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Abstract Functional data analysis is a part of modern multivariate statistics that ana-
lyzes data that provide information regarding curves, surfaces, or anything that varies
over a certain continuum. In economics and empirical finance, we often have to deal
with time series of functional data, where decision cannot be made easily, for example
whether they are to be considered as homogeneous or heterogeneous. A discussion on
adequate tests of homogenity for functional data is carried out in literature nowadays.
We propose a novel statistic for detecting a structural change in functional time series
based on a local Wilcoxon statistic induced by a local depth function proposed by
Paindaveine and Van Bever, and where a point of the hypothesized structural change
is assumed to be known.
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1 Introduction

Many objects in economics takes the form of a function of certain continuum, for
example, utility curves, yield curves, electricity demand trajectories during day and
night, time series of concentration of dangerous particulates in the atmosphere, the
Internet traffic intensity within a day (see Figs. 1, 2). Economic phenomena are often
observed through a certain number of non-homogenous components, that is, they
exhibit multimodality. The phenomena seem to be similar globally, but locally they
differ significantly. Global methods of population comparison (visual, inferential, and
descriptive) using popular centrality measures, that is, mean or median, may be mis-
leading. Further problems occur when functional outliers (defined with respect to
functional boxplot) are present in the data set. Because of the lack of reliable economic
theory on data generating processes, which may be used for describing economic
phenomena, functional generalizations of well-known statistical procedures (e.g.,
ANOVA) are inefficient (Ramsay and Silverman 2005; Ramsay et al. 2009; Horváth
and Kokoszka 2012). If an economic system in each period of time is described by a
certain number of functions (e.g., individual demand and supply curves or investment
strategies), then the characteristics of this dynamic system are observed as a multi-
regime functional time series where heterogenity is related to change in probability
distribution over the considered space of functions. The aim of this study is to detect
a structural change related to local differences between populations or between popu-
lation characteristics in two or more periods of study, and a point of the hypothesized
structural change is assumed to be known (e.g., before and after financial crash).

The approach that is proposedwill detect changes in the behavior of Internet service
users behaviour related to a certain event, for example, introducing a new marketing
strategy, modification of an online banking service, or some political event. This
procedure can be used to detect changes in the distribution of development paths of a
small company in the context of introducing a new taxation system. It can also detect

Fig. 1 Functional boxplot for number of users in service 1 during day and night
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Fig. 2 Functional boxplot for number of users in service 2 during day and night

shifts in supply or demand for certain goods, for example, electricity, within day and
night. Finally, this method can be used to monitor daily concentration of dangerous
particles in the atmosphere.

In one dimensional case, Wilcoxon rank sum test correctly detects the differences
in the location of a rich class of populations (Wilcox 2014). For many economic
phenomena described bymeans of certain curves (e.g., yield curves, utility curves, and
dangerous particles in atmosphere concentration curves), available structural change
tests assume parametric form for each curve and rely on performing independent tests
of parameter equality of the curves. This study proposes a novel nonparametric and
robust test for the detection of a structural change in economic system, namely local
extension of Wilcoxon test for two functional samples. The test can be effectively
used for detecting a structural change in functional time series. The underlying idea
is to compare populations at different locality level, which may be interpreted as data
resolution. In our proposal, the localWilcoxon test statistic is induced by the corrected
modified band depth (López–Pintado and Romo 2007) with the concept of locality
proposed by Paindaveine and Van Bever (2013).

The rest of the paper is organized as follows. Section2 sketches the basic concepts
of a two-sample test for homogenity in the context of functional time series. Section3
introduces two-sample local Wilcoxon test statistic for detecting a structural change
in functional time series. Section4 discusses the properties of the procedure through
numerical simulations and tests the applicability of the proposed methodology on
empirical examples (i.e., activities of Internet users and monitoring yield curves).
Section5 conducts a short sensitivity analysis. Section6 comprises a brief summary.

2 A concept of homogenous functional data

Nowadays, an intensive debate on adequate tests of homogenity for functional data
is carried out in literature (Flores et al. 2015, see the paper and references therein).
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1680 D. Kosiorowski et al.

In Flores et al. (2015), selected two-sample homogenity tests were discussed on the
basis of the comparison of maximal depth elements.

