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Abstract Overdispersion is a phenomenon commonly observed in count time series.
Since Poisson distribution is equidispersed, the INteger-valued AutoRegressive
(INAR) process with Poisson marginals is not adequate for modelling overdispersed
counts. To overcome this problem, in this paper we propose a general class of first-
order INAR processes for modelling overdispersed count time series. The proposed
INAR(1) processes havemarginals belonging to a class ofmixed Poisson distributions,
which are overdispersed. With this, our class of overdispersed count models have the
known negative binomial INAR(1) process as particular case and open the possibility
of introducing new INAR(1) processes, such as the Poisson-inverse Gaussian INAR(1)
model, which is discussed here with some details.We establish a condition to our class
of overdispersed INAR processes is well-defined and study some statistical proper-
ties. We propose estimators for the parameters and establish their consistency and
asymptotic normality. A small Monte Carlo simulation to evaluate the finite-sample
performance of the proposed estimators is presented and one application to a real data
set illustrates the usefulness of our proposed overdispersed count processes.

Keywords Autocorrelation · Count process · Markov chain · Poisson-inverse
Gaussian distribution · Overdispersion

1 Introduction

Count time series arise naturally in many practical situations and due to this an
increased interest in the modelling of such data have been observed. Some areas
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2120 W. Barreto-Souza

where we observe count time series data are economy, medicine, epidemiology, natu-
ral and social sciences, just to name a few. For example, in this paper we will deal with
monthly counting of sex offences registered in the 21st police car beat in Pittsburgh
from January 1990 and ending in December 2001.

The most common way for dealing with this type of data is to consider a ARMA-
type model or an INteger-valued AutoRegressive (INAR) process. These models can
be seen as parameter-driven and observation-driven models, respectively. We here
focus on the observation-driven approach based on the INAR structure.

The Poisson INAR(1) (first-order INAR) model is the most popular INAR process
for modelling count time series data. This process is based on the binomial thinning
operator; this operator was introduced by Steutel and van Harn (1979). Pionering
works on the Poisson INAR (in short PINAR) process are due to McKenzie (1985),
Al-Osh and Alzaid (1987) andMcKenzie (1988). After these works, some papers have
dealt with inferential and forescasting aspects of the PINAR(1) process. For instance,
see Freeland and McCabe (2004a), Freeland and McCabe (2004b) and Freeland and
McCabe (2005).

An important variant of the PINAR(1) process was considered by Ristić et al.
(2009). They introduced an INAR(1) process with geometric marginals by using a
negative binomial thinning operator (Aly and Bouzar (1994)). The literature about
INAR processes is very rich and the interest in this topic has increased in the last
years. Some recent contributions on INAR processes are given by Nastić and Ristić
(2012), Jazi et al. (2012), Ristić et al. (2013), Weiß (2013), Weiß and Kim (2013),
Meintanis andKarlis (2014), Schweer andWeiß (2014), Andersson andKarlis (2014),
Barreto-Souza andBourguignon (2015), Barreto-Souza (2015),Weiß (2015), Bisaglia
and Canale (2016), Nastić et al. (2016a), Nastić et al. (2016b), Nastić et al. (2016c),
Yang et al. (2016) and Weiß et al. (2016). For a good review on INAR processes we
recommend the papers by McKenzie (2003), Weiß (2008b) and Scotto et al. (2015).

Overdispersion is a phenomenon commonly observed in count time series. Since
Poisson distribution is equidispersed, the PINAR process is not adequate for mod-
elling overdispersed counts. Overdispersion can be caused by excess of zeros. In
this direction, Jazi et al. (2012) and Barreto-Souza (2015) proposed INAR processes
with zero-inflatedPoisson innovations and zero-modifiedgeometricmarginals, respec-
tively; both models are also able for dealing with underdispersion. Another important
work on this issue is due to Schweer andWeiß (2014). They proposed a class of com-
pound Poisson INAR(1) models and in particular obtained an overdispersion testing.

There are many different causes of overdispersion rather than excess of zeros.
For example, the non-observation of significant covariates. A common way for treat-
ing overdispersion in count data is to use the mixed Poisson distributions, which is
obtained by introducing a latent random effect on the mean of a Poisson distribution.
For an account onmixed Poisson distributions, we recommend the paper by Karlis and
Xekalaki (2005). With this in mind, in this paper we propose a class of overdispersed
INAR(1) processes with marginals belonging to a general class of mixed Poisson dis-
tributions. With this approach, our class of INARmodels includes the known negative
binomial INAR(1) process as particular case and open the possibility of introducing
new INAR(1) processes, such as the Poisson-inverse Gaussian INAR(1) model.
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The paper is organized as follows. In Sect. 2 we define our class of mixed Poisson
INAR(1) processes and derive some basic statistical properties. We also establish a
condition to our class is well defined. In Sect. 3 we present the Poisson-inverse Gaus-
sian INAR(1) model with some details. We propose estimators for the parameters and
establish their consistency and asymptotic normality in Sect. 4. Further, we present a
small Monte Carlo simulation to evaluate the finite-sample performance of the pro-
posed estimators. An empirical illustration of our class of overdispersed INAR(1)
processes is given in Sect. 5. Concluding remarks and future research are discussed in
Sect. 6.

2 Definition and basic properties

In order to present our class of mixed Poisson INAR(1) processes and make this paper
self-contained, we begin this section speaking about mixed Poisson distributions and
self-decomposable random variables.

Definition 1 A random variable Y follows a mixed Poisson distribution if satisfies
the stochastic representation Y |Z = z ∼ Poisson(μz), for μ > 0, where Z is some
non-negative random variable.

The probability function of a mixed Poisson random variable Y takes the form

P(Y = y) =
∫ ∞

0

e−μz(μz)y

y! dGφ(z),

for y ∈ N0 ≡ {0, 1, . . .}, where Gφ(·) is the distribution function of Z and φ denotes
the parameter vector associated to the distribution of Z ; we denote Y ∼ MP(μ, φ).
Let �Z (t) = E(et Z ) be the moment generating function (mgf) of Z , for t belonging
to some interval containing the value zero.

