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Abstract Integer-valued autoregressive models are widely used for modeling the
time dependent count data. Many of the inference problems related to these types
of models are not yet addressed due to the complexities of the related distribution
theory. In this paper, we consider one such inference problem associated with these
types of models. For a random coefficient integer-valued autoregressive model, we
develop a locally most powerful-type test for testing the hypothesis that the thinning
parameter is constant across the time. The asymptotic distribution of the suggested
test statistic is derived. The Poisson and geometric INAR(1) models are considered
for the illustration of the suggested methodology. Simulation studies indicate that the
suggested test performs quite well. We have applied our methods to count time series
data sets, where the thinning parameter is suspected to be varying.
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1 Introduction

Recently, there has been a growing interest in modeling non-negative integer-valued
time series, especially, time series of counts. Several models have been proposed in the
literature; in particular, the INteger-valuedAutoRegressive (INAR)model has been the
subject of study in various research papers. Reasons to introduce these integer-valued
data models come from the need to account for the discrete nature of certain data sets,
often counts of events, objects or individuals. The application areas of these types
of integer-valued time series include epidemiology, actuarial statistics, neurobiology,
psychometry etc. See for example Ristić et al. (2009), Moriña et al. (2011), Park and
Kim (2012), Maiti et al. (2015) and Davis et al. (2016) .

A first-order integer-valued autoregressive model (INAR(1)) is defined as

Xt = φ ◦ Xt−1 + Zt , t ≥ 1, (1)

where φ ∈ [0, 1), {Zt } is a sequence of independent and identically distributed (i.i.d.)
non-negative integer-valued random variables with probability mass function fz,
E(Zt ) = λ, Var(Zt ) = σ 2

z , and {Zt } independent of X0 for all t. The symbol ‘◦’
stands for a thinning operator, which, conditional on Xt−1 is defined as

φ ◦ Xt−1 =
Xt−1∑

i=1

Bi ,

where {Bi , i = 1, 2, . . . , Xt−1} are i.i.d. Bernoulli random variables with parameter
φ. This model has lot of similarity to the ordinary AR(1) model for a continuous time
series.As an example of a standard INAR(1)model, onemayconsider Xt as the number
of surviving cancer patients in a hospital at time t, φ be the probability of survival from
time t −1 to t , and Zt be the number of new cancer patients admitted at time t (Zheng
et al. 2006). Thus, {Xt } can be considered as a branching process with immigration.
For more details and further examples, we refer to the papers by McKenzie (1985a, b,
1986, 1987, 1988a, b), Al-osh and Alzaid (1987, 1991, 1992), Alzaid and Al-osh
(1988), Bouzar and Jayakumar (2008), Kim and Weiß (2013), Kashikar et al. (2013)
and Khao et al. (2015) among others. In fact, a web page on integer-valued time series
is available at https://sites.google.com/site/integervaluedtimeseries/.

It may be noted that the thinning parameter φ need not remain as a constant; on the
other hand, it may vary with time. For example, in the above discussion, the survival
probabilityφ need not be a constant throughout the time period. Treating the parameter
φ as a random variable defined in [0, 1), Zheng et al. (2007) have introduced a random
coefficient integer-valued autoregressive model of order one (RCINAR(1)). This may
be defined as follows:

Xt = φt ◦ Xt−1 + Zt , t ≥ 1, (2)

where {φt } is a sequence of i.i.d. random variables defined on [0, 1). Let φ = E(φt ),

and σ 2
φ = Var(φt ). The random variable X0 is assumed to be independent of {φt },

which is independent of {Zt }. Zheng et al. (2007) have studied this model extensively
and several properties of this model have been discussed in their paper. These include
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the Markov chain properties such as periodicity, positive recurrence and ergodicity,
conditional and unconditional mean and variance, covariance and autocorrelation.
They further derived conditional least squares and quasi-likelihood estimators of the
model parameters and established their asymptotic properties. Zheng et al. (2006)
have extended all the above results to a p-th order random coefficient integer-valued
autoregressive (RCINAR(p)) model. Two interesting real data sets were modeled
under this set up. Zhang et al. (2011) have studied the empirical likelihood method
for the estimation of an RCINAR(1) process. One of the problems of interest under
this set up is, given the data {X1, X2, . . . , Xn}, test the hypothesis that there is no
time variation for the thinning parameter φ (the series is INAR(1)) against that it
varies randomly across the time (it is RCINAR(1)). This is essentially same as testing
H0 : σ 2

φ = 0 against H1 : σ 2
φ > 0. This problem is of great interest, because, having

known that there is no stochastic time variation for the thinning parameter φ, the
inference procedures are some what easy, as opposed to the case when the thinning
parameter is stochastic and time varying. Therefore, in this paper we address this
testing problem.

It may be possible to construct a likelihood ratio test for the above testing problem.
However, the likelihood ratio approach has some serious set backs; as the true value of
the parameter under the null hypothesis lies on the boundary of the parameter space,
the asymptotics will not be smooth. Therefore, in this paper, we develop a locally
most powerful type test for testing this hypothesis. Kale and Ramanathan (1997) have
proposed a similar test for testing the randomness of the environment in a branching
process. Incidentally, Kang and Lee (2009) have considered a change-point problem
in a RCINAR(1) model and have employed the cumulative sum (CUSUM) test based
on the conditional least-squares and modified quasi-likelihood estimators. Han and
McCabe (2013) have considered the problem of testing the constancy of the parame-
ter for a general class of non-Gaussian time series, which include the integer-valued
time series also. They have advocated the use of the two-sided CUSUM test for the
parameter constancy, proposed by Brown et al. (1975). These authors were interested
in the structural break-type models, where the parameters get changed at certain spe-
cific time points (unknown). Our approach allows the parameters to be completely
random under the alternate hypothesis. Schweer and Weiß (2014) proposed a test for
overdispersion in INAR(1) process, Meintatnis and Karlis (2014) proposed a test for
testing the hypothesis that the innovation distribution belongs to Poisson stopped-sum
distributions. If the φt in model (2) is random then it leads to overdispersion, as the
variance of the series is sum of σ 2

φ and the variance of the innovation random variable.
The tests proposed in these two papers can be also used to test the overdispersion in
the count time series data but, they do not specifically test whether the overdispersion
is due to the randomness in the thinning parameter. Our test is specifically designed to
identify the randomness in the thinning parameter of the model. Zhao and Hu (2015)
have proposed a test for randomness of the coefficient of an RCINAR(1) process, but
using the least squares estimates of the parameter σ 2

φ .
This paper is organized as follows. In Sect. 2, we derive the test statistic and its

asymptotic distribution theory under the general setup. Section 3 considers these for
Poisson and geometric INAR(1) models. A simulation study is reported in Sect. 4 to
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judge the performance of the suggested test. Section 5 consists of various applications
and data analysis. Section 6 concludes the paper.