Functional time series are usually defined in terms of functional stochastic pro-
cesses with values in Banach or Hilbert spaces (Bosq 2000; Horváth and Kokoszka
2012). Bosq (2000) explained that probability distribution F of functional random
variable does exist. We look at the random curve X = {X (t), t ∈ [0, T ]} as a random
element of the space L2 = L2([0, T ]) equipped with the Borel σ−algebra. L2 is a
separable Hilbert space with the inner product 〈x, y〉 = ∫

x(t)y(t)dt. We consider a
sample of curves, but each curve is observed at discrete and finite grid of points in
practice. Discrete data are transformed into curves using various techniques including
nonparametric smoothing (Ramsay et al. 2009).

Horváth and Kokoszka (2012) prove various properties of the functional estimators
and show that, under some regularity conditions, mean value and variance are unbi-
ased and mean square error consistent estimators. Horváth et al. (2014) formalize the
assumption of stationarity in the context of functional time series and propose several
procedures to test the null hypothesis of stationarity, which in turn may be used to
detect a structural change in functional time series (FTS) setup. Furthermore, Horváth
et al. (2014) have noted that spectral analysis of nonstationary functional time series
has not been developed to a point where usable extensions could be readily derived;
hence they developed a general methodology for testing the assumption that a mod-
eled functional time series is indeed stationary and analyzed the behavior of the tests
under several alternatives, that is, change point alternative. The tests developed by the
authors are consistent against any other sufficiently large departures from stationarity
and weak dependence. They warn that in the functional setting, there is a fundamen-
tally new aspect, that is, convergence of a scalar estimator of the long-run variance
must be replaced by the convergence of the eigenvalues and the eigenfunctions of the
long-run covariance function. They note that their method is extremely computation-
ally intensive. Obtaining an obvious increasing/decreasing trend in functional data is
uncertain. Fraiman et al. (2014) considered functional time series, where a trend is
expected. They defined different kinds of trend and then performed various tests that
could detect the trends. The authors developed the nonparametric tests for the pro-
posed increasing trends for a sequence of functional data and established their results
for a multiple time series of functional data.

Let us pose our hypotheses. If F and G denote a probability distribution of the first
and second population, respectively, we can formulate null and alternative hypothesis:

H0 : F = G vs. H1 : F �= G. (1)

Our first aim is to test the null hypothesis against its alternative having two samples
in a disposal. In this situation, our first set of hypotheses states that two samples are
drawn from the same distribution, whereas the alternative states the opposite. We use
a local Wilcoxon statistic to deal with the problem.

Our second aim is to use the local Wilcoxon statistic to detect a structural change
in functional time series. In other words, we intend to test a set of the following
hypotheses:
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H0 : FX1 = FX2 = · · · = FXN vs.H1 : FX1 = · · · = FXk �= FXk+1 = · · · = FXN

(2)
for some k ∈ {1, 2, . . . , N }, where FXi is a probability distribution of a functional
random variable Xi .

We use a moving local Wilcoxon statistic for the purpose.

3 Our proposals

This section introduces a two-sample local Wilcoxon test for homogenity, that is, for
veryfying (1) set of hypotheses.

3.1 Ranks induced by depth functions

Consider an functional data analysis (FDA) setup in which each observation is a real
function defined on a common interval in R. In order to introduce rank-based statistic
for comparing samples of functional data, we focus our attention on statistical depth
functions for functional objects. It enables us for ordering these objects in terms of
departure of an object from a center—the functional median. The data depth concept
was originally introduced to generalize the concept of order statistics to a multivariate
case (Mosler 2013), but is presently treated as a very powerful data analytic tool that
is able to express various features of the underlying distribution. The depth function
yields information about spread, shape, and asymmetry of a distribution, through depth
regions (Liu et al. 1999; Mosler 2013 and references therein).

Within the depth concept, it is possible to propose effective methods of location
and scale differences testing (Li and Liu 2004).

