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Abstract In this paper we address the issue of testing inference of the dispersion
parameter in heteroscedastic symmetric nonlinear regressionmodels considering small
samples.We deriveBartlett corrections to improve the likelihood ratio aswellmodified
profile likelihood ratio tests. Our results extend some of those obtained in Cordeiro (J
StatComputSimul 74:609–620, 2004) andFerrari et al. (J Stat Plan Inference 124:423–
437, 2004), who consider a symmetric nonlinear regression model and normal linear
regression model, respectively. We also present the bootstrap and bootstrap Bartlett
corrected likelihood ratio tests.Monte Carlo simulations are carried out to compare the
finite sample performances of the three corrected tests and their uncorrected versions.
The numerical evidence shows that the corrected modified profile likelihood ratio test,
the bootstrap and bootstrap Bartlett corrected likelihood ratio test perform better than
the other ones. We also present an empirical application.

Keywords Bartlett correction · Bootstrap · Likelihood ratio test · Modified profile
likelihood ratio test

B Mariana C. Araújo
mariana@ccet.ufrn.br

1 Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal,
RN 59078-970, Brazil

2 Departamento de Estatística, Universidade Federal de Pernambuco, Cidade Universitária, Recife,
PE 50740-40, Brazil

3 Departamento de Estatística, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627,
Pampulha, Belo Horizonte, MG 31270-010, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00362-017-0933-5&domain=pdf


168 M. C. Araújo et al.

1 Introduction

The normal model, although very attractive, is not always appropriate to fit a dataset,
especially if the data present extreme or outlying observations. Due to this prob-
lem, new regression models which are not so easily affected by extreme or outlying
observations have been developed in the statistical literature. The symmetric family
of distributions supplies an extension of the normal distribution, including other ones
with heavier and lighter tails than the normal, such as Cauchy, Student-t, generalized
Student-t, logistic I and II, generalized logistic, power exponential, Kotz distribu-
tion and generalized Kotz distribution, among others. This family of distributions
provides a vast source of alternative models for analyzing data containing outlying
observations. Thesemodels have been widely studied in the statistical literature. There
are several recent articles considering the symmetric distribution; see Cordeiro et al.
(2000), Cordeiro (2004), Cysneiros et al. (2010a), Cysneiros et al. (2010b), Vanegas
et al. (2013), Maior and Cysneiros (2016). Further details about the symmetric family
of distributions can be seen in Fang et al. (1990) and Fang and Anderson (1990).

When the dispersions are not constant over the observations, the inference strategies
for regression parameters are different. Thus, it is extremely important to test whether
variable dispersion is present in the data. One way to do this is to model the dispersion
parameter as a functionwhich depends on regressors and an unknown parameter vector
in such a way that for a specific value of the parameter vector, the function corresponds
to varying dispersion. Following this approach, one can formulate a hypothesis test in
which the null hypothesis leads to constant dispersion. To that end, the likelihood ratio
test is commonly used. Under the null hypothesis, the likelihood ratio statistic (LR) is
asymptotically chi-square (χ2) distributed up to an error of order n−1, where n is the
sample size. However, it is well known that for small samples this test can provide very
distorted rejection rates. This happens due to the approximation of the null distribution
of the LR statistic to the χ2 distribution, which is not accurate. One way to improve
the approach of the LR statistic distribution to the χ2 distribution, and consequently
reduce its distortion, is to multiply the LR statistic by a Bartlett correction factor
(Bartlett 1937). This method was generalized later by Lawley (1956). The resulting
statistic has a χ2

k null distribution up to an error of order n−2, where k is the differ-
ence between the dimensions of the parameter space under the two hypothesis being
tested.

Another factor that must be considered is the presence of nuisance parameters,
which can have a profound impact on inference.Many approaches have been proposed
to eliminate or reduce their impact. In the presence of nuisance parameters, generally
it is feasible to perform inference based on profile likelihood, which is a function
where the nuisance parameters are replaced by consistent estimates in the likelihood
function, resulting in a function that depends only on the parameters of interest. The
profile likelihood has some properties of the usual likelihood (Pace and Salvan 1997,
Chapter 4), but for problemswith large numbers of nuisance parameters, this procedure
results in inconsistent or inefficient estimates. Another problem caused by the number
of nuisance parameters is the poor approximation of the LR statistic distribution to the
χ2 distribution. To reduce the effect of the nuisance parameters, Cox and Reid (1987,
1992) proposed a modified profile likelihood. The modified profile likelihood ratio
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statistic (LRm) has asymptotic χ2
k null distribution up to an error of order n−1 and it

can also be corrected by Bartlett correction (DiCiccio and Stern 1994), producing a
more accurate inference, as can be seen in Ferrari et al. (2004, 2005), Cysneiros and
Ferrari (2006) and Melo et al. (2009).

To improve the large-sample χ2 approximation to the null distribution of the LR
and LRm statistics in many parametric models, the Bartlett correction is widely used.
Although the Bartlett correction factors are somewhat complex to obtain, they can be
readily implemented in computer programs. Moreover, this is a worthwhile practice,
since Bartlett corrections generally provide a considerable improvement. In recent
years, interest in Bartlett corrections has resurfaced and some articles have been pub-
lished considering this issue. See for example Fujita et al. (2010), Lemonte et al.
(2012), Bayer and Cribari-Neto (2013), Stein et al. (2014).

The main purpose of this article is to derive Bartlett correction factors to improve
the inference of the dispersion parameter based on the likelihood ratio statistic and
modified profile likelihood ratio statistic in the class of heteroscedastic symmetric
nonlinear models (HSNLM), a class of models proposed by Cysneiros et al. (2010a),
when the number of the observations available is small. To that end, we will follow the
approach of modeling the dispersion parameter vector as a function of regressors and
unknown parameters such that under the null hypothesis the function is constant, that
is, the null hypothesis leads to the symmetric nonlinear regression model. Our results
extend some of those obtained in Cordeiro (2004), since we consider a regression
structure for the dispersion parameter while they assume the dispersion parameter
as a scalar in the class of symmetric nonlinear regression models. We also extend
the results obtained in Ferrari et al. (2004), who improved likelihood-based tests for
heteroscedasticity in linear regression models. In this work, we also consider the
bootstrap Bartlett correction introduced by Rocke (1989) as a numerical alternative to
analytical Bartlett correction. AMonte Carlo simulation study is performed to evaluate
the performance of the corrected tests and their uncorrected versions. We expected
the proposed tests to deliver more trustworthy inferences in small samples and our
Monte Carlo simulation results show that, in fact, this happens. That is, the corrected
likelihood ratio and corrected modified profile likelihood ratio tests proposed here are
attractive alternatives to the usual likelihood ratio test in the HSNLM class when the
sample size is small.We are unaware of any simulation study in the statistical literature
comparing the performance of the proposed tests in HSNLM. Thus, this paper fills this
gap.