2 Test statistic and its asymptotic distribution

2.1 RCINAR(1) model

Let {X1, X2, . . . , Xn} be the time series data from an RCINAR(1) model which satis-
fies (2). Let {φt } be an i.i.d. sequence of random variables with probability distribution
Pφ . Note that, conditional on {φt }, φt ◦ Xt−1 is binomial with parameters (Xt−1, φt )
and hence conditional on both (Xt−1, φt )=(x, φ), the distribution of Xt is given by
fz(Xt − φ ◦ x).
Before deriving the test statistic, we make the following regularity conditions:

C1: The probability mass function (p.m.f.) fz of Zt = Xt − φ ◦ Xt−1 is such that
log fz is thrice differentiable with respect to φ and λ and the derivatives (partial
and mixed) are bounded in a neighbourhood around (φ, λ).

C2: Differentiation thrice with respect to (φ, λ) of fz under the integration is per-
mitted.

C3: The distribution Pφ of φt is such that E |φt |3 < ∞.

Since Zt ’s are i.i.d.with probabilitymass function fz , we canwrite down the likelihood
function LH1 for RCINAR(1) model as,

LH1(X1, . . . , Xn) =
n∏

t=1

P(Xt |Xt−1)P(X0)

and

P(Xt = y|Xt−1 = x, φt = φ) = P(φt ◦ Xt−1 + Zt = y|Xt−1 = x, φt = φ)

= fz(y − φ ◦ x).

Therefore,

LH1(X1, . . . , Xn) = P(X0)

n∏

t=1

fz(zt ) = P(X0)

n∏

t=1

∫
fz(Xt − φ ◦ Xt−1)dPφ. (3)

It is assumed that distribution of X0 is free from (φ, σ 2
φ ). Expanding LH1 around φ,

the mean of φt , using the Taylor series expansion yields

LH1 = P(X0)

n∏

t=1

∫ {
fz(Xt − φ◦Xt−1) + (φt − φ) f

′
z (Xt − φ◦Xt−1)

+ (φt − φ)2

2
f

′′
z (Xt − φ ◦ Xt−1) + �n

}
dPφ.
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Therefore,

∂logLH1

∂σ 2
φ

∣∣∣∣∣
σ 2

φ=0

= 1

2

n∑

t=1

f
′′
z (Xt − φ ◦ Xt−1)

fz(Xt − φ ◦ Xt−1)
,

which results in the test statistic:

Tn(θ) =
n∑

t=1

1

2

f
′′
z (Xt − φ ◦ Xt−1)

fz(Xt − φ ◦ Xt−1)
=

n∑

t=1

Yt (θ), say,

where

Yt (θ) = 1

2

f
′′
z (Xt − φ ◦ Xt−1)

fz(Xt − φ ◦ Xt−1)
.

The actual test statisticmay be obtained by replacing θ = (φ, λ)T with their maximum
likelihood estimator θ̂ = (φ̂, λ̂)T . It can be easily verified that {Yt (θ);FY

t } is a zero-
mean martingale and hence we have the following lemma (Basawa and Prakasa Rao
1980).

Lemma 2.1 Under the following assumptions,
A1. E |Yt (θ)|2+δ ≤ � < ∞, ∀ t ≥ 1, � a constant, δ > 0 and

A2. limn→∞ 1
n

n∑
t=1

E(Y 2
t (θ)|FY

t−1) = σ 2(θ) a.s.,

1√
n

n∑

t=1

Yt (θ)
d→ N

(
0, σ 2(θ)

)
.

The asymptotic normality of the test statistic is considered in the following theorem
whose proof is deferred to Appendix 1.

Theorem 2.1 Under the regularity conditions C1–C3 and the assumptionsA1–A2 of
Lemma 2.1,

(
√
n ν̂)−1Tn(θ̂)

d→ N (0, 1), (4)

where

ν̂2 = σ 2(θ̂) − σ T (θ̂) I−1(θ̂) σ̂ (θ̂ ).

(The expressions for I (θ) and σ(θ) are derived in Appendix 1)
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2.2 RCINAR( p) model

FollowingZheng et al. (2006),wedefine a p-th order randomcoefficient integer-valued
autoregressive (RCINAR(p)) model as

Xt =
p∑

i=1

φi t ◦ Xt−i + Zt , t ≥ 1,

where φt = (φ1t , φ2t , . . . , φpt )
′ is a p × 1 random vector with E(φt ) = φ =

(φ1, φ2, . . . , φp)
′ and variance-covariance matrix 
φ . The random vectors φt , t =

1, 2, . . . , n are assumed to be i.i.d. and defined on [0, 1)p. Our interest here is to exam-
ine whether the variation in φ is significant or not, that is, to test the hypothesis that
H0 : φt = φ for t = 1, 2, . . . , n (non random) against H1 : φt is random as described
above. This is equivalent to testing H0 : 
φ = 0 against H1 : 
φ �= 0 . However, we
may consider the hypothesis as H0 : σ 2

φi
= 0 , i = 1, 2, . . . p; against H1 : σ 2

φi
> 0

for some i with an assumption that 
φ is a diagonal matrix.
Now, proceeding on the similar lines as in RCINAR(1), it is possible to consider

RCINAR(p) model and arrive at the test statistic,

T =
(
Tn1(θ̂), Tn2(θ̂), . . . , Tnp(θ̂)

)′
.