Classical depth functions associate a maximal depth value with any center of sym-
metry. Together with the fact that depth decreases along any half-line originating from
any deepest point, this leads to nested star-shaped (inmost cases convex) depth regions,
although the underlying distributionmay be nonconvex (Zuo and Serfling 2000). How-
ever, distributions that are multimodal or have nonconvex support are present in many
economic applications (mixture models, multi-regime time series, or issues solved by
means of clustering and classification procedures, see, for example, Lange et al. 2015).
These facts motivated several authors to extend the concept of depth to make it flexible
enough to deal with such distributions. Such extensions are available in the literature,
under the name local depths. This study uses the concept of local depth proposed by
Paindaveine and Van Bever (2013) and implemented among others in Kosiorowski
and Zawadzki (2014).

Thorough presentation of the depth concept may be found in Liu (1990), Zuo and
Serfling (2000), Serfling (2006), Mosler (2013), and Nieto-Reyes and Battey (2016).

In recent years, some definitions of depth for functional data have been proposed as
well. Fraiman and Muniz (2001) considered a concept of depth based on the integral
of univariate depths, and López-Pintado and Jörnsten (2007) introduced functional
depths taking into consideration the shape of the selected curve. Cuesta-Albertos
and Nieto-Reyes (2008) introduced a random Tukey depth. Cuevas et al. (2007)
proposed classification procedures that are implemented within fda.usc R package

123



1682 D. Kosiorowski et al.

(Febrero-Bande and de la Fuente 2012). A very useful theoretical considerations
related to the definition of the functional depth and comparative study of several
functional depths may be found in Nieto-Reyes and Battey (2016).

In our opinion, statistics inducedby the functional depthsmay effectively be used for
non-parametric and robust monitoring of certain properties of functional time series.
In this context, we propose to use novel tools offered by robust functional analysis to
test a reasonable hypothesis of equality distributions of the two given sets of functional
sequences. Consider a situation in which we would like to compare two functional
sequences {Xi }n−m

i=1 and {Yi }mi=1.
We suggest to proceed in the following manner. Using a concept of corrected

generalized band depth (López-Pintado and Jörnsten 2007), we rank the original obser-
vations from one that is the closest to the functionalmedian up to one that is the furthest
one. Then, the Wilcoxon test or another rank test is conducted (see Hájek and Ŝidák
1967 for alternative rank tests).

Let us examine our procedure in detail. First, we combine both the samples {Xi }n−m
i=1

and {Yi }mi=1. Let now X = {x1, . . . , xn} denote a combined sample of continuous
curves defined on the compact interval T . Let λ denote the Lebesgue measure and let
a(i1, i2) = {t ∈ T : xi2 − xi1 ≥ 0}, where xi1 and xi2 are band delimiting objects. Let
Li1,i2 = λ(a(i1,i2))

λ(T )
. A corrected generalized band depth of a curve x with respect to

the sample X is (López-Pintado and Jörnsten 2007; López–Pintado and Romo 2007)

cGBD(x |X) = 2

n(n − 1)

∑

1≤i1<i2≤n

λ(Ac(x; xi1 , xi2))
λ(T )

(3)

where

Ac(x; xi1 , xi2) = {t ∈ a(i1, i2) : xi1(t) ≤ x(t) ≤ xi2(t)}, if Li1,i2 ≥ 1

2

and

Ac(x; xi1 , xi2) = {t ∈ a(i2, i1) : xi2(t) ≤ x(t) ≤ xi1(t)}, if Li2,i1 >
1

2
.

Band depth is thus modified so as to consider only the proportion of the domain where
the delimiting curves define a contiguous region that has non-zero width. To conduct
the construction, we evaluate the depth regions of order α for cGBD, that is,

Rα(P) = {x : cGBD(x, P) ≥ α}.
For any depth function D(x, P), the depth regions, Rα(P) = {x ∈ L2([0, T ]) :
D(x, P) ≥ α} are of paramount importance as they reveal very diverse characteris-
tic of probability distribution P : location, scatter, and dependency structure (clearly
these regions are nested and inner regions contain larger depth). While defining local
depth, following the concept of Paindaveine and Van Bever (2013), it will be more
appropriate to index the family {Rα(P)} by means of probability contents. Conse-
quently, for any β ∈ (0, 1], we define the smallest depth region with P-probability
equal or larger than β as
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Rβ(P) =
⋂

α∈A(β)

