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Abstract In this paper, we propose a novel and robust procedure for model iden-
tification in semiparametric additive models based on rank regression and spline
approximation. Under some mild conditions, we establish the theoretical properties
of the identified nonparametric functions and the linear parameters. Furthermore, we
demonstrate that the proposed rank estimate has a great efficiency gain across a wide
spectrum of non-normal error distributions and almost not lose any efficiency for the
normal error compared with that of least square estimate. Even in the worst case sce-
narios, the asymptotic relative efficiency of the proposed rank estimate versus least
squares estimate, which is show to have an expression closely related to that of the
signed-rank Wilcoxon test in comparison with the t-test, has a lower bound equal to
0.864. Finally, an efficient algorithm is presented for computation and the selections
of tuning parameters are discussed. Some simulation studies and a real data analysis
are conducted to illustrate the finite sample performance of the proposed method.
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1 Introduction

Consider the following additive regression model

Yi = u +
p∑

j=1

f0 j (Xi j ) + εi , (1)

where Xi = (Xi1, Xi2, . . . , Xip)
T is a p-dimensional covariate, { f0 j (·), j =

1, 2, . . . , p} are unknown smooth functions satisfying E{ f0 j (Xi j )} = 0 for the sake
of model identifiability, and εi is the random error independent of Xi . There exist at
least two benefits of such an additive approximation. First, the additive combination
of univariate functions can be more interpretable and easier to fit than the joint mul-
tivariate nonparametric models. Second, the so-called “curse of dimensionality” that
besets multivariate nonparametric regression is largely circumvented because every
individual additive component can be estimated using a univariate smoother via an
iterative manner. Therefore, large amounts of studies have been done under this model
due to its superior characteristics, and we refer, for instance, to Yu and Lu (2004),
Mammen and Park (2006), Yu et al. (2008), Xue (2009) and Lian (2012a, b).

Althoughmodel (1) owns somewonderful properties, Opsomer andRuppert (1999)
noticed that in practice some covariates may have linear or even no effects on the
response variable while other covariates enter nonlinearly, and recommended the so-
called semiparametric additive model (SPAM) with the form

Yi = u +
p0∑

j=1

f0 j (Xi j ) +
p∑

j=p0+1

Xi jβ0 j + εi . (2)

Statistically, the SPAM could be more parsimonious than the general additive model
in some cases, and hence attracted considerable attention. For related literature, see
Härdle et al. (2004), Deng and Liang (2010), Liu et al. (2011), Wei and Liu (2012),
Wei et al. (2012) among others. Nevertheless, all these works for SPAM are based
on the assumption that the linear and nonlinear part are known in advance, which is
not always true in practice. If the structure is misspecified, it can not only increase
complexity of model but also reduce the estimation accuracy. Since the optimal para-
metric estimation rate is n−1/2 and the optimal nonparametric estimation rate is n−2/5,
treating a parametric component as a nonparametric component can over-fit the data
and leads to efficiency loss. Therefore, model identification is important to model (1),
and it is of great interest to develop some efficient methods to distinguish nonzero
components as well as linear components from nonlinear ones.

In general, this goal could be achieved by conducting some hypothesis testing as
done in Jiang et al. (2007), whereas it might be cumbersome to perform in practice
when there are more than just a few predictors to test. Besides, the theoretical prop-
erties of such identifications based on hypothesis testing can be somewhat hard to
analyze. To this end, Huang et al. (2010) presented a new type of usage for the SCAD
penalty as well as its related methods and successfully applied it to nonparametric
additive models for the purpose of identifying zero components and parametric com-
ponents. Following a similar idea, Zhang et al. (2011) simultaneously identified the
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Rank-based shrinkage estimation for identification... 1257

zero and linear components of partially linear models by using two penalty functions
through an elegant mathematical framework; Lian (2012a) provided a way to deter-
mine linear components of additive models based on least square (LS) regression;
Lian (2012b) successfully identified nonzero and linear components of model (1) in
conditional quantile regression; Wang and Song (2013) applied the SCAD penalty
to identify the model structure in semiparametric varying coefficient partially linear
models. Note that all these papers were built on either LS regression, which is very
sensitive and has low efficiency with respect to many commonly used non-normal
errors, or quantile regression, for which the efficiency is proportional to the density
at the median. Hence, it would be highly desirable to develop an efficient and robust
method that can simultaneously conduct model identification and estimation.

Recently,Wang et al. (2009) proposed a novel procedure for the varying coefficient
model based on rank regression and demonstrated that the new method is highly
efficient across a wide class of error distributions and possesses comparable efficiency
in the worst case scenario compared with LS regression. Similar conclusions on rank
regression have been further confirmed inLeng (2010), Sun andLin (2014), Feng et al.
(2015) and the references therein. To the best known of our knowledge, none of these
approaches has been studied in SPAM. Therefore, motivated by these observations,
this paper is devoted to extending the rank regression to SPAM for identifying nonzero
components as well as linear components. Specifically, we firstly embed the SPAM
into an additive model and use the spline method to approximate unknown functions.
A two-fold SCAD penalty is then employed to discriminate the nonzero components
as well as linear components from the nonlinear ones by penalizing both the coefficient
functions and their second derivatives. Furthermore, the theoretical properties of the
estimator are established, and based on the asymptotic theory of the linear components,
we show that the proposed rank estimate has a great efficiency gain across a wide
spectrum of non-normal error distributions and loses almost no efficiency for the
normal error compared with that of the LS estimate. Even in the worst case scenarios,
the asymptotic relative efficiency (ARE) of the proposed rank estimate versus LS
estimate has a lower bound being 0.864. In addition, it is worth noting that the ARE
of the proposed rank estimate versus LS has an expression which is closely related to
that of the signed-rank Wilcoxon test in comparison with the t-test.

The rest of this paper is organized as follows. In Sect. 2, we introduce our new
penalized rank regression method based on basis expansion and the SCAD penalty. In
Sect. 3, the asymptotic properties are established under some suitable conditions. The
selection of optimal tuning parameters are discussed in Sect. 4 along with a computa-
tional algorithm for implementation. Sect. 5 illustrates the finite sample performance
of the proposed procedure via some simulation studies, and short concluding remarks
are followed in Sect. 6. All the technical proofs are deferred to Appendix.

2 Rank-based shrinkage regression for additive models

Suppose that {Xi ,Yi }ni=1 is an independent and identically distributed sample from
model (2).Without loss of generality,we assume that the distribution of Xi is supported
on [0,1]. As we do not know which covariates have linear effects in advance, all p
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1258 J. Yang et al.

components are considered as nonparametric and the polynomial splines are applied
to approximate the components. Let 0 = ξ0 < ξ1 < · · · < ξKn < ξKn+1 = 1 be
a partition of [0,1] into Kn + 1 subintervals [ξk, ξk+1), k = 0, 1, . . . , Kn , where Kn

denotes the number of internal knots that increases with sample size n. A polynomial
spline of order q is a function whose restriction to each subinterval is a polynomial
of degree q − 1 and globally q − 2 times continuously differentiable on [0,1]. The
collection of splines with a fixed sequence of knots has a normalized B-spline basis
{B1(x), B2(x), . . . , BK ′(x)} with K ′ = Kn + q.

