 1 − k1(α))(1 − e−(y−k2(α))

(x − 1 − k1(α))e−(y−k2(α)) + 2
, (3.3)

123



512 V. Ranjbar, G. Hesamian

Table 1 Values of ˜H(0.5, 2) for
some specific values of
α ∈ [0, 1]

α 0.17 0.35 0.62 0.95 1

˜HL
α (0.5, 2) 0.3467 0.3764 0.4191 0.4651 0.4716

˜HU
α (0.5, 2) 0.5659 0.5473 0.5180 0.4780 0.4716

where, (x, y) ∈ [−1 + k1(α), 1 + k1(α)] × [k2(α),∞],

k1(α) =
{

θ + bR−1(2α) for 0.0 < α ≤ 0.5,
θ − aL−1(2(1 − α)) for 0.5 < α ≤ 1.0,

and

k2(α) =
{

γ + dR−1(2α) for 0.0 < α ≤ 0.5,
γ − cL−1(2(1 − α)) for 0.5 < α ≤ 1.0.

If ˜	 and˜
 are two triangular fuzzy numbers, i.e. ˜	 = (θ; a, b)T and˜
 = (γ ; c, d)T ,
we get:

k1(α) =
{

θ + b(1 − 2α)) for 0.0 < α ≤ 0.5,
θ + a(1 − 2α) for 0.5 < α ≤ 1.0,

and

k2(α) =
{

γ + d(1 − 2α)) for 0.0 < α ≤ 0.5,
γ + c(1 − 2α) for 0.5 < α ≤ 1.0.

And using relation 3.1, the α-cut of ˜H(x, y) is evaluated as bellow:

( ˜H(x, y))Uα = [x + 1 − θ + a(1 − α)]
[

1 − e−(y−γ+c(1−α))
]

[x − 1 − θ + a(1 − α)] e−(y−γ+c(1−α)) + 2
,

( ˜H(x, y))Lα = [x + 1 − θ − b(1 − α)]
[

1 − e−(y−γ−d(1−α))
]

[x − 1 − θ − b(1 − α)] e−(y−γ−d(1−α)) + 2
.

Table 1 presents some values of ˜H(0.5, 2)[α] for some values of α, when ˜θ =
(0.2; 0.1, 0.1)T and γ̃ = (1; 0.5, 0.5)T .

In this case, 3-dimensional curve of upper and lower α-cuts of fuzzy joint distribu-
tion function is shown in Fig. 1. Moreover, α-levels of such a fuzzy copula are shown
in Figs. 2 and 3, for some values of α ∈ [0, 1].

In the sequel, we introduce a notation of fuzzy copula function and discuss its main
properties in fuzzy environment. We employ such concept to construct a notion of
fuzzy measure of association between two fuzzy random variables in next section.
First, we have following theorem:
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Fig. 2 Value of ˜H(0.5, y)Lα (–) and ˜H(0.5, y)Uα (- -) for some values of α

Theorem 3.6 Let ˜X and ˜Y be two fuzzy random variables with fuzzy cumulative
distribution function ˜H(x, y). Then for each α ∈ [0, 1], there exists a copula C such
that for all x, y ∈ R,

( ˜H(x, y))α = C((˜F(x))α, (˜G(y))α). (3.4)

Proof Since ˜Xα and ˜Yα are real valued random variables for all α ∈ [0, 1], from the
classical statistical inferences, we have:

( ˜H(x, y))α = H
˜X1−α,˜Y1−α

(x, y)

= C(F
˜X1−α

(x),G
˜Y1−α

(y))

= C((˜F(x))α, (˜G(y))α),
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Fig. 3 Value of ˜H(x, 2)Lα (–) and ˜H(x, 2)Uα (- -) for some values of α

where the second equality follows from Skaler’s theorem. This completes the proof.

�

Remark 3.7 Suppose ˜X and ˜Y are fuzzy random variables. By Theorem 3.6, the fuzzy
copula function of two fuzzy random variable ˜X and ˜Y at (u, v) ∈ I 2 is then a fuzzy
number with the following α-cut:

˜C(u, v)[α] =
[

H
(

(˜F−1(u)) α
2
, (˜G−1(v)) α

2

)

, H
(

(˜F−1(u))1− α
2
, (˜G−1(v))1− α

2

)]

.

Corollary 3.8 ˜C(u, v) is a joint fuzzy distribution function.