The article is organized as follows. In Sect. 2, we define themodel and present some
inferential aspects such as estimation and hypothesis testing of regression parame-
ters. In Sect. 3, we discuss Bartlett corrections to improve the usual likelihood ratio
and modified profile likelihood ratio tests in HSNLM. We also present the bootstrap
Bartlett correction for likelihood ratio statistic. A Monte Carlo simulation is per-
formed in Sect. 4 to evaluate the performance of the studied tests. An application
using real data is considered in Sect. 5. Conclusions about the results obtained are
presented in Sect. 6. Finally, appendices with technical details are presented at the
end.
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2 Heteroscedastic symmetric nonlinear models

Let y1, . . . , yn be n independent random variables. Each y�, � = 1, . . . , n, follows
a continuous symmetric distribution with location parameter μ� ∈ R and dispersion
parameter φ� > 0 if its probability density function is of the form

π(y�;μ�, φ�) = 1√
φ�

g(u�), y� ∈ R (1)

where g : R → [0,∞) is generally known as the density generator, such that,∫ ∞
0 g(u)du < ∞, with u� = (y� − μ�)

2/φ�. In what follows, we will denote
y� ∼ S(μ�, φ�, g). The density generation function g(·) for some symmetric dis-
tributions is given in Table 1.

The heteroscedastic symmetric nonlinear regression model proposed by Cysneiros
et al. (2010a) is defined as:

y� = μ� + √
φ�e�, � = 1, . . . , n, (2)

where μ� = f (x�;β) is a continuous and twice differentiable nonlinear regression
structure with respect to the components of a vector of unknown regression parameters
β = (β1, . . . , βp)

�, (p < n), x� = (x�1, . . . , x�P )� is a vector of knownexplanatory
variables associated with the �th observation and e� ∼ S(0, 1, g). Moreover, we
assume that β is defined in a subset Ωβ ∈ R

p (p < n) such that the n × p matrix
of derivatives of μ = (μ1, . . . , μn)

� with respect to β, denoted by X̃ = ∂μ/∂β, has
rank p for all β. In addition we consider φ� = σ 2m(ω�

� δ), where m(·) > 0 is any
known one-to-one continuously differentiable function, where ω� = (ω�1, . . . , ω�k)

�
is a vector of explanatory variables that may have components in common with x�,
δ = (δ1, . . . , δk)

� is a vector of unknown parameters to be estimated, and σ 2 ∈
(0,+∞) is an unknown constant. We also assume that a unique value δ0 of δ exists
such that m(ω�

�δ0) = 1 for all �. Consequently, φ� = σ 2, if δ = δ0, which implies
that the y′

�s have constant dispersion. Note that the concept of heteroscedasticity in
this context refers to varying dispersion, i.e., we say that the model is homoscedastic

Table 1 Density generation
function g(·) for some
symmetric distributions

Distributions g(u)

Normal 1√
2π

exp{−u/2}
Cauchy 1

π (1 + u)−1

Student-t ν
ν
2

B(1/2,ν/2) (ν + u)
− ν+1

2

Type I logistic c exp{−u}
(1+exp{−u})2

a

Type I I logistic exp{−u1/2}
(1+exp{−u1/2})2

Power exponential c(k) exp
{
− 1

2 u
−(1+k)

}b

a c ≈ 1, 484300029 is a nor-
malizing constant which follows
from

∫ ∞
0 u−1/2g(u)du = 1.

b c(k)−1 = Γ (1 +
1+k
2 )21+(1+k)/2, −1 < k ≤ 1
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when all dispersion parameters φ1, . . . , φn are equal; otherwise we say that the model
is heteroscedastic. To perform the procedure, an explicit form for m must be chosen.
A possible and common choice is to consider m(ω�

�δ) = exp(ω�
�δ), since this

functional form form does not impose any restriction on the components of ω� (Cook
and Weisberg 1983; Lin et al. 2009).

In this way, we are interested in assessing the constancy of the dispersion param-
eter in model (2) by testing the null hypothesis H0 : δ = δ0 against the alternative
hypothesis H1 : δ �= δ0, where δ0 is a k × 1 vector of specified constant such that
m� = m(ω�

� δ0) = 1 for � = 1, . . . , n. In other words, we are performing a test
for heteroscedasticity in symmetric nonlinear regression models, since under the null
hypothesis, model (2) reduces to the aforementioned class of models. The number of
parameters of interest is k and the number of nuisance parameters is p + 1. The total
log-likelihood function for the parameter vector θ = (β�, δ�, σ 2)� given y1, . . . , yn
in model (2) is expressed by:

l( y; θ) = −n

2
log σ 2 − 1

2

n∑

�=1

log(m�) +
n∑

�=1

t (z�),

where t (z�) = log g(z2�) with z� = √
u� = (y�−μ�)√

φ�
.

Note that to obtain the maximum likelihood estimator (MLE) of δ we maximize
the profile log-likelihood function

l p(δ) = l
(
y; δ, β̂δ, σ̂

2
δ

)
,

where β̂δ and σ̂ 2
δ are MLEs of β and σ 2 given δ, respectively. Under usual regularity

conditions, β̂δ and σ̂ 2
δ are solutions of the equations Uβ = 0 and Uσ 2 = 0, respec-

tively, which cannot be obtained in closed form. Thus, β̂δ and σ̂ 2
δ are derived from

computationally iterative restricted maximization techniques. Further details of these
techniques can be obtained from Nocedal and Wright (1999).

The likelihood ratio statistic (LR) for test H0 can be written as

LR = 2{l p(δ̂) − l p(δ0)},

where δ̂ is the MLE of δ. Asymptotically and under the null hypothesis, LR has χ2
k

distribution.
When replacing the nuisance parameters by their maximum likelihood estimates,

we are in a way treating them as known, and as a consequence, the profile log-
likelihood function may present biases in the score and information function (Ferrari
et al. 2005). This procedure is also known to provide inconsistent or inefficient esti-
mates for problems with large numbers of nuisance parameters. Cox and Reid (1987)
proposed a modified version of the profile likelihood function in order to attenuate
the impact of the number of nuisance parameters on the resulting inference. However,
that version requires orthogonality between parameters of interest and nuisance ones.
Therefore, in our case δ should be orthogonal to the remaining parameters. For this,
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a transformation (δ�,β�, σ 2)� → (δ�,β�, γ )� is necessary and sufficient, where
E[−∂l/∂δa∂γ ] = 0, a = 1, . . . , k.FollowingCox andReid (1987, Eq. 4), the desired
transformation is obtained by solving

n

2σ 4

∂σ 2

∂δa
= − 1

2σ 2

n∑

�=1

∂m�

∂δa

1

m�

,

which has solution (Simonoff and Tsai 1994)

σ 2 = γ

(
∏n

�=1m�)1/n
.

