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Abstract Methods are proposed for selecting smoothing parameters of kernel clas-
sifiers in the presence of missing covariates. Here the missing covariates can appear
in both the data and in the unclassified observation that has to be classified. The
proposed methods are quite straightforward to implement. Exponential performance
bounds will be derived for the resulting classifiers. Such bounds, in conjunction with
the Borel–Cantelli lemma, provide various strong consistency results. Several numer-
ical examples are presented to illustrate the effectiveness of the proposed procedures.

Keywords Classification · Kernel · Missing covariate · Consistency ·
Shatter coefficient

1 Introduction

Consider the following standard two-class classification problem. Let (Z,Y ) be a
random pair with an underlying distribution FZ,Y , where Z ∈ R

s , s ≥ 1, is a vector
of observed covariates, and Y ∈ {0, 1} is the unobserved class membership of Z. The
problem is then to predict Y based on Z. More specifically, in classification, one seeks
to find a function (classifier) ψ : Rs → {0, 1} for which the misclassification error
probability, P{ψ(Z) �= Y }, is as small as possible (Devroye et al. 1996). The optimal
or best classifier, denoted by ψB , is given by
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ψB(z) =
{
1 if E(Y |Z = z) > 1

2

0 otherwise,
(1)

and is sometimes called the Bayes classifier or the Bayes decision or rule in the
literature on statistical classification [see, for example, (Devroye 1981; Devroye et al.
1996; Györfi et al. 2002)].

When the distribution FZ,Y is completely known, finding ψB does not pose a chal-
lenge. In practice however, FZ,Y is usually unknown (fully or partially), thus finding
ψB is virtually impossible. One only has access to a random sample (data), denoted
by Dn = {(Zi ,Yi ); i = 1, . . . , n}, where (Zi ,Yi ) are independently and identically
distributed (iid) according to FZ,Y . The goal is then to construct a sample-based clas-
sifier ψn whose error rate is in some sense small. A data-based rule ψn is said to be
strongly consistent if

P{ψn(Z) �= Y | Dn} a.s.−→ P{ψB(Z) �= Y }.

If the convergence holds in probability, we say ψn is weakly consistent. Several non-
parametric classifiers such as general partitioning methods (Glick 1973; Gordon and
Olshen 1978, 1980), nearest neighbor rules (Devroye and Wagner 1982), and kernel
rules (Devroye and Krzyzak 1989; Devroye and Wagner 1980; Krzyzak 1986) have
been proposed in the literature with strong consistency properties.

In this paper we focus on the important problem where there may be missing
covariates in Zi , i = 1, . . . , n, and in the new unclassified covariate vector Z. We
consider kernel classifiers and propose methods to estimate the smoothing parameters
of the kernels when missing covariates are present.

Much of the research on statistical estimation in the presence of missing covariates
has relied on assumptions such asmissingness at random (MAR); see, for example, Hu
and Zhang (2012), Hirano andRidder (2003) ,Wang et al. (2004), andHazelton (2000).
The MAR assumption means that the probability that a covariate is missing does not
depend on that covariate itself. In classification, most of the existing results only deal
with the case where covariates can bemissing in the data (i.e., inZi , i = 1, . . . , n), but
not in the new observation Z, which has to be classified. See, for example, Chung and
Han (2000) for the parametric case, and Pawlak (1993) for the nonparametric case. One
source of difficulty is the fact that the optimal classifier in (1) corresponding to the case
with nomissing covariates is not necessarily the best when there aremissing covariates
in the new unclassified observation Z. In fact, Mojirsheibani and Montazeri (2007)
derive the optimal classifier in the presence of missing covariates, which is in general
different from (1) and which works without imposing any MAR-type assumptions.
Another representation of this classifier is given inMojirsheibani (2012). Furthermore,
Mojirsheibani and Montazeri (2007) propose nonparametric kernel estimators of the
optimal classifier for this setup.Although these authors establish the strong consistency
of their proposed kernel classifiers, they do not provide any directions as to how to
estimate the unknown smoothing parameter of the kernels used. Finding good data-
driven estimates of the kernel smoothing parameter is not just an important theoretical
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consideration; from an applied point of view, a carefully selected bandwidth can help
to minimize the error probability.

In this paper, we propose methods for selecting kernel smoothing parameters in
the complicated case where covariates can be missing in both the data and in the
new unclassified observation. In Sect. 2.1, we revisit kernel-based estimators of the
optimal classifier corresponding to this setup. The proposed classifiers do not require
any MAR-type assumptions on the missingness probability mechanism. In Sects. 2.2
and 2.3, we turn to the question of bandwidth selection by considering the methods
of data-splitting and resubstitution. To evaluate the performance of the corresponding
classification rules, exponential performance bounds are established on the deviations
of their error probabilities from those of the optimal classifier. In Sect. 3, we present
several numerical examples highlighting the effectiveness of the proposed methods.
Proofs are postponed to the end of the paper.

2 Main results

2.1 Kernel classifier with missing covariates

Our discussion and results for classification with missing covariates are based on the
following setup. Let Z = (X′,V′)′ ∈ R

d+p be the vector of covariates to be used to
predict the class membership Y ∈ {0, 1}, where X ∈ R

d , d ≥ 1 is always observable
but V ∈ R

p, p ≥ 1 can be missing. Also, let δ be a {0, 1}-valued random variable
defined by

δ =
{
0 if V is missing

1 otherwise.

Mojirsheibani (2012) and Mojirsheibani and Montazeri (2007) show that in this case,
the optimal classifier is given by

φB(z, δ) :=
⎧⎨
⎩1 if δ

E(δY |Z = z)
E(δ|Z = z)

+ (1 − δ)
E[(1 − δ)Y |X = x]
E[(1 − δ)|X = x] >

1

2
0 otherwise,

(2)

with the convention 0/0 = 0. The corresponding probability of misclassification is
given by

L(φB) = P{φB(Z, δ) �= Y }. (3)

Observe that the classifier ψB(z) in (1) is a special case of φB(z, δ) in (2); to see this,
simply note that φB(z, δ) reduces to ψB(z) whenever P{δ = 1} = 1 (i.e., whenever
there are no missing covariates).

Since the joint distribution of (Z,Y ) is almost always unknown, the classifier φB in
(2) is not available in practice and must be estimated by some sample-based classifier.
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One typically has access to only some iid data Dn = {(Z1,Y1), . . . , (Zn,Yn)}, which
can also be represented by

{(X1,V1,Y1, δ1), . . . , (Xn,Vn,Yn, δn)}.

To define the kernel classification rule corresponding to (2), we replace the quantities
E(δY |Z = z)/E(δ|Z = z) and E[(1 − δ)Y |X = x]/E[(1 − δ)|X = x] that appear in
(2) by their corresponding kernel estimates given by

τ̂1(z) :=

n∑
i=1

δi YiK1

(
Zi − z
h1

)
n∑

i=1
δiK1

(
Zi − z
h1

) and τ̂0(x) :=

n∑
i=1

(1 − δi )YiK0

(
Xi − x
h0

)
n∑

i=1
(1 − δi )K0

(
Xi − x
h0

) , (4)

respectively. Here, the kernels K1 and K0 are maps of the form K j : Rd+ j p → R
+

for j = 0, 1, and h1 ∈ R
+ and h0 ∈ R

+ are called the smoothing parameters or
bandwidths of the kernels K1 and K0 respectively. The idea of replacing the unknown
regression functions with their kernel regression estimates is fairly common in the
literature on regression function estimation with missing data. For example, Mojir-
sheibani and Reese (2015) prove the strong consistency of such kernel regression
estimates when the response variables can be missing; see also Karimi and Moham-
madzadeh (2012) and Toutenburg and Shalabh (2003) for more on the estimation of
regression functions for correlated data in the presence of missing response variables.