Note that the constraint condition E{ f0 j (Xi j )} = 0 is required for the sake of
model identifiability, so we instead focus on the space of spline functions S0j :=
{h̄ : h̄ = ∑K

k=1 γ jk B jk(x), h̄ = ∑K
i=1 h̄(Xi j ) = 0} with centered basis {Bjk(x) =

Bk(x) − ∑n
i=1 Bk(Xi j )/n, k = 1, 2, . . . , K = K ′ − 1}, where K = K ′ − 1 due to

the empirical version of the constraint. Then the nonlinear functions in model (1) can
be approximated by

f0 j (x) ≈
K∑

k=1

γ jk B jk(x), j = 1, 2, . . . , p. (3)

For simplicity, we restrict our attention to equally spaced knots, although other regular
knot sequences like quasi-uniform or data-driven choices can be considered. It is also
possible to specify different values of Kn for each component. However, our choice of
the equally spaced knots and the same number of knots for each component allows for
amuch simpler exposition of our results, and as inmost of the literature based on spline
methods, it can be shown that similar asymptotic results still hold for different choices
of Kn and different knots for each component. Let γ j = (γ j i , γ j2, . . . , γ j K )T and

Bj (x) = (
Bj1(x), Bj2(x), . . . , BjK (x)

)T . Following the approximation (3), model
(1) can be rewritten as

Yi ≈ u +
p∑

j=1

K∑

k=1

γ jk B jk(Xi j ) + εi = u +
p∑

j=1

Bj (Xi j )
T γ j + εi .

Accordingly, the residual for estimating Yi at Xi is ei = Yi − u − ∑p
j=1 Bj (Xi j )

T γ j .
By applying the technique of rank regression method, we propose the following

minimization problem

γ̌ = argmin
γ

Ln(γ ) := 1

n

∑

i< j

|ei − e j |, (4)

where γ = (
γ T
1 , γ T

2 , . . . , γ T
p

)T . Thus the estimated component functions are f̌ j (x) =
Bj (x)T γ̌ j . Note that the loss function Ln(γ ) essentially belongs to a local version of
Gini’s mean difference, which is a classical measure of concentration or dispersion;
see David (1998) for details. In addition, it is worth mentioning that the above rank-
based loss function cannot generate the estimate of intercept u because it is canceled
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out in ei − e j , which is an unique feature of using this type of estimate in the present
problem.As pointed out inWang et al. (2009), it is essential to have additional location
constraint on the random errors in order to make the intercept identifiable, and they
adopted the commonly used constraint that εi has median zero. So following the same
constraint on εi , a reasonable estimate of u can be derived by û = ∑n

i=1 Yi/n at the
rate of 1/

√
n, which is faster than any rate of convergence for nonparametric function

estimation. Thus for notational convenience, one can safely assume u = 0, just as we
done in the sequel.

Recall that we are interested in finding the zero components and linear components
of model (1). Empirically, the former can be done by shrinking the function ‖ f j‖ to
zero, and the latter can be achieved via shrinking the second derivative ‖ f ′′

j ‖ to zero
because a function is linear if and only if it has a second derivative identically zero.
Therefore, instead of (4), we consider the following two-fold penalization procedure

γ̂ = argmin
γ

Lλ
n(γ ) := 1

n

∑

i< j

|ei − e j | + n
p∑

k=1

pλ1(‖ fk‖) + n
p∑

k=1

pλ2(‖ f ′′
k ‖), (5)

where pλ(·) is the SCAD penalty function defined by its first derivative

p′
λ(t) = λ

{
I (t ≤ λ) + (aλ − t)+

(a − 1)λ
I (t > λ)

}
,

where λ is the penalized parameter, a > 2 is some constant usually taken to be 3.7 as
suggested in Fan and Li (2001). Note that the SCAD penalty is continuously differen-
tiable on (−∞, 0) ∪ (0,∞) but singular at 0, and that its derivative vanishes outside
[−aλ, aλ]. These features of SCAD penalty result in a solution with three desirable
properties including unbiasedness, sparsity and continuity, which were defined in Fan
and Li (2001).

Note that‖ f j (x)‖2=‖Bj (x)T γ j‖2=∫ (∑K
k=1 γ jk B jk(x)

)( ∑K
k′=1 γ jk′ Bjk′(x)

)
dx

and ‖ f ′′
j (x)‖2 = ∫ (∑K

k=1 γ jk B ′′
jk(x)

)( ∑K
k′=1 γ jk′ B ′′

jk′(x)
)
dx , so ‖ f j (x)‖ and

‖ f ′′
j (x)‖ can be equivalently expressed as

√
γ T
j D jγ j and

√
γ T
j E jγ j respectively,

where Dj , E j ∈ RK×K with its (k, k′) entry equaling to
∫
Bjk(x)Bjk′(x)dx and∫

B ′′
jk(x)B

′′
jk′(x)dx , respectively. Then, the above minimization problem (5) is equiv-

alent to

γ̂ = argmin
γ

Lλ
n(γ ) := 1

n

∑

i< j

|ei − e j | + n
p∑

k=1

pλ1

(√
γ T
k Dkγk

)

+ n
p∑

k=1

pλ2

(√
γ T
k Ekγk

)
. (6)

Consequently, the estimated component functions are given by f̂ j (x) = Bj (x)T γ̂ j .
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3 Theoretical properties

3.1 Asymptotic properties

Without loss of generality, we assume that f0 j is truly nonparametric for j =
1, 2, . . . , p0, linear for j = p0 + 1, p0 + 2, . . . , s with the true slope parameters
for the parametric components are denoted by β0 = (β0,p0+1, β0,p0+2, . . . , β0,s),
and zero for j = s + 1, s + 2, . . . , p. The vectors X (1) = (X1, X2, . . . , X p0)

T and
X (2) = (X p0+1, X p0+2, . . . , Xs)

T correspond to the nonlinear and linear components.
Denote as A the subspace of functions on Rp0 with an additive form

A := {h(x (1)) : h(x (1)) = h1(x1) + h2(x2) + . . . + h p0(xp0), E
(
h j (X j )

)

= 0 and E
(
h j (X j )

2) < ∞},

and EA(M) the subspace projection of M onto A in the sense that

E{(M − EA(M)
)(
M − EA(M)

)} = inf
h∈A

E{(M − h(X (1))
)(
M − h(X (1))

)}.

Let h(X (1)) = EA(X (2)). Each component of h(X (1)) = (
h(1)(X (1)), . . . , h(p−p0)

(X (1))
)T can be written in the form h(u)(x) = ∑p0

j=1 h(u) j (x j ) for some h(u) j (x j ) ∈
S0j . To facilitate our asymptotic analysis, we further make the following regularity
assumptions.

(A1) The density function f (x) of X is absolutely continuous and compactly sup-
ported. Without loss of generality, assume that the support of X is [0, 1]p.
Furthermore, there exist constants 0 < c1 ≤ c2 < ∞ such that c1 ≤ f (x) ≤ c2
for all x ∈ X .

(A2) For g = f0 j , 1 ≤ j ≤ p0 or g = h(u) j , 1 ≤ u ≤ s, 1 ≤ j ≤ p0, g satisfies
a Lipschitz condition of order r > 1/2. That is, |g(
r�)(x1) − g(
r�)(x2)| ≤
C |x1 − x2|r−
r�, where C is a constant, 
r� denotes the biggest integer strictly
smaller than r and g(
r�) is the 
r�th derivative of g. In addition, the order of
the B-spline used satisfies q ≥ r + 2.