Rα(P),

where A(β) = {α ≥ 0 : P(Rα(P)) ≥ β}. The depth regions Rα(P) or Rβ(P) provide
neighborhood of the deepest point only. However, we can replace P by its symmetrized
version Px = 1

2 P
X + 1

2 P
2x−X. Let D(·, P) be a depth function. The correspond-

ing sample local depth function at the locality level β ∈ (0, 1] is LDβ(x, P(n)) =
D(x, Pxβ(n)), where Pβ(n)

x denotes the empirical measure of those data points that
belong to Rβ

x (P(n)). Rβ
x (P(n)) is the smallest sample depth region that contains at

least a proportion β of the 2n random functions x1, . . . , xn, 2x − x1, . . . , 2x − xn .
Depth is always well defined—it is an affine invariant from original depth. For β = 1,
we obtain global depth, whereas for β � 0 we obtain extreme localization. As in
the population case, our sample local depth will require considering, for any x ∈ L

2,
the symmetrized distribution Pn

x , which is an empirical distribution associated with
x1, . . . , xn, 2x − x1, . . . , 2x − xn . Sample properties of the local versions of depths
result from the general findings presented in Zuo and Serfling (2000).

Implementations of local versions of several depths including projection depth, Stu-
dent, simplicial, L p depth, regression depth, and modified band depth can be found in
free R packageDepthProc (Kosiorowski and Zawadzki 2014). For choosing the local-
ity parameter β, we recommend using cross-validation related to an optimization of a
certain merit criterion (the resolution being appropriate for comparing the phenomena
in terms of their aggregated local shape differences, which relies on our knowledge
on the considered phenomena).

3.2 Local Wilcoxon test for testing homogeneity

Let us consider two samples andX = {x1, x2, . . . , xn} = {Xi }n−m
i=1 ∪{Yi }mi=1. The ranks

induced by a local corrected generalized band depth with prefixed locality parameter
β ∈ (0, 1] are

Rl = #
{
x j ∈ X : cGDB(β)(x j , X) ≤ cGDB(β)(xl , X)

}
, (4)

l = 1, . . . , n. Ranking the original observations according to the cGBD is done
subsequently. Let the unified ranks in the combined sample of all observations be Rl ,
l = 1, 2, . . . , n or Rx1, . . . , Rxn−m ranks of Xi ’s and Ry1 , . . . , Rym ranks of Yi ’s.

Proposal 1 We propose to conduct a proper Wilcoxon test to test the hypothesis of
equality of the two distributions generating two given sets of functional sequences.
The β-local (two independent samples) Wilcoxon rank sum statistic for functional
data takes the following form:

Sβ =
n−m∑

i=1

Rxi , (5)

where ranks are induced by local cGBD with locality parameter β. Following Li and
Liu (2004), it is worth noticing that if two samples X and Y are found in a disposal
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and any depth function, one can calculate depth in the combined sample X ∪ Y ,
assuming empirical distribution calculated using all observations, or calculating this
distribution assuming only one of the samples X or Y. If we observe that depths for X ′

l s
indicate the center of the combined sample and depths for Yl ′s indicate peripheries,
we conclude Y was taken from distribution with bigger scatter. In general, differences
in allocations of ranks between samples indicate various differences in shapes of
underlying distributions and hence a departure from their equality (Liu et al. 1999;
Kosiorowska et al. 2014). In the functional setting, a difference in scale means that an
α-central region drawn from the populationXconsists of smaller amount of probability
mass than taken from the population Y, and hence, Y is more scattered than X. The
locality parameter β indicates a resolution in which we compare the populations. It
ranges from a verymisty comparison (parameter close to 1) to a very sharp comparison
(the parameter close to 0). From other point of view, we can treat the statistic (5) as
an aggregate representing local asymmetry in data set (Paindaveine and Van Bever
2013). Differences in value of (5) for two samples indicate differences in aggregated
local asymmetry but simultaneously in local location and scale. Notice that for β = 1,
we perform classical Wilcoxon rank sum test, and hence, we can use tables for this
test to obtain critical values and use well-known tie-breaking schemes in case of ties
(Jureĉková andKalina2012).Bigor small values of test statistics indicate differences in
distributions between the samples then. For other β values, for each point we calculate
depth with respect to empirical distribution symmetrized in this point. It may happen
that twopoints have the samedepth value and hence the same rank.However,we expect
significant differences in sums of ranks for samples drawn from different continuous
distributions (different distributions should be characterized by different kinds of local
asymmetry). The differences we underline are related to the parameter of resolution
β in which we conduct the comparison. On the other hand, the β parameter may be
treated as parameter of data peeling of the combined sample—a parameter of desired
sensitivity to contamination of our procedure. “A power” of the test depends not only
on the differences between location and scale of the underlying distributions but also
on the differences in “shape” of the underlying distributions in appropriate functional
space. For practical purposes, we recommend Monte-Carlo evaluation of the “power”
in case of selected alternatives being especially important for a decision–maker from
a merit point of view. Merit properties of the proposal depends on the properties of
functional depth that is being used. Sample properties and other asymptotic properties
of the proposed statistic result from Nieto-Reyes and Battey (2016) and Paindaveine
and Van Bever (2013). However, notice that Nieto-Reyes and Battey (2016) did not
consider local functional depth but only global versions.