Considering the reparameterized model, the modified profile log-likelihood func-
tion for δ (Cox and Reid 1987) is given by

l∗CR(δ) = l∗p(δ) − 1

2
log{det[ j∗(δ; β̂δ, γ̂δ)]}, (3)

where l∗p(δ) = l∗( y; δ, β̂δ, γ̂δ) = − n
2 log γ + ∑n

�=1 t (z�) correspond to the pro-

file log-likelihood function for δ, j∗(δ; β̂δ, γ̂δ) denotes the block of the observed
information matrix for the nuisance parameters (β�, γ )�evaluated at (δ, β̂δ, γ̂δ), and
γ̂δ = σ̂ 2

δ

(∏n
�=1m�

)1/n
. The matrix j∗(δ; β̂δ, γ̂δ) is shown in Appendix A.

The modified profile likelihood ratio statistic (LRm) for testing H0 against H1 is
given by

LRm = 2{lCR(δ̂) − lCR(δ0)},

where δ̂ is the MLE of δ. Under the null hypothesis, the LRm statistic has asymptotic
χ2
k distribution.

3 Bartlett corrections

For large samples, the null distributions of LR and LRm statistics are approximated by
the χ2 distribution. On the other hand, if the sample size is not large enough, it is well
known that these approximations cannot be satisfactory, leading to size-distorted tests.
In order to improve such approximations, some correction factors for incorporation
in LR and LRm statistics have been proposed in the literature, yielding corrected
test statistics whose null distributions are better approximated by the reference χ2

distribution, that is, the approximation error from the corrected test statistic distribution
to the χ2 one reduces from order n−1 to n−2. The ideas of transforming the LR and
LRm statistics to make their distributions better approximated by the chi-squared
distribution are due to Bartlett (1937) and DiCiccio and Stern (1994), respectively.
These correction factors do not depend on a particular parametric model, i.e., they are
very general and need to be obtained for each problem of interest.
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3.1 Bartlett correction for the LR statistic

It is known that for large samples and under the null hypothesis, the LR statistic has
chi-square distribution up to error of order n−1. Bartlett (1937) proposed to multiply
the LR statistic by a correction factor, denoted by (1+c/k)−1, resulting in a corrected
statistic LR∗ given by

LR∗ = LR

1 + c/k
,

where c is a constant of order n−1 that can be estimated under H0. Moreover, c can
be written in terms of moments of likelihood derivatives up to the fourth order, see
Lawley (1956). Particularly, P(LR∗ ≤ x) = P(χ2

k ≤ x) + O(n−2)1 under the
null hypothesis. Further details on Bartlett corrections can be seen in Cordeiro and
Cribari-Neto (2014).

In what follows, we shall consider the case of heteroscedasticity with multiplicative
effects, that is, the special case where m� = exp(ω�

�δ). Thus, to test H0 : δ = δ0
against H1 : δ �= δ0 in the class of HSNLM, the constant c from the Bartlett correction
factor for the LR statistic can be expressed as

c = εk(δ) + εp,k(β, δ) + εp,k(δ, γ ) + εp,k(β, δ, γ ), (4)

where

εk(δ) = Δ2

4
tr(H2

d ) + Δ2
1

6
ι�H(3)ι + Δ2

1

4
ι�HHdHι,

εp,k(β, δ) = − Δ6

4δ(0,1,0,0,0)
ι� QHd Zβd ι − Δ7

4δ(0,1,0,0,0)
ιHdZβd ι

+ δ(0,0,1,0,1)

2δ(0,1,0,0,0)
ιQHd Zβd ι + ι� QHd Zβd ι

− Δ6

4δ(0,1,0,0,0)
ι� QHd Zβd ι − Δ7

4δ(0,1,0,0,0)
ιHdZβd ι

+
(

Δ2
7

2(δ(0,1,0,0,0))2
− Δ7

δ(0,1,0,0,0)

)

ι� QZβ 
 H 
 Zβ Qι

+ Δ2
7

4(δ(0,1,0,0,0))2
ι� QZβd HZβd Qι

+ Δ1Δ7

2δ(0,1,0,0,0)
ι� QZβd HHd ι,

1 Let {an} and {bn} be real sequences. an is said to be at most of order equal to bn , denoted by an = O(bn),

if K ∈ R
+ exists and n0(K ), such that |an/bn | ≤ K , ∀n ≥ n0(K ).
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εp,k(δ, γ ) = −Δ4Δ8

2
tr(Hd) − Δ1Δ4tr(Hd) − Δ2

1Δ4

2
ι�H(2)ι

−Δ2
1Δ4

4
(tr(Hd))

2 +
(

Δ1Δ5

4
+ Δ1(Δ5 − 4Δ3)

4

)

Δ2
4tr(Hd)

and

εp,k(β, δ, γ ) = − Δ1Δ4Δ7

4δ(0,1,0,0,0)

[
(ι�WZβd ι) 
 (ι�Hd ι) + ι� QHd Zβd ι

]
,

where Δ�, � = 1, . . . , 8, are scalars expressed as

Δ1 = −1

8
{δ(0,0,1,0,3) + 3δ(0,1,0,0,2) + δ(1,0,0,0,1)},

Δ2 = 1

16
{δ(0,0,0,1,4) + 6δ(0,0,1,0,3) + 7δ(0,1,0,0,2) + δ(1,0,0,0,1)},

Δ3 = −n

2
{2 + 3δ(1,0,0,0,1) + δ(0,1,0,0,2)},

Δ4 = 4

n{2 + δ(0,1,0,0,2) + 3δ(1,0,0,0,1)} ,

Δ5 = −n

8
{8 + 15δ(1,0,0,0,1) + 9δ(0,1,0,0,2) + δ(0,0,1,0,3)},

Δ6 = 1

4
{δ(0,0,0,1,2) + 3δ(0,0,1,0,1)},

Δ7 = 1

2
{δ(0,0,1,0,1) + 2δ(0,1,0,0,0)} and

Δ8 = 1

16
{δ(0,0,0,1,4) + 8δ(0,0,1,0,3) + 13δ(0,1,0,0,2) + 3δ(1,0,0,0,1)}.

The δ′s correspond to δ(a,b,c,d,e) = E{t (z�)(1)at (z�)(2)bt (z�)(3)ct (z�)(4)d ze�} for

a, b, c, d, e ∈ {1, 2, 3, 4} and t (z�)(k) = ∂k t (z�)
∂zk�

for k = 1, 2, 3, 4. Some δ′s values
for symmetric distributions studied in the literature can be found in Uribe-Opazo et al.
(2008). In addition, H = {h�s} = −(W − W̄)[(W − W̄)�V (W − W̄)]−1(W − W̄)�,
with (W − W̄) = (w1 − w̄, . . . ,wn − w̄)�, V representing the diagonal matrix
of order n with v� = (1 − δ(0,1,0,0,2))/4 and �, s = 1, . . . , n. We also have
H(2) = (h2�s), H

(3) = (h3�s), Q = diag(q1, . . . , qn), with q� = exp{−(ω� − ω̄)�δ}
and ω̄ = (ω̄1, . . . , ω̄k)

�, Zβ = X̃(X̃
�
QX̃)−1 X̃

�
, an n × p matrix W with the i j th

element given by ωi j and an n×1 vector of ones represented by ι. The subscripts d in
somematrices indicate that only diagonal elements of these matrices were considered.
Finally, the symbol 
 denotes the Hadamard (elementwise) product of matrices.

