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1 Introduction

Let (X1, Y1) and (X2, Y2) be two independent random vectors. Assume that they
satisfy the general nonparametric regression models,

Yk = mk(Xk) + σk(Xk)εk, (1)

where mk(x) = E(Yk | Xk = x) is the regression function, σ 2
k (x) = V ar(Yk | Xk =

x) is the conditional variance function and εk is the regression error, which is assumed
to be independent of Xk , k = 1, 2. By construction E(εk) = 0 and V ar(εk)=1. The
regression functions, the variance functions, the distributions of the error and that of
the covariates are unknown and no parametric models are assumed for them. We are
interested in testing for the equality of the error distributions, that is, in tests of the
null hypothesis

H0 : F1 = F2,

versus the alternative
H1 : F1 �= F2,

where F1, F2 stand for the cumulative distribution function (CDF) of ε1 and ε2,
respectively. In view of the uniqueness of the characteristic function (CF), the null
hypothesis can equivalently be stated as

H0 : C1 = C2,

versus the alternative
H1 : C1 �= C2,

where Ck denotes the CF corresponding to Fk , that is, Ck(t) = ∫ exp(it x) d Fk(x) =
Rk(t) + iIk(t), k = 1, 2.

The equality of the error distributions is a usual assumption in several statistical
problems such as that of testing for the equality of regression curves (see for example,
Young and Bowman 1995; Hall and Hart 1990; Kulasekera and Wang 2001). The
equality of the error distributions may considerably simplify some procedures. For
instance, under H0, the asymptotic null distribution of the test statistic for the equality
of regression functions in Pardo-Fernández et al. (2015a) coincides with the one of the
classicalANOVA test for comparingmeans (it also requires the equality of the densities
of the covariates). Another example is given by the asymptotic null distribution of the
test statistic for the equality of variance functions in Pardo-Fernández et al. (2015b)
based on CFs. The authors prove that, when the covariates are identically distributed
and the error distributions are equal, the asymptotic distribution coincides with that
of the classical Levene test for comparing variances. Thus, the problem of testing for
H0 is of considerable practical interest.

The problem of testing whether two samples come from the same population has
generated a considerable amount of research. Many different approaches have been
proposed to deal with this problem when the data are observable (see, for example,
the references in Meintanis 2005; Alba-Fernández et al. 2008; Hobza et al. 2014; Bar-
inghaus and Kolbe 2015; Modarres 2016). In our setting the errors are not observable
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and the inference must be based on the residuals, which are not independent even if
the original data are. The number of proposals to deal with this case is not so big.
Mora (2005) proposed tests for testing H0 when the regression models are linear;
for the more general model given in (1), Pardo-Fernández (2007)—PF07 from now
on- also proposed tests for H0. These two papers study Kolgomorov–Smirnov (KS)
and Cramér–von Misses (CvM) type test statistics based on the empirical CDFs of the
residuals. Since the null distribution of these test statistics is unknown, these papers use
a smooth bootstrap to approximate the critical values. Two main problems with these
procedures are: they assume strong conditions on the distributions of the errors which,
among other things, are supposed to have a smooth density; in addition, although quite
easy to implement, the bootstrap can become computationally expensive as the sample
sizes of the data increase.

This paper proposes a test for H0 that is based on comparing the empirical CF
(ECF) of the residuals in samples from the models. It can be seen as a residual version
of the test in Alba-Fernández et al. (2008), designed for the two-sample problemwhen
observable independent and identically distributed (IID) data are available from each
population. A weighted bootstrap (WB) estimator, in the sense of Burke (2000), is
proposed to approximate the critical values. This method has been previously used in
Kojadinovic andYan (2012) andGhoudi andRémillard (2014), to approximate the null
distribution of goodness-of-fit tests based on the empirical CDF, in Jiménez-Gamero
and Kim (2015), to approximate the null distribution of goodness-of-fit tests based
on the ECF, in Quessy and Éthier (2012), for the two-sample problem for dependent
data, and in Jiménez-Gamero et al. (2016), for the two-sample problem for observable
independent data, among others. In view of the good properties of theWB in these and
other papers, it is also expected to work well for approximating the null distribution
of the test statistic considered in this paper.

Compared to the tests in PF07, the procedure suggested in this paper has two
main advantages. First, it assumes less stringent assumptions on the distribution of
the regression errors. Specifically, we do not assume that the error distribution has
a probability density function. Thus, the method can be applied when such distribu-
tion is arbitrary: continuous, discrete or mixed. Secondly, the WB approximation is
computationally more efficient than that based on the smooth bootstrap.

The paper is organized as follows. Section 2 describes the test statistic. The problem
of approximating the null distribution of the proposed test statistic is dealt with in Sect.
3, where the use of a WB estimator is studied. The consistency of the resulting null
distribution estimator is proved. It is also shown that the resulting test is consistent, in
the sense of being able to detect any alternative. Some practical issues are addressed
in Sect. 4. Section 5 reports the results of some simulation experiments designed to
study the finite sample performance of the proposed approximation, to compare it
with other methods as well as a real data application. From this numerical study it is
concluded that the WB approximation works, in the sense of providing levels close to
the nominal values, and that the power of the test is comparable or even greater than
the power of the test based on the empirical CDF. Section 6 shows how the proposed
test can be extended to the general case of comparison of d > 2 error distributions.
All proofs and technical details are deferred to the last section.

123



1372 G. I. Rivas-Martínez et al.

The following notation will be used along the paper: all vectors are column vectors;
the superscript T denotes transpose; 1n ∈ R

n has all its components equal to 1; if
x ∈ R

k , with xT = (x1, . . . , xk), then diag(x) is the k×k diagonal matrixwhose (i, i)
entry is xi , 1 ≤ i ≤ k; P0, E0 andCov0 denote probability, expectation and covariance,
respectively, by assuming that the null hypothesis is true; P∗, E∗ and Cov∗ denote the
conditional probability law, expectation and covariance, given the data, respectively;
L→ denotes convergence in distribution;

P→ denotes convergence in probability;
a.s.→

denotes the almost sure convergence; for any complex number z = a + ib, |z| is its
modulus; an unspecified integral denotes integration over the whole real line R; for a
given non-negative real-valued function ω we denote ‖ · ‖ω to the norm and 〈·, ·〉ω to
the scalar product in the Hilbert space L2(ω) = {g : R → C,

∫ |g(t)|2ω(t)dt < ∞}.

2 The test statistic

Let (Xkj , Ykj ), j = 1, 2, . . . , nk , be an IID sample from (Xk, Yk) satisfying (1),
and let εk1, . . . , εknk denote the associated errors, k = 1, 2. Since the hypothesis H0
establishes the equality of the distributions of the errors εk j and they are not observable,
the inference must be based on the residuals,

ε̂k j = Ykj − m̂k(Xkj )

σ̂k(Xkj )
, j = 1, 2, . . . , nk, (2)

where m̂k and σ̂k are estimators of mk and σk , respectively, k = 1, 2. Several choices
are possible for m̂k and σ̂k . Here, as in PF07, we use the following kernel estimators
for the regression function mk and the variance function σ 2

k ,

m̂k(x) =
nk∑

j=1

Wkj (x; hk)Ykj , x ∈ S,

σ̂ 2
k (x) =

nk∑

j=1

Wkj (x; hk)
{
Ykj − m̂k(x)

}2
, x ∈ S,

where

Wkj (x; hk) = Khk

(
Xkj − x

)

∑nk
s=1 Khk (Xks − x)

, x ∈ S,

Kh(·) = 1
h K ( ·

h ), K (·) is a kernel and hk is the bandwidth, satisfying certain conditions
that will be specified later. The proposed test statistic takes the form

Tn1,n2 = ‖Ĉ1 − Ĉ2‖2ω,

where

Ĉk(t) = 1

nk

nk∑

j=1

exp(it ε̂k j ) = R̂k(t) + i Îk(t), (3)
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R̂k(t) = 1

nk

nk∑

j=1

cos(t ε̂k j ), Îk(t) = 1

nk

nk∑

j=1

sin(t ε̂k j ),

k = 1, 2, and ω(t) is a non-negative function.
In order to study properties of Tn1,n2 some assumptions will be required. Next we

list them.