The kernel classification rule corresponding to (2) is then given by

φn(z, δ) =
{
1 if δτ̂1(z) + (1 − δ)τ̂0(x) > 1

2

0 otherwise.
(5)

The classifier in (5) would be useful if the values of h0 and h1 were known. As for
the choice of the unknown parameters h1 and h0, we propose a number of methods
to construct the estimates ĥ1 and ĥ0; these include a data-splitting approach and the
resubstitution method.

2.2 Data splitting

We start by randomly splitting Dn into a training sequence Dm of size m ≡ m(n)

and a testing sequence T� = Dn − Dm of size � ≡ �(n), where m + � = n. Here,
Dn = Dm ∪ T� and Dm ∩ T� = ∅. The training sequence Dm is used to construct a
class �m of kernel classifiers of the form

φm(z, δ) =
{
1 if δτ̂1,m(z) + (1 − δ)τ̂0,m(x) > 1

2

0 otherwise,
(6)
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where

τ̂1,m(z) =

∑
i :(Zi ,Yi ,δi )∈Dm

δi YiK1

(
Zi − z
h1

)
∑

i :(Zi ,Yi ,δi )∈Dm

δiK1

(
Zi − z
h1

) , τ̂0,m(x) =

∑
i :(Zi ,Yi ,δi )∈Dm

(1 − δi )YiK0

(
Xi − x
h0

)
∑

i :(Zi ,Yi ,δi )∈Dm

(1 − δi )K0

(
Xi − x
h0

) ,

(7)

and where K1, K0, h1, and h0 are defined as before. Observe that the class �m is
indexed by the values of h1 and h0. In what follows, we consider two cases: the case
where the cardinality of �m is finite (this is the case where the free parameters h1 and
h0 can take a finite number of values), and the case where �m has an infinite number
of classifiers (i.e., the case where h1 and h0 can take an infinite number of values).

Case (i): �m is finite
In the case where �m is a finite class of such kernel rules, the parameters h1

and h0 will be chosen from a finite set of possible values. Specifically, assume that
h1 ∈ H1 = {h1,1, h1,2, . . . , h1,N1} and h0 ∈ H0 = {h0,1, h0,2, . . . , h0,N0}. Observe
that in this setup, the cardinality of �m is |�m | = N1N0. Next, we use the testing
sequence T� to select a classifier from �m that minimizes the following estimate of
the error probability

L̂m,�(φm) = 1

�

∑
i :(Zi ,Yi ,δi )∈T�

I {φm(Zi , δi ) �= Yi }. (8)

Let φ̂n denote the classifier selected from �m that minimizes (8), i.e., L̂m,�(φ̂n) ≤
L̂m,�(φm) for all φm ∈ �m . Equivalently, φ̂n is the classifier that minimizes (8) as h1
and h0 vary over H1 and H0 respectively. Here, the subscript n of φ̂n emphasizes the
fact that it depends on the entire data set of size n.

How good is φ̂n for predicting Y ? To answer this question, let

L(φm) = P{φm(Z, δ) �= Y |Dm} and L(φ̂n) = P{φ̂n(Z, δ) �= Y |Dn}

denote the error probabilities of φm and φ̂n , respectively. The following result gives
exponential performance bounds for φ̂n :

Theorem 1 Let φm and φ̂n be the data-based classifiers defined as above. Then for
any distribution of (Z,Y ) and every ε > 0,

P

{
L(φ̂n) − inf

φm∈�m
L(φm) > ε

}
≤ 2N1N0e

−�ε2/2.

Remark 1 Of course, as � → ∞, the bound in Theorem 1 yields

L(φ̂n) − inf
φm∈�m

L(φm) → 0
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with probability one. But this falls short of achieving strong consistency for φ̂n . To
appreciate this, consider the decomposition

L(φ̂n) − L(φB) =
{
L(φ̂n) − inf

φm∈�m
L(φm)

}
+
{

inf
φm∈�m

L(φm) − L(φB)

}
.

Then although the first bracketed term goes to zero, there is no guarantee that the term
{infφm∈�m L(φm) − L(φB)} can become small unless the class �m can capture the
classifier φB as m → ∞. To overcome such difficulties, we next consider the case
where �m has an infinite cardinality.

Case (ii): �m is infinite
Now consider the case where �m is the class of all kernel rules of the form in (6),

but with parameters h1 and h0 chosen from an infinite set of possible values. Once
again, let φ̂n denote the classifier that minimizes the empirical misclassification error
in (8). To study the performance of φ̂n , we first need to state the definition of the
shatter coefficient of a set. Let A be a class of measurable sets in R

s , where s ≥ 1.
The nth shatter coefficient of A, denoted by S(A, n), is defined by

S(A, n) = max
z1,...,zn∈Rs

{number of different sets in {{z1, . . . , zn} ∩ A|A ∈ A}}.

The shatter coefficient S(A, n) measures the richness of the class A. Let A� be the
class of all sets of the form

A = {{z|φ(z) = 1} × {0}} ∪ {{z|φ(z) = 0} × {1}}, φ ∈ � (9)

and define the nth shatter coefficient of the class of classifiers � to be S(�, n) =
S(A�, n). Note that the size of S(A�, n) depends on the class �. If, for example, we
take � to be the class of all linear classifiers of the form

φ(z) =
{
1 if a0 + a1z1 + · · · + ad+pzd+p > 0

0 otherwise,

where a0, a1, . . . , ad+p ∈ R, then S(A�, n) ≤ nd+p+1; see, for example, Devroye
et al. (1996) and Pollard (1984).

To state our main results, we shall assume that the chosen kernels are regular: a
nonnegative kernel K is said to be regular if there are positive constants b > 0 and
r > 0 for which K (x) ≥ bI {x ∈ S0,r } and

∫
supy∈x+S0,r K (y)dx < ∞, where S0,r is

the ball of radius r centered at the origin. For more on this see, for example, Györfi
et al. (2002).

Theorem 2 Let φB be as in (2) and let φ̂n be the classifier that minimizes (8) as h0
and h1 vary over sets of the form H0 = [0, A0] and H1 = [0, A1], where A0 > 0 and
A1 > 0 are arbitrary real numbers. Also, let K0 and K1 be regular kernels. Then for
any distribution of (Z,Y ) and every ε > 0, there is an integer n0 ≡ n0(ε) > 0 such
that for all n > n0
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P{L(φ̂n) − L(φB) > ε} ≤ 4e8E
[
S(�m, �2)

]
e−�ε2/8 + 2e−c1mε2 ,

where c1 is a positive constant that does not depend on n.

In passing we also note that the bound in Theorem 2, along with the Borel–Cantelli
lemma, immediately provides the following strong consistency result:

Corollary 1 If �−1 log{E[S(�m, �2)]} → 0, as n → ∞, then under the conditions
of Theorem 2,

L(φ̂n) − L(φB)
a.s.−→ 0 as n → ∞.

In other words, the error probability of the classifier φ̂n converges, with probability
one, to that of the optimal classifier.

