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Abstract Inverse prediction (IP) is reputed to be computationally inconvenient for
multivariate responses. This paper describes how IP can be formulated in terms of a
general linear mixed model, along with a flexible modeling approach for both mean
vectors and variance–covariance matrices. It illustrates that results can be had as stan-
dard output from widely-available statistical computing packages.

Keywords Heteroscedastic multivariate models · Multivariate calibration ·
Forensic entomology

Mathematics Subject Classification 62H15 · 62J05 · 62H30

1 Introduction

In a model relating a response y to a factor t , inverse prediction refers to a process for
inferring t from the observed response y∗ for a subject with an unknown value of t .
The inference is based on a model fit to training data from subjects at known values
of t . The subject in question, with unknown t , will be termed the mystery specimen
(MS) here, and its true (but unknown) value of t will be denoted t∗. It is presumed that
the training data are from a process that is credibly similar to the one that produced
the mystery specimen.
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In applications, usually there are other factors that affect the response and the
relation between the response and the principal factor t . Models for the response
would include potential effects of those factors. However, to simplify and focus the
developments here, we shall not explicitly include these other factors in formulations.

Our investigation into this statistical problem is prompted particularly by the objec-
tive, to estimate the time since death when a body is discovered and there is suspicion
of criminal activity. Larvae of carrion-feeding flies grow and develop in regular pat-
terns over time, and so their sizes can serve as a biological clock to guess their ages.
Their growth is affected by multiple conditions, of which temperature is usually a
major factor. As an example to correspond to the setting described above, y might
be length and t time since egg deposition. The MS found at the scene has length y∗.
Other dimensions of the size of the larva can be measured (weight, for example), and
they may provide more information relevant to the age of the MS. Further, such larvae
develop through identifiable stages, and so some information is categorical. Training
data might already exist from rearing experiments on larvae of the same species. Or
they might be produced after the discovery, perhaps even from larvae or adults found
at the scene.

In practice, this setting is complex. See Catts (1992). The temperature profile often
is not known, and it must be guessed. How, and which, specimens are collected at the
scene can affect inferences. Multiple other conditions affect the rate of decomposition
and the presence and growth of insect larvae. Although the useful species seldom lay
eggs on living bodies, the time elapsed since the body was exposed and when the eggs
were laid is not known. Thus, even if the age of a larva were known exactly, one could
say only that the body had been exposed at least that long. In forensic terms, the age
of a larva provides a minimum postmortem interval.

Despite these complexities, the crux of the statistical problem is the comparison of
the response from the MS to the training data at any proposed time t0, in answer to the
question, “Is it tenable to think that this specimen could be of age t0?” We assume that
the response variable is quantitative, as opposed to categorical. We consider it to be
multivariate in this paper. LaMotte andWells (2016) give a corresponding development
for univariate responses.

The problem has been approached in three broad ways for univariate responses,
and these approaches carry over into multivariate responses, denoted here by y. The
first is to fit a family of functions of t , f (t;β), to responses y to get a representation
like ŷ(t) = f (t; β̂), where the estimate β̂ of the vector of parameters β results from
fitting the model to the training data y1, . . . , yn . Then estimate t∗ by minimizing an
appropriate norm of f (t̂∗; β̂) − y∗ and construct an interval estimate in the form
t̂∗ ± qα

˜SE(t̂∗), where qα is the α quantile of the standard normal distribution or of a
Student’s t distribution, and ˜SE(t̂∗) is an approximate standard error of t̂∗. The second
approach is to fit a family of functions of y, h( y; γ ), to t , resulting in t̂( y) = h( y; γ̂ ),
and then estimate t∗ as t̂∗ = h( y∗; γ̂ ), along with a prediction interval as if t were
the random response variable.

The third, like the first, fits a family of functions of f (t; β) to y1, . . . , yn . Then,
for each value t0 over a range of values of t , y∗ is tested as an outlier against f (t0; β̂).
If such tests can be had at the α level of significance, then the range of values t0 not
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rejected constitutes a 100(1 − α)% confidence set on the true t∗ (Lehmann 1959, p.
79). This is the basic approach taken here. It is the same as the approach that Oman and
Wax (1984, p. 951) designate (ii) and attribute to Brown (1982), and it corresponds
to Eq. (5.14) in Brown (1993, p. 88) and Eq. (2.11) in Sundberg (1999, p. 168). It is
the direct extension of the test statistic for univariate y∗ as an outlier at t0 in a linear
regression of y on t . There, the confidence set comprises the range of values t0 such
that a horizontal line at height y∗ intersects the 100(1 − α)% prediction interval on y
at t0.