(A.1) All limits in this paper are taken when n1, n2 → ∞ in such a way that

lim
n1

N
= τ, for some τ ∈ (0, 1),

where N = n1 + n2.
(A.2) The weight function ω(t) is a non-negative symmetric function,

ω(t) = ω(−t), ∀t,

and
∫

t4ω(t)dt < ∞.

There is no restriction in assuming that the weight function ω(t) is symmetric
because otherwise bydefiningω1(t) = 0.5{ω(t)+ω(−t)},which is clearly symmetric,
we have that

‖C1 − C2‖ω = ‖C1 − C2‖ω1 ,

for any two CFs C1 and C2. Note that the symmetry of ω implies that

Tn1,n2 = ‖R̂1 − R̂2 + Î1 − Î2‖2ω.

The following assumption will be required to ensure that m̂k and σ̂k provide con-
sistent estimators of mk and σk , respectively.

(A.3) For k = 1, 2,
(i) E(ε4k ) < ∞.
(ii) Xk is absolutely continuous with compact support S and density function fk .
(iii) fk, mk and σk are twice continuously differentiable.
(iv) infx∈S fk > 0 and infx∈S σk > 0.
(v) nkh4

k → 0 and nkh2
k/ ln nk → ∞.

(vi) K is a symmetric density function with compact support and twice continu-
ously differentiable.

For simplicity we assume that the same kernel function, K , is used in both popu-
lations. Nevertheless, the results to be stated remain true if different kernels are used,
whenever they satisfy Assumption (A.3)(vi).

In order to give a sound justification of Tn1,n2 as a test statistic for testing H0 we
next derive its limit.

Theorem 1 Suppose that Assumptions (A.1)–(A.3) hold, then Tn1,n2
P→ κ = ‖C1 −

C2‖2ω.
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1374 G. I. Rivas-Martínez et al.

Note that κ ≥ 0. If H0 is true then κ = 0. Since two distinct characteristic functions
can be equal in a finite interval (Feller 1971, p. 506), a general way to ensure that κ = 0
iff H0 is true is to takeω positive for almost all (with respect to the Lebesgue measure)
points inR. Thus, a reasonable test for testing H0 should reject the null hypothesis for
large values of Tn1,n2 . Now, to determine what are large values we must calculate its
null distribution, or at least an approximation to it. This is the topic of the next section.

3 Approximating the null distribution

The null distribution of Tn1,n2 is clearly unknown, so it must be approximated. We
first try to estimate it by means of its asymptotic null distribution.

Let

R′
k(t) = −

∫
x sin(t x)d Fk(x), I ′

k(t) =
∫

x cos(xt)d Fk(t),

k = 1, 2. Note that under the null hypothesis R1(t) = R2(t) = R(t), I1(t) = I2(t) =
I (t), R′

1(t) = R′
2(t) = R′(t) and I ′

1(t) = I ′
2(t) = I ′(t).

Theorem 2 Suppose that Assumptions (A.1)–(A.3) hold. If H0 is true, then

n1n2

N
Tn1,n2

L−→ ‖Z‖2ω,

where {Z(t), t ∈ R} is a centered Gaussian process on L2(ω) with covariance kernel
�0(t, s) = Cov0{Z0(ε; t), Z0(ε; s)} and

Z0(ε; t) = cos(tε) + tε I (t) − t
ε2 − 1

2
R′(t) − R(t)

+ sin(tε) − tεR(t) − t
ε2 − 1

2
I ′(t) − I (t).

Remark 1 The asymptotic null distribution of n1n2
N Tn1,n2 can be expressed as

‖Z‖2ω d=
∑

j≥1

λ j Z2
j , (4)

where
d= stands from the equality in distribution, Z1, Z2, . . . are independent standard

normal variables and the set {λ j } j≥1 are the non-zero eigenvalues of the integral
equation

∫
�0(t, s)g j (t)w(t)dt = λ j g j (s)

with corresponding eigenfunctions {g j (·)} j≥1.
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From Remark 1 it becomes evident that the asymptotic null distribution of Tn1,n2
does not provide a useful approximation to its null distribution since it depends on the
unknown common distribution. So, we next study another way of approximating it by
means of a WB estimator.

Let

Cτ (t) = τC1(t) + (1 − τ)C2(t) = Rτ (t) + iIτ (t).

Let ξ11, . . . , ξ1n1, ξ21, . . . , ξ2n2 be IID random variates with mean 0 and variance 1,
which are independent of (X11, Y11), . . . , (X1n1 , Y1n1), (X21, Y21), . . . , (X2n2 , Y2n2).
We define the following WB version of Tn1,n2 ,

T ∗
1,n1,n2 = ‖C∗

1 − C∗
2‖2ω,

where

C∗
k (t) = 1

nk

nk∑

j=1

ξk j Zk,τ (εk j ; t),

Zk,τ (ε; t) = cos(tε) + tε Ik(t) − t
ε2 − 1

2
R′

k(t) − Rτ (t)

+ sin(tε) − tεRk(t) − t
ε2 − 1

2
I ′
k(t) − Iτ (t),

(5)

k = 1, 2. The next result gives the weak limit of the conditional distribution of T ∗
1,n1,n2

,
given the data (X11, Y11), . . . , (X1n1, Y1n1), (X21, Y21), . . . , (X2n2 , Y2n2).

Theorem 3 Suppose that Assumptions (A.1)–(A.3) hold, then

sup
x

∣
∣
∣P∗
{n1n2

N
T ∗
1,n1,n2 ≤ x

}
− P {Tτ ≤ x}

∣
∣
∣

P−→ 0,

where Tτ = ‖Zτ‖2ω, {Zτ (t), t ∈ R} is a centered Gaussian process on L2(ω)

with covariance kernel �τ (t, s) = (1 − τ)�1,τ (t, s) + τ�2,τ (t, s) and �k,τ (t, s) =
E{Zk,τ (εk; t)Zk,τ (εk; s)}, k = 1, 2.

The result in Theorem 3 is valid whether the null hypothesis is true or not. If H0
holds, then the kernels �0(t, s) and �τ (t, s) coincide. Therefore, a direct consequence
of Theorems 2 and 3 is that the conditional distribution of T ∗

1,n1,n2
, given the data,

provides a consistent estimator of the distribution of Tn1,n2 when H0 is true. However,
from a practical point of view, this result is useless because the function Zk,τ (εk j ; t)
depends on the non-observable error εk j and on the unknown values of the functions
Rk(t), Ik(t), R′

k(t) and I ′
k(t), j = 1, . . . , n j , k = 1, 2. To overcome these difficulties

we replace εk j by ε̂k j , Rk(t) by R̂k(t), Ik(t) by Îk(t), R′
k(t) by R̂′

k(t) and I ′
k(t) by

Î ′
k(t), with

R̂′
k(t) = − 1

nk

nk∑

j=1

ε̂k j sin(t ε̂k j ), Î ′
k(t) = 1

nk

nk∑

j=1

ε̂k j cos(t ε̂k j ).
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1376 G. I. Rivas-Martínez et al.

So, instead of T ∗
1,n1,n2

, now we consider

T ∗
2,n1,n2 = ‖Û∗

1 − Û∗
2 ‖2ω,

where

Û∗
k (t) = 1

nk

∑nk
j=1

{

cos(t ε̂k j ) + t ε̂k j Îk(t) − t
ε̂2k j −1

2 R̂′
k(t) − R̂τ (t)

+ sin(t ε̂k j ) − t ε̂k j R̂k(t) − t
ε̂2k j −1

2 Î ′
k(t) − Îτ (t)

}

ξk j ,

(6)

k = 1, 2, and

R̂τ (t) = n1

N
R̂1(t) + n2

N
R̂2(t), Îτ (t) = n1

N
Î1(t) + n2

N
Î2(t).

The next theorem states that replacing εk j by ε̂k j , . . . , I ′
k(t) by Î ′

k(t) in the expres-
sion of T ∗

1,n1,n2
has no asymptotic effect, in the sense that both T ∗

1,n1,n2
and T ∗

2,n1,n2
have the same conditional asymptotic distribution, given the data. Observe that all
quantities involved in the definition of T ∗

2,n1,n2
are known, thus, in principle, one could

be able to know, or at least to accurately approximate its conditional distribution, given
the data. This practical issue will be handled in Sect. 4.

Theorem 4 Suppose that Assumptions (A.1)–(A.3) hold, then

sup
x

∣
∣
∣P∗
{n1n2

N
T ∗
2,n1,n2 ≤ x

}
− P {Tτ ≤ x}

∣
∣
∣

P−→ 0,

where Tτ is as defined in Theorem 3.