Therefore,we can observe that the constant c involves only simplematrix operations
and can be easily implemented in symbolic computation packages and programming
languages that allow performing basic linear algebra operations, such as Ox and R.
Details about the derivation of the expression c are presented in Appendices B and C.
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3.2 Bartlett correction for the LRm statistic

Themodified profile likelihood ratio statistic, LRm , aswell as the usual likelihood ratio
statistic, LR, has null asymptotic χ2

k distribution up to an error of order n−1. DiCiccio
and Stern (1994) proposed a Bartlett correction for LRm , reducing the approximation
error from its distribution to the reference χ2 distribution to order n−2. The corrected
statistic is defined by

LR∗
m = LRm

1 + cm/k
,

where cm is a constant of order n−1 such that under the null hypothesis the expected
value of the corrected modified test statistic is written as E(LR∗

m) = k + O(n−3/2).
The general expression of cm was defined in DiCiccio and Stern (1994, Eq. 25). In
this context, Ferrari et al. (2004, Eq. 5) obtained an equation to calculate cm from
normal linear regression models which can be used in any class of models that uses
the partition of the parameter vector we are using and where orthogonality holds.
To test H0 in the HSNLM class considering heteroscedasticity with multiplicative
effect, the constant cm for the correction factor for the LRm statistic is used, which is
presented in details in Appendix D. It is written in matrix notation as

cm = 1

4
Δ2tr(H2

d ) − 1

4
Δ2

1Δ4[tr(Hd)]2 + 1

4
Δ2

1ι
�HdHHd ι + 1

6
Δ2

1ι
�H(3)ι

−Δ1Δ4tr(Hd) − Δ1Δ3Δ
2
4tr(Hd) − 1

2
Δ2

1Δ4ι
�H(2)ι. (5)

We can see that the constant cm involves only simple matrix operations, such as
the constant c in (4) for the correction factor of the LR statistic. We also observe that
cm in (5) involves only matrix W of covariates (defined in 4), the number of unknown
parameters in φ� and the number of observations, not depending on unknown param-
eters or the number of nuisance parameters. Both c and cm depend on the symmetric
distribution considered, since the δ′s values change from one distribution to another.

3.3 Bootstrap Bartlett correction

As an alternative to the asymptotic likelihood ratio andmodified profile likelihood ratio
tests, we can carry out the inference based on a test with critical values (p−values)
obtained from the bootstrap technique introduced by Efron (1979). The bootstrap
likelihood ratio test (LRboot ) offers a reliable inference and does not involve complex
calculations. However, it requires very intensive computing. Considering the bootstrap
a numerical alternative to the Bartlett correction factor for the LR statistic, deriving
the bootstrap Bartlett technique, Rocke (1989) proposed corrected likelihood ratio
statistic (LR∗

boot ), which is obtained as follows. Initially, we generate B bootstrap
resamples (y∗

1 , . . . , y
∗
B) from the assumed model under H0, replacing the unknown

parameter vector with its respective restricted estimates (i.e., the estimates obtained
under the null hypothesis), calculated using the original sample (y1, . . . , yn). After
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that, we calculate the LR statistic for each pseudo sample y∗
1 , . . . , y

∗
B , denoted by

LRb
boot , b = 1, . . . , B. The bootstrap Bartlett corrected likelihood ratio statistic is

obtained by

LR∗
boot = LR

LR
∗
boot

k,

where LR
∗
boot = 1

B

∑B
b=1 LR

b
boot and k is the number of restrictions imposed by H0.

Under the null hypothesis, LR∗
boot has asymptotic χ2

k distribution (Rocke 1989).
The LRboot statistic does not follow the χ2 distribution. Instead it, is based on

this statistic, performed as described below: for a fixed nominal level α, we calculate
the 1 − α percentile of LRboot , which is estimated by q̂(1−α) such that #{LRboot ≤
q̂(1−α)}/B = 1 − α, with # denoting the cardinality set. Then, we reject the null
hypothesis if LR > q̂(1−α). Alternatively, the decision rule can be written based on
the bootstrap p-value given by p∗ = #{LRb

boot ≥ LR}/B.

Recent works have developed inference based on these tests, see for example Bayer
and Cribari-Neto (2013), Cribari-Neto and Queiroz (2014), and Loose et al. (2016).
An advantage of using the bootstrap Bartlett correction instead of the usual bootstrap
technique is its computational efficiency. To obtain a critical value using the bootstrap
Bartlett correction requires a resample with smaller size than the one needed when
using the bootstrap technique, which implies that the bootstrap Bartlett correction is
computationally more efficient than the usual bootstrap technique, see (Rocke 1989).

4 Simulation results

In this section, we present Monte Carlo simulation results to compare the performance
of seven tests inHSNLM: the likelihood ratio test (LR); themodified profile likelihood
ratio test (LRm); the bootstrap likelihood ratio test (LRboot ); their corrected versions,
denoted by LR∗, LR∗

m and LR∗
boot , respectively; and the score test (Sr ) in small

and moderate-sized samples. As known, an advantage of the Sr test in relation to
the others is its easy implementation, since it involves estimations under the null
hypothesis only. The number of Monte Carlo replications was 10,000 and for each
Monte Carlo replication we performed 1000 bootstrap replications. All simulations
were performed using the programming language Ox (Doornik 2006). We considered
the heteroscedastic symmetric nonlinear regression model given by

y� = β0 + exp{β1x�1} +
p−1∑

s=2

βs x�s + ε�, � = 1, . . . , n,

where ε� ∼ S(0, σ 2 exp{ω�
�δ}, g). The covariates x1, . . . , xp−1 andω1, . . . , ωq were

obtained as random draws from the uniform U (0, 1) and their values were kept fixed
during the simulations. We considered two symmetric distributions for the errors,
namely Student-t with 5 degrees of freedom (ν) and power exponential with shape
parameter κ = 0.3. The test to be considered is H0 : δ1 = · · · = δq = 0 against
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Table 2 Null rejection rates: t5 model with p = 3, 5, k = 3 and several values for n