The first two approaches yield interval estimates of t∗. The third may yield an
interval, or a range fixed at only one end, or a collection of intervals, or an empty set.
Under assumptions of independence, homogeneous variance, and normality, the cover-
age probability of confidence sets by the third approach is the nominal 100(1− α)%.
There is no such finite-sample probabilistic property of the other two approaches,
although simulation results indicate that in some settings they perform satisfactorily.
See, for example, Krutchkoff (1967) and other works spawned by that paper. LaMotte
(2014) compares coverage rates of confidence sets on t∗ for the second (t vs. y) and
third ( y vs. t) approaches. In simulation results reported there, the performance char-
acteristics of confidence sets on t∗ based on the second approach degraded when the
variance–covariance matrix of bivariate ywas not constant in t , while the performance
using the third approach did not.

There is a considerable literature on inverse prediction and calibration (a term also
used for the same sort of methodology). See Osborne (1991) and Sundberg (1999) for
comprehensive reviews and Brown (1993) for thorough development. For the most
part, there is the tacit assumption that the variance or the variance–covariance matrix
of the response is constant over t . The paper by Oman and Wax (1984) was one of
the first papers to illustrate the application of multivariate calibration. Although they
modeled the variance–covariance matrix as constant, they applied two adjustments to
correspond to greater variance and lesser correlation as t increased. Clarke (1992) dealt
with a multivariate response and a nonlinear model for the mean vector, along with
constant variance–covariance matrix. Liao (2005) devised formulations of IP confi-
dence sets based on mixed models that included random effects of batches; however,
variances did not differ with the target of inference (t here). See also Brown (1982) for
seminal methodological development, also with the variance assumed to be constant.

Sundberg (1999, pp. 168–169) summarizes the discussion provoked by a feature
that Brown (1993, pp. 88–90) pointed out. The numerator sum of squares in the test
statistic under the third approach can be expressed as the sum of two squared norms.
One is of t0 − t̂∗, with t̂∗ as described above for the first approach. The other, which
Brown (1993) denotes by R, is the squared norm of y∗ − ŷ(t̂∗), the difference between
theMS y∗ and the predicted value of y given by themodel fit to training data, evaluated
at t̂∗. This is the minimum value of the norm mentioned above in the description of
the first approach to find t̂∗. It is 0 if the response is univariate and the model is linear
in t with non-zero slope. Otherwise, it is a measure of “multivariate inconsistency”
(a term attached by a reviewer), of the failure of the model to be able to match all
components of y∗ simultaneously at a single value of t . Thus rejection of the proposed
t0 as untenable in light of the data depends both on how close t0 is to the estimated true
value t̂∗ and on the magnitude of this multivariate inconsistency. Brown (1993, p. 89)

123



932 L. R. LaMotte, J. D. Wells

says, “This unsatisfactory behavior sullies the procedure’s exact confidence property.”
Sundberg (1999, p. 169) says,

…if R is high enough the region will be empty. In principle it is OK that a
confidence region is empty when data do not fit the model, but here the shrinkage
of the region with increasing R is misleading when we think of the size of the
region as reflecting the precision of the estimation procedure. A number of
alternatives without this annoying feature have been proposed. …The time does
not yet, if ever, appear ripe for declaring one region superior to the others.

Point estimation of t∗ is not an explicit goal in the third approach. It addresses the
question, whether it is unreasonable to assert that y∗ might have come from t0. In
our opinion, splitting the squared norm of the residual into these two parts is not an
essential part of addressing that question. Further, we opine that “think[ing] of the size
of the region as reflecting the precision of the estimation procedure,” in this context
of inverse prediction, is itself off-target and slightly misleading. That interpretation is
widespread, and it is at times a convenient shortcut. However, it conflates not rejecting
a hypothesized value t0 with asserting that t0 could be the true value, which then comes
out as saying that the true value is in the confidence set, and hence that the smaller is
the confidence set, the more precise is the inference on t∗. These interpretations are
based on a single realization, not on the probabilistic properties of the methodology.

The primary statistical performance characteristic of a method to construct con-
fidence sets is its coverage profile, which describes, for each true value t∗ and each
possible value t , the probability that the set contains t . Ideally, given t∗, that probability
would be the stated level of confidence at t = t∗, and it would fall off monotonically,
the steeper the better, as t recedes from t∗. It is unclear how that performance might
be related to the possibility that a set might be empty. And how a single realized set
depends functionally on R does not say anything about this performance.