An appropriate quadratic form of this vector can be proved to have a chi-square
distribution with p degrees of freedom asymptotically.

3 Illustrations

3.1 Poisson INAR(1) model

In this section we derive the test statistic in the case of a Poisson INAR(1) model. Let
Zt in model (1) be distributed as Poisson(λ), that is, {Xt } is a Poisson INAR(1) model.
Then

f (Xt |Xt−1) = fz(Xt − φ ◦ Xt−1) =
Mt∑

k=0

Pk φk (1 − φ)Xt−1−k,

where

Pk = Pk(Xt , Xt−1, λ) =
(
Xt−1
k

)
λXt−k

(Xt − k)!e
−λ

and

Mt = min(Xt , Xt−1).

The test statistic in this case is

Tn(θ) =
n∑

t=1

Yt (θ), where Yt (θ) = A(θ)

B(θ)
,
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with

A(θ) =
Mt∑

k=0

Pk φk−2 (1 − φ)Xt−1−k−2
{
k(k − 1)(1 − φ)2

− (Xt−1 − k)[2kφ(1 − φ) − φ2(Xt−1 − k − 1)]
}

and

B(θ) = 2
Mt∑

k=0

Pk φk (1 − φ)Xt−1−k .

For the Poisson INAR(1) model, all the regularity conditions are satisfied. Fur-
ther, {Xt } is a stationary and ergodic process (Freeland and McCabe 2004). Hence
by applying Theorem 2.1, we can claim the asymptotic normality of the test statistic
Tn(θ). However, the computations of the terms involved in the asymptotic variance of
the normal distribution are messy. Therefore, we adopt a computational procedure for
evaluating the elements of empirical Fisher information matrix, as suggested by Free-
land and McCabe (2004). These elements will converge to the theoretical quantities,
as the sample size increases to infinity (by strong law of large numbers). The details
are deferred to Appendix 2.

3.2 Geometric INAR(1) model

If the count time series data are over dispersed, then the usual Poison INAR(1) model
is not suitable, however, we may use geometric INAR(1) models in such situations.
The geometric INAR(1) process with negative binomial thinning proposed by Ristić
et al. (2009) is given by,

Xt = α ∗ Xt−1 + εt , t ≥ 1 (5)

where α ∗ X = ∑X
i=1 Wi , α ∈ [0, 1), {Xt } is a stationary process with P(Xt =

x) = μx/(1 + μ)x+1, x = 0, 1, 2, . . ., {Wi } is sequence of i.i.d random variables
with geometric (α/(1 + α)) distribution, {εt } is independent of Wi and Xt−l for all
l ≥ 1. The distribution of εt is,

P(εt = l) =
(
1 − αμ

μ − α

) μl

(1 + μ)l+1 + αμ

μ − α

αl

(1 + α)l+1 , l = 0, 1, 2, . . . .

Themean and variance of εt areμε = (1−α)μ and σ 2
ε = (1+α)μ((1+μ)(1−α)−α)

respectively. The conditional p.m.f. is,
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P(Xt = y|Xt−1 = x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − αμ

μ − α

) μy

(1 + μ)y+1 + αμ

μ − α

αy

(1 + α)y+1 , if x = 0,

μαy+1

(μ − α)(1 + α)y+x+1

(
y + x

y

)

+
(
1 − αμ

(μ − α)

) μy

(1 + α)x (1 + μ)y+1

y∑

r=0

(
x + r − 1

x − 1

)(α(1 + μ)

μ(1 + α)

)r
, if x ≥ 1,

Therefore, by taking θ = (μ, α)τ , the test statistics Tn(θ) can be obtained as

Tn(θ) =
n∑

t=1

Yt (θ) =
n∑

t=1

A(θ)

B(θ)
,

where
B(θ) = 2 f (Xt |Xt−1).

A(θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2μXt+2

(1 + μ)Xt (μ − α)3
+ μαXt−1

(1 + α)Xt+3(μ − α)3
A1αμ, if Xt−1 = 0,

μαXt−1

(1 + α)3+Xt−1+Xt (μ − α)3

(
Xt + Xt−1

Xt

)
A2αμ

+ μXtα−2(α − μ)−3

(1 + α)2+Xt−1(1 + μ)1+Xt

Xt∑

k=0

(α(1 + μ)

μ(1 + α)

)k
A3αμ, if Xt−1 > 0,

with,

A1αμ = 2α4 − 4α3Xt + μ2Xt (1 + Xt ) − 2αμ(1 + Xt )(−1 + μ + Xt )

+α2((−1 + Xt )Xt + 6μ(1 + Xt )),

A2αμ = 2α(α3 + μ + 3αμ − μ2) + α2(α − μ)2X2
t−1 + (−4α3 + μ2 − 2αμ2

+α2(−1 + 6μ))Xt + (α − μ)2X2
t + α(α − μ)Xt−1

×
(
3α2 + 2μ − αμ − 2(α − μ)Xt

)

and

A3αμ = −μ3(−1 + k)k + α5(1 + μ)Xt−1(1 + Xt−1) + αμ2k(3(−1 + k)

+μ(3 + k + 2Xt−1)) − α4(1 + Xt−1)

×
(
2k + 2μ2(−1 + Xt−1) + μ(2k + 3Xt−1)

)

−α2μ
(
3(−1 + k)k + μ2Xt−1(3 + 2k + Xt−1)

+2μ
(
−1 + k2 + 3k(1 + Xt−1)

))

+ α3
(
(−1 + k)k + μ3(−1 + Xt−1)Xt−1 + μk(5 + k + 6Xt−1)
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Table 1 Empirical level of the
test at nominal level 0.05 for
Poisson INAR(1) model