α Test p = 3 p = 5

n n

30 40 50 100 30 40 50 100

α = 10% LR 21.2 19.4 18.3 16.3 33.0 25.5 19.7 14.4

LR∗ 13.2 12.5 11.4 10.7 21.1 15.9 13.8 11.6

LRm 9.2 9.4 9.4 10.0 8.8 10.2 9.9 9.9

LR∗
m 9.6 9.7 9.6 10.3 9.3 10.4 10.1 10.1

LRboot 10.2 9.8 10.1 9.8 10.3 10.8 10.2 10.3

LR∗
boot 10.2 9.8 10.0 9.9 10.3 10.7 10.2 10.2

Sr 10.5 10.3 10.4 10.6 11.4 11.4 11.2 11.0

α = 5% LR 13.6 11.9 10.7 9.5 22.6 16.8 12.3 7.7

LR∗ 7.0 6.6 5.9 5.4 12.9 8.8 7.4 5.8

LRm 4.7 4.7 4.9 5.1 4.2 5.0 4.5 5.0

LR∗
m 5.0 4.9 5.0 5.3 4.5 5.2 4.6 5.2

LRboot 5.2 4.9 5.1 4.7 5.2 5.5 5.2 5.2

LR∗
boot 5.4 4.8 5.2 4.7 5.1 5.7 5.2 5.0

Sr 5.4 5.1 5.2 5.2 5.5 5.5 5.4 5.1

α = 1% LR 4.7 4.0 3.4 2.6 9.5 6.5 3.8 1.9

LR∗ 1.6 1.4 1.2 1.1 3.9 2.4 1.9 1.1

LRm 0.9 0.9 1.0 1.0 1.0 0.9 1.0 1.0

LR∗
m 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0

LRboot 1.2 1.1 1.0 0.9 0.9 1.0 1.1 1.2

LR∗
boot 1.2 1.1 0.9 0.8 0.9 1.0 1.0 1.0

Sr 1.0 0.8 1.2 1.0 1.0 1.2 1.0 1.0

H1 : δi �= 0 for at least one i, i = 1, . . . , q. The true values of the parameters for the
simulations were taken as β0 = · · · = βp−1 = 1, σ 2 = 1, δ1 = 0.1, δ2 = 0.3, δ3 =
0.5 and δ4 = δ5 = 1.0. The null hypothesis was tested for sample sizes 30, 35, 40, 50
and 100 considering the three nominal levels α = 10, 5 and 1%.

The null rejection rates of the seven tests for different sample sizes are presented
in Tables 2 and 3. In these tables, it can be noted that the likelihood ratio test is
substantially oversized, for example, in Table 2 when p = 5, α = 5% and considering
all sample sizes (n = 30, 40, 50 and 100), the null rejection rates of the LR test
are 22.6, 16.8, 12.3 and 7.7%, respectively. The corrected version of the likelihood
ratio test tends to attenuate the oversized behavior of the usual likelihood ratio test,
but still presents higher rejection rates. For example, considering again p = 5, α =
5% and all sample sizes, the LR∗ test presents the following null rejection rates:
12.9, 8.8, 7.4 and 5.8%, respectively. In general, for both tests, as the sample size
increases, the distortion of the tests decreases.

The simulation results for the t5 model shown in Table 2 indicate that the Sr test
and the corrected tests LR∗

m and LR∗
boot present better results than the other ones.
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Table 3 Null rejection rates: power exponential model with κ = 0.3, p = 3, 5, k = 3 and several values
for n.

α Test p = 3 p = 5

n n

30 40 50 100 30 40 50 100

α = 10% LR 22.6 17.2 14.9 12.1 32.0 22.2 20.2 14.2

LR∗ 14.9 12.8 11.6 10.4 22.4 18.6 16.2 13.7

LRm 7.7 8.9 9.3 9.7 6.1 8.3 9.1 10.2

LR∗
m 8.8 9.7 10.2 10.0 7.2 9.1 9.9 10.6

LRboot 10.2 10.1 10.1 10.1 9.9 10.6 9.3 9.6

LR∗
boot 10.1 10.1 9.9 10.1 9.8 10.7 9.3 9.7

Sr 10.4 10.0 9.8 9.8 11.1 10.4 10.8 10.3

α = 5% LR 14.1 10.1 8.6 6.4 22.8 14.2 12.0 7.8

LR∗ 8.5 6.9 6.1 5.5 14.0 10.8 9.3 7.4

LRm 3.5 4.4 4.7 4.8 2.6 3.8 4.2 4.7

LR∗
m 4.2 5.0 5.2 5.1 3.3 4.3 4.8 4.9

LRboot 5.1 5.0 5.1 5.0 5.1 5.5 4.8 4.8

LR∗
boot 5.2 4.9 5.1 5.1 4.9 5.5 4.8 4.6

Sr 5.4 5.2 5.0 5.0 6.0 5.1 5.5 5.3

α = 1% LR 4.7 3.0 2.4 1.0 9.6 4.8 3.6 1.9

LR∗ 2.2 1.5 1.4 1.1 4.7 3.2 2.8 1.9

LRm 0.4 0.8 1.2 1.0 0.4 0.6 0.7 0.9

LR∗
m 0.6 1.0 1.3 1.1 0.5 0.7 0.8 1.0

LRboot 0.9 1.1 1.2 1.1 1.1 1.2 1.1 1.1

LR∗
boot 0.9 1.1 0.8 1.1 1.0 1.1 1.0 1.0

Sr 1.6 1.3 1.0 1.1 1.3 1.2 1.2 1.2

Furthermore, for p = 5 and α = 5%, the rejection rates for the Sr test considering all
four sample sizes are, respectively, 5.5, 5.5, 5.4 and 5.1% and the corresponding rates
for the LR∗

m test are 4.5, 5.2, 4.6 and 5.2% and for the LR∗
boot test are 5.8, 4.8, 5.2 and

4.7%. Table 3 presents the results for the power exponential model. We can observe
that, in general, the tests LRboot and LR∗

boot performbetter than the others, followed by
the Sr test. For example, when p = 5 and α = 10%, the rejection rates for the LRboot

test considering all four sample sizes are 9.9, 10.6, 9.3 and 9.6%, while for the LR∗
boot

test they are 9.8, 10.7, 9.3 and 9.7%, and for the Sr test they are 11.1, 10.4, 10.8 and
10.3%.

In Table 4 we present the null rejection rates of the tests and evaluate the effect of
the number of nuisance parameters on the performance of the tests, fixing the sample
size (n = 35), the number of parameters of interest (k = 3) and varying the number
of nuisance parameters (p = 2, 3, 4 and 5). For both considered models, the usual
LR test and its corrected version are quite distorted, and when the number of nui-
sance parameters increases, the distortion of the LR and LR∗ tests also increases. In
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Table 4 Null rejection rates: the t5 model and power exponential κ = 0.3 with n = 35, k = 3 and multiple
values for p