The result in Theorem 4 is valid whether the null hypothesis H0 is true or not. As
observed before for T ∗

1,n1,n2
, an immediate consequence of this fact and Theorem 2 is

the following.

Corollary 1 If H0 is true and the assumptions in Theorem 4 hold, then

sup
x

∣
∣
∣P∗
{n1n2

N
T ∗
2,n1,n2 ≤ x

}
− P

{n1n2

N
Tn1,n2 ≤ x

}∣∣
∣

P−→ 0.

Let α ∈ (0, 1). For testing H0 we consider

�∗ =
{
1, if Tn1,n2 ≥ t∗2,n1,n2,α,

0, otherwise,

where t∗2,n1,n2,α is the 1 − α percentile of the conditional distribution of T ∗
2,n1,n2

, or

equivalently,�∗ = 1 if p∗ ≤ α, where p∗ = P∗
{

T ∗
2,n1,n2

≥ Tn1,n2,obs

}
and Tn1,n2,obs

is the observed value of the test statistic. The result in Corollary 1 states that �∗ is
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asymptotically correct, in the sense that its type I error probability is asymptotically
equal to the nominal value α.

From Theorems 1, 2 and 4, it readily follows the next result.

Corollary 2 Suppose that H0 is not true, the assumptions in Theorem 4 hold and ω

is such that
κ = ‖C1 − C2‖2ω > 0, (7)

then P(�∗ = 1) → 1.

Corollary 2 shows that, if ω is such that (7) holds, then the test �∗ is consistent in
the sense of being able to asymptotically detect any (fixed) alternative. As discussed
before, a general way to ensure (7) is to take ω positive for almost all (with respect to
the Lebesgue measure) points in R.

Remark 2 The results so far stated keep on being true if instead of using the rawmulti-
pliers, ξ11, . . . , ξ1n1 , ξ21, . . . , ξ2n2 ,we use the centeredmultipliers, ξ11−ξ̄1, . . . , ξ1n1−
ξ̄1, ξ21 − ξ̄2, . . . , ξ2n2 − ξ̄2, where ξ̄k = 1

nk

∑nk
j=1 ξ jk , k = 1, 2, as suggested in Burke

(2000) and Kojadinovic and Yan (2012).

Remark 3 In Remark 1 we saw that the null distribution of Tn1,n2 is a linear combi-
nation of independent χ2 variables, the weights in that linear combination being the
eigenvalues {λ j } j≥1 of certain functional. Routine algebra shows that the conditional
distribution of T ∗

2,n1,n2
, given the data, can be also expressed as a linear combination

of a certain finite set of variables,
∑N

j=1 λ̂ j W 2
j , where λ̂1, . . . , λ̂N are the eigenvalues

of the symmetric N × N -matrix M2, that will be defined in next section (see Eqs.
(9) and (10)), and (W1, . . . , WN ) = (ξ11, . . . , ξ1n1, ξ21, . . . , ξ2n2)H , H being the
matrix containing the eigenvectors associated to the eigenvalues λ̂1, . . . , λ̂N , that is,
M2 = H diag(λ̂1, . . . , λ̂N )H T . What really happens is that the set {λ̂ j }N

j=1 converges
to {λ j } j≥1 (see Delhing and Mikosch 1994).

Remark 4 From Remark 3 it becomes evident that the conditional distribution of
T ∗
2,n1,n2

, given the data, depends on the distribution of (W1, . . . , WN ). The distribu-
tion of this random vector is, in general, unknown. For the special case where the
multipliers come from a standard normal distribution, the vector (W1, . . . , WN ) has
independent components distributed according to a standard normal distribution, and
thus the conditional distribution of T ∗

2,n1,n2
, given the data, is a finite linear combi-

nation of independent χ2 variables, where the weights in the linear combination are
λ̂1, . . . , λ̂N . Note that in this special case the WB distribution of the test statistic is of
the same type as its asymptotic null distribution.

4 On the practical calculation

This section describes some computational issues related to the calculation of the test
statistic Tn1,n2 and the WB approximation to its null distribution.
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1378 G. I. Rivas-Martínez et al.

4.1 Calculation of the test statistic

Let

M =
(

M11 M12
M21 M22

)

, A =
( 1

n21
1n11

T
n1

−1
n1n2

1n11
T
n2

−1
n1n2

1n21
T
n1

1
n22
1n21

T
n2

)

,

with Mrs = (ϕω(ε̂r j − ε̂sv))1≤ j≤nr , 1≤v≤nv , r, s = 1, 2, and

ϕω(x) =
∫

cos(t ′x)ω(t)dt. (8)

Let v be the vector of RN with the first n1 components equal to 1/n1 and the rest
equal to −1/n2. In practice, the test statistic Tn1,n2 can be computed by using the
following expression (see Lemma 1 in Alba-Fernández et al. 2008)

Tn1,n2 = 1

n2
1

n1∑

j,r=1

ϕω(ε̂1 j − ε̂1r ) + 1

n2
2

n2∑

l,v=1

ϕω(ε̂2l − ε̂2v)

− 2

n1n2

n1∑

j=1

n2∑

l=1

ϕω(ε̂1 j − ε̂2l)

= vT Mv

= 1T
N M11N ,

with M1 = M � A, � denoting the Hadamard product.
The WB version of Tn1,n2 , T ∗

2,n1,n2
, can be expressed as

T ∗
2,n1,n2 = ξ T M2ξ,

with ξ T = (ξ11, . . . , ξ1n1, ξ21, . . . , ξ2n2) and

M2 = M3 � A, M3 =
(

M3,11 M3,12
M3,21 M3,22

)

, (9)

M3,rs =
(∫

Zr,τ (ε̂r j ; t)Zs,τ (ε̂sv; t)ω(t)dt

)

1≤ j≤nr , 1≤v≤nv

, (10)

r, s = 1, 2. An explicit expression for M3 is given in the Appendix.

4.2 Calculation of the WB distribution of the test statistic

Normal multipliers. As observed in Remark 4, if the multipliers have a normal dis-
tribution then, conditional on the data, T ∗

2,n1,n2
is distributed as W = ∑N

j=1 λ̂ jχ
2
1, j ,
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A two-sample test for the error distribution... 1379

where λ̂1, . . . , λ̂N are the eigenvalues of M2 and χ2
1,1, . . . , χ

2
1,N are independent vari-

ables having a chi-squared distribution with 1 degree of freedom. The law of W can
be numerically approximated by using, for example, Imhof’s method (Imhof 1961).
In this case, the WB estimator of the p-value can be calculated as follows:

Algorithm 1 1. Calculate the residuals ε̂11, . . . , ε̂1n1 ,ε̂21, . . . , ε̂2n2 .
2. Calculate the observed value of the test statistic Tn1,n2 , Tn1,n2,obs .
3. Calculate the eigenvalues of M2, λ̂1, . . . , λ̂N .

4. Approximate the p-value by p̂∗ = P∗
(∑N

j=1 λ̂ jχ
2
1, j > Tn1,n2,obs

)
.

Arbitrary multipliers. As also observed in Remark 4, the WB distribution of Tn1,n2
is unknown for arbitrary multipliers. Nevertheless, the WB p-value estimator can be
easily approximated by simulation as follows. Let �(u) = 1 if u > 0 and �(u) = 0
if u ≤ 0.

Algorithm 2 1. Calculate the residuals ε̂11, . . . , ε̂1n1 ,ε̂21, . . . , ε̂2n2 .
2. Calculate the observed value of the test statistic Tn1,n2 , Tn1,n2,obs .
3. Calculate M2.
4. For some large integer B, repeat the following steps for every b ∈ {1, . . . , B}:

(a) Generate ξ11, . . . , ξ1n1, ξ21, . . . , ξ2n2 IID variables with mean 0 and variance
1.

(b) Calculate T ∗b
2,n1,n2

= ξ T M2ξ .

5. Approximate the p-value by p̂∗ = 1
B

∑B
b=1 �(T ∗b

2,n1,n2
− Tn1,n2,obs).

