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Abstract In this paper, a new class of goodness of fit tests for exponential distribution
is proposed. The tests use the equidistribution characterizations of exponential distri-
bution. Based on theU -empirical Laplace transforms of equidistributed statistics, test
statistics of the integral type are formed. They are U -statistics with estimated para-
meters. Their asymptotic properties are derived. Two families of exponentiality tests
from this class, based on two selected characterizations, are presented. The approxi-
mate Bahadur efficiency is used to assess their quality. Finally, their simulated powers
are calculated and the tests are compared with different exponentiality tests.

Keywords Goodness-of-fit · Exponential distribution · Laplace transform ·
Asymptotic efficiency · Characterization

1 Introduction

The exponential distribution is one of the most widely used distributions for modeling
data in reliability theory, queuing theory, andmany other fields. For this reason, and due
to its simple and suitable form there are many characterizations of this distribution
that can be expressed conveniently. Some of them can be found in, among others,
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Ahsanullah and Hamedani (2010), Arnold et al. (2008), Balakrishnan and Rao (1998)
and Galambos and Kotz (1978).

In recent times, these characterizations have increased their popularity due to the fact
that they are useful in construction of goodness-of-fit tests. Some goodness-of-fit tests
for exponentiality are studied in Ahmad and Alwasel (1999), Angus (1982), Jansen
van Rensburg and Swanepoel (2008), Koul (1977, 1978), Nikitin (1996), Nikitin and
Volkova (2010), Volkova (2010), Jovanović et al. (2015), Milošević (2016).

There exist different approaches when constructing the test statistics. One of them
usesLaplace transforms.Baringhaus andHenze (1991) considered the test based on the
differential equation that Laplace transform of exponential distribution satisfies. The
analogous tests for Rayleigh and Gamma distribution were proposed in Meintanis and
Iliopoulos (2003) and Henze et al. (2012), respectively. The approach of comparison
of theoretical and empirical Laplace transform was considered in Henze (1993) and
Henze and Meintanis (2002a) for exponential, and Henze and Klar (2002) for inverse
Gaussian distribution.Meintanis et al. (2007) considered the exponentiality tests based
on characterization involving moments.

Worth mentioning are also similar tests based on empirical characteristic functions
considered, e.g. in Henze and Meintanis (2002b) and Gürtler and Henze (2000).

Our approach in this paper is to create a test based on equidistribution characteri-
zation and the corresponding U -empirical Laplace transforms.

Consider a characterization of the exponential distribution of the form

ω1(X1, . . . , Xm)
d= ω2(X1, . . . , Xm),

where ω1(X1, . . . , Xm) and ω2(X1, . . . , Xm) are non-negative homogeneous func-
tions of i.i.d. random variables X1, ..., Xm , i.e. for every real number c > 0

ωk(cX1, . . . , cXm) = cωk(X1, . . . , Xm), k = 1, 2.

Let X1, X2, . . . , Xn be a sample from a non-negative continuous distribution
function F . For testing the composite hypothesis of exponentiality H0 : F(x) =
1 − e−λx , λ > 0, we propose the family of scale-free test statistics of the integral
type

Jn,a =
∞∫

0

(L(1)
n (t) − L(2)

n (t))X̄e−a X̄ t dt, (1)

where X̄ is the sample mean, a is some positive constant and

L(k)
n (t) = 1

n[m]
∑

1≤i1<···<im≤n

∑
π∈�(m)

e−tωk (Xiπ(1) ,...,Xiπ(m)
)
, k = 1, 2,

where n[m] = m!(nm
)
and�(m) is the set of all one-to-onemappingsπ : {1, . . . ,m} �→

{1, . . . ,m}, are U -empirical Laplace transforms. The exponential weight function
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ensures the convergence of the integral while the role of the sample mean is to make
the statistic scale free under null hypothesis. The tuning parameter a can be chosen in
order to increase the power of the test against some particular alternatives.

We consider both large positive and large negative values of Jn,a to be significant.
The tests will be consistent against all alternatives where the theoretical counterpart
of Jn,a is not equal to zero, which includes all distributions of practical interest.