α Test t5 model Power exponential model

p p

2 3 4 5 2 3 4 5

10% LR 16.3 19.4 24.5 29.1 15.4 19.0 23.0 28.6

LR∗ 11.4 12.9 15.4 17.9 12.3 13.7 15.8 18.8

LRm 9.4 9.4 9.7 9.0 8.5 8.3 7.6 7.5

LR∗
m 9.7 9.7 10.0 9.3 9.4 9.6 8.5 8.7

LRboot 10.1 10.4 9.8 9.8 10.0 10.4 10.2 10.0

LR∗
boot 10.0 10.3 9.8 9.8 10.0 10.3 10.3 9.9

Sr 10.2 10.4 8.4 11.0 9.7 9.8 8.6 10.8

5% LR 9.3 11.9 15.8 19.4 8.9 11.5 14.7 19.1

LR∗ 5.9 7.0 8.8 10.5 6.4 7.5 8.8 11.4

LRm 4.5 4.7 4.5 4.3 4.2 3.8 3.4 3.6

LR∗
m 4.8 4.9 4.7 4.5 5.0 4.6 4.1 4.3

LRboot 4.9 5.1 5.0 5.1 5.0 5.3 5.2 5.0

LR∗
boot 4.9 5.1 4.8 4.9 5.0 5.3 5.2 5.0

Sr 4.7 5.2 4.3 5.3 5.5 5.0 4.9 5.4

1% LR 2.8 4.0 5.8 7.5 2.7 3.9 5.3 7.9

LR∗ 1.2 1.8 2.3 3.2 1.5 1.1 2.4 3.8

LRm 0.7 0.9 1.0 0.9 0.8 0.7 0.6 0.6

LR∗
m 0.8 0.9 1.0 1.0 1.0 0.9 0.7 0.7

LRboot 1.0 1.0 0.9 1.1 1.1 1.1 1.1 1.5

LR∗
boot 0.9 0.9 0.9 1.1 0.9 1.2 1.0 1.3

Sr 0.8 0.9 1.0 1.1 1.8 1.1 1.5 1.2

contrast, the number of nuisance parameters is indifferent to the other tests, and the
bootstrap tests LRboot and LR∗

boot performed best. For example, for model t5 when
p = 4 and α = 5%, the null rejection rates of the tests are 15.8% (LR), 8.8% (LR∗),
4.5% (LRm), 4.7% (LR∗

m), 5.0% (LRboot ), 4.8% (LR∗
boot ) and 4.3% (Sr ). Assuming

the same scenario, we have for the power exponential model the following null rejec-
tion rates: 14.7% (LR), 8.8% (LR∗), 3.4% (LRm), 4.1% (LR∗

m), 5.2% (LRboot ),
5.2% (LR∗

boot ) and 4.9% (Sr ).
Table 5 reports results for the situation where n = 35, p = 3 and k = 2, 3, 4 and 5.

The tests’ performances are similar to that shown in Table 4, with the LR∗
boot test

outperforming the other ones, especially in the power exponential model. For example,
considering the scenario where k = 3 and α = 1%, the null rejection rates for the
power exponential model are 3.9% (LR), 1.1% (LR∗), 0.7% (LRm), 0.9% (LR∗

m),
1.1% (LRboot ), 1.2% (LR∗

boot ) and 1.1% (Sr ). Considering the same scenario for the
t5 model, we have 4% (LR), 1.8% (LR∗), 0.8% (LRm), 0.8% (LR∗

m), 1.1% (LRboot ),
0.9% (LR∗

boot ) and 0.9% (Sr ).
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Table 5 Null rejection rates: t5 model and power exponential κ = 0.3 with n = 35, p = 3 and different
values of k

α Test t5 model Power exponential model

k k

2 3 4 5 2 3 4 5

10% LR 16.0 19.5 21.5 23.9 16.4 18.9 20.0 21.8

LR∗ 11.4 12.3 13.7 15.2 12.0 13.7 14.1 15.4

LRm 9.1 9.1 9.7 10.2 9.0 8.3 8.0 7.3

LR∗
m 9.4 9.4 10.0 10.3 10.0 9.5 9.0 8.5

LRboot 9.9 9.8 10.4 10.5 9.7 10.4 9.7 10.7

LR∗
boot 9.8 9.9 10.2 10.4 9.6 10.3 9.6 10.8

Sr 10.3 10.4 10.4 11.5 10.1 9.8 10.1 10.5

5% LR 9.2 11.8 13.0 15.0 9.6 11.5 12.1 13.4

LR∗ 6.0 7.0 7.2 8.6 6.2 7.5 7.7 8.9

LRm 4.7 4.4 4.5 5.4 4.8 3.8 3.7 3.5

LR∗
m 5.0 4.6 4.7 5.4 5.0 4.6 4.4 4.2

LRboot 5.0 4.9 5.1 5.3 4.9 5.2 5.0 5.6

LR∗
boot 4.9 4.9 5.0 5.2 4.8 5.3 4.8 5.6

Sr 4.9 5.2 5.2 5.7 5.1 5.0 6.2 5.8

1% LR 2.9 4.0 4.1 5.6 2.9 3.9 4.0 4.6

LR∗ 1.4 1.8 1.7 2.2 1.5 1.1 2.0 2.5

LRm 0.9 0.8 0.9 1.0 0.8 0.7 0.7 0.6

LR∗
m 1.0 0.8 1.0 1.0 1.1 0.9 0.9 0.8

LRboot 1.1 1.1 1.2 1.3 0.9 1.1 1.1 1.3

LR∗
boot 0.9 0.9 1.0 1.2 0.8 1.2 0.9 1.3

Sr 1.1 0.9 0.9 1.1 1.2 1.1 2.3 1.8

The numerical results presented in Tables 2, 3, 4 and 5 show that the corrected
tests outperform the uncorrected tests in small and moderate sample sizes, except for
the Sr test, which performs as good as the corrected tests in the indicated scenarios.
Moreover, for some cases the Sr test also outperforms the LR∗

m test, one of the best
performing tests. The simulation results showed that the LR∗

boot and LR∗
m tests are the

best performing corrected tests, followed by the Sr test. The LR∗ test attenuates the
oversized behavior of the LR test, but still presents distorted rejection rates, especially
when the number of parameters in the models increases.

Table 6 presents the test non-null rejection rates, i.e., their power. The data gener-
ation was carried out using different values of δ. We only considered the tests LRm ,
LR∗

m , LRboot , LR∗
boot and Sr . The usual and Bartlett-corrected likelihood ratio test are

not included in the power comparison since they are considerably size distorted. The
results in Table 6 showwhat is expected, that is, the tests are more powerful as δ moves
away from zero. The difference in powers is very small. For the t5 model, we have
that the LRboot , LR∗

boot and Sr tests are slightly more powerful than the others. For
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Table 6 Non-null rejection rates: t5 model and power exponential κ = 0.3 with n = 35, α = 10%, p = 3
and k = 3