5 Numerical results

5.1 Finite sample performance

The properties so far studied are asymptotic. In order to empirically investigate the
performance of the proposed test for finite sample sizes, we carried out a simulation
experiment. The objective of this experiment is fourfold: first, to study the goodness of
the WB approximation to the null distribution of the test statistic; second, to analyze
the WB approximation in terms of power, comparing it to the power that results when
the bootstrap employed in PF07 is used to approximate the null distribution of the
proposed test statistic (denoted as Boot in the tables); third, to compare the power of
the proposed test to the CvM type test in PF07 (denoted as CM in the tables) (the
KS test is not considered in our simulation study because, in the simulations carried
out in PF07, it was less powerful than the CvM test); and finally, to compare the WB
and the bootstrap approximations in terms of the CPU time required. This section
reports and summarizes the obtained results. All computations in this paper have
been performed by using programs written in the R language (R Core Team 2015).
Specifically, to numerically approximate the WB p-value by Imhof’s method the R
package CompQuadForm (Duchesne and Lafaye de Micheaux 2010) was used.

Three specifications for the functions mk and σk were considered:

S1: Ykj = Xkj + X2
k j + (Xkj + 0.5)εk j , 1 ≤ j ≤ nk , k = 1, 2,
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S2: Ykj = Xkj + 0.5εk j , 1 ≤ j ≤ nk , k = 1, 2,
S3: Y1 j = X1 j + X2

1 j + (X1 j + 0.5)ε1 j , 1 ≤ j ≤ n1, and Y2 j = X2 j + 0.5ε2 j ,
1 ≤ j ≤ n2,

with Xkj ∼ U (0, 1), 1 ≤ j ≤ nk , k = 1, 2. For each of these specifications for mk

and σk , the following three cases were considered for the error distribution:

(i) ε1, ε2 ∼ N (0, 1),
(ii) ε1 ∼ N (0, 1), ε2 ∼ E(1) − 1,
(iii) ε1 ∼ N (0, 1), ε2 ∼ U (−√

3,
√
3),

where E(1) stands for a negative exponential law with mean 1. Case (i) corresponds
to the null hypothesis, while cases (ii) and (iii) are alternatives.

To estimate the regression function and the conditional variance the Epanechnikov
kernel K (u) = 0.75 × (1 − u2) was employed.

As weight function for Tn1,n2 we took ω(t) = exp(−βt2). This weight function
has been considered in many other test statistics involving ECFs (see, for example,
the tests in Alba-Fernández et al. 2008; Meintanis 2005; Meintanis et al. 2015; Pardo-
Fernández et al. 2015a, b, among others).

Another issue is the choice of h. Since the choice of the bandwidth for tests
based on smoothing remains an open issue (see, for example, de Uña-Álvarez 2013;
González-Manteiga and Crujeiras 2013; Sperlich 2013), we proceeded as in the sim-
ulation studies in PF07 and Pardo-Fernández et al. (2015a): we took hk = c × n−a

k ,
where c and a are real constants. To decide the values for a and c, we performed an
extensive simulation experiment with the aim of selecting those values giving type I
error probabilities closest to the nominal values. We also tried several values for β,
specifically β = {0.05, 0.10, 0.15, 0.20, 0.25}. In general, better results -in the sense
of agreement between the observed type I error probabilities and the target values-were
obtained for β = 0.15. Because of this reason we fixed β = 0.15 in all simulations.

1000 samples with sizes n1, n2 ∈ {50, 100} were generated for each case and
each specification for mk and σk . For each sample, to approximate the WB p-value
of the observed value of the test statistic, we applied Algorithm 2, with raw and
centered multipliers generated from a standard normal distribution and B = 1000,
and Algorithm 1. In simulations we observed that, as expected, these approximations
provided quite similar values. Nevertheless, the WB with centered multipliers gives
slightly better results, in the sense of yielding type I error probabilities which are a bit
closer to the nominal values than the other two. Because of this reason, we recommend
its use. All results displayed in the tables were obtained by using Algorithm 2 with
centered multipliers. To approximate the bootstrap p-value we proceeded as in PF07,
generating 200 bootstrap samples. The tables report the fractions of p-values less than
or equal to 0.05 and 0.10.

Tables 1, 2, 3 display the results for the level. Looking at them it can be concluded
that for n1, n2 = 100 all choices for a and c in these tables give values very similar
to the true value of α, for all specifications and for all tests. In general, a = 0.3 and
c = 1.0 give quite reasonable results, so we set these values for a and c to study the
power.

Table 4 displays the results for the power. In case (ii) all tests have similar power
for all considered specifications; in case (iii) the test proposed in this paper exhibits
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Table 1 Percentage of rejections at the significance levels 5% (upper entry) and 10% (lower entry) for
case (i) and specification S1

a n1, n2 c = 1.00 c = 1.25 c = 1.50

CM Boot WB CM Boot WB CM Boot WB

0.30 50, 50 4.60 4.50 6.40 6.00 6.00 6.10 6.00 6.10 5.90

8.60 14.50 10.90 11.00 12.50 11.30 10.50 11.00 11.80

50, 100 5.40 6.50 5.10 4.50 4.00 5.10 4.00 4.40 5.10

10.40 9.00 9.60 9.00 8.90 10.00 9.50 10.20 10.30

100, 100 4.40 4.20 5.60 6.00 5.50 5.30 4.00 5.40 4.80

9.40 9.30 10.20 10.50 11.50 10.00 9.00 10.50 9.60

0.35 50, 50 6.50 6.50 6.30 6.00 4.50 6.40 6.00 6.00 6.20

10.50 13.50 11.10 10.50 12.50 10.80 11.50 12.50 11.20

50, 100 4.00 4.00 5.10 4.50 5.50 5.00 5.50 5.00 4.90

11.00 9.50 9.50 10.50 9.50 9.80 9.00 8.00 10.00

100, 100 5.50 4.00 5.20 5.00 5.20 5.60 4.50 5.50 5.50

11.50 9.20 9.60 11.50 9.00 10.00 11.00 12.00 9.60

0.40 50, 50 6.00 5.00 6.10 4.00 6.00 6.40 6.00 4.50 6.40

9.00 13.00 10.10 11.00 14.00 10.20 11.50 14.50 10.80

50, 100 5.00 6.50 5.20 4.30 4.00 5.10 6.50 4.50 4.90

12.00 12.50 9.30 10.50 9.00 9.60 9.00 9.00 9.50

100, 100 6.00 4.10 5.70 5.70 5.50 5.20 4.70 5.50 5.60

9.50 9.00 9.40 10.90 11.50 9.70 11.00 8.50 9.90

0.45 50, 50 6.00 3.50 5.70 6.00 6.00 5.90 4.50 6.50 6.40

8.50 13.00 11.80 9.50 13.50 11.40 11.50 13.50 11.20

50, 100 6.50 5.50 5.00 5.00 6.00 5.40 7.00 6.50 5.10

10.00 12.50 10.30 12.50 13.00 9.00 11.00 10.00 9.30

100, 100 6.00 6.00 5.80 5.80 5.50 5.70 4.60 4.50 5.30

10.90 11.00 10.00 9.50 9.00 9.40 11.50 9.00 9.70

larger power than the one based on the empirical CDF. As for the WB and bootstrap
approximations to the null distribution of Tn1,n2 , the bootstrap test is slightly more
powerful than the one based on the WB approximation. Nevertheless, as the sample
size increases, the power of both tests become closer. This fact was also observed in
Kojadinovic and Yan (2012) and Ghoudi and Rémillard (2014) for goodness-of-fit
tests based on the empirical CDF. As will be seen a bit later, the practical importance
of this fact resides in that for larger sample sizes the bootstrap becomes extremely
time consuming.