(A3) The matrix � = E{(X (2) − h(X (1))(X (2) − h(X (1))T } is positive definite.
(A4) The errors ε has a positive density function h(x) satisfying

∫ [h′(x)]2/h(x)dx <

∞, which means that ε has finite Fisher information.

Assumptions (A1)–(A2) are common in the polynomial spline estimation literatures;
see for example Huang et al. (2010), Wang and Song (2013), Tang (2015) and Li
et al. (2015). It was shown in Li (2000) that the positive definiteness of � in (A3)
is necessary for the identifiability of the model in the case that linear components
are specified. Assumption (A4) is a regular condition on the random errors which
is the same as those used in works on rank regression such as Wang et al. (2009),
Hettmansperger and McKean (2011), Sun and Lin (2014) and Feng et al. (2015).
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Theorem 1 Suppose that assumptions (A1)–(A4) hold. If the number of knots Kn 
n1/(2r+1), then we have

‖ f̌ j − f0 j‖2 = Op

(
n

−2r
2r+1

)
, j = 1, 2, . . . , p,

where f̌ j = BT
j γ̌ j is the unpenalized estimate of component function f0 j with γ̌

generated by solving (4).

Theorem 1 indicates that the nonparametric estimates obtained by our proposed
method attain the optimal convergence rates. The following theorem will show that if
the tuning parameters λ1 and λ2 are appropriately specified, we can identify the zero
parts and linear parts consistently.

Theorem 2 Under the same assumptions of Theorem 1, if max{λ1, λ2} → 0 and
nr/(2r+1) min{λ1, λ2} → ∞, then with probability tending to 1,

(i) ‖ f̂ j − f0 j‖2 = Op

(
n

−2r
2r+1

)
for j = 1, 2, . . . , p,

(ii) f̂ j is a linear function for j = p0 + 1, p0 + 2, . . . , s,
(iii) f̂ j ≡ 0 for j = s + 1, s + 2, . . . , p,

where f̂ j = BT
j γ̂ j is the penalized estimate of component function with γ̂ generated

by solving (5).

Finally, for the linear components, we will show that the estimate of the slope
parameter is asymptotically normal.

Theorem 3 Under the same assumptions of Theorem 2, we have

√
n(β̂ − β0)

d→ N

(
0,

1

12τ 2
�−1

)
, (7)

where � is defined in assumption (A3) and τ = ∫
h(x)2dx.

Remark 1 Based on the results of Theorem 2 and Theorem 3, we observe that the
proposed estimate enjoys an oracle property in the sense that it is asymptotically the
same as the oracle estimatewhich is obtainedwhen the truemodel is known in advance.

3.2 Asymptotic relative efficiency

Denote by β̂LS and β̂RR the estimates ofβ0 generated byLS regression in Lian (2012a)
and our proposed rank regression, respectively. To measure the efficiency, we consider
the asymptotic variance of the estimates β̂LS and β̂RR since they all asymptotically
unbiased. Hence, based on the asymptotic distribution of β0 presented by Theorem 3
in Lian (2012a) and (7) of Theorem 3, we obtain the following theorem.
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Theorem 4 TheARE of the rank-based estimate β̂RR to the LS estimate β̂LS for linear
parameter β0 is

ARE(β̂RR, β̂LS) = Var(β̂LS)

Var(β̂RR)
= 12σ 2τ 2,

where σ 2 = E(ε2). ThisARE has a lower bound of 0.864 for estimating the parameter
component, which is attained at the random error density h(x) = 3

20
√
5
(5−x2)I (|x | ≤

5).

Note that the above obtained ARE is the same as that of the signed-rank Wilcoxon
test with respect to the t-test. It is well known in the literature of rank analysis that
the ARE is as high as 0.955 for the normal error distribution, and can be significantly
higher than 1 for many heavier-tailed distributions. For instance, this quantity is 1.5
for the double exponential distribution and 1.9 for the t distribution with three degrees
of freedom.

4 Algorithm implementation and tuning parameters selections

In this section we first present an iterative estimation procedure for computation by
employing locally quadratic approximation (LQA, Fan and Li , 2001) to the rank-
based objective function Ln(γ ) as well as the two penalty functions pλ1(·) and pλ2(·).
Then we discuss the selections of extra parameters including the number of interior
knots Kn and the tuning parameters λ1 and λ2.

4.1 Algorithm implementation

It is worth noting that the commonly used gradient-based optimization technique is not
feasible here for solving (6) due to its irregularity at the origin. According to Sievers
and Abebe (2004), we approximate the unpenalized Ln(γ ) by

Ln(γ ) ≈ 1

n

n∑

i=1

wi (ei − ς)2,

where ς is the median of {ei }ni=1 and

wi =
{ R(ei )

n+1 − 1
2

ei−ς
, for ei �= ς,

0, otherwise

with R(ei ) being the rank of ei among {ei }ni=1.
On the other hand, following Fan and Li (2001), we apply LQA to the last two

penalty terms. That is, for a given initial estimate γ̂
(0)
j , the corresponding weightsw

(0)
i
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and the median of residual ς(0) can be obtained. If f̂ (0)
j ( f̂ (0)′′

j ) is very close to 0, then

set f̂ j = 0 ( f̂ ′′
j = 0). Otherwise, we have

pλ1(‖ f j‖) ≈ pλ1(‖γ (0)
j ‖Dj ) + 1

2

p′
λ1

(‖γ (0)
j ‖Dj )

‖γ (0)
j ‖Dj

{‖γ j‖2Dj
− ‖γ (0)

j ‖2Dj
},

and

pλ2(‖ f ′′
j ‖) ≈ pλ2(‖γ (0)

j ‖E j ) + 1

2

p′
λ2

(‖γ (0)
j ‖E j )

‖γ (0)
j ‖E j

{‖γ j‖2E j
− ‖γ (0)

j ‖2E j
},

where ‖γ j‖Dj = √
γ j D jγ j and ‖γ j‖E j = √

γ j E jγ j . Ignoring the irrelevant con-
stants, (6) is equivalent to minimize the following quadratic function

Qλ
n(γ ) := 1

n

n∑

i=1

wi (ei − ς)2 + n

2

p∑

k=1

p′
λ1

(‖γ (0)
k ‖Dk )

‖γ (0)
k ‖Dk

γk Dkγk +

+n

2

p∑

k=1

p′
λ2

(‖γ (0)
k ‖Ek )

‖γ (0)
k ‖Ek

γk Ekγk .

To make the expression convenient, we introduce the following notations

Ỹ (m) = Y − ς(m), W (m) = diag
{
w

(m)
1 , w

(m)
2 , . . . , w(m)

n

}
,

�λ1(γ
(m)) = diag

{
p′
λ1

(‖γ (m)
j ‖D1)

‖γ (m)
j ‖D1

,
p′
λ1

(‖γ (m)
j ‖D2)

‖γ (m)
j ‖D2

, . . . ,
p′
λ1

(‖γ (m)
j ‖Dp )

‖γ (m)
j ‖Dp

}
,

�λ2(γ
(m)) = diag

{
p′
λ2

(‖γ (m)
j ‖E1)

‖γ (m)
j ‖E1

,
p′
λ2

(‖γ (m)
j ‖E2)

‖γ (m)
j ‖E2

, . . . ,
p′
λ2

(‖γ (m)
j ‖Ep )

‖γ (m)
j ‖Ep

}
.