Some special kernels
In most situations, the term S(�m, �2), which appears in the bound of Theorem 2,

may be difficult to compute, in which case an upper bound on the shatter coefficient
may be convenient. Fortunately, we can bound S(�m, �2) based on the notion of
kernel complexity. Doing so will allow us to find computable performance bounds for
several widely used classes of kernels including the Gaussian kernel. To present such
bounds, first note that when δ = 1 (i.e., when the new observation Z has no missing
components), the kernel estimator (6) of the optimal classifier φB can be written as

φm,1(z) :=

⎧⎪⎨
⎪⎩
1 if

∑
i :(Zi ,Yi ,δi )∈Dm

(2Yi − 1)δi K1

(
Zi − z
h1

)
> 0

0 otherwise.
(10)

If δ = 0, however, the kernel classifier in (6) becomes

φm,0(x) :=

⎧⎪⎨
⎪⎩
1 if

∑
i :(Zi ,Yi ,δi )∈Dm

(2Yi − 1)(1 − δi )K0

(
Xi − x
h0

)
> 0

0 otherwise.
(11)

Next, we borrow the following definitions fromDevroye et al. (1996, Chap. 25). Define
the quantities κ

(1)
m and κ

(0)
m as follows:

κ(1)
m = sup

z,(z1,y1),...,(zm ,ym )

⎧⎨
⎩Number of sign changes of

∑
i :(zi ,yi ,1)∈Dm

(2yi − 1)δi K1

(
zi − z
h1

)
as h1 varies from 0 to infinity

⎫⎬
⎭ ,
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κ(0)
m = sup

x,(x1,y1),...,(xm ,ym )

⎧⎨
⎩Number of sign changes of

∑
i :(zi ,yi ,0)∈Dm

(2yi − 1)(1 − δi )K0

(
xi − x
h0

)
as h0 varies from 0 to infinity

⎫⎬
⎭ .

Finally, define the kernel complexity to be

κ∗
m = max(κ(1)

m , κ(0)
m ). (12)

The kernel complexity of a classifier is closely related to the shatter coefficient of the
class �m . To appreciate this, suppose we have a rule φm with complexity κ∗

m . Then,
as h1 and h0 vary from 0 to infinity, the binary �-vectors

⎛
⎝sign

⎡
⎣ ∑
i :(Zi ,Yi ,δi )∈Dm

(2Yi − 1)δi K1

(
Zi − Z j

h1

)⎤⎦
⎞
⎠

m+�

j=m+1

and

⎛
⎝sign

⎡
⎣ ∑
i :(Zi ,Yi ,δi )∈Dm

(2Yi − 1)(1 − δi )K0

(
Xi − X j

h0

)⎤⎦
⎞
⎠

m+�

j=m+1

change at most �κ∗
m times each. Therefore, they can take at most �κ∗

m + 1 different
values, which implies that

S(�m, �) ≤ �κ∗
m + 1. (13)

The following corollary is an immediate consequence of Theorem 2 and the bound in
(13):

Corollary 2 Suppose the kernel classifier φm in (6) has complexity κ∗
m as defined

above. Then, under the conditions of Theorem 2, one has, for large n,

P{L(φ̂n) − L(φB) > ε} ≤ 4e8(�2κ∗
m + 1)e−�ε2/8 + 2e−c3mε2

where the positive constant c3 depends only on the choice of kernels used.

Corollary 2 applies to a broad range of kernels. In what follows, we examine such
bounds for two popular classes: the exponential kernels and the polynomial kernels
[also, see (Devroye et al. 1996, Sect. 25)].

(i) Exponential kernels
Consider exponential kernels of the form

K (u) = e−‖u‖α
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where α > 0, u ∈ R
s , and ‖ · ‖ is any norm on R

s (the popular Gaussian kernel falls
into this category). If δ = 1 then (10) becomes

φm,1(z) =
⎧⎨
⎩
1 if

∑
i :(Zi ,Yi ,δi )∈Dm

(2Yi − 1)δi e−(‖Zi−z‖/h1)α1 > 0

0 otherwise

for some positive constant α1. Similarly, when δ = 0, the expression in (11) becomes

φm,0(x) =
⎧⎨
⎩
1 if

∑
i :(Zi ,Yi ,δi )∈Dm

(2Yi − 1)(1 − δi )e−(‖Xi−x‖/h0)α0 > 0

0 otherwise

for some positive constant α0. We can now state the following version of Theorem 2
when K0 and K1 are exponential kernels.

Theorem 3 Let �m be the class of kernel classifiers φm in (6), where K0 and K1 are
exponential kernels, as defined above. Then under the conditions of Theorem 2, and
for any distribution of (Z,Y ), one has, for large n,

P{L(φ̂n) − L(φB) > ε} ≤ 4e8(�2m + 1)e−�ε2/8 + 2e−c4mε2

where the positive constant c4 depends only on the choice of kernels used.

Once again, the above bound (in conjunction with the Borel–Cantelli lemma) yields
L(φ̂n) − L(φB)

a.s.−→ 0 as n → ∞, provided that �−1 log(�2m + 1) → 0, as n (and
thus m, �) → ∞.

(ii) Polynomial kernels
Consider kernels of the form

K (z) =
(

t∑
i=1

ai‖z‖bi
)
I {‖z‖ ≤ 1},

where ai ∈ R, bi ≥ 1, and t is the number of terms in the above sum. When δ = 1,
the expression in (10) becomes

φm,1(z) =

⎧⎪⎨
⎪⎩
1 if

∑
i :(Zi ,Yi ,δi )∈Dm

(2Yi − 1)δi

(
r1∑
i=1

ai
‖Zi − z‖
h1bi

bi
)
I

{‖Zi − z‖
h1

≤ 1

}
> 0

0 otherwise.

Similarly, when δ = 0, we find

φm,0(x)=

⎧⎪⎨
⎪⎩
1 if

∑
i :(Zi ,Yi ,δi )∈Dm

(2Yi − 1)(1 − δi )

(
r0∑
i=1

ci
‖Xi −x‖
h0di

di
)
I

{‖Xi − x‖
h0

≤1

}
>0

0 otherwise.
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The following performance bound holds for the class of polynomial kernels:

Theorem 4 Let �m be the class of kernel classifiers φm in (6), where K0 and K1 are
polynomial kernels, as defined above. Then under the conditions of Theorem 2, and
for any distribution of (Z,Y ), one has, for large n,

P{L(φ̂n) − L(φB) > ε} ≤ 4e8(�2rm + 1)e−�ε2/8 + 2ec5mε2 ,

where r = max(r0, r1) and where the positive constant c5 depends only on the choice
of kernels used.

Once again, the strong consistency of φ̂n follows from the above theorem, provided
that �−1 log(�2rm + 1) → 0, as n → ∞.

2.3 The resubstitution method

In the previous section, we considered methods based on data-splitting to find a data-
driven value of the kernel bandwidth that would yield strongly consistent classifiers.
One problem with this approach, however, is that it is not always clear as to how one
should choose the splitting ratio m/n (i.e., what m should be). In this section, we
propose to consider the alternative approach (for choosing the bandwidth) based on
the resubstitution method. Let�n be the collection of classifiers φn ≡ φn,h1,h0 defined
via (4) and (5), as h1 and h0 vary over sets of positive real numbers (possibly infinite
sets). Then for any φn ∈ �n , the resubstitution estimate of the error of φn is simply

L̂(R)
n (φn) := 1

n

n∑
i=1

I {φn(Zi , δi ) �= Yi }

= 1

n

n∑
i=1

I

{
I

{
δi τ̂h1(Zi ) + (1 − δi )̂τh0(Xi ) >

1

2

}
�= Yi

}
, (14)

where τ̂h1 := τ̂1 and τ̂h0 := τ̂0 are as in (4). In other words, the resubstitution estimates
of (h1, h0), which we shall denote by (h̃1, h̃0), satisfy

(h̃1, h̃0) = argminφn,h1,h0∈�n
L̂(R)
n (φn,h1,h0). (15)

Note that the data has been used twice here: once to construct φn and a second time
to estimate the error of φn (error committed on the same data). Let φ̃n ∈ �n be the
classifier corresponding to (h̃1, h̃0), i.e., L̂

(R)
n (φ̃n) ≤ L̂(R)

n (φn) for all φn ∈ �n . Also,
let

L(φn) = P{φn(Z, δ) �= Y |Dn} and L(φ̃n) = P{φ̃n(Z, δ) �= Y |Dn}

denote the error probabilities of φn and φ̃n , respectively. The following theorem estab-
lishes strong consistencyof the resubstitutionmethod in the casewhere the components
of the random vector Z are discrete:
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Theorem 5 Suppose that the kernels K1 ≥ 0 and K0 ≥ 0 satisfy the conditions
K1(z) → 0 as ‖z‖ → ∞ and K0(x) → 0 as ‖x‖ → ∞. Let φ̃n be the classifier
defined by (4) and (5) with h̃1 and h̃0 selected via (15). Then L(φ̃n) → L(φB), with
probability one, whenever the random vector Z has a discrete distribution.