We have that the mgf of Y , say �Y (·), can be expressed by

�Y (t) = �Z (μ(et − 1)),

for t belonging some interval containing the value zero. Assume that Z has the finite
second moment. Then, the mean and variance of Y are given by E(Y ) = μE(Z) and
Var(Y ) = μ{E(Z) + μVar(Z)}. As we can see, Y is overdispersed for any choice of
distribution for Z (with finite second moment).

Definition 2 Arandomvariable X is said to be self-decomposable if, for allα ∈ [0, 1),
there is a random variable Xα independent of X such that the following stochastic

representation holds: X
d= αX + Xα , where “

d=” means equality in distribution.

Remark 1 A non-degenerate random variable X that is self-decomposable according
Definition 2 is necessarily absolutely continuous.

Definition 3 (Steutel and van Harn (1979)) A random variable X assuming values on
N0 is said to be discrete self-decomposable if, for all α ∈ [0, 1), there is a random
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variable Xα independent of X such that the following stochastic representation holds:

X
d= α ◦ X + Xα , where ◦ is the thinning operator defined by α ◦ X = ∑X

i=1 Bi ,
where {Bi }∞i=1 is a sequence of iid Bernoulli random variables with P(B1 = 1) =
1 − P(B1 = 0) = α and α ◦ 0 ≡ 0.

In what follows, we present some results that will be important to define our class
of overdispersed INAR processes.

Proposition 1 Let Y ∼ MP(μ, φ). Then, α ◦ Y ∼ MP(αμ, φ), for α ∈ [0, 1).
Proof Using the fact that α ◦ Y |Z = z follows a Poisson distribution with parameter
αμz, we obtain that

�α◦Y (t) ≡ E (exp{t (α ◦ Y )}) = E[E(exp{t (α ◦ Y )}|Z)] = E
(
exp
{
μαZ

(
et − 1

)})
= �Z

(
μα
(
et − 1

))
,

that is the mgf of a MP(αμ, φ) random variable. ��
Proposition 2 Let Z beanon-negative self-decomposable randomvariable according
Def. 2 with mgf �Z (·) and �(·) be a function defined as

�(t) = �Z
(
μ
(
et − 1

))
�Z
(
αμ
(
et − 1

)) , (1)

for t belonging some interval containing the value 0. Then �(t) is a proper mgf for
all α ∈ [0, 1). Moreover, this is a mgf of a mixed Poisson distribution.

Proof Since Z is self-decomposable, there is a random variable Zα independent of

Z such that Z
d= αZ + Zα . Hence, we have that the function �Z (t)/�Z (αt) is a

proper mgf for all α ∈ [0, 1); this function is the mgf of Zα . Let W be a random
variable with this mgf. We now show that the function (1) is a mgf of mixed Poisson
random variable, denoted by ε, which satisfies the following stochastic representation:
ε|W = w ∼ Poisson(μw), with W as defined above. It follows that

E(exp{εt}) = E
[
E (exp {εt} |W )

] = E
[
exp
{
μ
(
et − 1

)
W
}]

= �Z
(
μ
(
et − 1

))
�Z
(
αμ
(
et − 1

)) = �(t),

so proving the desired result. ��
With the results above, we now are ready to define our class of mixed Poisson

INAR(1) processes as follows.

Definition 4 We said that a sequence {Xn}∞n=0 is a Mixed Poisson INAR(1) process,
named in short by MPINAR(1) process, if Xn ∼ MP(μ, φ) for all n and if it admits
the following stochastic representation:

Xn = α ◦ Xn−1 + εn, (2)
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for n ≥ 1, with {εn}∞n=1 being a sequence of iid random variables and εn independent
of X j , for j < n, for all n.

Remark 2 Proposition 2 gives us that the self-decomposability of Z is a sufficient
condition to the MPINAR(1) process is well-defined. In fact, this condition also is
necessary. Forst (1979) (see also Alamatsaz (1983)) showed that a mixed Poisson
random variable is discrete self-decomposable if and only if its associated random
effect (denoted in this paper by Z ) is self-decomposable (in the sense of Def. 2).
Therefore, in order to define an INAR process with mixed Poisson marginals, it is
sufficient and necessary to restrict to the cases where Z (the random effect) is self-
decomposable.

An INAR(1) process {Xn}∞n=0 satisfying (2) has 1-step transition probabilities given
by

pl,k ≡ P (Xn = k|Xn−1 = l) =
min(k,l)∑
j=0

(
l

j

)
α j (1 − α)l− j P(εn = k − j), (3)

for k, l ∈ N. Further, the autocorrelation function is given by ρ(k) = αk . For more
general properties on INAR processes, see Weiß (2008a).

The following result will be important to establish the asymptotic properties of the
estimators which will be proposed in the Sect. 4.

Proposition 3 Let {Xn}∞n=0 be a mixed Poisson INAR(1) process. If E(Xn) < ∞,
then it is a geometrically ergodic, irreducible and aperiodic Markov chain.

Proof The Markovian property of {Xn}∞n=0 follows from (2). We now argue that
P(εn = k) > 0 for all k ∈ N. This and (3) implies that the MPINAR(1) processes are
irreducible Markov chains.

Since {Xn}∞n=0 is a MPINAR(1) process, we have that the random latent effect Z is
an absolutely continuous random variable (see Remarks 1 and 2). With this, we have
that W defined in proof of Proposition 2 is an absolutely continuous random variable.
Denote by f (·) its density function. Further, from proof of Proposition 2 we have that
the innovations εn satisfies the stochastic representation εn|W = w ∼ Poisson(μw).

Therefore, we have that P(εn = k) = ∫∞
0

e−μw(μw)k

k! f (w)dw > 0. The aperiodicity
of {Xn}∞n=0 follows from the fact (due to the above arguments) pk,k > 0 for all k ∈ N.