We also compared the bootstrap and theWBapproximations in terms of the required
computing time. To calculate theWB approximation we used Algorithm 1 (denoted as
WB1 in Table 5) and Algorithm 2 (denoted as WB2 in Table 5). For the comparisons
to be fair, we took B = 1000 for the bootstrap and theWB2 estimators. As for the raw
and the centered multipliers, the difference in the required computing time is negligi-
ble. Table 5 shows the CPU time consumed in seconds to get a p-value for testing the
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Table 2 Percentage of rejections at the significance levels 5% (upper entry) and 10% (lower entry) for
case (i) and specification S2

a n1, n2 c = 1.00 c = 1.25 c = 1.50

CM Boot WB CM Boot WB CM Boot WB

0.30 50, 50 5.90 6.00 5.90 7.00 6.50 6.50 6.50 6.00 6.20

11.30 11.00 11.20 12.00 11.00 11.40 12.00 9.50 11.60

50, 100 5.30 4.50 4.50 4.50 4.00 5.10 5.50 4.00 4.40

10.60 9.50 10.50 11.50 9.00 10.10 9.00 9.00 9.30

100, 100 5.90 4.00 5.50 4.50 4.50 5.60 5.50 5.50 5.30

10.90 11.50 10.30 9.00 9.10 10.20 9.00 11.00 10.10

0.35 50, 50 5.00 5.00 6.20 7.00 5.50 5.90 6.50 6.50 6.20

9.00 13.00 11.60 10.00 11.00 11.10 11.50 11.00 11.60

50, 100 5.50 5.50 4.90 5.00 4.00 4.60 4.00 6.50 4.90

11.50 10.50 10.60 11.50 10.50 10.30 12.50 10.00 10.00

100, 100 4.50 4.50 5.90 4.50 5.00 5.40 4.00 5.50 5.50

9.50 9.00 9.60 9.50 9.00 10.10 9.00 9.50 9.80

0.40 50, 50 5.00 4.50 6.30 5.50 5.00 6.30 6.00 6.00 5.90

8.00 11.50 11.70 10.00 13.00 11.60 10.00 11.00 11.10

50, 100 5.00 4.50 4.90 5.50 5.50 5.00 4.50 4.00 4.60

12.00 11.00 9.60 10.00 10.50 10.20 11.00 9.50 10.10

100, 100 4.50 5.50 5.70 4.50 5.50 5.90 5.00 6.00 5.50

9.00 9.50 9.30 9.50 9.50 9.50 10.00 10.00 10.20

0.45 50, 50 5.00 4.50 6.00 5.00 4.50 6.40 5.50 5.00 6.30

8.50 10.00 12.00 11.00 12.00 11.60 9.00 13.00 11.40

50, 100 5.50 4.00 4.80 6.50 4.50 4.80 5.50 5.00 4.80

12.50 11.00 10.00 12.00 12.00 9.20 11.50 10.50 10.10

100, 100 4.50 5.50 6.60 4.00 4.00 5.80 5.50 6.00 6.00

9.00 9.50 10.00 9.00 9.00 9.20 9.00 11.00 9.50

equality of the error distribution for several sample sizes. Looking at this table it
becomes evident that WB2 is more efficient than the bootstrap approximation, in
terms of the required computing time, specially for larger sample sizes. The differ-
ence between WB1 and WB2 is really small. The gain in computational efficiency of
the WB over the bootstrap stems from the fact that one does not have to re-estimate m
and σ at each iteration, which slows down the process considerably; by contrast,
for the WB approximation, once the matrix M3 is calculated, the WB replicates
T ∗1
2,n1,n2

, . . . , T ∗B
2,n1,n2

are calculated very rapidly.
Finally, we ran simulations when the error distributions come from a mixed distri-

bution. Specifically, we considered the following cases:

(iv)

ε1, ε2 ∼
{
0, with probability 0.20,
N (0,

√
5/4) with probability 0.80,
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Table 3 Percentage of rejections for at the significance levels 5% (upper entry) and 10% (lower entry) for
case (i) and specification S3

a n1, n2 c = 1.00 c = 1.25 c = 1.50

CM Boot WB CM Boot WB CM Boot WB

0.30 50, 50 4.00 7.00 6.40 7.50 6.50 6.10 6.00 7.00 5.90

10.00 12.50 10.90 11.50 13.50 11.30 12.50 10.50 11.80

50, 100 5.20 5.00 5.10 6.50 5.50 5.10 6.00 4.00 5.10

11.60 11.00 9.60 10.50 9.00 10.00 11.50 9.00 10.30

100, 100 5.80 4.00 5.60 4.50 4.50 5.30 4.50 5.50 4.80

9.80 9.50 10.20 10.50 11.50 10.00 11.50 11.00 9.60

0.35 50, 50 4.00 4.00 6.20 5.50 6.50 6.60 7.00 6.50 6.80

11.50 13.50 11.40 13.50 12.00 11.10 11.50 13.00 12.40

50, 100 6.50 6.50 5.00 7.00 7.50 5.20 4.50 5.50 4.90

11.00 11.50 9.50 10.00 9.50 9.80 9.00 11.50 10.20

100, 100 4.00 4.00 5.50 4.00 6.00 5.40 6.50 6.50 5.50

9.00 9.10 10.10 10.00 12.50 10.30 9.50 11.50 10.40

0.40 50, 50 5.50 5.50 6.10 7.50 5.00 6.30 5.50 5.50 6.40

9.50 12.00 11.70 11.50 13.50 11.40 13.00 12.50 11.20

50, 100 5.00 5.50 5.10 6.50 5.00 4.90 6.00 4.00 5.00

12.50 12.50 9.50 11.00 12.00 9.60 11.50 10.00 9.70

100, 100 4.50 5.50 5.90 4.00 4.00 5.50 4.80 4.00 5.30

9.50 11.50 9.50 9.00 9.50 10.10 11.00 12.00 10.30

0.45 50, 50 5.50 4.00 6.00 6.00 6.00 6.50 4.50 4.50 6.30

11.50 14.50 12.00 9.50 12.00 11.80 11.50 13.50 11.30

50, 100 7.00 5.50 5.40 5.00 5.00 5.10 4.50 5.00 4.70

13.00 11.50 10.40 12.00 13.50 9.50 10.50 11.50 9.70

100, 100 5.50 5.00 6.10 5.50 5.50 5.90 4.30 6.00 5.60

10.50 11.50 10.00 9.00 9.00 9.60 11.50 9.00 10.20

(v)

ε1 ∼
{
0, with probability 0.20,
N (0,

√
5/4) with probability 0.80,

ε2 ∼
{
0, with probability 0.50,
N (0,

√
2) with probability 0.50.

Case (iv) corresponds to the null hypothesis and case (v) is an alternative. In practice,
these cases could model a situation where the observations come from two devices,
one of them with no measurement error. The test in PF07 cannot be applied in this
setting because it requires the error distribution to have a smooth density. Table 6
displays the obtained results for the test proposed in this paper for n1, n2 = 100.
Again the empirical levels are close to the target values and the test has power against
the alternative.
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Table 4 Percentage of rejections at the significance levels 5% and 10% for cases (ii) and (iii) and specifi-
cations S1–S3

Case n1, n2 α = 0.05 α = 0.10

CM Boot WB CM Boot WB

S1 (ii) 50, 50 76.00 75.60 75.10 85.60 85.30 84.00

50, 100 88.20 87.60 88.30 92.60 92.70 90.80

100, 100 95.60 97.70 96.80 98.00 99.40 98.70

(iii) 50, 50 14.40 23.20 20.60 27.60 35.20 29.10

50, 100 27.20 29.70 26.20 40.60 44.20 42.00

100, 100 33.40 49.00 46.60 47.60 64.20 61.10

S2 (ii) 50, 50 76.20 75.90 71.00 81.00 83.90 82.70

50, 100 83.60 87.50 86.90 89.20 92.80 91.80

100, 100 96.70 97.70 97.90 97.90 99.10 98.70

(iii) 50, 50 16.50 24.40 18.70 23.00 35.80 29.30

50, 100 20.80 29.00 24.60 31.90 43.60 38.00

100, 100 40.50 50.00 47.00 55.00 64.90 61.80

S3 (ii) 50, 50 72.20 73.00 70.10 82.80 84.00 78.90

50, 100 85.60 84.50 83.50 90.00 91.80 90.20

100, 100 98.00 97.00 96.00 99.20 98.80 97.70

(iii) 50, 50 18.40 27.30 20.30 31.60 38.90 32.80

50, 100 28.60 31.90 27.30 43.20 48.00 43.60

100, 100 37.60 53.60 51.20 54.40 68.00 65.40

Table 5 CPU time in seconds
for the calculation of a p-value

n1, n2 Boot/WB2 WB1 WB2

50, 50 13.12 1.10 1.20

50, 100 19.43 1.20 1.35

100, 100 25.05 1.32 1.45

100, 150 36.13 1.41 1.70

150, 150 35.63 1.53 1.85

5.2 Real data analysis

Finally, we applied the proposed test to a real data set. To estimate the p-value we
applied Algorithm 2 with B = 1000. Several values for a and c were tried. Next we
briefly describe it.