Remark 2 While consistency is guaranteed when the random vector Z is discrete,
Theorem 5 makes no conclusions about the performance of the procedure when Z is
continuous. It is true that the resubstitution procedure can be inconsistent when the
random vector Z is not discrete [see (Devroye et al. 1996, Sect. 25.6) for a counter-
example], yet there may be cases where consistency can be achieved.

3 Numerical examples

In this section, we carry out several numerical studies to assess the performance of
our proposed classification methods.

Example 1 Consider the class membership Y = 0 or Y = 1, of an entity based on
the covariates Z = (X, V )′, where Z ∼ N2(µ0, �0) if Y = 0 and Z ∼ N2(µ1, �1)

otherwise. The unconditional class probabilities were taken to be P{Y = 1} = P{Y =
0} = 0.5. The parameters were chosen as follows:

µ0 = (0.7, 0)′, �0 =
(

1 0.2
0.2 2

)
,

µ1 = (1, 1)′, �1 =
(

1 0.2
0.2 1

)
.

Here X is observable but V could be missing. The missingness probability mechanism
was taken to be

p(z, y) = p(x, v, y) := P{δ = 1|X = x, V = v,Y = y} (16)

= exp{−a(1 − 0.6y)(x − 1)2 − b(1 + 0.6y)v2 − cy},

where a, b, c > 0 are constants. We considered three different choices for (a, b, c):
(0.5, 0.5, 0), (0.45, 0, 1.3), and (0, 0, 0). The choice (0, 0, 0) corresponds to the case
of no missing data. We considered two sample sizes: n = 100 and n = 300. As for
the choice of the kernels, K1 : R2 → R and K0 : R → R were taken to be standard
Gaussian and the bandwidths h1 and h0 were chosen from grids of 10 equally spaced
values in [0.05, 1.2] and [0.08, 1.2], respectively. Here we employed four different
methods to estimate the smoothing parameters h1 and h0 of the kernel classifiers: (i)
The data-splitting procedure based on (6) and (7) with a splitting ratio of 65%, i.e.,
m = 0.65n and � = 0.35n. (ii) Breiman’s out-of-bag procedure (Breiman 1996).
(iii) The resubstitution method which was explained in Sect. 2. (iv) The method that
selects h1 and h0 as the minimizers of the asymptotic mean integrated squared error
(AMISE) of the corresponding kernel density estimator, as given in Wand and Jones
(1995). Further properties of such procedures are discussed inHall andMarron (1987).

123



1498 L. Demirdjian, M. Mojirsheibani

Table 1 Error rates for φ̂n (data-splitting), φ̃n (resubstitution), φG
n (out-of-bag), and φD

n (density) when
n = 100 for Example 1

a b c Error(φ̂n ) Error(φ̃n ) Error(φG
n ) Error(φD

n )

0 0 0 .374 .361 .382 .384

(.0017) (.0015) (.0017) (.0013)

0.5 0.5 0 .456 .450 .458 .448

(.0013) (.0013) (.0013) (.0012)

0.45 0 1.3 .279 .272 .281 .278

(.0012) (.0011) (.0012) (.0010)

See also Bontemps et al. (2009) for results pertaining to the selection of bandwidths for
kernel based conditional density estimates. In passing, we also note that the optimal
choice of the smoothing parameters in kernel density estimation is not necessarily
optimal in the problem of kernel classification. For the out-of-bag method, we first
generated a bootstrap training sample of size n from the original sample (that is, a
sample of size n drawn with replacement from the original sample). The remaining
values (i.e. observations not appearing in the bootstrap sample) were then used as
our testing sequence. The bootstrap sample is employed to construct the family �m

of classifiers of the form (6), whereas the testing sequence is used to choose the
empirically best classifier from �m .

Finally, to assess the error rates of these four classifiers, we also generated an
additional 1000 observations, (the same way we generated the data), to be used as our
test sample. The entire above process was repeated a total of 500 times and the average
misclassification error probability estimates, committed on the testing sequences over
500 such training and testing samples, were calculated. The results appear in Table 1
for the case of n = 100. The error rates that are reported are averages over the 500
runs and the numbers in parentheses are the standard errors of those averages.

As Table 1 shows, the proposed resubstitution method appears to outperform the
other three procedures for most values of the constants a, b, and c. These results
further validate our earlier remarks about the performance of this method when the
random vector Z is continuous. It is also worth noting that the approach based on
density estimation performs nearly as well as the other procedures, at least in the
case of missing data. These observations are consistent with the results in Hall and
Kang (2005), which demonstrate that in the multivariate setting and under suitable
conditions, the bandwidths selected to minimize the mean square error between the
kernel density estimators and the true densities are on the same order of magnitude as
the optimal bandwidths for classification.

The results for the case where n = 300 are given in Table 2. Once again, it is clear
that the resubstitution method is superior (followed by the data-splitting classifier φ̂n).

Tables 1 and 2 also show that, for some choices of the constants a, b, and c, the
misclassification error of φ̂n can be less than that of the casewith nomissing covariates.
See, for example, the third row of Table 2, where a = 0.45, b = 0 and c = 1.3, in
which case the error of φ̂n is 0.263 < 0.344. This illustrates, somewhat counter-
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Table 2 Error rates for φ̂n (data-splitting), φ̃n (resubstitution), φG
n (out-of-bag), and φD

n (density) when
n = 300 for Example 1

a b c Error(φ̂n ) Error(φ̃n ) Error(φG
n ) Error(φD

n )

0 0 0 .344 .338 .348 .371

(.0010) (.0009) (.0012) (.0009)

0.5 0.5 0 .434 .429 .438 .433

(.0011) (.0011) (.0012) (.0009)

0.45 0 1.3 .263 .257 .265 .269

(.0009) (.0008) (.0009) (.0007)

intuitively, that classification with missing covariates can sometimes have a lower
misclassification error than the case with no missing covariates. This phenomenon,
which is also noted in Mojirsheibani and Montazeri (2007), is partially explained by
the relationship between the correlation of Y and V , and that of Y and δ. To appreciate
this, note that when a = b = c = 0, the correlation between V and Y is 0.378. When
a = 0.45, b = 0, and c = 1.3, however, the correlation between δ and Y is -0.476.
The fact that | − 0.476| > 0.378 implies that the random variable δ, which is always
observable, can sometimes do better (than the covariate V ) at predicting Y .

Example 2 In this example, we consider both continuous and discrete covariates for
predicting the class Y . More specifically, we consider covariate vectors of the form
Z = (X1, X2, V )′, where X1 = Z1 and X2 = I {|Z2| < 2}, i.e., X2 is a discrete
covariate. When Y = 0, (Z1, Z2, Z3)

′ ∼ N3(µ0, �0), where

µ0 = (0.7, 0.7, 0.7)′, �0 =
⎛
⎝ 1 0.4 0.16

0.4 1 0.4
0.16 0.4 1

⎞
⎠ .