Now, since E(Xn) < ∞, we obtain that E(εn) < ∞. With this, by following the
same steps of proof of Theorem 3.4.1 from Schweer and Weiß (2014), we conclude
that {Xn}∞n=0 is geometrically ergodic. ��

We now discuss about the joint and conditional mgfs and moments. Using standard
manipulations, it can be checked that the conditional and joint mgfs are given by

�Xn |Xn−1(t) ≡ E(exp{t Xn}|Xn−1) = (1 − α + αet
)Xn−1 �Z (μ(et − 1))

�Z (αμ(et − 1))
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2124 W. Barreto-Souza

and

�Xn ,Xn−1(t, s) ≡ E(exp{t Xn + sXn−1})

= �Z
(
μes

(
1 − α + αet

)− 1
) �Z

(
μ
(
et − 1

))
�Z
(
αμ
(
et − 1

)) , (4)

respectively, where t belongs some interval containing the value 0 in both cases.

Remark 3 From now on, we assume that E(Z) = 1 and Var(Z) = φ−1. The condi-
tion E(Z) = 1 is commonly adopted in mixed Poisson distributions in order to avoid
non-identifiability problems.

The conditional mean and variance of Xn given Xn−1 are respectively

E(Xn|Xn−1) = αXn−1 + μ(1 − α)

and

Var(Xn|Xn−1) = α(1 − α)Xn−1 + μ(1 − α)[1 + μφ−1(1 + α)].

We now define the jump process by Jn = Xn − Xn−1, for n ≥ 2. This process is
generally used for diagnostic checking of fitted INAR models. For instance, see Weiß
(2008b, 2009). The mgf of Jn can be obtained from (4). More specifically, we have
that�Jn (t) ≡ E(exp{t Jn}) = �Xn ,Xn−1(t,−t). From this, in particular, we obtain the
two first moments of Jn , that are E(Jn) = 0 and E(J 2n ) = 2μ(1 − α)(1 + μφ−1).

In the subsequent section we introduce and study the Poisson-inverse Gaussian
INAR(1) process with some details. Another process that belongs to our class of
overdispersed INAR(1) models is the negative binomial INAR(1) process. This model
is already known in the literature (under a different parametrization) and therefore we
do not present it here; for instance, see McKenzie (1986) and Ristić et al. (2012). We
call attention that the Poisson INAR(1) process is obtained as a limiting case of our
proposed class by taking φ → ∞.

3 Poisson inverse-Gaussian INAR(1) process

Wenow present a particular model of our class that yet is unknown in the literature. Let
Z be a random variable with inverse Gaussian distribution with mean 1 and dispersion
parameter φ > 0. More specifically, assume that the moment generating function of
Z is given by

�Z (t) ≡ E(exp{t Z}) = exp
{
φ
[
1 −

√
1 − 2φ−1t

]}
,

for t < φ/2.
Let X be a discrete random variable following a Poisson inverse-Gaussian (PIG)

distribution with parameters μ > 0 and φ > 0. It is well known that X satisfies
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the following stochastic representation X |Z = z ∼ Poisson(μz), where Z is defined
above. We denote X ∼ PIG(μ, φ). The moment generating function of X is given by

�X (t) ≡ E(exp{t X}) = exp
{
φ
[
1 −

√
1 − 2φ−1μ(et − 1)

]}
,

for t < log(1 + φ/(2μ)). The mean and variance of X are E(X) = μ and Var(X) =
μ(1 + φ−1μ), respectively.

The probability function of X can be expressed by

p(k) ≡ P(X = k) =
√

2

π
[φ(φ + 2μ)]−(k−1/2)/2 e

φ(μφ)k

k! Kk−1/2

(√
φ(φ + 2μ)

)
,

for k = 0, 1, . . ., where Kλ(t) = 1
2

∫∞
0 uλ−1 exp

{
− t

2

(
u + 1

u

)}
du is the modified

Bessel function of third kind, which can be computed in softwares such asR program,
Maple and Mathematica.

We have that the inverse-Gaussian distribution is self-decomposable; for instance,
Pillai and Satheesh (1992) and Abraham and Balakrishna (2002). With this and using
Proposition 2, we obtain that the Poisson inverse-Gaussian distribution is discrete
self-decomposable. Hence, we can define our INAR process with PIG marginals as
follows.

Definition 5 We said that a sequence {Xn}∞n=0 is a Poisson-inverse Gaussian INAR(1)
process, named in short by PIGINAR(1) process, if Xn ∼ PIG(μ, φ) for all n and if
it admits the stochastic dynamics given in Definition 4.

The mgf of the innovations is given by

�(t) = �Z (μ(et − 1))

�Z (αμ(et − 1))

= exp
{
φ
[√

1 − 2φ−1μα(et − 1) −
√
1 − 2φ−1μ(et − 1)

]}
,

for t < log(1 + φ/(2μ)). The first four cumulants of the innovations are

E(εn) = μ(1 − α),

Var(εn) = μ(1 − α)[1 + μφ−1(1 + α)],
E
[
(εn − E(εn))

3
]

= 3μ3φ−2(1 − α3) + 3μ2φ−1(1 − α2) + μ(1 − α)

and

E
[
(εn − E(εn))

4
]

= 15μ4φ−3(1 − α4) + 18μ3φ−2(1 − α3)

+ 7μ2φ−1(1 − α2) + μ(1 − α).
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We are naturally interested in the distribution of the innovations since we need
to simulate the εn’s in order to construct simulated trajectories and to study the
finite-sample behaviour of the estimators we will propose. On the other hand,
it is very difficult to obtain an explicit form for the probability function of the
innovations.

More specifically, our innovations satisfy the following stochastic representation:
ε|W = w ∼ Poisson(μw),whereW has the distributionof an innovationof an inverse-
Gaussian AR(1) process [see Pillai and Satheesh (1992); Abraham and Balakrishna
(2002)], which has not explicit density function. Therefore, we do not have an explicit
form for the probability function of our innovations εn .

To overcome this problem, we use a method for generating random variables based
on the moment generating function given by Ridout (2009). With this, we generate
observations of the distribution of W and use the above stochastic representation for
generating from the distribution of the innovations.