Flores et al. (2015) constructed four different statistics to measure the distance
between two samples based on the comparison of maximal depth elements. They pro-
posed two-sample tests for homogenity in the context of FDA. They did not use a
concept of local depth in their considerations. Our approach enables to use a locality
parameter β, which indicates a resolution in which we compare the populations. It
ranges from a very misty comparison (parameter close to 1) to a very sharp compar-
ison (the parameter close to 0). The researcher may adjust the locality parameter on
the grounds of the matter being considered and her/his experience. Our proposal (1)
outperforms their proposals in cases of multimodal distributions.
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Proposal 2: detecting a structural change For a given functional reference sample
X1, . . . , XM , we would like to compare the stream of functional data Y1, . . . ,YN ,
where N >> M with our reference sample, that is, to detect a structural change in a
functional data stream.

We construct a moving window of length L and sequentially test a homogeneity of
X1, . . . , XN andYk, . . . ,Yk+L−1 for k ∈ {1, . . . , N−L+1} using the statistic (5). Our
procedure detects a structural change in a functional data stream. In order to obtain
sample distribution of the test statistic and in consequence the necessary p-values,
we propose to use a maximal entropy bootstrap methodology proposed by Vinod
and de Lacalle (2009) and implemented in meboot R package. Note that in the time
series setting, because of the temporal dependence between observations, resampling
and especially bootstrap seem to be the only solution to conduct statistical inference
(Shang (2016)). Having empirical time series under our study, we generate bootstrap
samples usingmeboot R package, and then we calculate our sampleWilcoxon statistic
distribution to obtain appropriate p-values.

4 Properties of the proposals: simulation studies

In order to determine the finite sample properties of our proposal, we conducted
simulation studies. In order to find the finite sample properties of our “static” pro-
posal (1), we conducted extensive simulation studies involving various differences in
location and scale and shape of distributions generating samples. We generated two
samples 100 times from the same distribution (situation representing null hypothesis)
and from two distributions of the same kind but differing with respect to location and
scale. Similarly to Horváth et al. (2014) and Didericksen et al. (2012), we consid-
ered samples with functional errors being generated by Wiener process and Brownian
bridge divided into 1440 and 120 time points (24 hours divided into 1- and 12-min
time segments). We considered samples of equal and different sizes. In general, in
case of simple differences in location and scale, our proposal performed comparable
to proposals introduced by Flores et al. (2015) based on maximal depth elements in
two sample comparison but significantly outperformed them in cases of existence of
multimodality—local differences between samples. Figure3 presents a sample of 50
curves generated from Wiener process observed at 120 points. Figure4 presents a
sample of 50 curves generated from 5% mixture of two Wiener processes differing
with respect to location. Figure5 presents estimated density of the statistic (5) under
the hypothesis that both samples are generated from the population related to Fig. 3,
and Fig. 6 presents the estimated density of statistic (5) under an alternative in which
the first sample is generated from population related to Fig. 3, and the second pop-
ulation is generated from a population related to Fig. 4. It is easy to notice that the
estimated densities differ with respect to the location and hence may be used to dis-
criminate between populations. Further results and R codes are available upon request
(we performed sensitivity analysis similar to given in Flores et al. 2015).