To compare the quality of our tests with some other tests we shall use the approxi-
mate Bahadur efficiency. This method has been considered in Meintanis et al. (2007)
and Henze et al. (2009).

The paper is organized as follows. In Sect. 2, we derive asymptotic distribution
and other asymptotic properties of our test statistics needed for calculation of local
approximate Bahadur efficiency. In the next section we present two well-known char-
acterizations and use the results from Sect. 2 to construct appropriate goodness-of-fit
tests based on them. We compare these tests among each other and with some other
tests via approximate Bahadur efficiency. In Sect. 4 we perform a simulation study in
order to compare the powers of our tests with other exponentiality tests.

2 Asymptotic properties of Jn,a

After integration, the expression (1) becomes

Jn,a = X̄

n[m]
∑

1≤i1<···<im≤n

∑
π∈�(m)

×
( 1

a X̄ + ω1(Xiπ(1) , . . . , Xiπ(m)
)

− 1

a X̄ + ω2(Xiπ(1) , . . . , Xiπ(m)
)

)
.

In order to find the asymptotic distribution of Jn,a under H0 we consider the aux-
iliary function

J ∗
n,a(μ) = μ

n[m]
∑

1≤i1<···<im≤n

∑
π∈�(m)

×
( 1

aμ + ω1(Xiπ(1) , . . . , Xiπ(m)
)

− 1

aμ + ω2(Xiπ(1) , . . . , Xiπ(m)
)

)
,

where μ = λ−1. For every fixed μ > 0 J ∗
n,a(μ) is an U -statistic whose distribution

does not depend on μ. Therefore we can put μ = 1.
The U -statistic J ∗

n,a(1) has symmetric kernel

Φ(X1, . . . , Xm; a)= 1

m!
∑

π∈�(m)

×
( 1

a + ω1(Xπ(1), . . . , Xπ(m))
− 1

a + ω2(Xπ(1), . . . , Xπ(m))

)
.
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If the kernel is non-degenerate we may apply the Hoeffding’s theorem (1948) and
get the asymptotic distribution of

√
nJ ∗

n,a(1). Precisely, the asymptotic distribution
of

√
nJ ∗

n,a(1) is normal N (0,m2σ 2
Φ(a)). Here, σ 2

Φ(a) is the variance of the kernel
projection on X1, i.e.

σ 2
Φ(a) = E(ϕ2(X1; a))

ϕ(s; a) = E(Φ(X1, . . . , Xm; a)|X1 = s).

It is known that the sample mean has the following limiting distribution

√
n(X̄ − μ)

d→ N (0, μ2).

It is not difficult to show that the conditions 2.3 and 2.9AofRandles’ theorem (1982,
Theorem 2.13) are satisfied. Hence we can conclude that the asymptotic distribution of
J ∗
n,a(μ) and Jn,a coincide. Since the distribution of Jn,a does not depend of parameter

λ = μ−1, we have that the asymptotic distribution is:

√
nJn,a ∼ N (0,m2σ 2

Φ(a)). (2)

Therefore, we should reject our null hypothesis at asymptotic level of significance
α if

√
n

mσΦ(a)
|Jn,a | ≥ u1− α

2

where u1−α/2 denotes 1 − α/2-th quantile of the standard normal distribution.

2.1 Local approximate Bahadur efficiency

For Bahadur theory, we refer to Bahadur (1971) and Nikitin (1995). For two tests
with the same null and alternative hypotheses, H0(θ ∈ �0) and H1(θ ∈ �1), the
asymptotic relative Bahadur efficiency is defined as the ratio of sample sizes needed
to reach the same test power when the level of significance approaches zero. It can be
expressed as the ratio of Bahadur exact slopes, functions proportional to exponential
rate for a sequence of test statistics. The calculation of these slopes depends on large
deviation functions which are often hard to obtain.

For this reason inmany situations the tests are compared using approximateBahadur
efficiency. In some situations, when the limiting distribution is normal, approximate
Bahadur efficiency and classical Pitman efficiency coincide (Wieand 1976.)