4 Estimation and asymptotic properties

Wediscuss here estimationmethods of the parameter vector θ ≡ (μ, α, φ)� and estab-
lish consistency and asymptotic normality.We begin with the conditional least squares
(CLS) method. The function we need to minimize in order to find the conditional least
squares estimator for θ is given by

Q(θ) =
n∑

i=2

(Xi − E(Xi |Xi−1))
2 =

n∑
i=2

(Xi − αXi−1 − μ(1 − α))2,

where n is the sample size of the count time series. The above estimating equation does
not depend on φ and therefore an alternative method to estimate it is necessary; this
point will be discussed in the sequence. By solving the nonlinear system of equations
(∂Q(θ)/∂μ, ∂Q(θ)/∂α)� = (0, 0)�, we get

α̂cls = (n − 1)
∑n

i=2 Xi Xi−1 −∑n
i=2 Xi

∑n
i=2 Xi−1

(n − 1)
∑n

i=2 X
2
i−1 − (

∑n
i=2 Xi−1)2

and

μ̂cls =
∑n

i=2 Xi − α̂cls
∑n

i=2 Xi−1

(n − 1)(1 − α̂cls)
.

The above estimators based on the CLS method estimation assume the same form
as the corresponding ones in the Poisson INAR(1) process; see Al-Osh and Alzaid
(1987) and Freeland and McCabe (2005).
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The additional equation for estimating φ is based on the Q∗ function given by

Q∗(θ∗) =
n∑

i=2

(X2
i − E(X2

i |Xi−1))
2

=
n∑

i=2

(X2
i − g(μ̂cls, α̂cls, Xi−1) − φ−1h(μ̂cls, α̂cls))

2,

where θ∗ = (μ̂cls, α̂cls, φ)�, g(μ, α, x) = (αx + μ(1 − α))2 + α(1 − α)x and
h(μ, α) = μ2(1 − α2).

The above method we using here, that is, by using two conditional least squares
equations, it is known as two-step CLS estimation and was introduced by Karlsen and
Tjostheim (1988). Solving the equation ∂Q∗(θ∗)/∂φ = 0, we get

φ̂cls = (n − 1)μ̂2
cls(1 − α̂2

cls)∑n

i=2

{
X2
i − (1 − α̂cls)(μ̂cls + α̂cls Xi−1) − (̂αcls Xi−1 + μ̂cls(1 − α̂cls))

2
} .

We obtain now the Yule-Walker estimators. Since E(Xt ) = μ, Var(Xt ) = μ(1 +
μ/φ) and corr(Xt−1, Xt ) = α, we get the following Yule-Walker estimators:

α̂yw =
∑n

i=2(Xi − X̄n)(Xi−1 − X̄n)∑n
i=1(Xi − X̄n)2

, (5)

μ̂yw = X̄n (6)

and

φ̂yw = X̄n

S2n − X̄n
, (7)

where X̄n = 1
n

∑n
t=1 Xt is the sample mean and S2n = 1

n

∑n
t=1 X

2
t − X̄2

n is the sample

variance.
We perform now a small Monte Carlo simulation in order to study the finite-sample

behaviour of the proposed estimators and to compare theCLS andYule-Walker estima-
tionmethods.Wegenerate the PIGINAR(1) process,whichwas introduced and studied
with some details in the previous section, under four configurations. In the Config-
urations I, II, III and IV we set (μ, α, φ) = (0.5, 0.7, 0.2), (μ, α, φ) = (2, 0.5, 1),
(μ, α, φ) = (1, 0.25, 0.5) and (μ, α, φ) = (0.5, 0.1, 1.5), respectively. We consider
the sample sizes n = 100, 200, 300, 400, 500, 1000 and the number of loops of the
Monte Carlo simulation equals to 10000.

The results based on the Configurations I, II, III and IV are presented in Tables 1,
2, 3 and 4, respectively. These tables give us the empirical mean of the estimates of
the parameters and also the standard errors.
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Table 1 Empirical mean and standard errors (in parentheses) of the estimates of the parameters for
(μ, α, φ) = (0.5, 0.7, 0.2) and some values of n under the PIGINAR(1) process

n μ̂cls μ̂yw α̂cls α̂yw φ̂cls φ̂yw

100 0.534 0.532 0.659 0.658 1.267 0.770

(0.318) (0.306) (0.105) (0.106) (16.165) (2.887)

200 0.509 0.508 0.677 0.676 0.473 0.481

(0.224) (0.220) (0.075) (0.076) (1.409) (1.751)

300 0.501 0.501 0.684 0.683 0.354 0.345

(0.187) (0.182) (0.062) (0.062) (1.099) (0.524)

400 0.501 0.501 0.688 0.687 0.300 0.299

(0.157) (0.156) (0.054) (0.054) (0.384) (0.323)

500 0.500 0.500 0.690 0.689 0.271 0.271

(0.141) (0.140) (0.049) (0.049) (0.144) (0.145)

1000 0.501 0.501 0.694 0.694 0.235 0.235

(0.099) (0.099) (0.036) (0.036) (0.078) (0.078)

Table 2 Empirical mean and standard errors (in parentheses) of the estimates of the parameters for
(μ, α, φ) = (2, 0.5, 1) and some values of n under the PIGINAR(1) process

n μ̂cls μ̂yw α̂cls α̂yw φ̂cls φ̂yw

100 2.005 2.005 0.474 0.474 1.391 1.354

(0.430) (0.425) (0.093) (0.093) (1.000) (0.857)

200 2.001 2.001 0.486 0.486 1.170 1.159

(0.302) (0.300) (0.067) (0.068) (0.407) (0.400)

300 1.999 1.999 0.491 0.491 1.117 1.110

(0.246) (0.245) (0.056) (0.056) (0.317) (0.313)

400 1.998 1.998 0.493 0.493 1.085 1.081

(0.213) (0.213) (0.049) (0.049) (0.262) (0.260)