Therefore, the computational algorithm can be implemented as follows:

Step 0: Choose the unpenalized estimate γ̌ as the initial estimate γ̂ (0) and let
γ̂ (m) = γ̂ (0).
Step 1: Update γ (m)to obtain γ (m+1) by

γ (m+1) =argmin
γ

Qλ
n(γ )=

{
ZTW (m)Z+ n2

2
�λ1 (γ

(m))+ n2

2
�λ2 (γ

(m))

}−1

ZTW (m)Ỹ (m),

where Ỹ = (Ỹ1, . . . , Ỹn)T , Z = (Z1, . . . , Zn)
T with Zi = (

B1(Xi1)
T , . . . , Bp

(Xip)
T
)T .
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Step 2: Set m = m + 1 and return back to Step 1.
Step 3: Iterate Step 1 and Step 2 until convergence.

Remark 2 As a stopping rule to check the convergence of γ̂ in above estimation
procedure, we propose to stop the iteration when the change in γ̂ between the i-th and
(i + 1)-th iteration is below a pre-specified threshold.

4.2 Extra parameters selections

To achieve good numerical performance, one needs to choose the number of inte-
rior knots Kn and the tuning parameters λ1 and λ2 appropriately. Here we fix the
spline order to be 4, which means that cubic splines are used in all our numerical
implementations. Then we use 5-fold cross-validation (CV) to select Kn as well as
λ = (λ1, λ2)

T simultaneously. To be more specific, we randomly divide the data into
five roughly equal parts, denoted as {(XT

i ,Yi )T , i ∈ S( j)} for j = 1, 2, . . . , 5, where
S( j) is the set of subject indices corresponding to the j th part. For each j , we treat
{(XT

i ,Yi )T , i ∈ S( j)} as the validation data set, and the remaining four parts of data
as the training data set. For any candidate (Kn, λ

T )T , for each i ∈ S( j), we apply local
polynomial fitting to the training data set to estimate { f0k(·)}pk=1 by solving (5). After
we get the estimates { f̂k(·)}pk=1 for all i ∈ S( j), we can calculate the corresponding

prediction Ŷi = ∑p
k=1 f̂k(Xik). Then the cross validation error corresponding to a

fixed (Kn, λ
T )T is defined as

CV5(Kn, λ) =
5∑

j=1

∑

i∈S( j)

{
R(ei ( f̂ ))

n + 1
− 1

2

}
ei ( f̂ ), (8)

where ei ( f̂ ) = Yi − ∑p
j=1 f̂ j (Xi j ) and R(ei ( f̂ )) represents the rank of ei ( f̂ ) among

{ei ( f̂ )}ni=1. Finally, the optimal Kn and λ are selected by minimizing the cross vali-
dation error CV5(Kn, λ).

Remark 3 As stated in Feng et al. (2015), the variable selection results are hardly
affected by the choice of selection procedure for Kn . Therefore, to reduce the compu-
tation burden, one may firstly fit the additive model (1) without any penalization and
use the above 5-fold cross validation to select an optimal Kn , and then fix the same
Kn in (8) to select the optimal λ.

5 Numerical examples

5.1 Monte Carlo simulation

We generate our sample from the following additive model:

Yi =
10∑

j=1

f0 j (Xi j ) + 0.3εi , (9)
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Table 1 Component selection results with n = 100

Dist. Method NN NNT NL NLT

N(0,1) LS 2.62 (1.193) 2 (0) 3.86 (1.423) 3.655 (1.266)

QR 2.825 (1.416) 2 (0) 3.755 (1.642) 3.54 (1.533)

RR 2.68 (1.253) 2 (0) 3.845 (1.495) 3.645 (1.304)

CQR 2.66 (1.272) 2 (0) 3.85 (1.501) 3.645 (1.309)

t(3) LS 3.185 (1.907) 2 (0) 3.43 (2.149) 3.16 (1.954)

QR 2.875 (1.495) 2 (0) 3.71 (1.683) 3.48 (1.576)

RR 2.635 (1.318) 2 (0) 3.835 (1.492) 3.63 (1.365)

CQR 2.64 (1.337) 2 (0) 3.83 (1.512) 3.62 (1.378)

MN LS 3.29 (2.176) 1.97 (0.222) 3.27 (2.314) 2.985 (2.051)

QR 2.86 (1.576) 2 (0) 3.725 (1.670) 3.485 (1.518)

RR 2.65 (1.353) 2 (0) 3.83 (1.541) 3.61 (1.386)

CQR 2.645 (1.401) 2 (0) 3.82 (1.568) 3.605 (1.394)

LN LS 3.315 (2.209) 1.955 (0.253) 3.115 (2.327) 2.97 (2.104)

QR 2.91 (1.638) 2 (0) 3.715 (1.724) 3.46 (1.613)

RR 2.65 (1.384) 2 (0) 3.825 (1.583) 3.615 (1.407)

CQR 2.63 (1.392) 2 (0) 3.805 (1.609) 3.61 (1.415)

Exp(1) LS 3.23 (2.064) 1.985 (0.159) 3.385 (2.230) 3.095 (1.986)

QR 2.895 (1.612) 2 (0) 3.71 (1.687) 3.475 (1.548)

RR 2.645 (1.330) 2 (0) 3.835 (1.517) 3.62 (1.371)

CQR 2.645 (1.359) 2 (0) 3.825 (1.534) 3.62 (1.383)

Enclosed in parentheses are the corresponding standard errors

where f01(x) = sin(2πx), f02(x) = 6x(1 − x), f03(x) = 2x , f04(x) = x ,
f05(x) = −x , f06(x) = −2x and f0 j (x) ≡ 0 for j = 7, . . . , 10. Thus the num-
ber of nonparametric components is 2 and the number of nonzero linear components
is 4. The covariates Xi = (Xi1, Xi2, . . . , Xi10)

T are generated from the standard nor-
mal distribution with the correlation between Xi j1 and Xi j2 being 0.5

| j1− j2|. A similar
model setting was also applied in Lian (2012a) without the last four zero functions
because they only consider model identification for the linear components. Before-
hand, we apply the cumulative distribution function of standard normal distribution
to transform Xi j to be marginally uniform on [0,1]. Finally, four different methods
including Lian (2012a) (LS), Lian (2012b) with 0.5th quantile (QR), composite quan-
tile regression (CQR) by Kai et al. (2010) with the number of quantile being 9 and
our proposed rank regression (RR) are conducted in this example.

In order to examine the robustness and efficiency of our proposed method, five
different error distributions are considered including standard normally distributed
N(0,1), t(3) distribution which is heavy-tailed, the mixture of normals 0.9N(0,1) +
0.1N(0,10) (MN)which is used to generate the outliers and two asymmetric errors Log-
normal (LN) and Exponential (Exp(1)) distributions. For all scenarios, 200 data sets
are generated and the corresponding results with n=100 and n=200 are summarized
in Tables 1, 2, 3 and 4. Table 1 and Table 2 report the average number of nonparametric
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Table 2 Component selection results with n = 200

Dist. Method NN NNT NL NLT

N(0,1) LS 2.21 (0.558) 2 (0) 3.95 (0.654) 3.95 (0.654)

QR 2.315 (0.624) 2 (0) 3.925 (0.803) 3.915 (0.753)

RR 2.215 (0.565) 2 (0) 3.945 (0.681) 3.94 (0.675)

CQR 2.21 (0.578) 2 (0) 3.94 (0.694) 3.94 (0.694)

t(3) LS 2.785 (1.289) 2 (0) 3.51 (1.508) 3.32 (1.334)