Suppose that Tn = Tn(X1, . . . , Xn) is a test statistic and its large values are
significant, i.e. the null hypothesis is rejected whenever Tn > tn . Let the distrib-
ution function of the test statistic Tn converge weakly, under H0, to a distribution

function FT , such that, log(1 − FT (t)) = − aT t2

2 (1 + o(1)), where aT is posi-
tive real number, and o(1) → 0 as t → ∞. Suppose that the limit in probability
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limn→∞ Tn/
√
n = bT (θ) > 0 exists for θ ∈ Θ1.

The relative approximate Bahadur efficiency of Tn with respect to another test
statistic Vn (whose large values are significant) is

e∗
T,V = c∗

T

c∗
V

,

where c∗
T = aT b2T (θ) and c∗

V = aV b2V (θ) are the approximate Bahadur slopes of Tn
and Vn , provided that, similarly to the previous case, the distibution function of Vn
converges weakly to FV and log(1 − FV (t)) = − aV t2

2 (1 + o(1)).
In our case, Tn = √

n|Jn,a |. Let F0(t) be the distribution function of the normal
N (0,m2σ 2

Φ(a)) , i.e. F0 is the limiting distribution function of
√
nJn,a . Since for nor-

mal distribution, the coefficient aT is the inverse of the variance, using the convergence
symbol o(1), we have

log(1 − FT (t)) = log(2(1 − F0(t))) = log 2 + log((1 − F0(t)))

= − t2

2m2σ 2

(a)

(1 + o(1)),

which enables us to apply the mentioned concept of the relative approximate Bahadur
efficiency to the investigated testing problem.

It remains to find the limit in probability under close alternatives. Let G =
{G(x, θ), 0 < θ < C} be a class of distribution functions such that G(x, 0) is
exponential and regularity condition from Nikitin and Peaucelle (2004), includ-
ing differentiability along θ in the neighbourhood of zero, are satisfied. Denote
h(x) = ∂

θ
g(x, θ)|θ=0.

Lemma 1 For a given alternative density g(x; θ) whose distribution belongs to G we
have that the limit in probability of statistic Jn,a is

bJ (θ) = m
∫ ∞

0
ϕ(x)h(x)dx · θ + o(θ), θ → 0.

Proof Since under alternative the samplemean converges almost surely to its expected
value μ(θ), using the law of large numbers forU -statistics with estimated parameters
(see, Iverson and Randles 1989) we have that the limit in probability of statistic Jn,a

is equal to the one of J ∗
n,a(μ(θ)). Without loss of generality we may take μ(0) = 1.

Denote for brevity x = (x1, . . . , xm) and G(x, θ) = ∏m
i=1 G(xi , θ). We have

bJ (θ) = Eθ (Φ(X1, . . . , Xm)) =
∫

Rm

( μ(θ)

aμ(θ) + ω1(x)
− μ(θ)

aμ(θ) + ω2(x)

)
dG(x, θ).
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982 B. Milošević, M. Obradović

The first derivative of b(θ) along θ at zero is

b′
J (0) =

∫

Rm

∂

∂θ

( μ(θ)

aμ(θ) + ω1(x)
− μ(θ)

aμ(θ) + ω2(x)

)∣∣∣
θ=0

dG(x, 0)

+
∫

Rm

( μ(0)

aμ(0) + ω1(x)
− μ(0)

aμ(0) + ω2(x)

) ∂

∂θ
dG(x, θ)

∣∣∣
θ=0

=
∫

Rm

( μ′(0)ω1(x)

(a + ω1(x))2
− μ′(0)ω2(x)

(a + ω2(x))2

)
dG(x, 0)

+
∫

Rm

( 1

a + ω1(x)
− 1

a + ω2(x)

) ∂

∂θ
dG(x, θ)

∣∣∣
θ=0

.

Since the integrand is bounded the first summand is equal to zero due to the charac-
terization. On the second summandwemay apply the result fromNikitin and Peaucelle
(2004) and obtain

b′
J (0) = m

∞∫

0

h(x)ϕ(x; a)dx .