λ φ Sample size

50 100 300 500 1000 5000

0.3 0.05 0.204 0.129 0.064 0.063 0.063 0.060

0.1 0.162 0.101 0.052 0.069 0.064 0.059

0.3 0.104 0.056 0.047 0.054 0.063 0.055

0.5 0.066 0.068 0.069 0.057 0.046 0.046

0.7 0.122 0.106 0.077 0.063 0.061 0.063

0.9 0.245 0.149 0.090 0.072 0.062 0.057

0.5 0.05 0.135 0.068 0.061 0.056 0.067 0.052

0.1 0.089 0.048 0.054 0.056 0.047 0.058

0.3 0.061 0.070 0.067 0.054 0.052 0.049

0.5 0.104 0.080 0.067 0.068 0.052 0.051

0.7 0.119 0.095 0.062 0.069 0.061 0.058

0.9 0.185 0.129 0.091 0.065 0.067 0.046

1 0.05 0.082 0.083 0.058 0.072 0.061 0.054

0.1 0.094 0.095 0.072 0.056 0.064 0.048

0.3 0.102 0.088 0.071 0.060 0.065 0.046

0.5 0.135 0.092 0.076 0.075 0.059 0.058

0.7 0.154 0.115 0.086 0.062 0.070 0.059

0.9 0.202 0.135 0.077 0.079 0.069 0.050

2 0.05 0.121 0.103 0.065 0.072 0.077 0.059

0.1 0.124 0.109 0.062 0.081 0.050 0.051

0.3 0.139 0.093 0.062 0.067 0.053 0.049

0.5 0.135 0.102 0.080 0.067 0.043 0.053

0.7 0.155 0.122 0.081 0.067 0.069 0.050

0.9 0.213 0.163 0.104 0.064 0.065 0.045

+ μ2
(
4 + 5Xt−1 + 3X2

t−1 + k(2 + 4Xt−1)
))

.

For the geometric INAR(1) model, it is possible to establish the asymptotic nor-
mality of Tn(θ), using the similar arguments as in the Poisson INAR(1) case. Here too
the terms involved in the elements of the variance-covariance matrix of the asymptotic
normal distribution are messy. A similar approach to Freeland and McCabe (2004) is
adopted to obtain the empirical Fisher information matrix. The details are deferred to
Appendix 2.

3.3 Procedure to compute the test statistics

Step 1 Estimate parameter values from the time series data {X1, X2, . . . , Xn}.
Step 2 Compute the first and second order partial derivatives of the likelihood with
respect the parameters in the model.
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Table 2 Empirical power of the test at nominal level 0.05 for Poisson RCINAR(1) model with
φt ∼Beta(a, b)

λ a b Sample size

50 100 300 500 1000 5000

0.5 0.5 0.5 0.188 0.455 0.910 0.999 1.000 1.000

1 0.101 0.110 0.280 0.560 0.860 1.000

1.5 0.110 0.051 0.170 0.160 0.530 0.980

1 0.5 0.319 0.618 0.960 1.000 1.000 1.000

1 0.113 0.210 0.600 0.790 0.960 1.000

1.5 0.040 0.090 0.280 0.420 0.690 1.000

1.5 0.5 0.259 0.694 0.990 1.000 1.000 1.000

1 0.160 0.270 0.590 0.890 1.000 1.000

1.5 0.082 0.100 0.260 0.550 0.780 1.000

1 0.5 0.5 0.284 0.714 0.990 1.000 1.000 1.000

1 0.134 0.250 0.560 0.850 0.980 1.000

1.5 0.082 0.100 0.240 0.420 0.710 1.000

1 0.5 0.429 0.821 0.989 1.000 1.000 1.000

1 0.165 0.364 0.880 0.980 1.000 1.000

1.5 0.082 0.212 0.420 0.740 0.960 1.000

1.5 0.5 0.483 0.871 1.000 1.000 1.000 1.000

1 0.298 0.551 0.930 1.000 1.000 1.000

1.5 0.147 0.230 0.670 0.860 1.000 1.000

2.5 0.5 0.5 0.693 0.964 1.000 1.000 1.000 1.000

1 0.232 0.486 0.966 0.998 1.000 1.000

1.5 0.151 0.241 0.707 0.912 0.998 1.000

1 0.5 0.822 0.995 1.000 1.000 1.000 1.000

1 0.437 0.801 0.999 1.000 1.000 1.000

1.5 0.207 0.462 0.945 0.999 0.999 1.000

1.5 0.5 0.832 1.000 1.000 1.000 1.000 1.000

1 0.526 0.862 1.000 1.000 1.000 1.000

1.5 0.299 0.591 0.977 0.999 1.000 1.000

Step 3 Compute Tn(θ) using (7) for Poisson INAR(1) model or (8) for geometric
INAR(1) model (see Appendix 2).
Step 4 Compute σ1(θ), σ2(θ), σ 2(θ) and elements of I (θ).
Step 5 Compute ν̂2 as given in Theorem 2.1 and using this, compute the value of
(
√
n ν̂)−1Tn(θ̂).

4 Simulation study

In order to assess the performance of the proposed test statistics, we have carried out
two simulation studies, one under Poisson INAR(1) model and another with geometric
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Table 3 Empirical level of the
test at nominal level 0.05 for
geometric INAR(1) model