Proof The proof is immediately followed since, by Remark 3.7, ˜C(u, v)Lα and
˜C(u, v)Uα are joint distribution function of two random variables for all α ∈ [0, 1]. 
�
Proposition 3.9 If ˜C(u, v) is a fuzzy copula, then it satisfies in the following condi-
tions:

1. For all u, v ∈ I

(i) ˜C(0, v) = ˜C(u, 0) = I ({0}),
(ii) ˜C(1, v) = ṽ; ˜C(u, 1) = ũ.

where ũα = F((F−1(u))α) and ṽα = G((G−1(v))α).
2. For all u1, u2, v1, v2 ∈ I where u1 < u2 and v1 < v2,

˜C(u2, v2) ⊕ ˜C(u1, v1) � ˜C(u1, v2) ⊕ ˜C(u2, v1)
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Proof First note that, for any α ∈ [0, 1], we have:

(˜C(0, v))α = H
(

(˜F−1(0))α, (˜G−1(v))α

)

= H
(

(˜F1−α(0))−1, (˜G−1(v))α

)

= H
(

−∞, (˜G−1(v))α

)

= 0,

and

(˜C(1, v))α = H
(

(˜F−1(1))α, (˜G−1(v))α

)

= H
(

∞, (˜G−1(v))α

)

= G
(

(˜G−1(v))α

)

= ṽα,

which concludes 1. Now, to prove 2, we easily have the following relations:

(˜C(u2, v2))α − (˜C(u2, v1))α − (˜C(u1, v2))α + (˜C(u1, v1))α > 0,

which is valid by the usual properties of non-fuzzy copula functions. This completes
the proof. 
�

Lemma 3.10 Let ˜X and˜Y be continuous fuzzy random variables with copula function
˜C. Then ˜X and ˜Y are independent if and only if ˜C(u, v) = ũ ⊗ ṽ.

Proof Let ˜X and ˜Y be two independent fuzzy random variables. Then for any α ∈
[0, 1], it is concludes that:

(˜C(u, v))α = H
(

(˜F−1(u))α, (˜G−1(v))α

)

= F
(

(˜F−1(u))α

)

× G
(

˜G−1(v))α

)

= ũα × ṽα,

which completes the proof. 
�

Example 3.11 Let ˜X and˜Y be induced fuzzy randomvariables defined inExample 3.5.
Then:

(˜F(x))α = F
˜X1−α

(x) = P(˜X1−α ≤ x) = P(X ≤ x − k1(α))

= (x + 1 − k1(α))/2; x ∈ [k1(α) − 1, k1(α) + 1],

and

(˜G(y))α = F
˜Y1−α

(y) = P(˜Y1−α ≤ y) = P(Y ≤ y − k2(α))

= 1 − exp(−(y − k2(α))); y ∈ [k2(α),∞)
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Table 2 Values of ˜C(0.2, 0.7)
for some value of α

α 0.25 0.55 0.65 0.85 1

˜CL
α (0.2, 0.7) 0.2552 0.2657 0.2709 0.2814 0.2892

˜CU
α (0.2, 0.7) 0.3284 0.3128 0.3075 0.2971 0.2892

where k1(α) and k2(α) are defined in Example 3.5. Note that the inverse functions of
(˜F(x))α and (˜G(y))α are evaluated for any α ∈ [0, 1] as bellow,

((˜F(u))α)−1 = 2u + k1(α) − 1,

((˜G(v))α)−1 = k2(α) − ln(1 − v).

Therefore, it concludes that:

(˜F−1(u))α = 2u + k1(1 − α) − 1,

(˜G−1(v))α = k2(1 − α) − ln(1 − v).

By Remark 3.7, thus we have:

˜CL
α (u, v) = H

(

(˜F−1(u)) α
2
, (˜G−1(v)) α

2

)

=
(

2u + k1
(

1 − α
2

))

(

1 − e−k2(1− α
2 )(1 − v)

)

(

2u + k1
(

1 − α
2

) − 2
)

(1 − v)e−k2(1− α
2 ) + 2

,

˜CU
α (u, v) = H

(

(˜F−1(u))1− α
2
, (˜G−1(v))1− α

2

)

=
(

2u + k1
(

α
2

))

(

1 − e−k2( α
2 )(1 − v)

)

(

2u + k1
(

α
2

) − 2
)

(1 − v)e−k2( α
2 ) + 2

.