500 1.999 2.000 0.495 0.495 1.063 1.060

(0.191) (0.190) (0.044) (0.044) (0.228) (0.227)

1000 2.000 2.000 0.497 0.497 1.037 1.036

(0.135) (0.135) (0.032) (0.032) (0.158) (0.158)

Looking at these tables, we see that the bias and standard error of the estimates of the
parameters decreases as the sample size increases for all cases considered, as expected.
We also observe that the parameters μ and α are in general well estimated and that the
CLS and Yule-Walker estimators yield very similar results for these parameters. The
explanation for this is that (μ̂cls, α̂cls) and (μ̂yw, α̂yw) are asymptotically equivalent.
More specifically, we have that (μ̂cls − μ̂yw, α̂cls − α̂yw) = op(n−1/2). This can be
checked by following the same steps that in Proof of Theorem 3 by Freeland and
McCabe (2005). We now concentrate our attention to the estimation of the parameter
φ. Under the Configurations II (φ = 1) and III (φ = 0.5), we observe that the
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Mixed Poisson INAR(1) processes 2129

Table 3 Empirical mean and standard errors (in parentheses) of the estimates of the parameters for
(μ, α, φ) = (1, 0.25, 0.5) and some values of n under the PIGINAR(1) process

n μ̂cls μ̂yw α̂cls α̂yw φ̂cls φ̂yw

100 1.003 1.002 0.233 0.232 0.706 0.697

(0.228) (0.226) (0.101) (0.100) (0.546) (0.544)

200 1.001 1.001 0.240 0.239 0.592 0.589

(0.160) (0.159) (0.076) (0.076) (0.217) (0.214)

300 1.002 1.002 0.243 0.243 0.562 0.560

(0.130) (0.130) (0.063) (0.063) (0.163) (0.163)

400 0.999 0.999 0.244 0.244 0.548 0.548

(0.113) (0.112) (0.056) (0.056) (0.139) (0.139)

500 1.001 1.001 0.246 0.246 0.538 0.537

(0.101) (0.101) (0.050) (0.050) (0.122) (0.121)

1000 0.999 0.999 0.248 0.248 0.519 0.519

(0.072) (0.072) (0.036) (0.036) (0.085) (0.085)

Table 4 Empirical mean and standard errors (in parentheses) of the estimates of the parameters for
(μ, α, φ) = (0.5, 0.1, 1.5) and some values of n under the PIGINAR(1) process

n μ̂cls μ̂yw α̂cls α̂yw φ̂cls φ̂yw

100 0.509 0.509 0.124 0.124 4.423 2.897

(0.091) (0.090) (0.083) (0.083) (40.294) (6.126)

200 0.502 0.502 0.108 0.108 2.744 2.459

(0.064) (0.064) (0.066) (0.066) (7.079) (5.276)

300 0.501 0.501 0.103 0.103 2.291 2.112

(0.052) (0.052) (0.057) (0.057) (5.040) (2.631)

400 0.500 0.500 0.100 0.100 2.000 1.922

(0.045) (0.045) (0.050) (0.050) (3.224) (2.041)

500 0.500 0.500 0.098 0.099 1.832 1.801

(0.041) (0.041) (0.047) (0.047) (1.711) (1.522)

1000 0.500 0.500 0.098 0.098 1.623 1.614

(0.029) (0.029) (0.035) (0.035) (0.492) (0.486)

estimators φ̂cls and φ̂yw yield similar results with a slightly advantage for the Yule-
Walker estimator that presents smaller bias and standard error with respect to the CLS
estimator. Now, with respect to the Configurations I (φ = 0.2) and IV (φ = 1.5),
we see that there is a considerable bias under both CLS and Yule-Walker estimation
methods for estimating φ with n = 100, 200, 300. Anyway, this bias is smaller under
the Yule-Walker approach. We also see that the standard error of the Yule-Walker
estimator is smaller than that one based on the CLS estimation. For n ≥ 400, both
methodswork similarly.Overall, we see that theYule-Walker estimationmethodworks
better that the CLS one for our mixed Poisson INAR(1) process considered. With this,
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we suggest the use of the Yule-Walker approach. This method will be considered in
our application to a real dataset.

We establish now the consistency and asymptotic normality of the estimators (5),
(6) and (7).

Proposition 4 Assume that E(X4
n) < ∞. Then, the estimators μ̂yw, φ̂yw and α̂yw are

strongly consistent for μ, φ and α respectively and satisfy the asymptotic normality

√
n{(μ̂yw, φ̂yw, α̂yw) − (μ, φ, α)} d−→ N (0, B�B�),

as n → ∞, where

B =

⎛
⎜⎜⎜⎝

1 0 0

μ
2(κ2 + μ2) − μ

(κ2 − μ)2
− μ2

(κ2 − μ)2
0

−2μ
1 − α

κ2
− α

κ2

1

κ2

⎞
⎟⎟⎟⎠

and � being a 3 × 3 symmetric matrix with entries given by

�11 = κ2
1 + α

1 − α
,

�12 = κ3 + 2μκ2 + (κ3 − κ2)
α2

1 − α2 + α

1 − α
(κ2 + 4μκ2 + κ3),

�13 = α(1 + α)(κ3 − κ2) + 2κ2(α + μ(1 + α)) + α3

1 − α2 (κ3 − κ2)

+ α

1 − α
{α2(κ3 − κ2) + 2κ2[μ + α(1 + μ)]},

�22 = μ4 − μ2
2 + 2α2

1 − α2

{
κ4 + κ3(2μ − 1) − κ2

2 − 2μκ2

}

+ 2α

1 − α
(1 + 2μ)(κ3 + 2μκ2),

�23 = α(1 + α2)(κ4 − 3κ3 + κ2(2 − 3κ2)) + (κ3 − κ2) {3α (1 + α) (1 + μ) + 2μ}
+ 2μ2κ2 + 4κ2

2α + 2κ2(1 + μ)(α + μ(1 + 2α))