μ α Sample size

50 100 300 500 1000 5000

1 0.1 0.064 0.060 0.046 0.040 0.053 0.054

0.2 0.074 0.079 0.050 0.040 0.060 0.052

0.4 0.097 0.064 0.070 0.068 0.047 0.041

1.5 0.1 0.082 0.082 0.063 0.055 0.046 0.038

0.2 0.076 0.067 0.063 0.048 0.053 0.047

0.4 0.085 0.084 0.048 0.054 0.057 0.059

2 0.1 0.078 0.092 0.057 0.058 0.043 0.043

0.2 0.084 0.081 0.045 0.062 0.047 0.051

0.4 0.092 0.060 0.063 0.060 0.060 0.049

0.6 0.076 0.082 0.064 0.059 0.052 0.047

5 0.1 0.083 0.078 0.070 0.060 0.055 0.059

0.2 0.092 0.105 0.043 0.066 0.052 0.044

0.4 0.094 0.077 0.049 0.049 0.068 0.048

0.6 0.067 0.091 0.066 0.052 0.046 0.050

0.8 0.088 0.079 0.078 0.045 0.049 0.046

INAR(1) model. Firstly we simulate observations from the Poisson INAR(1) model
with various combinations of the parameters. The test statistic is computed for samples
of sizes 50, 100, 300, 500, 1000 and 5000 and 1000 simulations were carried out in
each case. The distribution of φt is assumed to be Beta(a, b) under the alternative
hypothesis. The empirical level and power of the test statistic is reported in Tables 1
and 2 respectively, under Poison INAR(1) set up for various combinations ofλ, a and b.
It can be seen that the test maintains the level and the power tends to one as sample
size increases. However, for small sample sizes such as 50 or 100, the performance of
the suggested test is not so good. For the higher values of φ and smaller sample sizes,
the level is distorted as these values of φ are near to the non-stationary region, but in
this case also the test maintains the level and achieves power, as sample size increases.

In the second simulation study, we consider the geometric INAR(1) model. Here
also we have considered the same sample size and same number of simulations for
uniformity. The empirical size and power of the test are given in Tables 3 and 4
respectively. Similar conclusions can be made from these tables too. Here also, the
distribution of αt under alternative hypothesis is assumed to be the Beta with parame-
ters (a, b). The power of the test is computed for various combinations of μ, a and b.
In this case, we cannot choose higher values of α (such as 0.6, 0.7, 0.8) corresponding
to smaller values of μ, because of the restriction α ≤ μ/(1 + μ). Therefore, we have
chosen higher values of α for higher values of μ (see Table 3). It is found that the
proposed test works well in these cases too.

The third simulationwas carried out to compare the proposed test with the test given
by Zhao and Hu (2015). These authors have proposed a test for the same hypothesis
using the least squares estimator of σ 2

φ as the test statistic. In this simulation study we
found that test suggested by Zhao and Hu (2015) based on the least squares estimator
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Table 4 Empirical power of the test at nominal level 0.05 for geometric RCINAR(1) model with
φt ∼Beta(a, b)

μ a b Sample size

50 100 300 500 1000 5000

0.5 0.5 0.6 0.149 0.234 0.517 0.645 0.845 0.999

0.9 0.141 0.203 0.409 0.562 0.839 1.000

1.6 0.096 0.139 0.249 0.350 0.575 0.996

1.5 0.6 0.121 0.179 0.307 0.430 0.562 0.742

0.9 0.118 0.169 0.302 0.421 0.521 0.746

1.6 0.081 0.159 0.267 0.331 0.465 0.805

3 0.6 0.106 0.132 0.200 0.306 0.405 0.641

0.9 0.090 0.139 0.207 0.293 0.353 0.564

1.6 0.099 0.128 0.192 0.256 0.322 0.510

1 0.5 0.6 0.174 0.312 0.678 0.916 0.996 1.000

0.9 0.130 0.222 0.497 0.730 0.948 1.000

1.6 0.086 0.132 0.231 0.357 0.664 1.000

1.5 0.6 0.188 0.297 0.618 0.811 0.958 1.000

0.9 0.140 0.264 0.541 0.698 0.908 1.000

1.6 0.112 0.164 0.321 0.526 0.781 1.000

3 0.6 0.169 0.257 0.526 0.679 0.843 0.983

0.9 0.150 0.258 0.463 0.602 0.771 0.988

1.6 0.130 0.199 0.324 0.460 0.625 0.980

3 0.5 0.6 0.148 0.356 0.857 0.981 0.998 1.000

0.9 0.097 0.233 0.650 0.914 0.997 1.000

1.6 0.074 0.157 0.316 0.568 0.887 1.000

1.5 0.6 0.173 0.331 0.748 0.906 0.995 1.000

0.9 0.135 0.260 0.631 0.856 0.988 1.000

1.6 0.101 0.177 0.468 0.708 0.936 1.000

3 0.6 0.123 0.251 0.543 0.703 0.918 1.000

0.9 0.138 0.249 0.451 0.670 0.895 1.000

1.6 0.099 0.177 0.355 0.534 0.799 1.000

of σ 2
φ is not performing well in terms of maintaining level and achieving power, in

comparison with the test suggested in this paper. The simulation results given in their
paper are not convincing as the range of φ will not be in [0, 1) for the values of
σ 2

φ chosen by them. For comparison purpose we have computed the empirical level
as well as power of the test for various values of φ under Poisson INAR(1) model,
at 5% nominal level. We have considered the same Beta(a, b) distribution for the
parameter φt under alternative hypothesis. The results are reported in Tables 5 and 6 .
We have used the same parameter combination as well as the sample size and number
of simulations as that of their paper for the computation of level. From comparison
with level and power of our test from Tables 1 and 2, it can be clearly seen that the
suggested test in this paper is better in terms of maintaining the level and power as
opposed to that of Zhao and Hu (2015).
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Table 5 Empirical level of the
Zhao and Hu (2015) test at
nominal level 0.05 for Poisson
INAR(1) model

λ φ Sample size

50 100 300 500 1000 5000

0.3 0.1 0.074 0.049 0.020 0.014 0.015 0.008

0.3 0.049 0.033 0.019 0.013 0.012 0.008

0.5 0.033 0.027 0.016 0.012 0.006 0.011

0.7 0.030 0.016 0.021 0.007 0.006 0.005

0.9 0.019 0.015 0.009 0.004 0.007 0.011

0.5 0.1 0.046 0.033 0.020 0.014 0.013 0.006

0.3 0.024 0.017 0.017 0.017 0.013 0.012

0.5 0.014 0.019 0.011 0.007 0.008 0.012

0.7 0.020 0.015 0.010 0.011 0.003 0.010

0.9 0.014 0.013 0.011 0.009 0.009 0.017

1 0.1 0.015 0.021 0.011 0.009 0.012 0.009

0.3 0.015 0.007 0.009 0.006 0.006 0.006

0.5 0.021 0.010 0.011 0.005 0.012 0.016

0.7 0.017 0.015 0.007 0.007 0.008 0.008

0.9 0.020 0.015 0.008 0.004 0.006 0.015

2 0.1 0.014 0.003 0.004 0.012 0.009 0.011

0.3 0.016 0.009 0.010 0.015 0.003 0.010

0.5 0.011 0.009 0.010 0.006 0.013 0.010

0.7 0.014 0.017 0.010 0.010 0.007 0.009

0.9 0.027 0.014 0.002 0.005 0.006 0.011

5 Applications

We consider three applications of the above discussed testing procedure for data from
real life situations.