QR 2.35 (0.656) 2 (0) 3.93 (0.827) 3.915 (0.760)

RR 2.22 (0.604) 2 (0) 3.94 (0.741) 3.94 (0.741)

CQR 2.245 (0.631) 2 (0) 3.94 (0.758) 3.935 (0.736)

MN LS 2.845 (1.422) 2 (0) 3.435 (1.711) 3.235 (1.463)

QR 2.37 (0.691) 2 (0) 3.925 (0.843) 3.91 (0.808)

RR 2.265 (0.636) 2 (0) 3.94 (0.764) 3.935 (0.741)

CQR 2.27 (0.654) 2 (0) 3.935 (0.768) 3.93 (0.752)

LN LS 2.86 (1.438) 1.995 (0.054) 3.385 (1.753) 3.185 (1.501)

QR 2.415 (0.734) 2 (0) 3.915 (0.859) 3.90 (0.847)

RR 2.28 (0.651) 2 (0) 3.925 (0.774) 3.92 (0.755)

CQR 2.30 (0.663) 2 (0) 3.92 (0.789) 3.91 (0.768)

Exp(1) LS 2.795 (1.316) 2 (0) 3.48 (1.603) 3.305 (1.418)

QR 2.355 (0.672) 2 (0) 3.925 (0.824) 3.915 (0.794)

RR 2.225 (0.627) 2 (0) 3.935 (0.748) 3.935 (0.748)

CQR 2.235 (0.634) 2 (0) 3.935 (0.760) 3.93 (0.751)

Enclosed in parentheses are the corresponding standard errors

components selected (NN), the average number of true nonlinear components selected
(NNT), the average number of linear components selected (NL), and the average
number of true linear components selected (NLT). Table 3 and Table 4 present the per-
formance of estimates for the first six nonzero component functions by using rootmean

squared errors (RMSE) defined by RMSE j =
{

1
ngrid

∑ngrid
i=1 ( f̂ j (ui )− f0 j (ui ))2

}1/2
,

where {ui , i =1, 2, . . . , ngrid} are the grid points at which the function f j (·) is eval-
uated.

We make several observations from the results of Tables 1, 2, 3 and 4: (1) Our
proposed RR method performs similar to CQR method in most situations; (2) For
the normal error, the RR and CQR estimators are comparable to the LS estimator in
terms of model selection as well as estimation accuracy, and all above three estimators
are much superior to that of QR estimator; (3) For the other four types of error, the
performance of LS method is terrible, whereas the RR and CQR approaches possess
a significantly higher efficiency than that of QR although they are all robust to error
structures in comparison with the LS method; (4) The model identification perfor-
mance and estimation accuracy of all considered methods improved as the sample
size n increasing, which corroborates the theoretical properties. All these conclusions
reveal that the CQR method and RR procedure are highly efficient in estimating and
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Table 5 Estimation and model identification results with LASSO, ALASSO and MCP

Dist. Method NNT NLT PC RMSE( f )

t(3) RR-LASSO 1.38 (0.744) 2.815 (1.674) 0.524 (0.461) 1.374 (0.753)

RR-ALASSO 2 (0) 3.94 (0.738) 0.98 (0.102) 0.105 (0.029)

RR-MCP 2 (0) 3.94 (0.746) 0.98 (0.097) 0.112 (0.032)

Exp(1) RR-LASSO 1.275 (0.838) 2.69 (1.806) 0.511 (0.478) 1.532 (0.816)

RR-ALASSO 2 (0) 3.935 (0.756) 0.975 (0.104) 0.119 (0.033)

RR-MCP 2 (0) 3.935 (0.749) 0.98 (0.107) 0.106 (0.038)

Enclosed in parentheses are the corresponding standard errors

Table 6 Component selection
results in Boston housing price
data

Variable LS QR RR Variable LS QR RR

crim 2 1 1 dis 2 2 1

zn 0 0 0 rad 2 0 0

indus 0 0 0 tax 2 2 2

nox 2 2 2 ptratio 2 1 2

rm 2 2 2 black 2 2 1

age 0 1 0 lstat 2 2 2

identifying nonzero components as well as simultaneously discriminating linear com-
ponents from nonlinear ones, and they are robust and adaptive to different errors.
However, it is worth noting that in contrast with the CQR method whose performance
depends on the choice of the number of quantiles to combine, a meta parameter which
plays a vital role in balancing the performance of LS and absolute deviation-based
methods, our proposed RR procedure does not need to choose the meta parameter.
This characteristic can reduce the burden of calculation.

Note that, according to the anonymous reviewers’s valuable suggestions, we have
added some simulations to evaluate the performance of our proposedRRmethod under
the penalties of lasso, Adaptive-lasso and MCP. The results based on 200 samples are
reported in Table 5, where RMSE( f ) stands for the root mean squared errors of f
with f = ∑10

j=1 f0 j . We can obtain from these results that the performances under
Adaptive-lasso and MCP are similar, and they all have a significant superiority to the
lasso penalty which has a bad performance. This is expected because Adaptive-lasso
andMCPhave been demonstrated to own consistency ofmodel selection but lasso does
not have. In addition, we have conducted some other simulations under a relatively
heavier sparsity by choosing 21 functions, in which the first 6 functions are the same
as in model (9) and the last 15 functions are 0. From our obtained results we observe
that the performances in the case of heavier sparsity are similar to the case originally
considered in model (9). Thus, we omit presenting the corresponding results although
they are obtained so as to reduce the length of this paper.
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Fig. 1 The selected components and their fits in for Boston housing price data based on LS method

5.2 Application to Boston housing price data

In this section, we consider an application of our proposed method to Boston housing
price data, which has been analyzed by Yu and Lu (2004) and Xue (2009) among
others. We take the median value of owner-occupied homes in $1000’s (medv) as
the response variable. The covariate variables include per capita crime rate by town
(crim), proportion of residential land zoned for lots over 25,000 sq.ft (zn), proportion
of non-retail business acres per town (indus), nitric oxides concentration per 10million
(nox), average number of rooms per dwelling (rm), proportion of owner-occupied units
built prior to 1940 (age), weighted distances to five Boston employment centers (dis),
index of accessibility to radial highways (rad), full-value property tax per $10,000
(tax), pupil-teacher ratio by town (ptratio), a parabolic function of the relative size
of the Black population in the town (black), and percentage of lower status of the
population (lstat). Beforehand, all the covariate variables are standardized so that they
have mean zero and unit variance, and the cumulative distribution function of standard
normal distribution is employed to transform the covariates to be marginally uniform
on [0,1]. Then we apply LS, QR and RRmethods to analyze the data set via an additive
model stated as (1).

The component selection results are presented in Table 6, in which, 0, 1 and 2
denote the covariates selected as zero, linear and nonlinear components, respectively.
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Fig. 2 The selected components and their fits for the Boston housing price data based on QR method

As we can see from Table 6, all three methods reveal that rm, rad and black have
nonnegative effects on house price, which are clearly coincide with the heuristics
about their effects on house prices. In addition, compared with the LS approach that
removes three covariates zn, indus and age out of the final model as unimportant
covariates and identifies the remaining nine covariates as nonlinear components, QR
method identified the three covariates zn, indus and rad as zero components, the three
covariates crim, age and ptratio as linear components, and the remaining six covariates
as nonlinear components. The RRmethod identified four covariates zn, indus, age and
rad as zero components, the three covariates crim, dis and black as linear components,
and the remaining five covariates as nonlinear components. Similar conclusions can
also be derived by the corresponding fits for this data set presented in Figs. 1, 2 and 3.
Evidently, our proposed rank approach generates themost parsimoniousmodel among
the three considered methods.