For checking the proposed structural change detection procedure, we generated
time series from the following models having economic justification in the context of
cyclical properties modeling. We used functional autoregression model FAR(1), that
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Fig. 3 Sample of 50 curves generated from Wiener process observed at 120 points

Fig. 4 Sample of 50 curves generated from 5% mixture of two Wiener processes differing with respect to
location

is, Xn+1 = Ψ (Xn) + εn+1, in which the errors εn and the observations Xn are curves,
and Ψ is a linear operator transforming a curve into another curve. The operator Ψ is
defined as Ψ (X)(t) = ∫

ψ(t, s)X (s)ds, where ψ(t, s) is a bivariate kernel assumed
to satisfy ||ψ || < 1, where ||Ψ ||2 = ∫

ψ2(t, s)dtds. The condition ||Ψ || < 1 ensures
the existence of a stationary causal solution to FAR(1) equations.

The FAR(1) data generating process series are thus generated according to model
Xn+1(t) = ∫ 1

0 ψ(t, s)Xn(s)ds+εn+1(t),where n = 1, 2,…, N.We used the following
designs of a simulation study (Didericksen et al. 2012).

1. In experiment 1, we generated 100 curves using a Gaussian kernel ψ(t, s) =
C exp{− 1

2 (t
2 + s2)}, and errors of type (8) from Didericksen et al. (2012) and
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Fig. 5 Estimated density of the statistic (5) under the hypothesis that both samples are generated from the
population related to Fig. 3

Fig. 6 Estimated density of statistic (5) under an alternative in which the first sample is generated from
population related to Fig. 3 and the second is generated from a population related to Fig. 4

then 100 curves using a kernel ψ(t, s) = C. Figure7 presents an illustration for
experiment 1.
We repeated the whole experiment 100 times. Figure8 present the results of the
simulations for the experiment 1 using functional boxplot and FM depth corre-
spondingly.

2. In experiment 2, we generated 100 curves using aGaussian kernel with appropriate
constant C and 100 curves from a mixture of two processes considered in the
experiment 1 but differing with respect to parameters of the error term (8) taken
from Didericksen et al. (2012). Figure9 presents an illustration for experiment 2,
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Fig. 7 Structural change detection in Scheme 1

Fig. 8 100 detections of structural change in Scheme 1 using moving Wilcoxon statistic

and Fig. 10 presents the results of the simulations for experiment 2 using functional
boxplot and FMdepth correspondingly. Left panel of Fig. 11 shows sample density
estimate (Hd0, see Hyndman et al. 2013) for a situation in which samples are
generated from process presented on the left panel of Fig. 12, which is in turn
a mixture of two processes. Right panel of Fig. 11 presents the sample density
estimate (Hd1) where the first sample is generated from the mixture of processes
presented on the left panel of Fig. 12, and the second sample is generated from
the mixture of processes presented on the right panel of Fig. 12. The estimated
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Fig. 9 Structural change detection in Scheme 2

Fig. 10 100 detections of structural change in Scheme 2 using moving Wilcoxon statistic

densities differ significantly with respect to location and hence our procedure
correctly detects the change of type of mixture—this is a situation in which our
procedure performs much better than the proposals of Flores et al. (2015), taking
into account the deepest elements in both the samples.

It is easy to notice that our procedure correctly detects the structural change appearing
after the 100th observation.

Figure12 presents a very interesting example of structural change in which our
proposal (1) outperforms the proposals based on statistics introduced in Flores et al.
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Fig. 11 Sample statistic density estimate under Hd0 and under Hd1

Fig. 12 Two processes that are mixtures of two different processes

(2015). Structural change relates to change of type of the mixture of processes gener-
ating curves.

4.1 Properties of the proposal: empirical example 1

In order to verify the empirical usefulness of the proposal, we considered two Internet
services with respect to number of users and numbers of page views based on the real
data that were made available for us by the owners of the services. Figure1 presents
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Fig. 13 Moving Wilcoxon statistic for numbers of users in service 1, β = 0.8

Fig. 14 Moving Wilcoxon statistic for numbers of users in service 1, β = 0.6

the functional boxplot for hourly numbers of users of the service 1 in 2013, Fig. 2
presents the functional boxplot for hourly numbers of users of the service 2 in 2013.