5.1 Dengue data

The weekly (753 weeks) time series data on dengue cases reported for the period 2001
to 2015 in Hamburg city of Germany have been considered. These data are available
at Robert Koch Institute website https://survstat.rki.de. The mean and variance of
the data are found to be 0.4063 and 0.5341 respectively. From mean, variance and
correlation plots given in Fig. 1, it can be seen that the data can be modeled by a
Poisson INAR(1) model. From the time series plot given in Fig. 1, the constancy
of the thinning parameter may be suspected, and therefore it is of interest to test
the hypothesis of constancy of the thinning parameter. The value of the test statistic
in (4) for testing H0 : σ 2

φ = 0 against H1 : σ 2
φ > 0 turned out to be 3.5447,

with p value 0.0003, indicating the rejection of the null hypothesis at 5% level of
significance. Therefore, it is better to model this data with RCINAR(1) rather than
INAR(1) model.
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Table 6 Empirical power of the Zhao and Hu (2015) test at nominal level 0.05 for Poisson RCINAR(1)
model with φt ∼Beta(a, b)

λ a b Sample size

50 100 300 500 1000 5000

0.5 0.5 0.5 0.203 0.198 0.265 0.355 0.545 0.996

1 0.094 0.127 0.153 0.157 0.249 0.822

1.5 0.860 0.087 0.072 0.085 0.122 0.447

1 0.5 0.194 0.179 0.175 0.217 0.366 0.992

1 0.146 0.146 0.134 0.200 0.293 0.904

1.5 0.126 0.108 0.127 0.126 0.186 0.692

1.5 0.5 0.122 0.142 0.133 0.126 0.235 0.921

1 0.139 0.140 0.126 0.125 0.248 0.890

1.5 0.159 0.155 0.111 0.130 0.180 0.725

1 0.5 0.5 0.172 0.203 0.275 0.364 0.630 0.997

1 0.122 0.093 0.151 0.179 0.280 0.933

1.5 0.067 0.064 0.084 0.086 0.151 0.622

1 0.5 0.187 0.159 0.184 0.241 0.406 0.998

1 0.109 0.130 0.156 0.202 0.326 0.972

1.5 0.085 0.084 0.098 0.123 0.227 0.822

1.5 0.5 0.149 0.131 0.130 0.143 0.262 0.943

1 0.158 0.161 0.147 0.194 0.252 0.952

1.5 0.148 0.104 0.120 0.142 0.217 0.849

2.5 0.5 0.5 0.200 0.195 0.307 0.389 0.648 0.998

1 0.109 0.126 0.132 0.156 0.283 0.957

1.5 0.068 0.062 0.068 0.086 0.135 0.698

1 0.5 0.244 0.190 0.190 0.261 0.416 0.998

1 0.142 0.149 0.167 0.233 0.363 0.986

1.5 0.107 0.094 0.125 0.140 0.293 0.894

1.5 0.5 0.165 0.129 0.139 0.160 0.285 0.941

1 0.178 0.138 0.140 0.167 0.331 0.974

1.5 0.142 0.101 0.115 0.146 0.258 0.912

5.2 Tuberculosis data

This data consists of 521 weekly number of cases of Tuberculosis reported in Freiburg
city of Baden-Württemberg state of Germany from the year 2001 to 2010, available
at https://survstat.rki.de. The mean and variance are found to be 2.7428 and 3.4106
respectively. Using this information and correlation structure from Fig. 2, it may be
concluded that the data are over dispersed and has an AR(1) structure. Therefore
a geometric INAR(1) model would be appropriate to model these data. From the
time series plot, it is clear that the process has larger variation. We are interested
in testing whether this larger variation can be attributed to the randomness of the
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Fig. 1 Time series, ACF and PACF plots of dengue data

thinning parameter or not. And therefore, we test the hypothesis that H0 : σ 2
φ = 0

against H1 : σ 2
φ > 0. The value of the test statistic in (4) turned out to be 2.4081

with p value 0.0160,which indicates the rejection of the null hypothesis at 5% level of
significance. Thus, in this case a geometric RCINAR(1) model would be much more
appropriate as opposed to the geometric INAR(1).

5.3 Poliomyelitis data

This data consist of 168 monthly number of cases of poliomyelitis in USA for the
period 1970 to 1983, see Zeger (1988). The mean and variance are found to be 1.3413
and 3.5153 respectively. From the correlation structure in Fig. 3 and the mean and
variance it can be concluded that the data are overdispersed and has an AR(1) struc-
ture. Hence, a geometric INAR(1) model would be suitable for this case. We carried
out the test for H0 : σ 2

φ = 0 against H1 : σ 2
φ > 0. The value of the test statis-

tic in (4) turned out to be 0.7905 with p value 0.3739, and hence, we cannot reject
the null hypothesis of constant thinning parameter at 5% level of significance. We
applied the test of Poisson RCINAR(1) also to the data and the value of the test statis-
tics turned out to be 2.5179 with p value 0.1125. This implies that though the data
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Fig. 2 Time series, ACF and PACF plots of tuberculosis data

are overdispersed, this overdispersion is not due to the randomness in the thinning
parameter.