Expanding bJ (θ) into Maclaurin series we complete the proof. �

Note that Tn/

√
n converges in probability to |bJ (θ)| as n → ∞.

Lacking a theoretical upper bound, the approximate Bahadur slopes are often com-
pared (see e.g., Meintanis et al. 2007) with the approximate Bahadur slopes of the
likelihood ratio tests, which are known to be optimal parametric tests in terms of
Bahadur efficiency. Hence, we may consider the approximate Bahadur efficiencies
against the likelihood ratio tests as “absolute” local approximate Bahadur efficiencies.

Under very general conditions the likelihood ratio tests have the approximate slopes
equivalent to the double Kullback–Leibler distance from the alternative to the null set
of distributions. It can be shown (see, Nikitin and Tchirina 1996) that, in the case of
the alternatives from G, for small θ , they can be expressed as

2K (θ) =
( ∞∫

0

h2(x)exdx −
( ∞∫

0

xh(x)dx
)2) · θ2 + o(θ2). (3)

3 Characterizations and tests

In this section, we present two new tests of exponentiality based on the following
characterizations. They come from Desu (1971) and Puri and Rubin (1970).

Characterization 1 (Desu (1971)) Let X be random variable with distribution func-
tion F(·). Let X1, X2, . . . Xn be a sample from F and let W = min(X1, . . . , Xn). If
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New class of exponentiality tests based … 983

F(·) is a nondegenerate distribution function, then for each positive integer n, nW
and X are identically distributed if and only if F(x) = 1 − e−λx , for x ≥ 0, where λ

is a positive constant.

Characterization 2 (Puri and Rubin (1970)) Let X1 and X2 be two independent
copies of a random variable X with pdf f (x). Then X and |X1 − X2| have the same
distribution if and only if for some λ > 0 f (x) = λe−λx , for x ≥ 0.

The test statistics based on Characterizations 1 and 2 are, respectively

JDn,a = X̄

n(n − 1)

∑
1≤i1<i2≤n

∑
π∈�(2)

( 1

a X̄ + Xiπ(1)

− 1

a X̄ + 2min(Xiπ(1) , Xiπ(2) )

)
,

(4)

JPn,a = X̄

n(n − 1)

∑
1≤i1<i2≤n

∑
π∈�(2)

( 1

a X̄ + Xiπ(1)

− 1

a X̄ + |Xiπ(1) − Xiπ(2) |
)
. (5)

The projections of kernel of U -statistics JDn,a and JPn,a on X1 under H0 are

ϕD(s; a) = E(
D(X1, X2; a)|X1 = s) = 1

2(a + s)
− 1

2
ea Ei(−a)

− 1

2(a + 2s)
e−s(2 + aea/2+s�

(
0,

a

2

)
+ 2e

a
2+ss�

(
0,

a

2

)

− aea/2+s�
(
0,

a

2
+ s

)
− 2e

a
2+ss�

(
0,

a

2
+ s

) )
,

ϕP (s; a) = E(
P (X1, X2; a)|X1 = s)

= 1

2(a + s)
− 1

2
ea Ei(−a) + e−a−s(e2a Ei(−a) + Ei(a) − Ei(a + s)),

where Ei(z) = ∫ ∞
−z u

−1e−udu and �(a, z) = ∫ ∞
z ta−1e−t dt are the exponential

integral and the incomplete Gamma function, respectively.
It can be shown that the kernels are centered for every a > 0. It is not possible to

obtain the variance in a closed form, however it can be calculated for each a. Some
values are given in Table 1, and the plots of the variance functions are shown in Fig. 1.
We can see that in these cases the kernels are non-degenerate and the asymptotic
distributions of

√
nJDn,a and

√
nJPn,a follow from (2).

We shall compare our tests with the following integral-type tests based on the same
characterizations. These types of tests have been proposed in some recent papers (see
e.g., Nikitin and Volkova 2010; Volkova 2010; Jovanović et al. 2015).