Young and Bowman (1995) proposed a method for testing the equality and paral-
lelism of two or more smooth curves. Their method assumes that the errors are equally
distributed in each population. They applied their method to a data set consisting of
the yield (g/plant) and density (plants/m2) of White Spanish Onions from two South
Australian localities, namely Purnong Landing (first group, 42 observations) and Vir-
ginia (second group, 42 observations). This data set is available in the R package sm
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Table 6 Percentage of
rejections at the significance
levels 5% (upper entry) and 10%
(lower entry) for cases (iv) and
(v) and specifications S1–S3

a c = 1.00 c = 1.25 c = 1.50

(iv) (v) (iv) (v) (iv) (v)

S1 0.30 5.00 52.00 5.50 51.00 5.00 47.50

10.50 70.00 10.00 68.50 10.00 66.50

0.35 5.50 52.00 5.50 51.50 5.00 50.50

10.00 69.50 10.50 70.00 9.50 69.50

0.40 5.40 50.50 5.50 51.50 5.50 52.00

10.00 69.50 10.00 69.50 10.00 70.50

S2 0.30 5.50 47.50 5.00 44.00 5.00 42.50

10.00 65.50 9.00 60.00 9.00 56.50

0.35 5.00 50.50 5.00 48.00 5.50 45.00

9.00 68.00 10.50 65.50 9.50 60.50

0.40 5.00 51.50 5.00 50.00 5.00 49.00

10.00 71.50 10.00 68.00 10.00 65.00

S3 0.30 5.00 51.50 5.00 48.00 5.00 46.50

10.00 69.50 10.50 66.00 11.50 62.50

0.35 5.00 51.50 5.00 51.00 5.00 49.00

10.50 69.50 10.00 69.50 10.50 67.50

0.40 5.50 55.00 5.00 52.00 5.50 51.50

10.50 70.00 10.50 69.50 9.50 69.00

Table 7 p-values for the data set

a β = 0.05 β = 0.15 β = 0.25

c = 1.00 c = 1.25 c = 1.50 c = 1.00 c = 1.25 c = 1.50 c = 1.00 c = 1.25 c = 1.50

0.30 0.961 0.743 0.496 0.944 0.570 0.393 0.920 0.521 0.363

0.35 0.959 0.943 0.760 0.989 0.850 0.579 0.976 0.840 0.529

0.40 0.863 0.970 0.946 0.861 0.996 0.883 0.790 0.989 0.848

0.45 0.570 0.903 0.971 0.422 0.915 0.996 0.345 0.846 0.988

(Bowman and Azzalini 2014). Table 7 displays the estimated p-values when using
the test proposed in this paper for testing the equality of the error distributions. As in
Young and Bowman (1995), the test was applied on the logarithm of the data. Looking
at this table we see that the equality of the error distribution cannot be rejected.

6 Testing for the equality of d > 2 error distributions

Theproposed test can be extended to testing for the equality of d > 2 error distributions
as follows. Let (Xk, Yk), 1 ≤ k ≤ d, be d independent random vectors satisfying the
general nonparametric regression model (1), 1 ≤ k ≤ d. Let Fk and Ck = Rk + iIk

denote de CDF and the CF of εk , respectively, 1 ≤ k ≤ d. Suppose that independent
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samples are available from each population: (Xk1, Yk1), . . . , (Xknk , Yknk ), 1 ≤ k ≤ d.
Let N = n1 + · · · + nd . For testing

H0d : F1 = · · · = Fd ⇔ C1 = · · · = Cd ,

against the general alternative

H1d : H0d is not true,

for observable data, Hušková and Meintanis (2008) have proposed to compare the
ECF associated to the sample from each population to the ECF of all available data
which, under H0d , estimates the common CF, say C = C1 = · · · = Cd . A residual
version of such test can be used for testing H0d in our setting. Specifically, let ε̂k j ,
1 ≤ j ≤ nk , 1 ≤ k ≤ d, be defined as in (2) and let

TN =
d∑

k=1

nk‖Ĉk − Ĉ‖2ω,

where Ĉk is as defined in (3) and

Ĉ = 1

N

d∑

k=1

nkĈk .

Analogue results to those given in Theorems 1, 2 and 4 can be given for TN . Next we
state them without proofs because they closely follow those provided for d = 2.

Theorem 5 Suppose that nk/N → τk > 0, 1 ≤ k ≤ d, Assumptions (A.2) and (A.3)

hold for all 1 ≤ k ≤ d, then 1
N TN

P→∑d
k=1 τk‖Ck − C0‖2ω, with C0 =∑d

k=1 τkCk.

Theorem 6 Suppose that assumptions in Theorem 5 hold. If H0 is true, then

TN
L−→

d∑

k=1

‖Zk − √
τk Z0‖2ω,

where {Zk(t), t ∈ R}, k = 1, . . . , d, are d IID centered Gaussian processes on L2(ω)

with covariance kernel �0(t, s) as defined in Theorem 2 and Z0 =∑d
k=1

√
τk Zk.

Now let ξ1,1, . . . , ξ1,n1, . . . , ξd,1, . . . , ξd,nd be IID random variates with mean 0
and variance 1, which are independent of the data, (Xk1, Yk1), . . . , (Xknk , Yknk ), 1 ≤
k ≤ d. Let

T ∗
N =

d∑

k=1

nk‖Û∗
k − Û∗

0 ‖2ω,
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where Û∗
k is as defined in (6) with R̂τ and Îτ replaced by R̂τ1,...,τd and Îτ1,...,τd ,

respectively,

R̂τ1,...,τd (t) = 1

N

d∑

k=1

nk R̂k(t), Îτ1,...,τd (t) = 1

N

d∑

k=1

nk Îk(t),

and

Û∗
0 = 1

N

d∑

k=1

nkÛ∗
k .

Theorem 7 Suppose that assumptions in Theorem 5 hold, then

sup
x

∣
∣P∗
{
T ∗

N ≤ x
}− P

{
Tτ1,...,τd ≤ x

}∣∣ P−→ 0,

where Tτ1,...,τd = ∑d
k=1 ‖Zk,τ1,...,τk − √

τk Z0,τ1,...,τk ‖2ω, {Zk,τ1,...,τk (t), t ∈ R}, 1 ≤
k ≤ d, are independent centered Gaussian processes on L2(ω) with covariance kernel

�k,τ1,...,τk (t, s) = E{Zk,τ1,...,τk (εk; t)Zk,τ1,...,τk (εk; s)},

Zk,τ1,...,τk (εk; t) is defined as in (5) with Rτ and Iτ replaced by Rτ1,...,τd and Iτ1,...,τd ,
respectively,

Rτ1,...,τd (t) =
d∑

k=1

τk Rr (t), Iτ1,...,τd (t) =
d∑

k=1

τk Ir (t),

and Z0,τ1,...,τk =∑d
k=1

√
τk Zk,τ1,...,τk .

Similar results to those stated in Corollaries 1 and 2 for T ∗
n1,n2 can be given for T ∗

N .
To save space we omit them.
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Appendix

An expression for M3

Let

ϕ′
ω(t) = ∂

∂t
ϕω(t), ϕ′′

ω(t) = ∂2

∂t2
ϕω(t),
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where ϕω is as defined in (8). Let D1, D2 the matrices defined similarly to M with ϕω

replaced by ϕ′
ω and ϕ′′

ω, respectively. Let

e1 = (ε̂11, . . . , ε̂1n1 , ε̂21, . . . , ε̂2n2)
T ,

e2 =
(

ε̂211 − 1

2
, . . . ,

ε̂21n1
− 1

2
,
ε̂221 − 1

2
, . . . ,

ε̂22n2
− 1

2

)T

,

dT
1 = 1T

N D1/N ,

dT
2 = 1T

N (e11
T
N � D1)/N ,

cT = 1T
N M/N ,

a1 = 1T
N D21N /N 2,

a2 = 1T
N (e11

t
N � D2)1N /N 2,

a3 = −1T
N (e11

t
N � D1)1N /N 2,

a4 = eT
1 D2e1/N 2,

a5 = 1T
N M1N /N 2.

With this notation,

M3 = M − e1dT
1 − d1eT

1 − e2dT
2 − d2eT

2 − 1N cT − c1T
N − a1e1eT

1

− a2
(

e1eT
2 + e2eT

1

)
− a3

(
e21

T
N + 1N eT

2

)
− a4e2eT

2 + a51N1
T
N .