+ α3

1 − α2

{
κ4 − 3κ3 + κ2(2 − 3κ2) + 2(κ3 − κ2)(1 + μ) + 2κ2

2

}

+ α2

1 − α2

{
α3(κ4 − 3κ3 + κ2(2 − 3κ2)) + α2(κ3 − κ2)(2 + μ)

+ 2ακ2
2 + μ(κ3 − κ2)

}

+ α

1 − α

{
(κ3 − κ2)

(
α2(1 + 2μ) + α(1 + μ) + μ

)

+ 2ακ2(1 + μ)2 + 2μκ2(μ + (1 + μ)(1 + α))
}
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and

�33 = 2α3

1 − α2

{
α3(κ4 − 3κ3 + κ2(2 − 3κ2)) + α2(κ3 − κ2)(2 + μ)

+2ακ2
2 + μ(κ3 − κ2)

}

+ 2α

1 − α

{
α3(κ3 − κ2)(1 + μ) + α2μ(κ3 − κ2) + α2κ2(1 + μ)2

+2αμκ2(1 + μ) + μ2κ2

}

+α2(1 + 2α2) {κ4 − 3κ3 + κ2(2 − 3κ2)}
+α(κ3 − κ2)

{
α + (1 + α)(1 + 4μ) + 2α2(3 + 2μ)

}
+ ακ2(1 + μ)(5μ

+2α(1 + μ) + 1) + (4 + α)μ2κ2 + 5α2κ2
2 + κ2(κ2 − 2αμ2).

Proof Since E(Xn) < ∞ by assumption, it follows from Proposition 3 that the sta-
tionary process {Xn}∞n=0 is ergodic.With this, we can apply the Law of Large Numbers
for stationary and ergodic processes to obtain the strong consistency of the estimators;
for instance, see Proposition 7.1 by Hamilton (1994).

In order to show the asymptotic normality of the estimators, we define Yn =∑n
t=1 Xt , Zn =∑n

t=1 X
2
t and Wn =∑n

t=1 Xt−1Xt , for n ≥ 1. Note that the estima-
tors (μ̂yw, φ̂yw, α̂yw) are asymptotically equivalent to g(Yn/n, Zn/n,Wn/n), where

g(y, z, w) =
(
y,

y

z − y2 − y
,
w − y2

z − y2

)
, for (y, z, w) ∈ R

+, z �= y(y + 1) and

z �= y2.
By using theCentral Limit Theorem for stationary and ergodic processes (seeChap-

ter 7 from Anderson (1971)), we obtain that
√
n{(Yn/n, Zn/n,Wn/n) − (μ,μ2 +

κ2, μ
2 + ακ2)} d−→ N (0, �) as n → ∞, where μ = E(Xn), κ2 = Var(Xn)

and � is some asymptotic covariance matrix. With the results above and by apply-
ing the Delta Method with the function g(·, ·, ·) as defined above, we obtain that√
n{(μ̂yw, φ̂yw, α̂yw) − (μ, φ, α)} d−→ N (0, B�B�), where B = ∂g(θ)/∂θ . The

point that remains to be proven is the form of the covariance matrix �, which is done
in the Appendix. ��

5 Empirical illustration

In this section we illustrate the usefulness of the proposed class of mixed Poisson
INAR(1) processes. We consider a sex offence count time series data, which can be
found at sitewww.forecastingprinciples.com. For this count time series, an observation
corresponds to a monthly count of sex offences reported in the 21st police car beat in
Pittsburgh. These data contain 144 observations starting in January 1990 and ending
in December 2001 and was firstly used by Ristić et al. (2009). The plots of the data
and the associated ACF and PACF are presented in Fig. 1. From these plots, we see
that the first sample autocorrelation is more significant than the other and there exists
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Fig. 1 Plots of the monthly count of sex offences reported in the 21st police car beat in Pittsburgh from
January 1990 up to December 2001 and the associated ACF and PACF

a cutoff after lag 1 in the partial autocorrelations. These facts indicate that an INAR
process of order 1 can be suitable for modelling the monthly count of sex offences.

We begin this application performing an overdispersion test proposed by Schweer
and Weiß (2014), which the test statistic is based on the empirical index of dispersion
Îd ≡ S2n/X̄n . The null hypothesis is H0: X1, . . . , Xn come from a Poisson INAR(1)
process against the alternative hypothesis H1: X1, . . . , Xn come froman overdispersed
INAR(1) process. For the count time series considered here, we have that Îd = 1.7394.
The associated p-value is 2.55 × 10−12, that is, by using any usual significance level
(for instance at 5%) we reject the null hypothesis in favor of the alternative hypothesis
that states that an overdispersed INAR(1) process is more adequate for modelling this
count data.

In Table 5 we present the estimates of the parameters based on the Yule-Walker
estimationmethod given in Sect. 4.We also present in this table the associated standard
errors and confidence intervals for the parameters with significance level at 5%. We
consider the PIGINAR(1) and NBINAR(1) (negative binomial) processes and call
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Table 5 Estimates of the parameters and their associated standard errors under the MPINAR(1) processes
based on the Yule-Waker estimation method for the monthly count of sex offences time series data

Model Parameter Estimate Stand. error Inf. bound Sup. bound

PIGINAR(1) μ 0.5903 0.1073 0.3800 0.8006

α 0.2354 0.1062 0.0272 0.4435

φ 0.7983 0.4183 0.0000 1.6180

NBINAR(1) μ 0.5903 0.1073 0.3800 0.8006

α 0.2354 0.1042 0.0311 0.4397

φ 0.7983 0.3406 0.1308 1.4658

Table 6 Comparison among the
models based on empirical and
estimated quantities under the
PIG, NB and Poisson INAR(1)
processes

Quantity Empirical PIG NB Poisson

κ1 0.5903 0.5944 0.5944 0.5944

κ2 1.0268 1.0370 1.0370 0.5944

Skew. 2.5990 2.7565 2.4444 1.2971

Kurt. 11.6804 12.3732 8.4806 1.6824

Id 1.7394 1.7446 1.7446 1.0000

p0 0.6250 0.6305 0.6413 0.5519

μ(1) 0.5903 0.5974 0.5974 0.4932

attention that the estimates of the parameters are the same in both case since the
estimation depends only on the first moments that are equal for these models. We see
that the standard error for the estimates of μ are equal for both models (as expected)
and that the standard errors of the estimates of α and φ are smaller under the negative
binomial assumption with respect to the PIG-based model.