For a further study of the applicability of theRRmethod,we display the normalQQ-
plot of the residuals resulted by RR procedure in Fig. 4a, from which we observe that
the error term of Boston housing data probably come from a non-normal distribution.
Moreover, to compare the performance of the proposed RR procedure with those of
LS and QR methods, we give the boxplots of mean absolute prediction error (MAPE)
in Fig. 4b, which is obtained based on 200 times simulation with each simulation
randomly extract 400 samples. Obviously, RR method performs the best since it has
the smallest mean value of MAPE and variance. Consequently, taking into account of
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Fig. 3 The selected components and their fits for the Boston housing price data based on RR method

the complexity of model and the performance of prediction, our proposed rank-based
regression is a preferred method for analyzing this data set.

6 Concluding remarks

In this paper, a novel and robust procedure based on rank regression and spline approx-
imation was developed for model identification in semiparametric additive models.
Via adding a two-fold SCAD penalty, the proposed method is able to simultaneously
estimate and identify the nonzero components as well as the linear components. The-
oretical properties of the estimators of both nonparametric parts and linear parameters
were derived under some mild conditions. In addition, we show that the proposed rank
estimator is highly efficient across a wide spectrum of error distributions; even in the
worst case scenarios, the ARE of the proposed rank estimate versus least squares esti-
mate, is show to have an expression closely related to that of the signed-rankWilcoxon
test in comparison with the t-test, which is equal to 0.864 for the linear parameters.
Furthermore, we presented an efficient algorithm for computation and discussed the
selections of tuning parameters. To extend our work to a generalized additive model
or other nonparametric models seems a promising and useful project for practitioners;
we leave it as a future work.
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Fig. 4 a is the normal QQ-plot of the residuals resulted by RR method. b is the boxplots of MAPE in
Boston housing data, where the dashed, dot-dashed and long-dashed horizontal lines represent the average
MAPEs based on LS, QR and RR methods, respectively

Acknowledgements The authors are grateful to the Editor, Associate Editor and two anonymous referees
whose comments lead to a significant improvement of the paper. This work was supported in part by the
National Natural Science Foundation of China (Grant No. 11671059).

Appendix

In the proofs, C denotes a generic constant that might assume different values at
different places. Assume γ0 = (γ T

01, γ
T
02, . . . , γ

T
0p)

T be a pK -dimensional vector
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satisfying ‖ f0 j − BT
j γ0 j‖ = Op(K−r ) for 1 ≤ j ≤ p0 and f0 j = BT

j γ0 j for
p0 < j ≤ p. In order to prove the theoretical results, we first give some notations for
convenience of expression. Let

θn = √
K/n, γ ∗ = θ−1

n (γ − γ0), Zi = (
B1(Xi1)

T , . . . , Bp(Xip)
T )T

,

Zi j = Zi − Z j , Z = (Z1, . . . , Zn)
T , i =

p∑

l=1

f0l(Xil) − ZT
i γ0,

K̄ = pK , and Qn(γ
∗) = τθ2n γ ∗T ZT Zγ ∗ + γ ∗T Sn(0) + Ln(0).

Based on the notations, the objective function Ln(γ ) defined in (4) can be rewritten
as

L∗
n(γ

∗) = 1

n

∑

i< j

|(εi + i ) − (ε j +  j ) − θn Z
T
i jγ

∗|.

Further denote as Sn(γ ∗) the gradient function of Ln(γ
∗), that is,

Sn(γ
∗) = ∂L∗

n(γ
∗)

∂γ ∗ = −θn

n

∑

i �= j

sgn{εi + i − ε j −  j − θn Z
T
i jγ

∗}Zi j ,

where sgn(·) denotes the sign function.
We first quote several necessary lemmas which are frequently used in the sequel,

and the detailed proofs can be referred to Feng et al. (2015).

Lemma 1 Suppose that the assumptions (A1)–(A4) hold, then

Sn(γ
∗) − Sn(0) = 2τθ2n Z

T Zγ ∗ + op(1)1K̄ ,

where τ is defined in Theorem 3 and 1K̄ is a K -dimension vector of ones.

Lemma 2 Let γ̂ ∗ = argmin L∗
n(γ

∗) and γ̃ ∗ = argmin Qn(γ
∗). Suppose that the

assumptions (A1)–(A4) hold, then

‖γ̂ ∗ − γ̃ ∗‖2 = op(K ).

Lemma 3 Suppose that the assumptions (A1)–(A4) hold, then

Sn(0) = Op(1)1K̄ .

Proof of Theorem 1 By the definition of An(γ
∗), it follows from the convexity lemma

in Pollard (1991) that

γ̃ ∗ = −(2τθ2n Z
T Z)−1Sn(0).
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Note that, according to Lemma A.3 of Huang et al. (2004), there exists an interval
[C1,C2], 0 < C1 < C2 < ∞, such that all the eigenvalues of K

n ZT Z fall into [C1,C2]
with probability tending to 1. Write Sn(0) = (Sn1(0), . . . , SnK̄ (0))T , then we have

‖γ̃ ∗‖2 = 1

4τ 2
Sn(0)

T
(
K

n
ZT Z

)−1 (
K

n
ZT Z

)−1

Sn(0)

= Op(1)Sn(0)
T Sn(0) = Op(1)

K̄∑

i=1

Sni (0)
2 = Op(K̄ ),

where the last equality holds due to Lemma 3. As K̄ = pK , it follows that |γ̃ ∗|2 =
Op(K ). Therefore, based on the triangle inequality and Lemma 2, we obtain

‖γ̌ ∗‖2 = ‖γ̌ ∗ − γ̃ ∗ + γ̃ ∗‖2 ≤ ‖γ̌ ∗ − γ̃ ∗‖2 + ‖γ̃ ∗‖2 = op(K ) + Op(K ) = Op(K ).

This is equivalent to ‖γ̌ − γ0‖2 = Op(K 2/n) since γ̌ ∗ = θ−1
n (γ̌ − γ0) and θn =√

K/n.
In addition, by the properties of spline in De Boor (2001) that there exist some

constants C3 and C4 satisfying

C3K‖γ̌ T
j B j − γ T

0 j B j‖2 ≤ ‖γ̌ j − γ0 j‖2 ≤ C4K‖γ̌ T
j B j − γ T

0 j B j‖2.