On the other hand, if, in some sense, R persistently accounts for a considerable part
of the numerator sum of squares for the test statistic, then the assumed form of the
model does not adequately mimic the path (in the univariate t) of the parameters of the
distribution of the multivariate response. As both R and t̂∗ depend on y∗, this feature
cannot be assessed with the training data alone. One diagnostic approach would be
to treat each observation in the training data as a y∗, fit the model to the remaining
data, and compute R and the numerator sum of squares to assess the influence of this
multivariate inconsistency. This may indicate that changes to the model are needed.
It must be stressed, though, that t̂∗ and R are not produced as part of the output for
standard mixed-models programs, and so an effort like this would require special
ad-hoc programming.

The methods we present here extend established methods that have known, exact
properties under some conditions. We do not attempt to document their performance
characteristics here, but because of their grounding, there is no a priori reason to think
that their performance would not be satisfactory when compared to others. Further-
more, no comprehensive methodology has otherwise been proffered, as far as we have
been able to find, for constructing confidence sets in the setting that has motivated our
developments.
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In the setting of forensic entomology mentioned above, sizes of fly larvae and their
variances and covariances change greatly with age (t). Wells and LaMotte (1995)
adapted Satterthwaite’s approximation to deal with t-dependent variances, by mod-
eling both means and variances as linear interpolates between sampling points for a
univariate response. LaMotte (2014) sketched how t-dependent variance–covariance
matrices could be accommodated in linear-interpolation models for multivariate
responses, using the Fai andCornelius (1996)multivariate extension of Satterthwaite’s
approximation. The developments in those two papers (1995, 2014) required sample
means and sample variance–covariance matrices at each sampled t , and they did not
consider models for the means and variance–covariance matrices beyond linear inter-
polation between adjacent t points.

The objective of this paper is to describe how IP can be performed with routine,
default computations inwidely-availablemixed-models programs, for a general setting
in which y is multivariate and its variance–covariance matrix is modeled as varying
with t and other factors, as needed. Flexible models, using polynomial splines in t ,
are described for both means and variances.

2 IP in mixed models

The formulation of the general mixed linear model shown here follows the notational
conventions used in the SAS PROCMIXED documentation (SAS 2012). Suppose the
response is q-variate and that there are n subjects in the training data with response
vectors Y1, . . . ,Yn , with observed values y1, . . . , yn . The model for the nq-vector
response Y = (Y ′

1, . . . ,Y
′
n)

′ is

Y = Xβ + Zγ + ε.

The nq × qpm matrix X and the nq × qpv matrix Z are fixed and known. The
vector β comprises unknown fixed-effects parameters. The random effects are the
entries in γ , which is assumed to have mean vector 0 and variance–covariance matrix
Var(γ ) = G. The error term ε is assumed to be independent of γ and to have mean 0
and Var(ε) = R. Denote the vector of realized values of Y by y. The matrices G and
R generally are modeled as specified functions of a set θ of parameters, sometimes
termed variance or covariance components, such that

Var(Y ; θ) = ZG(θ)Z ′ + R(θ)

is positive definite. Finally, γ and ε are assumed to follow jointly amultivariate normal
distribution.

In the setting of inverse prediction (IP) in this framework, t is a real-valued variable,
taking values t1, . . . , tn in the training data, and entries in corresponding rows of X and
Z are functions of t (and perhaps of other factors as well). Schematically, the training
data are ti , yi , i = 1, . . . , n. Each ti defines the pm columns of the row vector x′

i
and the pv columns of the row vector z′i . The values t1, . . . , tn may include repetitions
for multiple observations at the same value of t . As illustrated here, columns of x′

i
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and z′i are polynomial B-splines evaluated at ti . From these, the matrices X and Z
are as shown in the following table. Transpose of x is denoted x′, and ⊗ denotes the
Kronecker product.

t y x Z

t1 y1 Iq ⊗ x′
1 Iq ⊗ z′1

.

.

.
.
.
.

.

.

.
.
.
.

tn yn Iq ⊗ x′
n Iq ⊗ z′n

The question that IP addresses is: given the observed response y∗ from a MS, from
what value of t did it come? Or, for each potential value t0, is it tenable to think that
y∗ came from the population at t0? This can be addressed with a p value for the null
hypothesis H0 : E(Y∗) = (Iq ⊗ x(t0)′)β in the model above. This is the same as
testing the observed value y∗ as an outlier at t0. This is a linear hypothesis, and its
test statistic and p value can be had with appropriate statements and options within
a general mixed linear models program. However, it is well-known that the same
information can be had, usually more efficiently, from results computed by default in
practically all statistical packages, as described next.