Table 2 summarized the values of ˜C(0.2, 0.7)[α] for some specific values of α in case
where ˜θ = (0.2; 0.1, 0.1)T and γ̃ = (1; 0.5, 0.5)T .

For such a case, the 3-dimensional curve of upper and lower α-cuts of fuzzy copula
is shown in Fig. 4. Moreover, α-cuts of the fuzzy copula are shown in Figs. 5 and 6,
for some specific values of α ∈ [0, 1].

4 Some measures of association

There are a variety of ways to describe and measure the dependence or association
between random variables. As it is mentioned in Sect. 2.2, it is the copula which
captures the distribution-free nature of the association between random variables. In
this section, some measure of associations between two fuzzy random variables are
extended based on the proposed fuzzy copula. To do so, Spearman’s ρ, Kendall’s τ and
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Fig. 4 Value of ˜C(u, 0.7) (left) and ˜C(0.2, v) (right)
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Fig. 5 Values of ˜C(0.2, v)Lα (–) and ˜C(0.2, v)Uα (- -) for some values of α

Gini’s concordance indices as three common measures of dependence are extended
based on fuzzy copula.

Definition 4.1 (Fuzzy Spearman’s ρ) Let ˜X and ˜Y be two fuzzy random variables
with the fuzzy copula ˜C . The fuzzy Spearman’s correlation coefficient between ˜X and
˜Y is defined to be a fuzzy number with the following α-cut:

ρ̃s[α] =
[

ρ̃L
α , ρ̃U

α

]

,

where,

ρ̃L
α = inf

β∈Iα

{

12
∫ ∫

I 2
(˜C(u, v))βdudv − 3

}

,

ρ̃U
α = sup

β∈Iα

{

12
∫ ∫

I 2
(˜C(u, v))βdudv − 3

}

,
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Fig. 6 Values of ˜C(u, 0.7)Lα (–) and ˜C(u, 0.7)Uα (- -) for some values of α

in which (˜C(u, v))β is β-pessimistic value of the fuzzy copula function ˜C(u, v) and
Iα = [α/2, 1 − α/2].
Definition 4.2 (Fuzzy Kendall’s τ ) Let ˜X and ˜Y be two fuzzy random variables with
the fuzzy copula ˜C . The fuzzy Kendall’s τ of ˜X and ˜Y is defined as a fuzzy number
with the following α-cut:

τ̃k =
[

τ̃ L
α , τ̃Uα

]

,

where,

τ̃ L
α = inf

β∈Iα

{

4
∫ ∫

I 2
(˜C(u, v))β c̃β(u, v)dudv − 1

}

,

τ̃Uα = sup
β∈Iα

{

4
∫ ∫

I 2
(˜C(u, v))β c̃β(u, v)dudv − 1

}

.

In this formula, c̃β(u, v) is the second partial order derivative for the β-pessimistic
value of ˜C that is:

c̃β(u, v) = ∂2

∂u∂v
(˜C(u, v))β ∀β ∈ [0, 1].

Definition 4.3 (Fuzzy Gini’s concordance measure) Suppose that ˜X and ˜Y be two
fuzzy random variables by fuzzy copula ˜C . The fuzzy Gini’s concordance measure of
˜X and ˜Y is a fuzzy number with the following membership function:

γ̃g = [γ̃ L
α , γ̃U

α ],
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Table 3 Evaluated values of
ρ̃[α] = [ρ̃L

α , ρ̃Uα ] for some
specific α

α 0.1 0.3 0.5 0.7 1

ρ̃L
α 0.0043 0.1150 0.2300 0.3487 0.5351

ρ̃Uα 0.8101 0.7410 0.6816 0.6217 0.5351
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Fig. 7 Fuzzy Spearman’s ρ between ˜X and ˜Y in Example 3.5

where,

γ̃ L
α = inf

β∈Iα

{

2
∫ ∫

I 2
(|u + v − 1| − |u − v|) c̃β(u, v)dudv

}

,

γ̃U
α = sup

β∈Iα

{

2
∫ ∫

I 2
(|u + v − 1| − |u − v|) c̃β(u, v)dudv

}

.