Proofs

We now sketch the proofs of the results stated in the previous sections, as well as some
preliminary results. Observe that under Assumption (A.3) (see, for example, Masry
1996)

sup
x∈S

|m̂k(x) − mk(x)| = oP

(
n−1/4

k

)
,

sup
x∈S

|σ̂k(x) − σk(x)| = oP

(
n−1/4

k

)
,

(11)

k = 1, 2. Let

C̃k(t) = 1

nk

nk∑

j=1

exp(itεk j ) = R̃k(t) + i Ĩk(t),

R̃k(t) = 1

nk

nk∑

j=1

cos(tεk j ), Ĩk(t) = 1

nk

nk∑

j=1

sin(tεk j ),

k = 1, 2.
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Proof of Theorem 1 From Lemma 10(i) in Pardo-Fernández et al. (2015a) and (11),

Tn1,n2 = ‖C̃1 − C̃2‖2ω + oP (1). (12)

Theorem 2 in Alba-Fernández et al. (2008) asserts that

‖C̃1 − C̃2‖2ω a.s.−→ κ. (13)

The result follows from (12) and (13). ��

Lemma 1 If Assumptions (A.2) and (A.3) hold, then

n1n2

N
Tn1,n2 = ‖Zn1,n2‖2ω,

with

Zn1,n2(t) =
√

n2

N
U1(t) −

√
n1

N
U2(t),

Uk(t) = U0k(t) + tρk,1(t) + t2rk,2(t),

U0k(t) = 1√
nk

∑nk
j=1

{
cos(tεk j ) + tεk j Ik(t) − t

ε2k j −1
2 R′

k(t) − Rτ + sin(tεk j )

− tεk j Rk(t) − t
ε2k j −1

2 I ′
k(t) − Iτ

}
,

supt |rk,s(t)| = oP (N−1/2), k, s = 1, 2.

Proof We have that

n1n2

N
Tn1,n2 = ‖Z0

n1,n2‖2ω,

where Z0
n1,n2(t) =

√
n2
N U 0

1 (t) −
√

n1
N U 0

2 (t), U 0
k (t) = √

nk{Ĉk(t) − Cτ (t)}, k = 1, 2.

From Lemma 10 in Pardo-Fernández et al. (2015b),

U 0
k (t) = √

nkC̃k(t)+ Ak,1(t)+ Ak,2(t)−√
nkCτ (t)+tρk,1(t)+t2ρk,2(t), k = 1, 2,

where

Ak,1(t) = it
1√
nk

nk∑

j=1

exp(itεk j )

(
σk(Xkj ) − σ̂k(Xkj )

σk(Xkj )

)

εk j ,

Ak,2(t) = it
1√
nk

nk∑

j=1

exp(itεk j )

(
mk(Xkj ) − m̂k(Xkj )

σk(Xkj )

)
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and supt |ρk,s(t)| = oP (N−1/2), k, s = 1, 2. From Lemma 11 in Pardo-Fernández
et al. (2015b),

Ak,1(t) = − t

2
C ′

k(t)
1√
nk

nk∑

j=1

(ε2k j − 1) + tρk,3(t), sup
t

|ρk,3(t)| = oP (1),

with C ′
k(t) = R′

k(t) + iI ′
k(t). From the proof of Theorem 1 in Pardo-Fernández et al.

(2015a),

Ak,2(t) = −itCk(t)
1√
nk

nk∑

j=1

εk j + tρk,4(t), sup
t

|ρk,4(t)| = oP (1).

All above facts and Assumption (A.2) imply that ‖Z0
n1,n2‖2ω = ‖Zn1,n2‖2ω. This com-

pletes the proof. ��
Proof of Theorem 2 Let us continuewith the notation in the statement of Lemma 1. By
the central limit theorem for IID random elements in Hilbert spaces, {U01(t), t ∈ R}
converges to a centered Gaussian process U (1) on L2(w) with covariance structure
�0(t, s). By the independence of the two samples, {U02(t), t ∈ R} converges in
distribution to an independent copy U (2) of U (1). As, for constants a and b satisfying
a2+b2 = 1, the centered process Z(t) = aU (1)(t)+bU (2)(t) has covariance structure
�0(t, s), and since (

√
1 − n1/N )2 + (

√
n1/N )2 = 1 and n1/N converges to τ , it

follows that {Zn1,n2(t), t ∈ R} converges in law to {Z(t), t ∈ R}, under H0. Finally,
the result follows from the continuous mapping theorem. ��
Proof of Theorem 3 Note that

n1n2

N
T ∗
1,n1,n2 = ‖Z∗

n1,n2‖2ω,

where

Z∗
n1,n2 =

√
n2

N
U∗
1 (t) −

√
n1

N
U∗
2 (t),

where U∗
k (t) = 1√

nk

∑nk
j=1 ξk j Zk,τ (εk j ; t), k = 1, 2.

First, it will be shown that conditional on (X11, Y11), . . . , (X1n1 , Y1n1), {U∗
1 (t), t ∈

R} converges in law to {U1τ (t), t ∈ R} on L2(ω), where {U1τ (t), t ∈ R} is a centered
Gaussian process on L2(ω) with covariance kernel �1,τ (t, s). To achieve this result
we will apply Theorem 1.1 in Kundu et al. (2000). Next we will show that conditions
(i)–(iii) in that theorem hold.

Note that E∗{ξ1 j Z1,τ (ε1 j ; t)} = 0, 1 ≤ j ≤ n1. Denote

cn1(t, s) = Cov∗{U∗
1 (t), U∗

1 (s)} = 1

n1

n1∑

j=1

Z1,τ (ε1 j ; t)Z1,τ (ε1 j ; s).
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From the strong law of large numbers,

cn1(t, s)
a.s.−→ �1,τ (t, s), ∀s, t ∈ R. (14)

Note also that
|cn1(t, s)| ≤ g(t, s), ∀s, t ∈ R, (15)

with
g(t, s) = �1 + �2(|t | + |s|) + �3|t ||s|, a.s.

for certain positive constants �1, �2, �3.
Let {ek, k ≥ 0} be an orthonormal basis of L2(ω). Let V1 denote the covariance

operator of U∗
1 and let Vτ denote the covariance operator of U1τ (t). From (14) and

(15), by the dominated convergence theorem,

lim〈V1ek, el〉ω = lim
∫

cn1(s, t)ek(t)el(s)ω(t)ω(s)dtds
= ∫ �1,τ (t, s)ek(t)el(s)ω(t)ω(s)dtds = 〈Vτ ek, el〉ω a.s.

Thus taking akl = 〈Vτ ek, el〉ω, the condition (i) in the aforementioned Theorem 1.1
holds. To check the condition (ii), by monotone convergence theorem, Parseval’s rela-
tion and dominated convergence theorem, it follows

lim
∑∞

k=0〈V1ek, el〉ω = lim
∑∞

k=0 E∗{〈U∗
1 (t), ek〉2ω} = lim E∗{‖U∗

1 (t)‖2ω}
= ∫ lim cn1(t, t)ω(t)dt = ∫ �1,τ (t, t)ω(t)dt
= E‖U1τ‖2ω < ∞ a.s.

Before verifying condition (iii), we first notice that

∣
∣
∣
∣〈

1√
n1

ξ1 j Z1,τ (ε1 j ; t), ek〉ω
∣
∣
∣
∣ ≤

|ξ1 j |√
n1

(∫
Z2
1,τ (ε1 j ; t)ω(t)dt

)1/2

≤ g(t, t)
|ξ1 j |√

n1
.