6 Conclusions

In this paper we have proposed a locally most powerful-type test for testing the con-
stancy of the thinning parameter of anRCINAR(1) process. The suggested test is found
to be working well with RCINAR(1) models with Poisson and geometric marginals.
It is clear from the applications that the thinning parameter need not remain constant
throughout the time. Therefore, it is essential to have such a test conducted whenever
the random variation is suspected. A complex RCINAR model would be necessary,
only when the proposed test rejects the null hypothesis. The test suggested in this
paper is not exclusively for testing overdispersion hypothesis. However, it tests the
presence of overdispersion due to randomness of the thinning parameter. Note that
overdispersion may arise in various different ways.
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Fig. 3 Time series, ACF and PACF plots for poliomyelitis data

Acknowledgements Authors are thankful to the editor and referees for their comments. They are also
thankful to Dr. A. S. Kashikar for fruitful discussions. Manik Awale would like to acknowledge the Uni-
versity Grants Commission of India for an award of Research Fellowship under the Faculty Improvement
Program. N. Balakrishna would like to acknowledge a grant from the Department of Science & Technology,
Government of India, SR/S4/MS-837/13. T. V. Ramanathan’s research was partially supported by a grant
from the Department of Science & Technology, Government of India, SR/S4/MS-866/13.

Appendix 1: Proof of Theorem 2.1

Using the standard likelihood theory, under the null hypothesis, we can write

(θ̂ − θ) = −
{

n∑

t=1

l
′
t (θ) + Op(

√
n)

}−1 n∑

t=1

lt (θ),

where

lt (θ) =
(

∂log fz
∂φ

,
∂log fz

∂λ

)T

.
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Now expanding (1/
√
n)
∑n

t=1 Yt (θ̂) around (1/
√
n)
∑n

t=1 Yt (θ) we have

(1/
√
n)

n∑

t=1

Yt (θ̂) = (1/
√
n)

n∑

t=1

Yt (θ) + (θ̂ − θ)T (1/
√
n)

n∑

t=1

Y
′
t (θ) + Op(1),

with Y
′
t (θ) =

(
∂Yt
∂φ

∂Yt
∂λ

)T
. The remainder term is Op(1) since θ̂

p→ θ. In view of the

regularity conditions C1 − C2, we may consider Y
′′
t (θ) = Op(n). Therefore,

(θ̂ − θ)T (1/
√
n)

n∑

t=1

Y
′
t (θ) =

{
1

n

n∑

t=1

[Y ′
t (θ)]T

}{
−1

n

n∑

t=1

l
′
t (θ) + Op(1)

}−1

×(1/
√
n)

n∑

t=1

lt (θ) (6)

Now,

1

n

n∑

t=1

Y
′
t (θ) = 1

n

n∑

t=1

∂

∂θ

{
∂log fz
∂σ 2

φ

}

σ 2
φ=0

=

⎛

⎜⎜⎝

1
n

n∑
t=1

∂2log fz
∂φ∂σφ

2

1
n

n∑
t=1

∂2log fz
∂λ∂σ 2

φ

⎞

⎟⎟⎠

σ 2
φ=0

→ σ(θ) as n → ∞.

This is because

E

(
−∂2log fz

∂φ∂σφ
2

)
= E

(
∂log fz

∂φ

∂log fz
∂σ 2

φ

)
at σ 2

φ = 0

and

E

(
−∂2log fz

∂λ∂σ 2
φ

)
= E

(
∂log fz

∂λ

∂log fz
∂σ 2

φ

)
.

Thus (6) is equivalent to (asymptotically)

−σ T (θ) I−1(θ)
1√
n

n∑

t=1

lt (θ),

where

I (θ) = 1

n

n∑

t=1

E
(
lt (θ)lTt (θ)|F y

t−1

)
.
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Using regularity conditions and Lemma 2.1, we have⎛

⎜⎜⎝

1√
n

n∑
t=1

Yt (θ)

1√
n

n∑
t=1

lt (θ)

⎞

⎟⎟⎠
d→ N

[(
0
0

)
,

(
σ 2(θ) σ T (θ)

σ (θ) I (θ)

)]
.

Therefore,
1√
n

n∑

t=1

Yt (θ̂)
d→ N (0, ν2),

where
ν2 = σ 2(θ) − σ T (θ) I−1(θ) σ (θ).

Thus, we have proved the theorem.

Appendix 2: Elements of the Information Matrix

1. Poisson INAR(1):
We have the log likelihood

l = log L =
n∑

t=1

log f (Xt |Xt−1) =
n∑

t=1

lt , say.

The first and second derivative of l with respect to φ are given by

∂l

∂φ
= .

lφ =
n∑

t=1

1

f (Xt |Xt−1)

∂

∂φ
f (Xt |Xt−1) =

n∑

t=1

.

lt (φ), say,

where

.

lt (φ) = Xt−1

1 − φ

f (Xt − 1|Xt−1 − 1) − f (Xt |Xt−1)

f (Xt |Xt−1)
,

and

∂2l

∂φ2 = ..

lφφ =
n∑

t=1

⎡

⎣
∂2

∂φ2 f (Xt |Xt−1)

f (Xt |Xt−1)
−
{

∂
∂φ

f (Xt |Xt−1)

f (Xt |Xt−1)

}2
⎤

⎦=
n∑

t=1

..

l t (φφ), say,

where

..

l t (φφ) = 1

φ2(1 − φ)2

[
2φ2Xt−1 f (Xt − 1|Xt−1 − 1)

f (Xt |Xt−1)
− φ2Xt−1

+ φ2Xt−1(Xt−1 − 1) f (Xt − 2|Xt−1 − 2)

f (Xt |Xt−1)
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−
{

φXt−1 f (Xt − 1|Xt−1 − 1)

f (Xt |Xt−1)

}2]
.

Recall that

Yt (θ) = 1

2

f
′′
(Xt |Xt−1)

f (Xt |Xt−1)
= 1

2

f
′′
z (Xt − φ ◦ Xt−1)

fz(Xt − φ ◦ Xt−1)
,

where

θ = (φ, λ).