Remark 4.4 The α-cuts of fuzzy correlation measures that obtained in this section,
for all α ∈ [0, 1], are the correlation measure of two non-fuzzy random variables, so
they have same property in non-fuzzy case. For example, for fuzzy Spearman’s ρ, it
is easy to verify that:

1. ρ̃s(˜X , ˜Y ) = ρ̃s(˜Y , ˜X).
2. ρ̃s(˜X , ˜X) = I {1} where I denotes the indicator function.
3. −1 � ρ̃s(˜X , ˜Y ) � 1.

These properties similarly hold for τ̃k and γ̃g .

Example 4.5 Recall all assumptions in Example 3.5. Table 3 summarizes values of
ρ̃[α] for some specific values of α. The membership function of the fuzzy Spearman’s
ρ is also drawn in Fig. 7.

Example 4.6 Here, the fuzzy Kendall’s τ is calculated for random variables given in
Example 3.5. Table 4 presents α-cuts of τ̃k[α] for some specific values of α ∈ [0, 1]
(Fig. 8).
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Table 4 Values of τ̃k [α] for
some specific value of α ∈ [0, 1] α 0.1 0.3 0.5 0.7 1

τ̃ Lα 0.3176 0.3610 0.4074 0.4580 0.5418

τ̃Uα 0.8633 0.7816 0.7061 0.6364 0.5418
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Fig. 8 Fuzzy Kendall’s τ measure between ˜X and ˜Y in Example 3.5

Table 5 Values of fuzzy Gini’s
concordance measure for some
specific values of α

α 0.1 0.3 0.5 0.7 1

γ̃ L
α 0.4182 0.4298 0.4427 0.4566 0.4800

γ̃U
α 0.5680 0.5461 0.5256 0.5063 0.4800

Example 4.7 This example is devoted to examine the fuzzy Gini’s concordance mea-
sure between two fuzzy randomvariables ˜X and˜Y given in Example 3.5. In this regard,
Table 5 presents α-cuts of fuzzy Gini’s concordance measure for some specific val-
ues of α in Example 3.5. Furthermore, the membership function of the fuzzy Gini’s
concordance measure is shown in Fig. 9.

Remark 4.8 As mentioned in Sect. 1, many authors have studied the correlation
measures of two fuzzy sets. Some author proposed correlationmeasure betweenmem-
bership functions of two fuzzy sets (Murthy et al. 1985; Sahnoun et al. 1991; Yu 1993;
Chiang andLin 1999; Chaudhuri andBhattacharya 2001). Some others studied the cor-
relation of two intuitionistic fuzzy sets (Gerstenkorn and Mańko 1991; Hung and Wu
2002). Moreover, some authors assume the correlation coefficient for two interval-
valued fuzzy sets (Bustince and Burillo 1995; Hong 1998). Taheri and Hesamian
(2011) and Hryniewicz (2004) proposed a procedure to extend the Goodman–Kruskal
measure to the case when the categories of interest are imprecise rather than crisp.
All of these researches discus about the correlation measure of two fuzzy sets not two
fuzzy random variables, therefore, our method is completely deferent from them. On
the other hand, Akbari et al. (2009) using support function of fuzzy random variables
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Fig. 9 Fuzzy Gini’s concordance measure between ˜X and ˜Y in Example 3.5

define variance and covariance of two fuzzy random variables and then obtained the
usual Pearson correlation coefficient of two fuzzy random variables, which is deferent
form our paper.

5 Conclusion

Copulas of interest to statisticians for twomain reasons; 1—as away of studying scale-
free measures of dependence, and 2—as a starting point for constructing families of
bivariate distributions between random variables. Copulas reveal to be a very powerful
tool in many real applications such as finance. This paper develops a concept of
copula function for between two fuzzy random variables. For this purpose, the joint
distribution function of two fuzzy random variables first is defined. Then, the main
properties of the proposed fuzzy copula are investigated in fuzzy environment. As
an application of the proposed fuzzy copula, some common measures of associations
including Sperarman’s ρ concordance measure, Kendall’s τ correlation measures and
Gini’s concordance measure are developed for fuzzy random variables. Effectiveness
and advantageous of the proposed measure of associations is illustrated using some
numerical examples. The proposedmethods are also compared to that of other existing
methods. Notably, the proposed method simply can be used for other non-parametric
measures of associations. Extending the other statistical arguments of fuzzy copula
such as estimating the proposed fuzzy measures of associations or “conditional value
at risk” in finance are some potential subjects for future study.
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