When Y = 1, the vector (Z1, Z2, Z3)
′ has a standard Cauchy distribution with inde-

pendent components, i.e., Z j , j = 1, 2, 3 are independent standard Cauchy random
variables. The missingness probability mechanism was taken to be

p(z, y) = p(x1, x2, v, y) := P{δ = 1|X1 = x1, X2 = x2, V = v,Y = y}
= exp{−a(1 − 0.6y)(x1 − 0.7)2 − b(1 − 0.4y)(v − 0.5)2 (17)

− c(1 + 0.6y)2(x2 − 0.5)2 − dy},

where a, b, c, d > 0 are constants. We considered three different choices for
(a, b, c, d), namely (0.15, 0, 0.5, 1.2), (0.25, 0.5, 0.25, 0.6), and (0, 0, 0, 0). Note
that the choice (0, 0, 0, 0) corresponds to no missing data. The kernels, bandwidths,
and sample sizes are as in Example 1. Once again, we considered data-splitting, resub-
stitution, the out-of-bag, and the procedure based on density estimation to select a
kernel classifier from a class indexed by values of the bandwidths h1 and h0. The
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Table 3 Error rates for φ̂n (data-splitting), φ̃n (resubstitution), φG
n (out-of-bag), and φD

n (density) when
n = 100 for Example 2

a b c d Error(φ̂n ) Error(φ̃n ) Error(φG
n ) Error(φD

n )

0 0 0 0 .301 .284 .305 .301

(.0017) (.0014) (.0016) (.0020)

0.15 0 0.5 1.2 .243 .229 .246 .260

(.0013) (.0011) (.0013) (.0013)

0.25 0.5 0.25 0.6 .357 .345 .364 .365

(.0014) (.0013) (.0016) (.0016)

Table 4 Error rates for φ̂n (data-splitting), φ̃n (resubstitution), φG
n (out-of-bag), and φD

n (density) when
n = 300 for Example 2

a b c d Error(φ̂n ) Error(φ̃n ) Error(φG
n ) Error(φD

n )

0 0 0 0 .264 .254 .269 .278

(.0011) (.0010) (.0011) (.0019)

0.15 0 0.5 1.2 .213 .205 .214 .233

(.0009) (.0008) (.0008) (.0010)

0.25 0.5 0.25 0.6 .325 .317 .329 .344

(.0010) (.0009) (.0010) (.0011)

results appear in Table 3 for the case of n = 100 and Table 4 for n = 300 (see
Example 1 for more details on how these values were calculated).

The results show that the proposed resubstitution method outperforms all of the
other procedures for every choice of the constants a, b, c, and d appearing in (17), and
for both samples of size n = 100 and n = 300. Once again, as noted in Mojirsheibani
andMontazeri (2007),we see that classificationwithmissing covariates can sometimes
perform better than the case with no missing covariates; see, for example, row 2 of
Table 4 (corresponding to a = 0.15, b = 0, c = 0.5, d = 1.2). This is explained in
part by the fact that the correlation between δ and Y is −0.37, whereas the correlation
between V and Y in row 1 (corresponding to no missing data) is only 0.04.

Example 3 (Mammogram data)
We now turn to a real data example involving the classification of mammographic

masses in the screening for breast cancer; there aremany discrete covariates in this data
set. The data set consists of 961 patients, 516 of whom have mammographic masses
which are benign (class 0), and the remaining 445 patients havemammographicmasses
which aremalignant (class 1). The covariates used to predict the class a patient belongs
to are x1 = ‘patient’s age’ (in years), x2 = ‘mass shape’ (nominal value∈ {1, 2, 3, 4}),
x3 = ‘massmargin’ (nominal value∈ {1, 2, 3, 4, 5}), and v = ‘mass density’ (nominal
value ∈ {1, 2, 3, 4}). A full description of this data set is available from the University
of California, Irvine, repository of machine learning database at http://archive.ics.
uci.edu/ml/. In this example, we focus on one dominant missingness pattern: for 56
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Table 5 Error rates for φ̂n
(data-splitting), φ̃n
(resubstitution), φG

n
(out-of-bag), and φD

n (density)
for Example 3

Error(φ̂n ) Error(φ̃n ) Error(φG
n ) Error(φD

n )

0.148 0.0800 0.156 0.0821

(0.0013) (0.0008) (0.0012) (0.0008)

patients, the value of v = ‘mass density’ was missing. To better present our results,
we consider only this particular missingness pattern.

For each of the four procedures mentioned in the previous examples, a kernel
classifier was constructed using two-thirds of the data (randomly selected), and the
performance of the chosen classifiers was tested on the remaining portion (the kernels
were taken to be as in Example 1). This entire process was repeated 500 times, pro-
ducing the results in Table 5. It is interesting to note that the resubstitution method
and the procedure based on density estimation perform quite similarly, with estimated
error rates that are roughly half of those of data-splitting and the out-of-bag method.
In this example, all of the covariates used to predict Y were discrete, which might
partly explain the superior performance of the resubstitution procedure.

Remark 3 Although we have stated our results for a two-class classification problem,
our results can readily be extended to the more general M-class setup, where M ≥ 2.
More specifically, if we put

φB(z, δ) = δψ1(z) + (1 − δ)ψ0(x),

where for 1 ≤ j ≤ M

ψ1(z) = j if E[δ I {Y = j}|Z = z] = max
1≤ j≤M

E[δ I {Y = j}|Z = z]
ψ0(x) = j if E[(1 − δ)I {Y = j}|X = x] = max

1≤ j≤M
E[(1 − δ)I {Y = j}|X = x],

then it follows fromMojirsheibani andMontazeri (2007) that φB is indeed the optimal
classifier. Now, for j = 1 . . . M , define ψ̂1,m(z) = j if

∑
i :(Zi ,Yi ,δi )∈Dm

δi I {Yi = j}K1

(
Zi − z
h1

)

= max
1≤ j≤M

∑
i :(Zi ,Yi ,δi )∈Dm

δi I {Yi = j}K1

(
Zi − z
h1

)
.

Also, for j = 1 . . . M , define ψ̂0,m(x) = j if

∑
i :(Xi ,Yi ,δi )∈Dm

(1 − δi )I {Yi = j}K0

(
Xi − x
h1

)

= max
1≤ j≤M

∑
i :(Xi ,Yi ,δi )∈Dm

(1 − δi )I {Yi = j}K0

(
Xi − x
h1

)
,
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where K1, K0, h1, and h0 are as in Sect. 2, and put

ψm(z, δ) = δψ̂1,m(z) + (1 − δ)ψ̂0,m(x).

Finally, letting h1 and h0 vary over a set of prescribed values, the optimal classifier ψ̂n

is the classifier that minimizes the empirical error committed on the testing sequence
T�, i.e., minimizing �−1∑

i :(Zi ,Yi ,δi )∈T�
I {ψm(Zi , δi ) �= Yi }.
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Appendix: Proofs

In order to prove our main results, we first state a number of technical lemmas.

Lemma 1 Define T1(z) = E [δ(2Y − 1)|Z = z] and T0(x) = E[(1−δ) (2Y −1)|X =
x] and let T̂1 and T̂0 be any approximations to T1 and T0, based on the sample Dm.
Also, put φ̂1(z) = I {T̂1(z) > 0} and φ̂0(x) = I {T̂0(x) > 0}. Then the classifier

φ̂(Z, δ) = δφ̂1(Z) + (1 − δ)φ̂0(X)

satisfies

L(φ̂) − L(φB) ≤ E

(∣∣∣E [δ(2Y − 1)|Z] − T̂1(Z)

∣∣∣∣∣∣∣Dm

)

+ E

(∣∣∣E [(1 − δ)(2Y − 1)|X] − T̂0(X)

∣∣∣
∣∣∣∣Dm

)
, a.s.

The proof of Lemma 1 will be deferred to the end of this section.

The next lemma provides exponential performance bounds for kernel regression esti-
mates.

Lemma 2 (Devroye et al. (1996) and Györfi et al. (2002)). Let Dn = {(U1,V1), . . . ,

(Un,Vn)} be iid [−L , L]×R
d -valued random vectors. Put m(v) = E(U |V = v) and

define

mn(v) =
n∑

i=1

Ui K

(
Vi − v
hn

)/
nE

{
K

(
V − v
hn

)}
,

where the kernel K (·) is regular. If hn → 0 and nhdn → ∞ as n → ∞, then for every
ε > 0 and any distribution of (U,V), and n large enough,

P{E [|mn(V) − m(V)||Dn] > ε} ≤ exp

(
− nε2

64ρ2L

)
,
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where ρ = ρ(K ) is a positive constant that depends on K only.