Figures13, 14, 15 and 16 show the behavior of our proposal calculated frommoving
window for selected values of locality parameter β, and the reference sample consisted
of the first 100 observations. One can notice a general tendency to stabilization of
values of the statistic. The considered process seems to tend toward stationarity.

4.2 Empirical example 2: yield curves

Our second empirical example introduces FDA into modeling and predicting yield
curves. Yield curves originate from the concept of risk-free interest rate, that is,
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Fig. 15 Moving Wilcoxon statistic for numbers of users in service 1, β = 0.4

Fig. 16 Moving Wilcoxon statistic for numbers of users in service 1, β = 0.2

theoretical price which is paid for investments in safe assets. In practice, however,
risk-less instruments do not exist, the risk-free rate is not directly observable and
must be approximated by products traded on the market, like treasury bills, treasury
and corporate bonds, inter-bank lending rates, forward rate agreements or swaps, and
so on. From our point of view, yield curves are functions of time to maturity τ . A
change in yield curve shape is considered to be the sign of change of expectations and
the sign for change in real business cycle phase. Unfortunately, one cannot observe
full functions’ shape, since bonds and other interest rate derivatives have fixed dates
of expiration. The detailed theory of shape of yield curve and factors affecting it
are not fully developed. Estimation of yield curve is usually done in two ways: in
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Fig. 17 Bundles of yield curves before and after crisis represented as functional object in Fourier basis

a non-parametric setting through linear or spline approximation and using bootstrap
techniques or using parametric approach (Diebold and Li 2006).

Since US economy is a precursor of changes in global economy, we focus our
attention on US yield curve. For our study, we use daily observed US yields from the
period of January 3, 2000 to March 30, 2016 with maturities between 1month and
30years. In order to check whether our test is able to detect financial crisis, this subset
is divided into two parts:

1. X—before LehmanBrothers bankruptcy (January 3, 2000 to September 14, 2008),
2. Y—since the beginning of sub-prime crisis in September 15, 2008 till present.

Both the subsets are converted into FDA objects and described in the Fourier basis
(Fig. 17).

Figure17 clearly shows that the resultant shape (i.e., slopes and curvatures) for
both the bundles—before and after crisis—are different, as they should, because of
the change of business cycle phase in global economy. The next step of the procedure
requires the estimation of cGBD for both the subsets. The functional boxplot in Fig. 18
displays the median curve (the deepest location), along with the selected α central
regions (see Hyndman and Shang 2010). Any point beyond the highest value of α may
be considered as an outlier. As shown in Fig. 18, the central tendency of the shape of
yield curve before and after crisis is the same, whereas the shape and nature of outliers
differ significantly.

In order to check whether our procedure is able to detect changes in the structure
of functional time series, the final step of this simulation involved calculation of local
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Fig. 18 Functional boxplot for both the subsets of yield curves

Wilcoxon statistics for functional yield curve in the rolling window scheme (pro-
posal 2). In this scheme, we assume two windows of specified length—the reference
window (or ref for short) has a fixed length and initially includes monthly functional
yield curves data starting from January 2000 and the second window of the same size
is shifted by a fixed number of observations. The shift size and sample length are
kept fixed. Results for windows of length 10, 50, and 40 observations shifted by 10,
20, or 30 points in time are presented in Fig. 19. The obtained results clearly depends
on the window size. For relatively large windows and partially overlapping samples,
changes in the local Wilcoxon statistics are less volatile and can be related to the
phases in business cycle, for example, for windows of length 40 and 50 observations
one can observe the regime change at the end of 2007 (or the begin of 2008) and
changes between the end of 2009 and the begin of 2010 and in 2014. As yield curve
is a predictor of the phase of business cycle, one can be related relate this sharp peaks
to two crisis waves—sub-prime crisis and euro-zone debt crisis. Final peak can easily
be related to the period of time when US economy entered a growth phase again.