We also fit a Poisson INAR(1) process and compare with our fitted mixed Poisson
INAR(1) processes. In Table 6 we provide some empirical and estimated quanti-
ties based on the Poisson, negative binomial and Poisson-inverse Gaussian INAR(1)
models. We consider the following quantities: mean, variance, skewness, kurtosis,
index of dispersion (ratio of the variance to the mean), probability of zero and
the first higher-order moment, denoted by κ1, κ2, skew., kurt., Id , p0 and μ(1),
respectively.

From the results presented in Table 6, it is very clear that the Poisson INAR(1)
process is not adequate for modelling the monthly count of sex offences considered
here. On the other hand, we observe a good agreement among the empirical quantities
and the estimated quantities based on our mixed Poisson INAR(1) processes, with a
slight advantage of the PIGINAR(1) process over the NBINAR(1) process.

We now discuss the goodness-of-fit of the models based on the residuals Rt ≡
Xt − Ê(Xt |Xt−1) = Xt − α̂ywXt−1 − μ̂yw(1− α̂yw) and on the jumps Jt defined in
the final of Sect. 2, for t = 2, . . . , n. In the Fig. 2, we present the ACF of the residuals
based on the MPINAR(1) process. This figure indicates that the residuals R2, . . . , Rn

are not correlated, so our fitted models seem to have captured well the dependence
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Fig. 2 Sample autocorrelation function (ACF) of the residuals and jumps against time with bounds based
on the mixed Poisson INAR(1) and Poisson INAR(1) processes

of the count time series. In this figure we also plot the jumps against the time with
±3σJ bounds chosen as benchmark chart, where σJ = √

Var(Jt ); this graphic is also
known in the literature as Shewhart control chart andwas proposed byWeiß (2009) as a
diagnostic checking of fitted INAR(1) models. We plot the bounds based on our mixed
Poisson INAR processes and also the corresponding to the Poisson INAR process. We
see that the bounds based on the mixed INAR process accommodate adequately the
points (around 97% of them) in contrast with the benchmark chart related to the
Poisson INAR process, where many points are out of the bounds (around 16% of
them).

As suggested by one referee, we also use the standardized Pearson residual (for
instance, see Harvey and Fernandes (1989) and Jung and Tremayne (2011))

rt ≡ Xt − Ê(Xt |Xt−1)√
V̂ar(Xt |Xt−1)

= Xt − α̂ywXt−1 − μ̂yw(1 − α̂yw)√
α̂yw(1 − α̂yw)Xt−1 + μ̂yw(1 − α̂yw)[1 + μ̂ywφ̂−1

yw(1 + α̂yw)]
,

for t = 2, . . . , n, in order to check the variance, which should be close to 1. According
to Harvey and Fernandes (1989), a sample variance greater than 1 indicates overdis-
persion with respect to the model that is being considered. We compute the sample
variance of the standardized Pearson Residual and obtain that it is equal to 0.9539, so
giving evidence that ourmixed Poisson INAR(1) processes have capturedwith success
the overdispersion of the count time series considered.

With the results and discussion presented above, we conclude that the INARprocess
based on the Poisson assumption is not adequate for modelling the present count time
series data and that the mixed Poisson INAR processes provide an adequate approach.

123



Mixed Poisson INAR(1) processes 2135

6 Conclusions and future research

A common way for treating overdispersion in count data is to use the mixed Poisson
distributions, which is obtained by introducing a latent random effect on the mean
of a Poisson distribution. With this motivation, we introduced a class of INAR(1)
processes with mixed Poisson marginals. We established a condition to our class is
well-defined and discussed statistical properties. The INAR(1) process with Poisson-
inverse Gaussian marginals was introduced and presented with some details. We
discussed estimation of the parameters and gave conditions to have consistency and
asymptotic normality of the estimators. Simulated results showed that the estimators
work well for the scenarios considered. An empirical example illustrated the impor-
tance in considering our overdispersed INARprocesses for analyzing count time series
data.

Possible points of future research are: (a) multivariate extension of our mixed Pois-
son INAR(1) process; (b) to define and study amixedPoisson INARprocess of p-order;
(c) to explore more particular cases of our class of overdispersed INAR processes such
as an INAR model with Poisson-log normal marginals.

Acknowledgements I thank the two anonymous referees and the Associated Editor for their useful sug-
gestions and comments that led to an improved version of this article. I also thank the financial support
from CNPq (Brazil) and FAPEMIG (Brazil).

Appendix

We here derive the asymptotic covariance matrix of the weak convergence given in
Proposition 4. For this, we will use joint moments, which are defined by

μ(s1, . . . , sr ) ≡ E(Xt Xt+s1 . . . Xt+sr ),

where 0 ≤ s1 ≤ . . . ≤ sr and r belongs to N. Expressions of joint moments up
to fourth order for INAR(1) processes were obtained by Schweer and Weiß (2014)
(Theorem 3.3.1). We will use these expressions for computing the desired asymptotic
covariance matrix.