δ t5 model Power exponential model

LRm LR∗
m LRboot LR∗

boot Sr LRm LR∗
m LRboot LR∗

boot Sr

0.4 13.0 13.3 13.3 13.3 13.0 12.7 14.1 14.0 14.1 13.7

0.8 23.8 24.5 26.2 26.1 26.3 29.3 31.6 30.1 30.1 28.1

1.2 40.0 40.5 43.3 43.4 43.3 57.3 57.3 57.5 57.4 57.4

1.6 60.3 61.2 63.2 63.1 63.3 73.9 74.0 74.1 74.2 74.2

2.0 77.1 77.3 79.0 79.0 78.7 88.0 88.0 88.3 88.3 88.3

2.4 87.0 87.0 87.1 87.0 87.0 93.4 93.5 93.6 93.6 93.6

2.8 98.1 98.3 98.3 98.4 98.4 97.4 97.5 97.6 97.6 97.5

3.2 98.3 98.4 98.5 98.5 98.4 98.9 99.0 99.1 99.1 99.0

the power exponential model, we have that the LRboot and LR∗
boot tests are slightly

more powerful than the others.
Figures 1a–b show the relative quantile discrepancies of the test statistics against

the corresponding asymptotic quantiles (χ2) for the t5 model and Fig. 1c–d for the
power exponential model, considering n = 35, p = 3, 5 and k = 3. Relative quan-
tile discrepancy is defined as the ratio of the difference between the exact quantile
(estimated by simulation) and the asymptotic quantile by asymptotic quantile. We
consider the score test and the corrected tests due to their performances. The closer
the curve is to zero ordinate, the better approximated to the reference χ2 distribution
is the test statistic’s null distribution. For both models, it is clear that the corrected
likelihood ratio test statistic’s null distribution is not well approximated by the refer-
ence χ2 distribution in all considered scenarios. In contrast, the null distributions of
the score statistic, the correctedmodified profile likelihood ratio statistic and bootstrap
Bartlett corrected likelihood ratio statistic are well approximated to the reference χ2

distribution, since their quantile discrepancy curves are very close to zero ordinate, as
reflected in the performance of these tests presented in Tables 2, 3, 4 and 5.

5 An illustrative example

In this section, we apply the test method presented in the previous sections to a real
dataset. The computer code for computing these statistics can be requested from us
by email. The data analyzed refer to the weight of eye lenses of European rabbit in
Australia (Oryctolagus Cuniculus), y, in mg, and the age of the animal, x, in days, in a
sample containing 71 observations. These data were analyzed byWei (1998, Example
6.8), who verified the suspicion of two aberrant points under least squares estimation,
thus indicating that the dataset supports errors with heavier tails than the normal.
Cysneiros et al. (2005) also analyzed this dataset under the Student-t distribution with
4 degrees of freedom. The choice of the degrees of freedom was based on the model
that presented the lowest AIC. The residual plot (see Cysneiros et al. 2005, Sect.
3.2) showed that they are not uniformly distributed around zero, giving evidence of
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Fig. 1 Quantile relative discrepancies for t5 and power exponential model with p = 3, k = 3, (a) and (c),
and p = 5, k = 3, (b) and (d)

heteroscedasticity. Motivated by that, we decided to consider a more general model
than that adjusted by Cysneiros et al. (2005), introducing a regression structure for
modeling dispersion.

We consider the following heteroscedastic model

y� = exp

(

β0 − β1

x� + β2

)

eε� ,

where ε� ∼ S(0, σ 2 exp{δx�}), � = 1, . . . , 71.Ourmain goal now is to test H0 : δ = 0
(homoscedasticity) against a two-sided alternative (heteroscedasticity).

To test H0, the observed values of the test statistics are LR = 8.368 (p-value:
0.004), LR∗ = 7.865 (p-value: 0.005), LRm = 8.919 (p-value: 0.003), LR∗

m = 8.871
(p-value: 0.003), Sr = 6.766 (p-value: 0.009) and LR∗

boot = 5.777 (p-value: 0.016).
The p-value for the bootstrap likelihood is 0.026. So, at the 1% nominal level, the
bootstrap based tests lead to not rejecting the null hypothesis, that is, the dispersion
is constant over the observations (homoscedasticity), while a different decision was
reached when we employed all other tests, leading to rejection of the null hypothesis,

123



Improved HLRT in SNLM 183

that is, heteroscedasticity of the dispersion. Recalling our previous section and the
literature, the LR and Sr tests are size distorted when we deal with small or even
moderate-sized samples, leading us not to rely on the inference delivered by these
tests. Also, recall from our simulation study that the bootstrap based tests performed
best in most scenarios and were not affected by the sample size, number of parameters
of interest or nuisance parameters, so, the bootstrap based tests should be preferable.

6 Concluding remarks

Symmetric models have received increasing attention in the statistical literature in
recent years and much of this attention is due to the fact that such models are less
sensitive than the normal model to the presence of outlying observations in the dataset
to be modeled. Many works have addressed the class of symmetric models. Cysneiros
et al. (2010a) proposed the HSNLM class, whose parametric estimation is performed
by numericallymaximizing the log-likelihood function, since themaximum likelihood
estimators do not have closed form. In this class of models, hypothesis testing of
model parameters are usually based on the likelihood ratio test, which is based on
first-order asymptotic approximations. Thus, for small and even moderate sample
sizes, the likelihood ratio statistic’s null distribution is not well approximated from
the reference χ2 distribution and as a consequence, the test based on its statistic
shows distorted rejection rates, making it important to develop strategies to yield
more accurate inferences when the sample size is not large enough.

In this paper, we presented Bartlett corrections to improve hypothesis tests based
on the likelihood ratio and modified profile likelihood ratio statistics in the HSNLM
class. Our work extends some results presented by Cordeiro (2004) and Ferrari et al.
(2004), who obtained Bartlett correction factors for the likelihood ratio statistic in
symmetric nonlinear models and for the modified profile likelihood ratio statistic in
normal linear models, respectively. In order to compare the performance of the tests,
we also considered the score test and the bootstrap likelihood ratio and bootstrap
Bartlett corrected likelihood ratio tests.

Numerical results showed that the usual likelihood ratio test is somewhat over-
sized and its corrected version, although attenuating this tendency, still has distorted
rejection rates that increase as the number of parameters in the model increases. The
simulation results also showed that the inference based on the modified profile likeli-
hood ratio test outperforms the usual test and does not suffer influence from the number
of parameters in the model when this increases. Moreover, The numerical evidence
showed the better performance of the corrected tests and the uncorrected score test.
The score test is very simple to compute, since it involves only estimations under the
null hypothesis. In particular, the numerical results showed the superior performance
of the corrected modified profile likelihood ratio test and also both bootstrap-based
tests in small and moderate sample sizes. Thus, we encourage practitioners to use
these tests in applications.
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Appendix A

In this appendix we obtain the matrix j∗(δ; β̂δ, γ̂δ) expressed in (3) which denotes the
observed information matrix for the nuisance parameters (β�, γ )�. We can express
j∗(δ; β̂δ, γ̂δ) by

j∗(δ; β̂δ, γ̂δ) = −
(
j∗ββ 0
0 j∗γ γ

)

,

where j∗ββ is a square matrix of order p whose entries are given by

j∗ββ = −∂2l∗( y; θ∗)
∂β j∂βl

= − 1

γ

n∑

�=1

t (z�)
(2)q�( j, l)� + 1

γ 1/2

n∑

�=1

t (z�)
(1)q1/2� ( jl)�

and

j∗γ γ = −∂2l∗( y; θ∗)
∂γ 2 = − n

2γ 2 − 3

4γ 2

n∑

�=1

t (z�)
(1)z� − 1

4γ 2

n∑

�=1

t (z�)
(2)z2�

is a scalar,with θ∗ = (β�, δ�, γ )� q� = (
∏n

s=1 ms )
1/n

m�
, ( j, l)� = (∂μ�/∂β j ) (∂μ�/∂βl)

and ( jl)� = ∂2μ�/∂β j∂βl , j, l = 1, . . . , p.