5 Sensitivity analysis

Classical one-dimensional Wilcoxon rank sum test effectively detects difference in
location for family of logistic distributions. Multivariate tests induced by depths were
proposed in Liu and Singh (1995) and Li and Liu (2004). Theoretical properties of
multivariate Wilcoxon test (unbiasedness as well as its consistency were critically
discussed in Jureĉková and Kalina 2012). In our proposal, ranks are induced by outly-
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Fig. 19 Local Wilcoxon statistics for yield curves

ingness relative to the local centrality characteristic. Observations are ranked from the
closest to the local median to the furthest to the local median. Relatively big or small
values of the proposed statistic indicate differences in structure of outlyingness (con-
sidered on a locality level β) and should lead us to rejecting a hypothesis of equality
of distributions.

In the functional case, significantly differing curves may have the same depth and
hence the same rank. On the other hand, different empirical depths indicate differences
in the underlying distributions, because under very mild conditions depths character-
ize multivariate distributions (and if distribution in a functional space as well it is still
an opened question) (Kong and Zuo 2010). However, the simulation studies lead to
a hypothesis that in a functional case we can expect a similar result: the corrected
generalized band depth characterizes a distribution in a functional space or at least
effectively describes its merit important features. Considering a reference sample and
a moving window from a process, we can use our proposal for detecting not only a
structural change but also a departure from stationarity (represented by the reference
sample). Results of the simulations lead to a conclusion that our proposal is at least
qualitative robust in the Hampel sense (Wilcox 2014). Small changes in null and alter-
native hypotheses do not significantly change the size and power of our proposal. We
considered distance in the input space in terms of a median of all distances for pairs of
functions, where one function belong to assumedmodel and the second to amodel rep-
resenting a departure from assumptions. In the output space, we considered euclidean
distance between the values of our test statistic. In these terms, small changes of input
data lead to small changes of a decision process based onmonitoring stationarity of the
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functional time series (Hall et al. 2003). Understanding various possible outlyingness
in functional time series setting is worth to notice. It is possible to consider the out-
liers in space of functions or outlyingness related to vertical point-wise contamination.
Contamination may affect the reference sample or the working window. We consid-
ered functional outliers with respect to functional boxplot induced by the corrected
generalized band depth. Notice that our proposal is robust but not very robust (it copes
with up to 10% of contamination). It is robust to a moderate fraction of outliers or
inliers (they lead to small change of ranking induced by depth) but sensitive to a time
series regime change. Therefore, the procedure may be used for monitoring the data
streams (Kosiorowski 2016). In our opinion, alternative procedures for monitoring a
homogeneity in functional time series are less robust to functional outliers than our
proposal.

We can evaluate the ”size” and the ”power” of our procedure in a similar manner
as in Li and Liu (2004) and Jureĉková and Kalina (2012). A central issue in the anal-
ysis of functional data is to take into account the temporal dependencies between the
functional observations. Because of this temporal dependence, even the most elemen-
tary statistics became inaccurate. In this context, resampling methodology, especially
bootstrapping, proves to be the only alternative. In order to obtain bootstrap p-values
for our test, we propose to use a maximum entropy methodology proposed by Vinod
and de Lacalle (2009) and used among others by Shang (2016). Themeboot R package
together with DepthProc R package gives the appropriate computational support.

6 Summary

The proposed procedure based on moving local Wilcoxon statistic may effectively
be used for detecting heterogenity in functional time series. Simulation studies indi-
cate that properties of our proposal depends on the Kolmogorov distance between
functional medians in the distributions generating samples, one representing null
hypothesis of stationarity and the second alternative representing a fixed departure
from the stationarity. The locality parameter β may be interpreted as a resolution or a
sensitivity to details (e.g., local asymmetry) at which we monitor a process.

Merit properties of the proposed procedure strongly depend on the functional depth
being used (on which conditions we choose a center in a sample of functions (Sguera
et al. 2016; Nagy et al. 2016). The conducted simulation studies as well as the studied
empirical examples show a big potential of our proposal in the context of discrimina-
tion between the alternatives and in a consequence in detecting a structural change.
Implementations of the local Wilcoxon test and our proposal may be found in Depth-
Proc R package, which is available through CRAN servers. Note that for detecting
special kinds of nonstationarity, it is possible to replace the local Wilcoxon statistic
by means of local Kamat or Haga statistics (or other rank statistic). Further theoretical
properties of our proposal are still under our consideration and constitute a part of our
future work.
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