Let Yn , Zn and Wn be as defined in Sect. 4 and define gn(i, j) = n−i− α j

1−α j

(
1 −

α j (n−i)
)
, for i, j ∈ N. Using joint moments and their expressions given in Theorem

3.3.1 from Schweer and Weiß (2014), after some manipulations we obtain that

Var(Yn) = nVar(Xt ) + 2
n∑

t=1

n∑
k=t+1

cov(Xk, Xt ) = nκ2+2
n∑

t=1

n∑
k=t+1

{
μ(k − t)−μ2}

= nκ2

{
1 + 2

α

1 − α
− 2α2 1 − αn

n(1 − α)2

}
,

Var(Zn) = nVar(X2
t ) + 2

n∑
t=1

n∑
k=t+1

cov
(
X2
k , X

2
t

)
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= n(μ4 − μ2
2) + 2

n∑
t=1

n∑
k=t+1

{
μ(0, k − t, k − t) −

(
κ2 + μ2

)2}

= n
(
μ4 − μ2

2

)
+ 2

α2

1 − α2 gn(1, 2)
{
κ4 + κ3(2μ − 1) − κ2

2 − 2μκ2

}

+ 2
α

1 − α
gn(1, 1)(1 + 2μ)(κ3 + 2μκ2),

Var(Wn) = nVar(Xt−1Xt ) + 2
n−2∑
t=1

n∑
k=t+2

cov(Xk−1Xk, Xt−1Xt )

+ 2
n−1∑
t=1

cov(Xt−1Xt , Xt Xt+1)

= n
{
μ(0, 1, 1) − μ(1)2

}
+ 2

n−2∑
t=1

n∑
k=t+2

{
μ(1, k − t, k − t + 1) − μ(1)2

}

+ 2
n−1∑
t=1

{
μ(1, 1, 2) − μ(1)2

}

= 2gn(2, 2)
α3

1 − α2

{
α3(κ4 − 3κ3 + κ2(2 − 3κ2))

+ α2(κ3 − κ2)(2 + μ) + 2ακ2
2 + μ(κ3 − κ2)

}

+2gn(2, 1)
α

1 − α

{
α3(κ3 − κ2)(1 + μ) + α2μ(κ3 − κ2)

+ α2κ2(1 + μ)2 + 2αμκ2(1 + μ) + μ2κ2

}

+α2{κ4 − 3κ3 + κ2(2 − 3κ2)}(n + 2α2(n − 1))

+α(κ3 − κ2){n(α + (1 + α)(1 + 2μ))

+ 2(n − 1)(μ(1 + α) + α2(3 + 2μ))} + ακ2{n(1 + μ)(1 + 3μ)

+ 2(n − 1)(1 + μ)(2μ + α(1 + μ))}
+μ2κ2(n(4 + α) − 2) + α2κ2

2 (5n − 2) + nκ2(κ2 − 2αμ2),

cov(Yn, Zn) = nE(X3
t ) +

n−1∑
t=1

n∑
k=t+1

E(Xt X
2
k )

+
n−1∑
k=1

n∑
t=k+1

E(Xt X
2
k ) − n2E(Xt )E(X2

t )

= nμ3 +
n−1∑
t=1

n∑
k=t+1

μ(k − t, k − t) +
n−1∑
k=1

n∑
t=k+1

μ(0, t − k) − n2μμ2

= n(κ3 + 2κ2μ) + (κ3 − κ2)
α2

1 − α2 gn(1, 2)

+ α

1 − α
gn(1, 1)(κ2 + 4μκ2 + κ3),
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cov(Yn,Wn) = nE(Xt−1X
2
t ) + (n − 1)E(X2

t−1Xt ) +
n−2∑
t=1

n∑
k=t+2

E(Xt Xk−1Xk)

+
n−1∑
k=1

n∑
t=k+1

E(Xt Xk−1Xk) − n2E(Xt )E(Xt−1Xt )

= nμ(1, 1) + (n − 1)μ(0, 1) +
n−2∑
t=1

n∑
k=t+2

μ(k − t − 1, k − t)

+
n−1∑
k=1

n∑
t=k+1

μ(1, t − k + 1) − n2μμ(1)

= α(nα + n − 1)(κ3 − κ2) + (2n − 1)κ2(α + μ(1 + α))

+ (κ3 − κ2)
α3

1 − α2 gn(2, 2)

+ κ2
α

1 − α
gn(2, 1)(μ + α(1 + μ))

+ α

1 − α
gn(1, 1){α2(κ3 − κ2) + ακ2(1 + μ) + μκ2},

and

cov(Zn,Wn) = nE(Xt−1X
3
t ) + (n − 1)E(X3

t−1Xt ) +
n−2∑
t=1

n∑
k=t+2

E(X2
t Xk−1Xk)

+
n−1∑
k=1

n∑
t=k+1

E(Xk−1Xk X
2
t ) − n2E(X2

t )E(Xt−1Xt )

= nμ(1, 1, 1) + (n − 1)μ(0, 0, 1) +
n−2∑
t=1

n∑
k=t+2

μ(0, k − t − 1, k − t)

+
n−1∑
k=1

n∑
t=k+1

μ(1, t − k + 1, t − k + 1) − n2μ2μ(1)

= α(nα2 + n − 1){κ4 − 3κ3 + κ2(2 − 3κ2)}
+α(nα + n − 1)(κ3 − κ2)(3 + 2μ)

+μ{n(α(1 + α) + 2) − (1 + α)}(κ3 − κ2)

+ (2n − 1)κ2{μ2 + 2ακ2 + (1 + μ)(α + μ(1 + 2α))}
+ α3

1 − α2 gn(2, 2){κ4 − 3κ3 + κ2(2 − 3κ2)

+ 2(κ3 − κ2)(1 + μ) + 2κ2
2 }

+ α

1 − α
gn(2, 1){(κ3 − κ2)(μ + α(1 + μ))

+ακ2(1 + μ)2 + κ2μ(1 + μ)(1 + α) + μ2κ2}
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+ α2

1 − α2 gn(1, 2){α3(κ4 − 3κ3 + κ2(2 − 3κ2))

+α2(κ3 − κ2)(2 + μ) + 2ακ2
2 + μ(κ3 − κ2)}

+ α

1 − α
gn(1, 1){α2(κ3 − κ2)(1 + 2μ) + ακ2(1 + μ)2

+μκ2(μ + (1 + μ)(1 + α))},

where μ = E(Xn), κ j = E((Xn − μ) j ) and μ j = E(X j
n), for j = 2, 3, 4.

Let �n be the covariance matrix with the above terms. Hence, it follows that the
covariance matrix � of the Proposition 4 can be obtained by � = lim

n→∞ �n/n.
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