Next, we state a result from the empirical process theory. Given an iid sample Dn =
{(Z1,Y1), . . . , (Zn,Yn)}, let νn be the empirical measure of the set A, i.e.,

νn(A) = 1

n

n∑
i=1

I {(Zi ,Yi ) ∈ A}.

Lemma 3 (Devroye (1982) and Massart (1990)). Let ν be the probability measure of
(Z,Y ) on R

d+p × {0, 1} and let νn be the empirical measure based on Dn. If A is a
collection of measurable sets, then ∀ε ≤ 1,

P

{
sup
A∈A

∣∣∣νn(A) − ν(A)

∣∣∣ > ε

}
≤ c2S(A, n2)e−2nε2

where the constant c2 is positive, does not depend on n, and does not exceed 4e4ε+4ε2 ≤
4e8, and S(A, n2) is the (n2)th shatter coefficient of the class A.

Lemma 4 (Devroye et al. (1996)). Let a1, . . . , am be fixed real numbers, and let
b1, . . . , bm be different nonnegative reals. If α �= 0, then the function

g(x) =
m∑
i=1

ai e
−bi xα

, x ≥ 0

is either identically zero, or takes the value 0 at most m times.

Proof of Theorem 1

The proof is based on standard arguments. First, note that

L(φ̂n) − inf
φm∈�m

L(φm) =
(
L(φ̂n) − L̂m,�(φ̂n)

)
+
(
L̂m,�(φ̂n) − inf

φm∈�m
L(φm)

)

≤ sup
φm∈�m

|L̂m,�(φm) − L(φm)|+
(
L̂m,�(φ̂n)− inf

φm∈�m
L(φm)

)

≤ 2 sup
φm∈�m

|L̂m,�(φm) − L(φm)|.

Therefore,

P

{
L(φ̂n) − inf

φm∈�m
L(φm) > ε

∣∣∣∣Dm

}
≤ P

{
2 sup

φm∈�m

∣∣∣L̂m,�(φm) − L(φm)

∣∣∣ > ε

∣∣∣∣Dm

}

= P

{
sup

φm∈�m

∣∣∣L̂m,�(φm) − L(φm)

∣∣∣ > ε/2

∣∣∣∣Dm

}
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≤ |�m | max
φm∈�m

P{|L̂m,�(φm) − L(φm)| > ε/2|Dm} (by the union bound)

≤ 2|�m |e−2�ε2/22 , (by Hoeffding’s inequality)

= 2N1N0e
−�ε2/2

The result follows by taking expectation of both sides with respect to the distribution
of Dm . ��

Proof of Theorem 2

Start by writing

L(φ̂n) − L(φB) =
[
L(φ̂n) − infφm∈�m L(φm)

]
+ [

infφm∈�m L(φm) − L(φB)
]

:= In + IIn, (say).

Employing the arguments used in the proof of Theorem 1, we find

In ≤ 2 sup
φm∈�m

∣∣∣L̂m,�(φm) − L(φm)

∣∣∣. (18)

To deal with the term IIn , let h0 ∈ H0 and h1 ∈ H1 be given and define

φm,h1(z) =
{
1 if τ̂1,m(z) > 1

2

0 otherwise
and φm,h0(x) =

{
1 if τ̂0,m(x) > 1

2

0 otherwise,

where τ̂1,m(z) and τ̂0,m(x) are as in (7). Now, observe that the kernel classifier in (6)
can be written as

φm(Z, δ) = δφm,h1(Z) + (1 − δ)φm,h0(X). (19)

Furthermore, it is a simple exercise to show that the functions φm,h1(z) and φm,h0(x)
can equivalently be written as

φm,h1(z) =
{
1 if T̂1(z) > 0

0 otherwise
and φm,h0(x) =

{
1 if T̂0(x) > 0

0 otherwise

respectively, where

T̂1(z) =

∑
i :(Zi ,Yi ,δi )∈Dm

δi (2Yi − 1)K1

(
Zi − z
h1

)

mE

[
K1

(
Z − z
h1

)] (20)
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and T̂0(x) =

∑
i :(Zi ,Yi ,δi )∈Dm

(1 − δi )(2Yi − 1)K0

(
Xi − x
h0

)

mE

[
K0

(
X − x
h0

)] . (21)

Now let h̃1 ≡ h̃1(m) and h̃0 ≡ h̃0(m) be sequences in H1 and H0, respectively, such
that, as m → ∞, one has h̃1 → 0, h̃0 → 0, mh̃ p+d

1 → ∞, and mh̃d0 → ∞.

[For example, one can take h̃0 = min(A0,m
− 1

d+c0 ), c0 > 0, and h̃1 =
min(A1,m

− 1
d+p+c1 ), c1 > 0.] Also, let φ̃m ∈ �m be the classifier corresponding

to h̃1 and h̃0. In view of (19), (20), and (21), one has

φ̃m(Z, δ) = δφm,h̃1
(Z) + (1 − δ)φm,h̃0

(X),

with

φm,h̃1
(z) = I {T̂1(z) > 0}, φm,h̃0

(x) = I {T̂0(x) > 0},

and where T̂1 and T̂0 are as in (20) and (21) with h1 and h0 replaced by h̃1 and h̃0.
Then, by Lemma 1,

IIn = infφm∈�m L(φm) − L(φB) ≤ L(φ̃m) − L(φB)

≤ E

(∣∣∣E [δ(2Y − 1)|Z] − T̂1(Z)

∣∣∣∣∣∣∣Dm

)

+ E

(∣∣∣E [(1 − δ)(2Y − 1)|X] − T̂0(X)

∣∣∣∣∣∣∣Dm

)
, a.s.,

where T̂1 and T̂0 are as in (20) and (21). Putting all the above together, we have

P{L(φ̂n) − L(φB) > ε}
= P

{
L(φ̂n) − inf

φm∈�m
L(φm) + inf

φm∈�m
L(φm) − L(φB) > ε

}

≤ P

{
2 sup

φm∈�m

∣∣∣L̂m,�(φm) − L(φm)

∣∣∣ >
ε

2

}

+ P

{
E

(∣∣∣E [δ(2Y − 1)|Z] − T̂1(Z)

∣∣∣∣∣∣∣Dm

)
>

ε

4

}

+ P

{
E

(∣∣∣E [(1 − δ)(2Y − 1)|X] − T̂0(X)

∣∣∣∣∣∣∣Dm

)
>

ε

4

}
:= Pn,1 + Pn,2 + Pn,3.
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Now,

Pn,1 = E

[
P

{
supφm∈�m

∣∣∣L̂m,�(φm) − L(φm)

∣∣∣ >
ε

4

∣∣∣∣Dm

}]
≤ 4e8E

[
S(�m, �2)

]
e−�ε2/8 (by Lemma 3) .

Furthermore, by Lemma 2

Pn,2 + Pn,3 ≤ exp

{
− mε2

(64)(16)ρ2
1

}
+ exp

{
− mε2

(64)(16)ρ2
0

}

≤ 2 exp

{
− mε2

(64)(16)(ρ2
1 ∨ ρ2

0 )

}
,

where ρ j ≡ ρ(K j ), j = 0, 1, is a positive constant that depends on K j only. This
completes the proof of Theorem 2. ��

Proof of Theorem 3

Theorem 3 follows immediately from Corollary 2 and Lemma 4.

Proof of Theorem 4

The arguments in Devroye et al. (1996, Sec 25.3) can be used to show that κ(1)
m ≤ r1m

and κ
(0)
m ≤ r0m, where κ

(1)
m and κ

(0)
m are as in (12). Therefore, κ∗

m ≤ max(r1m, r0m) =
rm. The result now follows from an application of Corollary 2.