Appendix B

In this appendix we present the required derivatives of the log-likelihood function in
(2) up to the fourth order and their respective moments, considering m� = exp(ω�

� δ),

to obtain the constants c and cm from the Bartlett correction factors. For this, we
introduce the following notation: λrs = E(∂2l/∂θr∂θ s), λrst = E(∂3l/∂θr∂θ s∂θ t ),

etc, a, b, c, . . . index parameters of interest δ, i, j , l, . . . index nuisance parameters β

and r, s, t, . . . index all p + q + 1 parameters of the model. Thus, we have

λabγ = Δ1

γ

n∑

�=1

(ω� − ω̄)ab, λacd = Δ1

n∑

�=1

(ω� − ω̄)acd ,

λabcd = Δ2

n∑

�=1

(ω� − ω̄)abcd ,

λγ γ = (Δ4γ
2)−1, λi ja = 1

2γ
(δ(0,0,1,0,1) + 2δ(0,1,0,0,0))

n∑

�=1

q�ab,

λabi j = 1

γ
Δ6

n∑

�=1

(ω� − ω̄)abq�(i, j)� + 1

γ
Δ7

n∑

�=1

(ω� − ω̄)ab(i, j)�,
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λabγ γ = Δ8

γ 2

n∑

�=1

(ω� − ω̄)ab and

λai = λaγ = λiγ = λaiγ = λabi = λaγ γ = 0,

and the derived cumulants required to calculate c and cm are given by:

(λγ γ )γ = Δ3

γ 3 , (λabγ )γ = −Δ1

γ 2

n∑

�=1

(ω� − ω̄)ab,

(λi ja)b = 1

2γ
(δ(0,0,1,0,1) + 2δ(0,1,0,0,0))

n∑

�=1

(ω� − ω̄)abql(i, j)� and

(λac)d = (λac)bd = (λacd)b = λ
(c)
iab = (λiab) j = λ

(bj)
ai = λ(b)

aγ γ = λ
(γ )
aγ γ = 0.

Appendix C

Here we obtain in detail the expression c for the Bartlett correction factor for the LR
statistic. As defined in Sect. 3.1, the Bartlett correction factor is expressed by 1+c/k,
where

c = εp,k − εp.

From Lawley’s expansion (1956), we have that E(LR) = k + εp,k − εp + O(n−2),

where
εp,k =

∑

θ∗
(lrstu − lrstuvw), (6)

being

lrstu = λrsλtu
{

λrstu

4
− λ

(u)
rst + λ

(su)
r t

}

and

lrstuvw = λrsλtuλvw

{

λr tv

(
λsuw

6
− λ(u)

sw

)

+ λr tu

(
λsvw

4
− λ(v)

sw + λ
(v)
r t λ(u)

sw + λ
(u)
r t λ(v)

sw

)}

,

where −λrs is the (r, s) element from the inverse of Fisher’s information matrix. The
sum in (6) varies in all components of θ∗. The expression εp is obtained from (6)
considering that the sum varies across all nuisance parameters. Thus, we can write c
as

c = εk(δ) + εp,k(β, δ) + εp,k(δ, γ ) + εp,q(β, δ, γ ),
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where εk(δ) indicates that the sum (6) was performed on all components of δ, analo-
gously to other cases, considering the respective parameters. Replacing λ′s obtained
in Appendix B in the ε′s and after of extensive algebra, we have the constant c in (4).

Appendix D

Finally, here we obtain the constant cm for the Bartlett correction factor for the LRm

statistic, considering Equation (5) of Ferrari et al. (2004). Thus, we have that cm can
be expressed by

cm = 1

4
λabλcdλabcd − λabλcd(λacd)b + λabλcd(λac)db − λi jλab(λiab) j

− λγγ λab(λabγ )γ −
(
1

4
λabλcdλe f + 1

2
λabλc f λde − 1

3
λabλc f λde

)

λacdλbe f

+ (λabλcdλe f + λabλc f λde)λacd(λbe) f − (λabλcdλe f + λabλc f λde)(λac)d(λ
be) f

−
(
1

4
λi jλabλcd + 1

2
λi jλadλbc

)

λiabλ jcd + (λi jλabλkl)λiab(λ jk)l

−
(
1

4
λγγ λabλcd + 1

2
λγγ λadλbc

)

λabγ λcdγ + (λγ γ λabλγγ )λabγ (λγ γ )γ . (7)

Replacing the cumulantλ′s obtained inAppendixB inEquation (7) and after intense
algebra, we have

cm = 1

4
Δ2

n∑

�=1

(ω� − ω̄)aλ
ab(ω� − ω̄)b(ω� − ω̄)cλ

cd (ω� − ω̄)d

−1

4
Δ4Δ

2
1

n∑

�=1

(ω� − ω̄)aλ
ab(ω� − ω̄)b(ω� − ω̄)cλ

cd (ω� − ω̄)d

−1

4
Δ2

1

n∑

�=1

n∑

s=1

(ω� − ω̄)aλ
ab(ωs − ω̄)a(ωs − ω̄)cλ

cd (ω� − ω̄)d (ωs − ω̄)eλ
e f (ωs − ω̄) f

−1

6
Δ2

1

n∑

�=1

n∑

s=1

(ω� − ω̄)aλ
ab(ωs − ω̄)b(ω� − ω̄)cλ

c f (ωs − ω̄) f (ω� − ω̄)dλ
de(ωs − ω̄)e

+Δ1Δ4

n∑

s=1

(ωs − ω̄)aλ
ab(ωs − ω̄)b + Δ1Δ3Δ

2
4

n∑

�=1

(ω� − ω̄)aλ
ab(ω� − ω̄)b

−1

2
Δ2

1Δ4

n∑

�=1

n∑

s=1

(ωs − ω̄)aλ
ad (ωs − ω̄)d (ω� − ω̄)bλ

bc(ωs − ω̄)c,

where (ω� − ω̄)i = ω�i − ω̄i , with i = a, b, c, d. In matrix notation, we have

cm = 1

4
Δ2tr(H2

d ) − 1

4
Δ2

1Δ4[tr(Hd)]2 + 1

4
Δ2

1ι
�HdHHd ι + 1

6
Δ2

1ι
�H(3)ι

−Δ1Δ4tr(Hd) − Δ1Δ3Δ
2
4tr(Hd) − 1

2
Δ2

1Δ4ι
�H(2)ι.
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