Thus, we can derive that ‖γ̌ T
j B j − γ T

0 j B j‖2 = Op(K/n). Consequently, by the fact

that ‖ f0 j − BT
j γ0 j‖ = Op(K−r ), we have

‖ f̌ j − f0 j‖2 = ‖γ̌ T
j B j − f0 j‖2 ≤ ‖γ̌ T

j B j − γ T
0 j B j‖2 + ‖γ T

0 j B j − f0 j‖2
= Op(K/n) + Op(K

−2r ) = Op(n
−2r/(2r+1)),

where the last equality holds due to the assumption that the number of knots K =
Op

(
n1/(2r+1)

)
. This completes the proof. ��

Proof of Theorem 2 Firstly, we prove (i). Denote by δn = θn +λ1 +λ2, we first prove
that ‖γ̂ − γ0‖ = Op(K̄ 1/2δn). Let γ = γ0 + K̄ 1/2δnv, where v is a K̄ -dimensional
vector. It is sufficient to show, for any given ξ > 0, there exists a large C such that

P

{
inf‖v‖=C

Lλ
n(γ ) > Lλ

n(γ0)

}
≥ 1 − ξ. (10)

By virtue of the identity |x − y|− |x | = −ysgn(x)+2(y− x){I (0 < x < y)− I (y <

x < 0)} and the definition of Lλ
n(γ ), it follows that

Lλ
n(γ ) − Lλ

n(γ0)

= 1

n

∑

i< j

{|Yi j − ZT
i jγ | − |Yi j − ZT

i jγ0|
} + n

p∑

k=1

{
pλ1(

√
γ T
k Dkγk)
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−pλ1(

√
γ T
0k Dkγ0k)

} + n
p∑

k=1

{
pλ2

(√
γ T
k Ekγk) − pλ2(

√
γ T
0k Ekγ0k

) }

= −1

n

∑

i< j

ZT
i j (γ − γ0)sgn(Yi j − ZT

i jγ0) + 2

n

∑

i< j

(ZT
i jγ − Yi j ) ·

{
I (0 < Yi j − ZT

i jγ0 < ZT
i j (γ − γ0)) − I (ZT

i j (γ − γ0) < Yi j − ZT
i jγ0 < 0)

}

+ n
p∑

k=1

{
pλ1(

√
γ T
k Dkγk) − pλ1(

√
γ T
0k Dkγ0k)

}

+ n
p∑

k=1

{
pλ2(

√
γ T
k Ekγk) − pλ2(

√
γ T
0k Ekγ0k)

}

� L1 + L2 + L3 + L4. (11)

From Lemma 3, it is easy to verify that −1
n

∑
i< j sgn(Yi j − ZT

i jγ0)Zi j = θ−1
n 1K̄ ,

thus we have L1 = Op(δnθ
−1
n K̄ 1/2‖v‖) = Op(n1/2δn‖v‖) = op(nδ2n‖v‖) due to the

assumption nr/(2r+1) min{λ1, λ2} → ∞. Moreover, taking the similar arguments as
in the proof of Lemma 1, we can obtain that

L2 = τ(γ − γ0)
T ZT Z(γ − γ0)(1 + op(1)).

By applying Lemma A.3 of Huang et al. (2004) to L2 yields L2 = Op(nδ2n‖v‖2).
Obviously, by choosing a sufficiently large C , L2 dominates L1 with probability
tending to 1.

On the other hand, based on the well-known properties of B-spline that Dk and Ek

are of rank K − 1 and all their positive eigenvalues are of order 1/K , then according
to the inequality pλ(|x |) − pλ(|y|) ≤ λ|x − y|, we have

L3 ≤ nCλ1

p∑

k=1

‖γk − γ0k‖/
√
K = Op(nλ1δn‖v‖) = Op(nδ2n‖v‖).

Thus L3 is dominated by L2 if a sufficiently large C is chosen. Similarly, it is easy to
verify that L4 is also dominated by L2. Recall that L2 > 0, so we have (10) holds,
which means ‖γ̂ − γ0‖ = Op(K̄ 1/2δn).

Finally, we will show that the convergence rate can be further improved to ‖γ̂ −
γ0‖ = Op(K̄ 1/2θn). In fact, as the model is fixed as n → ∞, we can find a constant
C > 0, such that γ T

0k Dkγ0k > C for k ≤ s and γ T
0k Ekγ0k > C for k ≤ p0. As

‖γ̂ −γ0‖2 = Op(K̄ δ2n) = op(K̄ ) fromabove result andλk = op(1), k = 1, 2,wehave

P

(
pλ1

(√
γ T
0k Dkγ0k

)
= pλ1

(√
γ̂ T
k Dk γ̂k

))
→ 1, j ≤ s,

P

(
pλ1

(√
γ T
0k Ekγ0k) = pλ1(

√
γ̂ T
k Ek γ̂k

))
→ 1, j ≤ p0.
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These facts indicate that

P

(
n

p∑

k=1

pλ1

(√
γ̂ T
k Dk γ̂k

)
− n

p∑

k=1

pλ1

(√
γ T
0k Dkγ0k

)
≥ 0

)
→ 1,

P

(
n

p∑

k=1

pλ1

(√
γ̂ T
k Ek γ̂k

)
− n

p∑

k=1

pλ1

(√
γ T
0k Ekγ0k

)
≥ 0

)
→ 1.

Removing the regularizing terms L3 and L4 in (11), the rate can be improved to
‖γ̂ − γ0‖ = Op(K̄ 1/2θn) by the same reasoning as above. That is ‖γ̂ − γ0‖2 =
Op(K̄ θ2n ) = Op(K 2/n). As a consequence, following the same approach in the proof
of the second part of Theorem 1, we obtain that ‖ f̂ j − f0 j‖2 = Op(n−2r/(2r+1)), this
completes the proof.

In the next, we put our main attention on proving part (ii) as an illustration and part
(iii) can be similarly proved with its detailed proof omitted. Suppose that BT

j γ̂ j does
not represent a linear function for p0 + 1 ≤ j ≤ s. Define γ̄ to be the same as γ̂

except that γ̂ j is replaced by its projection onto the subspace { γ j : BT
j γ j stands for

a linear function }. Therefore, we have that

0 ≥ Lλ
n(γ̂ ) − Lλ

n(γ̄ ) = (Lλ
n(γ̂ ) − Lλ

n(γ0)) − (Lλ
n(γ̄ ) − Lλ

n(γ0))

= 1

n

∑

i< j

{|Yi j − ZT
i j γ̂ | − |Yi j − ZT

i jγ0|
} − 1

n

∑

i< j

{|Yi j − ZT
i j γ̄ | − |Yi j − ZT

i jγ0|
}

+ n
p∑

k=1

{
pλ1(

√
γ̂ T
k Dk γ̂k) − pλ1(

√
γ̄ T
k Dk γ̄k)

}

+ n
p∑

k=1

{
pλ2(

√
γ̂ T
k Ek γ̂k) − pλ2(

√
γ̄ T
k Ek γ̄k)

}

� M1(γ̂ , γ0) − M2(γ̄ , γ0) + M3(γ̂ , γ̄ ) + M4(γ̂ , γ̄ ). (12)

Note that, by the same arguments to the derivation of (11), it is not difficult to verify that

M1(γ̂ , γ0) = τ(γ̂ − γ0)
T ZT Z(γ̂ − γ0)(1 + op(1)) + θ−1

n (γ̂ − γ0)
T Sn(0)

and

M2(γ̄ , γ0) = τ(γ̄ − γ0)
T ZT Z(γ̄ − γ0)(1 + op(1)) + θ−1

n (γ̄ − γ0)
T Sn(0).

Therefore, we can show that

M1(γ̂ , γ0) − M2(γ̄ , γ0)

= τ {(γ̂ − γ̄ + γ̄ − γ0)
T ZT Z(γ̂ − γ̄ + γ̄ − γ0)

−(γ̄ − γ0)
T ZT Z(γ̄ − γ0)}(1 + op(1)) + θ−1

n (γ̂ − γ̄ )T Sn(0)
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= τ(γ̂ − γ̄ )T ZT Z(γ̂ − γ̄ ) + 2τ(γ̄ − γ0)
T ZT Z(γ̂ − γ̄ ) + θ−1

n (γ̂ − γ̄ )T Sn(0)

≥ 2τ(γ̄ − γ0)
T ZT Z(γ̂ − γ̄ ) + θ−1

n (γ̂ − γ̄ )T Sn(0) � N1 + N2.