Proof of Theorem 5

The following proof employs some of the arguments used in Devroye et al. (1996,
Chap. 25). Fix Dn = {(Z1, δ1,Y1), . . . , (Zn, δn,Yn)} and let �n be the class of all
kernel rules in (5). Denote a typical rule in �n as φn := φn,h1,h0 and let An be the
class of all sets of the form

An =
{
(z, δ, y)

∣∣∣I {δτ̂1(z) + (1 − δ)̂τ0(x) >
1

2

}
�= y

}

:=
{
(z, δ, y)

∣∣∣I {G(z, δ, Dn) >
1

2

}
�= y

}
,

where G(z, δ, Dn) := δτ̂1(z) + (1 − δ)̂τ0(x), and τ̂1 and τ̂0 are defined as in (4).
Similarly, define An,1 and An,0 to be classes of sets of the form

An,1 =
{
(z, δ, y)

∣∣∣I {G(z, δ, Dn) >
1

2

}
= 1, y = 0

}

and An,0 =
{
(z, δ, y)

∣∣∣I {G(z, δ, Dn) >
1

2

}
= 0, y = 1

}
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respectively. Note that any set An ∈ An can be written as

An =
{
(z, δ, y)

∣∣∣I {G(z, δ, Dn) >
1

2

}
= 1, y = 0

}

∪
{
(z, δ, y)

∣∣∣I {G(z, δ, Dn) >
1

2

}
= 0, y = 1

}
= An,1 ∪ An,0,

for some An,1 ∈ An,1 and An,0 ∈ An,0. Define

νn(An) = P{(Z, δ,Y ) ∈ An|Dn} (conditionedonDnsinceAndependsonDn)

= E
[
I {(Z, δ,Y ) ∈ An}

∣∣∣Dn

]
= E

[
I
{
(Z, δ,Y ) ∈ An,1 ∪ An,0

} ∣∣∣Dn

]
= E

[
I
{
(Z, δ,Y ) ∈ An,1

} ∣∣∣Dn

]
+ E

[
I
{
(Z, δ,Y ) ∈ An,0

} ∣∣∣Dn

]
= P{(Z, δ,Y ) ∈ An,1|Dn} + P{(Z, δ,Y ) ∈ An,0|Dn}
:= νn,1(An,1) + νn,0(An,0). (22)

Similarly, for any An ∈ An , define the empirical measure of An as

ν̂n(An) = 1

n

n∑
i=1

I {(Zi , δi ,Yi ) ∈ An} = 1

n

n∑
i=1

I

{
I

{
G(Zi , δi , Dn) >

1

2

}
�= Yi

}

= 1

n

n∑
i=1

I

{
I

{
G(Zi , δi , Dn) >

1

2

}
= 1,Yi = 0

}

+ 1

n

n∑
i=1

I

{
I

{
G(Zi , δi , Dn) >

1

2

}
= 0,Yi = 1

}

= 1

n

n∑
i=1

I {(Zi , δi ,Yi ) ∈ An,1} + 1

n

n∑
i=1

I {(Zi , δi ,Yi ) ∈ An,0}

:= ν̂n,1(An,1) + ν̂n,0(An,0). (23)

Next, observe that

L(φ̃n) − inf
φn∈�n

L(φn) =
(
L(φ̃n) − L̂(R)

n (φ̃n)
)

+
(
L̂(R)
n (φ̃n) − inf

φn∈�n
L(φn)

)

≤ sup
φn∈�n

∣∣∣L̂(R)
n (φn) − L(φn)

∣∣∣ + (
L̂(R)
n (φ̃n) − inf

φn∈�n
L(φn)

)

≤ 2 sup
φn∈�n

∣∣∣L̂(R)
n (φn) − L(φn)

∣∣∣
123



1508 L. Demirdjian, M. Mojirsheibani

= 2 sup
An∈An

∣∣∣̂νn(An) − νn(An)

∣∣∣
≤ 2 sup

An,1∈An,1

∣∣̂νn,1(An,1) − νn,1(An,1)
∣∣ + 2 sup

An,0∈An,0

∣∣̂νn,0(An,0) − νn,0(An,0)
∣∣ (24)

where the last expression follows from (22) and (23). Let

Cn =
{
(z, δ)

∣∣∣I {G(z, δ, Dn) >
1

2

}
= 1

}

and for every Cn ∈ Cn , let μ̂n(Cn) = 1
n

∑n
i=1 I {(Zi , δi ) ∈ Cn} be the empirical

measure of Cn . Also, let μn(Cn) = P{(Z, δ) ∈ Cn|Dn}. Then we have

R.H.S of (24) ≤ 2 sup
Cn∈Cn

∣∣∣μ̂n(Cn) − μn(Cn)

∣∣∣ + 2 sup
Cn∈Cc

n

∣∣∣μ̂n(Cn) − μn(Cn)

∣∣∣
≤ 4 sup

B∈B

∣∣∣μ̂n(B) − μ(B)

∣∣∣ (25)

where B is the collection of all Borel sets in R
d+p × {0, 1}, μ(B) = P{(Z, δ) ∈ B},

and μ̂n(B) = 1
n

∑n
i=1 I {(Zi , δi ) ∈ B}. To see that the bound in (25) goes to zero with

probability one, let� be the set of all possible values of (Z, δ) and let S be an arbitrary
finite subset of �. It follows that

sup
B∈B

∣∣∣μ̂n(B) − μ(B)

∣∣∣ = 1

2

∑
(z,δ)∈�

∣∣∣μ̂n({z, δ}) − μ({z, δ})
∣∣∣ (Scheffé′stheorem)

= 1

2

∑
(z,δ)∈S

∣∣∣μ̂n({z, δ}) − μ({z, δ})
∣∣∣ + 1

2

∑
(z,δ)∈Sc

∣∣∣μ̂n({z, δ}) − μ({z, δ})
∣∣∣

≤ 1

2

∑
(z,δ)∈S

∣∣∣μ̂n({z, δ}) − μ({z, δ})
∣∣∣ + μ̂n(S

c) + μ(Sc)

≤ 1

2

∑
(z,δ)∈S

∣∣∣μ̂n({z, δ}) − μ({z, δ})
∣∣∣ + ∣∣∣μ̂n(S

c) − μ(Sc)
∣∣∣ + 2μ(Sc). (26)

The first |S| terms in (26) can be bounded via Hoeffding’s inequality: that is, given
ε > 0,

P
(∣∣∣μ̂n({z, δ}) − μ({z, δ})

∣∣∣ > ε

∣∣∣Dn

)
≤ 2e−2nε2 , a.s.

Similarly, the term |μ̂n(Sc) − μ(Sc)| can be bounded by one more application of
Hoeffding’s inequality. Finally, μ(Sc) can be made as small as desired by choosing
S large enough. Thus, by the Borel–Cantelli lemma, L(φ̃n) − infφn∈�n L(φn) → 0,
with probability one, as n → ∞. Next, note that L(φ̃n) − L(φB) can be rewritten as
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L(φ̃n) − L(φB) =
(
L(φ̃n) − inf

φn∈�n
L(φn)

)
+
(

inf
φn∈�n

L(φn) − L(φB)

)
:= In + IIn .

To show that IIn
a.s.−→ 0, let ψmult

n be the multinomial discrimination rule, which is
given by

ψmult
n (z, δ) =

{
1 if δλ̂1(z) + (1 − δ)λ̂0(x) > 1

2

0 otherwise,

where

λ̂1(z) =
∑n

i=1 δi Yi I {Zi = z}∑n
i=1 δi I {Zi = z} and λ̂0(x) =

∑n
i=1(1 − δi )Yi I {Xi = x}∑n
i=1(1 − δi )I {Xi = x} .