Table 1 Values of σ 2

D (a) and

σ 2

P (a)

a 1 2 5

σ 2

D (a) 3.52 × 10−3 6.12 × 10−4 4.17 × 10−5

σ 2

P (a) 6.64 × 10−3 9.89 × 10−4 5.61 × 10−5
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984 B. Milošević, M. Obradović

Fig. 1 Variance functions σ 2

D (a) (left) and σ 2


P (a) (right)

IDn =
∞∫

0

(Fn(t) − Gn(t))dFn(t),

IPn =
∞∫

0

(Fn(t) − Hn(t))dFn(t),

where

Fn(t) = 1

n

∑
i

I {Xi < t}

Gn(t) = 1

n2
∑
i, j

I {2min(Xi , X j ) < t},

Hn(t) = 1

n2
∑
i, j

I {|Xi − X j | < t},

The asymptotic distribution of these test statistics is also normal, so using the same
method we can derive their Bahadur approximate slopes.

The common alternatives we are going to consider are

– a Weibull distribution with density

g(x, θ) = e−x1+θ

(1 + θ)xθ , θ > 0, x ≥ 0; (6)

– a gamma distribution with the density

g(x, θ) = xθ

Γ (θ + 1)
e−x , θ > 0, x ≥ 0; (7)

– a Makeham distribution with density

g(x, θ) = (1 + θ(1 − e−x )) exp(−x − θ(e−x − 1 + x)), θ > 0, x ≥ 0; (8)

123
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Table 2 Approximate Bahadur
ARE (JDn,a , IDn )

a 1 2 5

Weibull 1.11 1.21 1.27

Gamma 1.09 1.08 1.03

Makeham 1.11 1.44 1.76

LFR 1.33 2.05 3.12

Table 3 Approximate Bahadur
ARE (JPn,a , IPn )

a 1 2 5

Weibull 1.03 1.06 1.07

Gamma 1.04 1 0.96

Makeham 1 1.11 1.2

LFR 1.32 1.68 2.06

Fig. 2 Local approximate Bahadur efficiencies for a Weibull alternative

– a linear failure rate distribution (LFR) with density

g(x, θ) = (1 + θx)e−x−θ x2
2 , θ > 0, x ≥ 0; (9)

In Tables 2 and 3, there are Bahadur approximate efficiencies for our statistics JDn.a
and JPn.a against their integral counterparts IDn and IPn based on the same characteri-
zations. We can see that practically in all cases our tests are more efficient.

Figures 2, 3, 4 and 5 show the dependence of the local approximate Bahadur effi-
ciencies effa on the parameter a ∈ (0, 10). Each figure shows the efficiencies of both
statistics JDn,a and JPn,a .

We can notice that the local efficiencies range from reasonable to high. It is also
possible, for a fixed a, to construct the alternatives against which the test would be
“fully efficient”, i.e. it would have the same efficiency as the likelihood ratio test. In
our case it can be shown, employing the same reasoning as in e.g. Jovanović et al.
(2015), that some such alternatives are of the form
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986 B. Milošević, M. Obradović

Fig. 3 Local approximate Bahadur efficiencies for a gamma alternative

Fig. 4 Local approximate Bahadur efficiencies for a Makeham alternative

Fig. 5 Local approximate Bahadur efficiencies for a linear failure rate alternative
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g(x; θ) = e−x (1 + θ(C1ϕ(x; a) + C2(x − 1)), C1 > 0,C2 ∈ R.

Besides, the figures show that, in cases of a Makeham and a linear failure rate alterna-
tive, statistic JPn,a is always more efficient than JDn,a , while in gamma case it is the other
way around, except for some small values of a. In case of a Weibull alternative JPn,a is
more efficient for values of a up to 3.5, while JPn,a gradually overtakes it for larger ones.