Recall that γ̄k is the projection of γ̂k onto {γk : γ T
k Ekγk = 0}, then γ̂k − γ̄k is orthog-

onal to the space. Furthermore, the space {γk : γ T
k Ekγk = 0} is just the eigenspace of

Ek corresponding to the zero eigenvalue. Consequently, based on the characterization
of eigenvalues in terms of Rayleigh quotient, (γ̂k − γ̄k)

T Ek(γ̂k − γ̄k)/‖γ̂k − γ̄k‖2 lies
between the minimum and the maximum positive eigenvalues of Ek , which is of order
1/K . Taking into account of the fact that γ̂ T

k Ek γ̂k = (γ̂k − γ̄k)
T Ek(γ̂k − γ̄k) since

γ̄ T
k Ek γ̄k = 0, we derive ‖γ̂k − γ̄k‖ = Op(

√
K γ̂ T

k Ek γ̂k). According to Lemma 3,

Lemma A.3 of Huang et al. (2004) and the result ‖γ̄ − γ0‖ = Op(K/
√
n) from part

(i), it follows that

‖N1‖ ≤ Op

( n

K
‖γ̄ − γ0‖ · ‖γ̂ − γ̄ ‖

)
= Op

(√
nK

p∑

k=1

√
γ̂ T
k Ek γ̂k

)
,

‖N2‖ ≤ Op

(
θ−1
n ‖γ̂ − γ̄ ‖ · ‖Sn(0)‖

)
= Op

(√
nK

p∑

k=1

√
γ̂ T
k Ek γ̂k

)
.

These facts leads to

M1(γ̂ , γ0) − M2(γ̄ , γ0) ≥ −Op

(√
nK

p∑

k=1

√
γ̂ T
k Ek γ̂k

)
. (13)

On the other hand, according to the proof of (i), we have P
(
pλ1(

√
γ̂ T
k Dk γ̂k) =

pλ1(

√
γ̄ T
k Dk γ̄k)

) → 1 and P
(
γ̄ T
k Ek γ̄k = 0

) → 1. Substituting these results into
(12) yields

P

(
M1(γ̂ , γ0) − M2(γ̄ , γ0) + n

p∑

k=1

pλ2(

√
γ̂ T
k Ek γ̂k) ≤ 0

)
→ 1. (14)

In addition, based on the result of (i) and the condition nr/(2r+1) min{λ1, λ2} → ∞,
it is easy to verify that

√
γ̂ T
k E j γ̂k =

√
(γ̂k − γ0k)T Ek(γ̂k − γ0k) = Op(

√
K/n) = op(λ2).

Hence, we have P
(
pλ2(

√
γ̂ T
k Ek γ̂k) = λ2

√
γ̂ T
k Ek γ̂k

) → 1 by the definition of SCAD
penalty function.

123



Rank-based shrinkage estimation for identification... 1279

As a consequence, if γ̂ T
k Ek γ̂k > 0, we have

n
p∑

k=1

pλ2

(√
γ̂ T
k Ek γ̂k

)
= Op

(
nλ2

p∑

k=1

√
γ̂ T
k Ek γ̂k

)
. (15)

Combining (13) and (15) along with the condition nr/(2r+1) min{λ1, λ2} → ∞, it
follows that

M1(γ̂ , γ0) − M2(γ̄ , γ0) + n
p∑

k=1

pλ2

(√
γ̂ T
k Ek γ̂k

)
> 0,

which is contradictory to (14). Then we complete the proof of Theorem 2. ��
Proof of Theorem 3 Note that, by the results of Theorem 2, we only need to consider a
correctly specified partially linear additive model as (2) without regularization terms.
Specifically, the corresponding objective function is

�n(α, β) = 1

n

∑

i< j

|Yi j − V T
i j α − X (2)T

i j β|,

where Vi = (
B1(Xi1)

T , . . . , Bp(Xip0)
T
)T , X (2)

i = (Xi(p0+1), . . . , Xis)
T and α =

(γ1, . . . , γp0)
T is the corresponding coefficient vector of the spline approximation.

Let (α̂T , β̂T )T = argmin�n(α, β), ̃i = ∑p0
l=1 f0l(Xil) − V T

i α̂, δn = n−1/2 and
β∗ = δ−1

n (β − β0). Then, β̂∗ must be the minimizer of the following function

�∗
n(β

∗) = 1

n

∑

i< j

|(εi + ̃i ) − (ε j + ̃ j ) − δn X
(2)T

i j β∗|.

Denote by S∗
n (β

∗) the gradient function of �∗
n(β

∗), that is

S∗
n (β

∗) = ∂�∗
n(β

∗)
∂β∗ = −δn

n

∑

i �= j

sgn{(εi + ̃i ) − (ε j + ̃ j ) − δn X
(2)T

i j β∗}X (2)
i j .

Then, we can show that

S∗
n (β

∗) − S∗
n (0) = −δn

n

∑

i �= j

sgn
(
(εi + ̃i ) − (ε j + ̃ j ) − δn X

(2)T

i j β∗)X (2)
i j

+δn

n

∑

i �= j

sgn
(
(εi + ̃i ) − (ε j + ̃ j )

)
X (2)
i j .

Taking into consideration of the results obtained in Theorem 2, we have ̃i =
Op(K−r ) = op(1) as n → ∞. Hence, following the similar proof of Lemma 1,

123



1280 J. Yang et al.

it is not difficult to obtain

S∗
n (β

∗) − S∗
n (0) = 2τδ2n�β∗, (16)

where � is defined in assumption (A3). Further let Bn(β
∗) = τδ2nβ

∗T �β∗ +
β∗T S∗

n (0) + �∗
n(0) and its minimizer denoted by β̃∗. Then it is not difficult to verify

that β̃∗ = −(2τ)−1(δ2n�)−1S∗
n (0). Based on Equation (16) and a similar arguments

of Lemma 2, it follows that

β̂∗ = β̃∗ + op(1) = −(2τ)−1(δ2n�)−1S∗
n (0) + op(1). (17)

In addition, by the assumption that εi is the random error independent of Xi , com-
bined with some calculations, we have

δ−2
n S∗

n (0)
d→ N

(
0, E

{
(2H(ε) − 1)2

}
�

)
, (18)

where H(·) stands for the cumulative distribution function of ε. Furthermore, it can
be shown that

E{(2H(ε) − 1)2} =
∫

(2H(ε) − 1)2h(ε)dε

=
∫

4H(ε)2h(ε)dε − 4
∫

H(ε)h(ε)dε +
∫

h(ε)dε

=
∫

4H(ε)2dH(ε) − 4
∫

H(ε)dH(ε) + 1 = 1/3. (19)

Therefore, substituting (18) and (19) into (17), we complete the proof. ��
Proof of Theorem 4 Based on the asymptotic results of Theorem 3 and the least square
B-spline estimate given in Theorem 3 of Lian (2012a), we immediately obtain
ARE(β̂RR, β̂LS) = 12τ 2σ 2. In addition, a result of Hodges and Lehmann (1956)
indicates that the ARE has a lower bound 0.864, with this lower bound being obtained
at the density h(x) = 3

20
√
5
(5 − x2)I (|x | ≤ 5). This completes the proof. ��
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