Note the similarity between the above classifier and the kernel classifier defined via
(4) and (5). It turns out that the multinomial classifier is exactly equal to the kernel
classifier in (5) provided h1 and h0 are taken to be 0 [see Devroye et al. (1996, p. 462)].
The strong consistency of themultinomial discrimination ruleψmult

n then follows from
the consistency results for general partitioning estimates of regression functions along
with expression (2). Formore on partitioning estimates see, for example,Mojirsheibani
and Montazeri (2007). Also, see Gyorfi et al. (2002, Sect. 23.1).

The discussion above implies that infφn∈�n L(φn) ≤ L(ψmult
n ). But since

L(ψmult
n )

a.s.−→ L(φB), we see that infφn∈�n L(φn)
a.s.−→ L(φB) which yields the

desired result (that IIn
a.s.−→ 0). Therefore, L(φ̃n) − L(φB)

a.s.−→ 0 as n → ∞. ��

Proof of Lemma 1

Let

φ1(z)=
⎧⎨
⎩1 if

E[δY |Z= z]
E[δ|Z= z] >

1

2
0 otherwise

and φ0(x)=
⎧⎨
⎩1 if

E[(1−δ)Y |X=x]
E[(1−δ)|X=x] >

1

2
0 otherwise,

(27)

with the convention 0/0 = 0, and note that the optimal classifier in (2) can be written
as

φB(Z, δ) = δφ1(Z) + (1 − δ)φ0(X).
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Next, write

P{φB(Z, δ) = Y } = P{δφ1(Z) + (1 − δ)φ0(X) = Y }
= P{δ = 1, φ1(Z) = 1,Y = 1} + P{δ = 1, φ1(Z) = 0,Y = 0}

+P{δ = 0, φ0(X) = 1,Y = 1} + P{δ = 0, φ0(X) = 0,Y = 0}
:= A + B + C + D (say).

Put p(Z,Y ) = P(δ = 1|Z,Y ), q(X,Y ) = P(δ = 1|X,Y ), η(Z) = P(Y = 1|Z),

and λ(X) = P(Y = 1|X), and observe that upon conditioning on Z and Y , one finds

A = E [I {φ1(Z) = 1}I {Y = 1}p(Z,Y )]
= E

[
I {φ1(Z) = 1}I {Y = 1}(I {Y = 1}p(Z, 1) + I {Y = 0}p(Z, 0)

)]
= E [I {φ1(Z)=1}I {Y =1}p(Z, 1)]=E [E (I {φ1(Z) = 1}I {Y = 1}p(Z, 1)|Z)]
= E [I {φ1(Z) = 1}p(Z, 1)η(Z)] .

Similarly,

B = E [I {φ1(Z) = 0}p(Z, 0)(1 − η(Z))] , C = E [I {φ0(X) = 1}q(X, 1)λ(X)] ,

D = E [I {φ0(X) = 0}q(X, 0)(1 − λ(X))] .

Next, let φ̂1, φ̂0, and φ̂ be as in the statement of the lemma and note that

P{φ̂(Z, δ) = Y |Dm} = A′ + B ′ + C ′ + D′, a.s.,

where

A′ = E
[
I {φ̂1(Z) = 1}p(Z, 1)η(Z)

∣∣∣Dm

]
,

B ′ = E
[
I {φ̂1(Z) = 0}p(Z, 0)(1 − η(Z))

∣∣∣Dm

]
,

C ′ = E
[
I {φ̂0(X) = 1}q(X, 1)λ(X)

∣∣∣Dm

]
,

D′ = E
[
I {φ̂0(X) = 0}q(X, 0)(1 − λ(X))

∣∣∣Dm

]
.

Thus,

L(φ̂)−L(φB) = P{φB(Z, δ) = Y } − P{φ̂(Z, δ) = Y |Dm}
= (A − A′) + (B − B ′) + (C − C ′) + (D − D′)

= E
[
p(Z, 1)η(Z)

(
I {φ1(Z) = 1} − I {φ̂1(Z) = 1}

) ∣∣∣Dm

]
+ E

[
p(Z, 0) (1 − η(Z))

(
I {φ1(Z) = 0} − I {φ̂1(Z) = 0}

) ∣∣∣Dm

]
+ E

[
q(X, 1)λ(X)

(
I {φ0(X) = 1} − I {φ̂0(X) = 1}

) ∣∣∣Dm

]
+ E

[
q(X, 0) (1 − λ(X))

(
I {φ0(X) = 0} − I {φ̂0(X) = 0}

) ∣∣∣Dm

]
, a.s.
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= E
[
{p(Z, 1)η(Z) − p(Z, 0)(1 − η(Z))}

(
I {φ1(Z) = 1} − I {φ̂1(Z) = 1}

) ∣∣∣Dm

]
+ E

[
{q(X, 1)λ(X)−q(X, 0)(1−λ(X))}

(
I {φ0(X)=1}− I {φ̂0(X)=1}

) ∣∣∣Dm

]
, a.s.

(28)

On the other hand,

E(δY |Z) = E[E(δY |Z,Y )|Z] = E[Y p(Z,Y )|Z] = E[Y {Y p(Z, 1)

+(1 − Y )p(Z, 0)}|Z]
= E[Y p(Z, 1)|Z] = p(Z, 1)η(Z) , a.s.

We also have

E(δ|Z) = E[E(δ|Z,Y )|Z] = E[p(Z,Y )|Z] = E[Y p(Z, 1) + (1 − Y )p(Z, 0)|Z]
= p(Z, 1)η(Z) + p(Z, 0)(1 − η(Z)) , a.s.

Therefore,

E(δ(2Y − 1)|Z) = 2E(δY |Z) − E(δ|Z)

= 2p(Z, 1)η(Z) − [p(Z, 1)η(Z) + p(Z, 0) (1 − η(Z))]
= p(Z, 1)η(Z) − p(Z, 0)(1 − η(Z)) , a.s.

(29)

Similarly, one can show that

E [(1 − δ)(2Y − 1)|X] = q(X, 1)λ(X) − q(X, 0)(1 − λ(X)) , a.s. (30)

Substituting (29) and (30) in (28), one has

L(φ̂) − L(φB)

= E
{
E[δ(2Y − 1)|Z]

(
I {φ1(Z) = 1} − I {φ̂1(Z) = 1}

) ∣∣∣Dm

}
+E

{
E[(1 − δ)(2Y − 1)|X]

(
I {φ0(X) = 1} − I {φ̂0(X) = 1}

) ∣∣∣Dm

}
, a.s.

(31)

Now, in view of the definition of φ̂1 and the fact that the function φ1 [see (27)] can
alternatively be written in the form

φ1(z) =
{
1 if E[δ(2Y − 1)|Z = z] > 0

0 otherwise,

one finds

E[δ(2Y − 1)|Z = z]
(
I {φ1(z) = 1} − I {φ̂1(z) = 1}

)
≤
∣∣∣E[δ(2Y − 1)|Z = z] − T̂1(z)

∣∣∣, (32)
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which follows by considering the two cases {φ1(z) = 1, φ̂1(z) = 0} and {φ1(z) =
0, φ̂1(z) = 1} separately. Similarly, since φ0 in (27) can alternatively be written as

φ0(x) =
{
1 if E[(1 − δ)(2Y − 1)|X = x] > 0

0 otherwise,

by considering the two cases {φ0(x) = 1, φ̂0(x) = 0} and {φ0(x) = 0, φ̂0(x) = 1}
separately we find that

E[(1 − δ)(2Y − 1)|X = x]
(
I {φ0(x) = 1} − I {φ̂0(x) = 1}

)
≤
∣∣∣E[(1 − δ)(2Y − 1)|X = x] − T̂0(x)

∣∣∣. (33)

Integrating both sides of (32) with respect to the probability measure of Z, and both
sides of (33) with respect to the probability measure of X, gives the desired result [in
conjunction with (31)]. ��
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