Thus, we have

..

l t (φφ) =
∂2

∂φ2 f (Xt |Xt−1)

f (Xt |Xt−1)
−
{

∂
∂φ

f (Xt |Xt−1)

f (Xt |Xt−1)

}2

= 2Yt (θ) −
{

∂
∂φ

f (Xt |Xt−1)

f (Xt |Xt−1)

}2

or

Yt (θ) = 1

2

[
..

l t (φφ) +
{ .

lt (φ)
}2]

.

And thus, the test statistic is

Tn(θ) =
n∑

t=1

Yt (θ) = 1

2

n∑

t=1

[
..

l t (φφ) +
{ .

lt (φ)
}2]

. (7)

Now the derivative of the log likelihood with respect to λ is given by

∂l

∂λ
= .

lλ=
n∑

t=1

1

f (Xt |Xt−1)

∂

∂λ
f (Xt |Xt−1) =

n∑

t=1

.

lt (λ), say,

where

.

lt (λ) = f (Xt − 1|Xt−1) − f (Xt |Xt−1)

f (Xt |Xt−1)
.

Also, the second derivative and the cross derivatives are

∂2l

∂λ2
=..

lλλ=
n∑

t=1

..

l t (λλ), say,
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and

∂2l

∂φ∂λ
= ∂2l

∂λ∂φ
=

n∑

t=1

..

l t (φλ), say,

where

..

l t (φλ) = 1

λφ(1 − φ)

[
λφXt−1 f (Xt − 2|Xt−1 − 1)

f (Xt |Xt−1)

− λ f (Xt − 1|Xt−1)φXt−1 f (Xt − 1|Xt−1 − 1)

{ f (Xt |Xt−1)}2
]
.

The terms appearing in the asymptotic variance ν2 can be derived as

σ 2(θ) = E
(
Yt (θ)

)2 = 1

4
E

[
..

l t (φφ) +
{ .

lt (φ)
}2]2

,

σ (θ) = (σ1(θ), σ2(θ))T

and

I (θ) =
[
I11(θ) I12(θ)

I21(θ) I22(θ)

]
,

where

σ1(θ) = E
[ .

lt (φ)Yt (θ)
]

= 1

2
E
[ .

lt (φ)
{..

l t (φφ) + [ .

lt (φ)]2
}]

,

σ2(θ) = E
[ .

lt (λ)Yt (θ)
]

= 1

2
E
[ .

lt (λ)
{..

l t (φφ) + [ .

lt (φ)]2
}]

,

I11(θ) = −E
[..
l t (φφ)

]
≈ −1

n

n∑

t=1

..

l t (φφ),

I12(θ) = −E
[..
l t (φλ)

]
≈ −1

n

n∑

t=1

..

l t (φλ)

and

I22(θ) = −E
[..
l t (λλ)

]
≈ −1

n

n∑

t=1

..

l t (λλ).
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2. Geometric INAR(1):
Proceeding as in the case of Poisson INAR(1), we have

log L =
n∑

t=1

log f (Xt |Xt−1) =
n∑

t=1

lt , say.

The first and second derivative of the log likelihood with respect to α are

∂l

∂α
=

n∑

t=1

1

f (Xt |Xt−1)

∂

∂α
f (Xt |Xt−1) =

n∑

t=1

.

lt (α), say,

and

∂2l

∂α2 =
n∑

t=1

⎡

⎣
∂2

∂α2 f (Xt |Xt−1)

f (Xt |Xt−1)
−
{

∂
∂α

f (Xt |Xt−1)

f (Xt |Xt−1)

}2
⎤

⎦ =
n∑

t=1

..

l t (αα), say.

Recall that

Yt (θ) = 1

2

f
′′
(Xt |Xt−1)

f (Xt |Xt−1)
= 1

2

f
′′
z (Xt − α ◦ Xt−1)

fz(Xt − α ◦ Xt−1)
,

where

θ = (α, μ).

Thus, we have

..

l t (αα) =
∂2

∂α2 f (Xt |Xt−1)

f (Xt |Xt−1)
−
{

∂
∂α

f (Xt |Xt−1)

f (Xt |Xt−1)

}2

= 2Yt (θ) −
{

∂
∂α

f (Xt |Xt−1)

f (Xt |Xt−1)

}2

or

Yt (θ) = 1

2

[
..

l t (αα) +
{ .

lt (α)
}2]

.

Therefore, the test statistic is

Tn(θ) =
n∑

t=1

Yt (θ) = 1

2

n∑

t=1

[
..

l t (αα) +
{ .

lt (α)
}2]

. (8)
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Now the derivatives of the log likelihood with respect to μ are

∂l

∂μ
=

n∑

t=1

1

f (Xt |Xt−1)

∂

∂μ
f (Xt |Xt−1) =

n∑

t=1

.

lt (μ), say,

∂2l

∂μ2 =
n∑

t=1

..

l t (μμ), say,

and the cross derivative is

∂2l

∂α∂μ
= ∂2l

∂μ∂α
=

n∑

t=1

..

l t (αμ), say.

The terms appearing in the asymptotic variance ν2 can be derived as

σ 2(θ) = E
(
Yt (θ)

)2 = 1

4
E

[
..

l t (αα) +
{ .

lt (α)
}2]2

,

σ (θ) = (σ1(θ), σ2(θ))T

and

I (θ) =
[
I11(θ) I12(θ)

I21(θ) I22(θ)

]
,

where

σ1(θ) = E
[ .

lt (α)Yt (θ)
]

= 1

2
E
[ .

lt (α)
{..

l t (αα) + [ .

lt (α)]2
}]

,

σ2(θ) = E
[ .

lt (μ)Yt (θ)
]

= 1

2
E
[ .

lt (μ)
{..

l t (αα) + [ .

lt (α)]2
}]

,

I11(θ) = −E
[..
l t (αα)

]
≈ −1

n

n∑

t=1

..

l t (αα),

I12(θ) = −E
[..
l t (αμ)

]
≈ −1

n

n∑

t=1

..

l t (αμ)

and

I22(μ) = −E
[..
l t (μμ)

]
≈ −1

n

n∑

t=1

..

l t (μμ).
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