4 Power study

In this section, we compare the powers of our tests for sample sizes n = 20 and n = 50
against some common alternative distributions with some well known exponentiality
tests. The choice of tests comes from the review paper on exponentiality tests (Henze
and Meintanis 2005). The tests include classical Kolomogorov–Smirnov (KS) and
Cramer–von Mises (ω2), Epps–Pulley test based on characteristic function (EP) (see,
Epps and Pulley 1986), two tests based on a characterization via the mean residual
life K S and CM (see, Baringhaus and Henze 2000), test based on spacing (S) (see,
D’Agostino and Stephens 1986), Cox–Oakes test (see, Cox and Oakes 1984) and
the test based on integrated empirical distribution function (KL) (Klar 2001). The
alternative distributions are Weibull (W), gamma (�), standard half-normal (HN),
standard uniform (U), Chen (CH), linear failure rate (LF) and extreme value (EV),
for the same choice of parameters as in Henze and Meintanis (2005). The level of
significance is 0.05 and the number of Monte Carlo replications is 10,000.

The results are given in Tables 4 and 5. The general conclusion is that our tests
perform better in case of small sample sizes. In particular, our tests are always better

Table 4 Percentage of significant samples for different exponentiality tests n = 20, α = 0.05

Alt. W (1.4) �(2) HN U CH(0.5) CH(1) CH(1.5) LF(2) LF(4) EV (0.5) EV (1.5)

EP 36 48 21 66 63 15 84 28 42 15 45

K S 35 46 24 72 47 18 79 32 44 18 48

CM 35 47 22 70 61 16 83 30 43 16 47

ω2 34 47 21 66 61 14 79 28 41 14 43

KS 28 40 18 52 56 13 67 24 34 13 35

KL 29 44 16 61 77 11 76 23 34 12 37

S 35 46 21 70 63 15 84 29 42 15 46

CO 37 54 19 50 80 13 81 25 37 13 37

JDn,1 42 64 20 45 15 15 15 29 40 15 36

JDn,2 47 66 25 59 18 19 18 33 48 19 46

JDn,5 48 64 28 70 20 21 21 36 52 21 53

JPn,1 49 65 29 73 21 22 21 38 51 21 54

JPn,2 50 64 31 77 21 21 23 40 54 22 57

JPn,5 48 62 32 79 23 23 23 41 56 22 58
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Table 5 Percentage of significant samples for different exponentiality tests n = 50, α = 0.05

Alt. W (1.4) �(2) HN U CH(0.5) CH(1) CH(1.5) LF(2) LF(4) EV (0.5) EV (1.5)

EP 80 91 54 98 94 38 100 69 87 38 90

K S 71 86 50 99 90 36 100 65 82 36 88

CM 77 90 53 99 94 37 100 69 87 37 90

ω2 75 90 48 98 95 32 100 64 83 32 86

KS 64 83 39 93 92 26 98 53 72 26 75

KL 72 93 37 97 99 23 100 54 75 23 79

S 79 90 54 99 94 38 100 69 87 38 90

CO 82 96 45 91 99 30 100 60 80 30 78

JDn,1 78 96 36 76 23 24 23 51 71 23 64

JDn,2 83 97 46 90 31 30 31 62 83 36 79

JDn,5 86 97 55 97 41 40 40 72 89 39 89

JPn,1 85 96 54 97 38 38 38 70 87 39 87

JPn,2 86 96 59 98 41 42 42 73 89 42 90

JPn,5 86 96 63 99 46 46 45 77 91 46 93

in case of W and �, and in vast majority of cases for HN, CH(1), LF(2) and LF(4).
For other alternatives our tests are better in some cases and comparable in others, with
the exception of CH(0.5) and CH(1.5). Moreover, we can notice that the powers of
the tests increase with parameter a.

5 Conclusion

In this paper, we introduced a new class of scale-free goodness-of-fit tests for exponen-
tial distribution based on U -empirical Laplace transforms of equidistributed sample
functions.

For two tests from this class we calculated the approximate relative Bahadur effi-
ciencies of our tests and some other tests, for some choice of common alternatives. The
results are more than satisfactory. We also calculated their “absolute” local approxi-
mate Bahadur efficiencies, i.e. their relative approximate Bahadur efficiencies against
the likelihood ratio tests, and they range from reasonable to high.

Finally, we compared the powers of our tests with some other goodness-of-fit tests
and noticed that in most cases our tests were more powerful.
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