From the above inequality,

n1∑

j=1

E∗

[〈
1√
n1

ξ1 j Z1,τ (ε1 j ; t), ek

〉2

ω

I

{∣∣
∣
∣

〈
1√
n1

ξ1 j Z1,τ (ε1 j ; t), ek

〉

ω

∣
∣
∣
∣ > ε

}]

≤ g2(t,t)
n1

∑n1
j=1 E∗

[
ξ21 j I {|ξ1 j | > g−1(t, t)ε

√
n1}
]

= g2(t, t)E∗
[
ξ21 j I {|ξ1 j | > g−1(t, t)ε

√
n1}
]

→ 0,

∀ε > 0, ∀k ≥ 0.
Analogously, conditional on (X21, Y21), . . . , (X2n2 , Y2n2), {U∗

2 (t), t ∈ R} con-
verges in law to {U2τ(t), t ∈ R} on L2(ω), where {U2τ (t), t ∈ R} is a centered
Gaussian process on L2(ω) with covariance kernel �2,τ (t, s). A similar argument to
that in the proof of Theorem2 shows that, conditional on (X11, Y11), . . . , (X1n1 , Y1n1),

(X21, Y21), . . . , (X2n2 , Y2n2), {Z∗
1,n1,n2

(t), t ∈ R} converges in law to {Zτ (t), t ∈ R}
on L2(ω). ��
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Lemma 2 Suppose that Assumption (A.3) holds, then

(a) 1
nk

∑nk
j=1(εk j − ε̂k j )

2 = oP (1), k = 1, 2.

(b) 1
nk

∑nk
j=1(ε̂

2
k j − ε2k j )

2 = oP (1), k = 1, 2.

(c) 1
nk

∑nk
j=1(ε̂

2
k j − 1)2 = OP (1), k = 1, 2.

(d) 1
nk

∑nk
j=1 ε̂2k j = OP (1), k = 1, 2.

Proof The difference between the residuals and the errors can be written as follows

ε̂k j − εk j = εk j

(
σk(Xkj ) − σ̂k(Xkj )

σ̂k(Xkj )

)

+
(

mk(Xkj ) − m̂k(Xkj )

σ̂k(Xkj )

)

, (16)

k = 1, 2. The results in (a)–(d) follow from (11) and (16). ��
Lemma 3 Suppose that Assumptions (A.1)–(A.3) hold, then

(a) ‖t (R̂k − Rk)‖2ω = oP (1), ‖t ( Îk − Ik)‖2ω = oP (1), k = 1, 2.
(b) ‖Rτ − R̂τ‖2ω = oP (1), ‖Iτ − Îτ‖2ω = oP (1),
(c) ‖t (R′

k − R̂′
k)‖2ω = oP (1), ‖t (I ′

k − Î ′
k)‖2ω = oP (1). k = 1, 2.

Proof (a) By the mean value theorem,

t{R̂k(t) − R̃k(t)} = −t2rk(t).

From Lemma 2(a) and the Cauchy–Schwarz inequality,

sup
t

|rk(t)| ≤ 1

nk

nk∑

j=1

|ε̂k j − εk j | ≤
⎛

⎝ 1

nk

nk∑

j=1

(ε̂k j − εk j )
2

⎞

⎠

1/2

= oP (1).

Therefore,

‖t (R̂k − R̃k)‖2ω ≤ sup
t

|rk(t)|2
∫

t4ω(t)dt = oP (1). (17)

We also have that
‖t (Rk − R̃k)‖2ω = oP (1). (18)

Finally, (17) and (18) both imply that ‖t (R̂k − Rk)‖2ω = oP (1). The proof for ‖t ( Îk −
Ik)‖2ω is parallel. The proof of parts (b) and (c) follow similar steps. ��
Proof of Theorem 4 n1n2

N T ∗
2,n1,n2

can be expressed as n1n2
N T ∗

2,n1,n2
= D1 + D2 +2D3,

where D2
3 ≤ D1D2, D1 = n1n2

N T ∗
1,n1,n2

, D2 = n1n2
N ‖(Û∗

1 −Û∗
2 )−(C∗

1 −C∗
2 )‖2ω. From

Theorem 3,

sup
x

|P∗(D1 ≤ x) − P(Tτ ≤ x)| P−→ 0,

Thus, to show the result it suffices to see that D2 = op∗(1) in probability. With this
aim, observe that D2 can be expressed as

D2 =
∑

k=1,2

8∑

j=1

Sk, j +
∑

k,s=1,2

∑

1≤l �= j≤8

Sk,s, j,l ,
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with S2
k,s, j,l ≤ Sk, j Ss,l , 1 ≤ j, l ≤ 8, k, s = 1, 2,

Sk,1 = N−nk
N ‖ 1√

nk

∑nk
j=1{cos(t ε̂k j ) − cos(tεk j )}ξk, j‖2ω,

Sk,2 = N−nk
N ‖ 1√

nk

∑nk
j=1{sin(t ε̂k j ) − sin(tεk j )}ξk, j‖2ω,

Sk,3 = N−nk
N ‖ t√

nk

∑nk
j=1(ε̂k j R̂k − εk j Rk)ξk, j‖2ω,

Sk,4 = N−nk
N ‖ t√

nk

∑nk
j=1(ε̂k j Îk − εk j Ik)ξk, j‖2ω,

Sk,5 = N−nk
N ‖ 1√

nk

∑nk
j=1(Rτ − R̂τ )ξ1,k‖2ω,

Sk,6 = N−nk
N ‖ 1√

nk

∑nk
j=1(Iτ − Îτ )ξk, j‖2ω,

Sk,7 = N−nk
N ‖ t

2
√

nk

∑nk
j=1{(ε̂2k j − 1) Î ′

k − (ε2k j − 1)I ′
k}ξk, j‖2ω,

Sk,8 = N−nk
N ‖ t

2
√

nk

∑nk
j=1{(ε2k j − 1)R′

k − (ε̂2k j − 1)R̂′
k}ξk, j‖2ω,

k = 1, 2. We will show that Sk, j = op∗(1) in probability, 1 ≤ j ≤ 8, k = 1, 2.
By the mean value theorem,

S1,1 = n2

N

1

n1

n1∑

j,m=1

ξ1 jξ1m(ε̂1 j − ε1 j )(ε̂1m − ε1m)

∫
t2 sin(t ε̃1 j ) sin(ε̃1m)ω(t)dt,

where ε̃1 j = α1 jε1 j + (1 − α1 j )ε̂1 j , for some α1 j ∈ (0, 1). Then, from Lemma 2(a),

E∗(S1,1) ≤ n2

N

1

n1

n1∑

j=1

(ε1 j − ε̂1 j )
2
∫

t2ω(t)dt = op(1),

which implies S1,1 = op∗(1) in probability. Analogously, S2,1 = op∗(1), S1,2 =
op∗(1), S2,2 = op∗(1) in probability.

Observe that S1,3 = S13 + S23 + 2S33, with S2
33 ≤ S13S23,

S13 = n2

N

1

n1

n1∑

j,m=1

(ε̂1 j − ε1 j )(ε̂1m − ε1m)ξ1 jξ1m‖t R1‖2ω,

S23 = n2

N

1

n1

n1∑

j,m=1

ε̂1 j ε̂1mξ1 jξ1m‖t (R̂1 − R1)‖2ω.

From Lemma 2(a) it follows that E∗(S13) = oP (1) and thus S13 = op∗(1) in proba-
bility. From Lemma 2(d) and Lemma 3(a) it follows that E∗(S23) = oP (1) and thus
S23 = op∗(1) in probability. Therefore, S1,3 = op∗(1) in probability. Analogously,
S2,3 = op∗(1), S1,4 = op∗(1) and S2,4 = op∗(1) in probability.

Since S1,5 = n2
N

(
1√
nk

∑nk
j=1 ξk j

)2 ‖Rτ − R̂τ‖2ω, the central limit theorem and

Lemma 3(b) imply that E∗(S1,5) = oP (1) and thus S1,5 = op∗(1) in probability.
Analogously, S2,5 = op∗(1), S1,6 = op∗(1) and S1,6 = op∗(1) in probability.
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Observe that S1,7 = S17 + S27 + 2S37, with S2
37 ≤ S17S27,

S17 = n2

N

1

4

1

n1

n1∑

j,m=1

(ε̂21 j − 1)(ε̂21m − 1)ξ1 jξ1m‖t ( Î ′
1 − I ′

1)‖2ω,

S27 = n2

N

1

4

1

n1

n1∑

j,m=1

(ε̂21 j − ε21 j )(ε̂
2
1m − ε21m)ξ1 jξ1m‖t I ′

k‖2ω.

From Lemma 2(c) and Lemma 3(c), it follows that E∗(S17) = oP (1) and thus S17 =
op∗(1) in probability. From Lemma 2(b) it follows that E∗(S27) = oP (1) and thus
S27 = op∗(1), in probability. Therefore, S1,7 = op∗(1), in probability. Analogously,
S2,7 = op∗(1), S1,8 = op∗(1), and S2,8 = op∗(1) in probability. This completes the
proof.
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