Formulate the model as above, but with y∗ as an additional observation at t = t0;
this appends rows y∗, Iq⊗x′

0, and Iq⊗z′0 to y, x , and Z , respectively,where x0 = x(t0)
and z0 = z(t0). Create q dummy variables d0 that are 0 in all rows except the q t0
rows, where they are Iq , and include them as q fixed-effect predictor variables in the
model. In the resulting computations and output, the p value for testing H0 appears
as the p value for the q regression coefficients δ0 of the dummy variables: that is, for
H0 : δ0 = 0.

Repeating this over a grid of values of t0 produces a table of values of t0 and
the corresponding p values. Further refinement can be had by interpolating between
these points. The set of values of t0 for which the p value is not less than .05 (say)
constitutes—approximately—a 95% confidence set on t∗.

The structure of the components of the model, augmented by the grid of artifi-
cial cases and dummy variables, is shown in the following table, where t01, . . . , t0g
constitute the grid of values of t0.

t y x Z d01 · · · d0g

t1 y1 Iq ⊗ x′
1 Iq ⊗ z′1 0q×q · · · 0q×q

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

tn yn Iq ⊗ x′
n Iq ⊗ z′n 0q×q · · · 0q×q

t01 y∗ Iq ⊗ x′
01 Iq ⊗ z′01 Iq · · · 0q×q

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

t0g y∗ Iq ⊗ x′
0g Iq ⊗ z′0g 0q×q · · · Iq
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Because of the heteroscedasticity inherent in mixed models, the probability dis-
tributions of test statistics under the null hypothesis are approximated by known
distributions (usually F-distributions). The accuracy of these approximations is
unknown, and it differs with the setting. Several papers have examined this topic,
and they indicate that the Kenward and Roger (1997) approximation provides reason-
able accuracy of p values. It is clear, though, that asymptotics are not much comfort
here, because y∗ is a single observation.

An advantage of this approach, in terms of general mixed linear models, is that there
is no need to have training data repeated at each sampled value ti of t , as was required
in Wells and LaMotte (1995) and LaMotte (2014). Further, partial multivariate obser-
vations, in which some components of y are unobserved, are incorporated naturally
within the maximum likelihood algorithm, with no need for special remedies, other
than the caveat that the missing-ness may be related to the factors under study and
may therefore affect inferences.

3 Flexible models

The use of polynomial splines to model the mean of a univariate response as a function
of t is well known and widely used. The same can be done for multivariate mean
vectors. Choosing the degree of the polynomial (e.g., 1 for linear interpolation, 3 for
cubic interpolation) and a set of values of t to serve as knots causes predictor variables
x1, . . . , xpm to be defined so that the mean vector μ(t) is modeled as

μ(t) = x1(t)η1 + · · · + xpm (t)ηpm .

For degree d and k knots, the number of spline functions is pm = d + k + 1.
There are multiple ways to formulate these predictor variables to produce polynomial
interpolation. The most widely used functions are B-splines; they are the functions
used here. They have the property that the values x j (t) are non-negative and they sum
to 1. This models the mean vectorμ(t) as a weighted average of the parameter vectors
η1, . . . , ηpm .

Within the context of a general mixed linear models package, the same approach
can be taken to model the variance–covariance matrix. For the variance–covariance
matrix �(t) of a q-variate observation on a single subject at time t , the model takes
the form

�(t) = w1(t)�1 + · · · + wpv (t)�pv ,

where w1, . . . , wpv are defined by B-splines in t specified by degree and knots. The
variance–covariance matrix of the vector of all observations is block diagonal with
�(ti ), i = 1, . . . , n, on the diagonal. This is ZG(θ)Z ′ in the general form, and R(θ)

is not needed.
As with the means, the w j (t)s are non-negative and they sum to 1. This property is

particularly useful for modeling variance–covariance matrices, because nonnegative-
definite matrices are closed under such convex combinations.
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In themodel for themean vector, the coefficients η1, . . . , ηpm are unknown parame-
ters, and they are components ofβ in the general formulation. Similarly, the symmetric
matrices �1, . . . , �pv are unknown parameters; they are components of θ .

In concept, the steps in this process leading to confidence sets on t∗ are clear. For
the MS observation y∗, create multiple artificial cases with response y∗ at each value
in a grid t01, . . . , t0g , and create the gq corresponding dummy variables. Choose poly-
nomial degrees and knots for the models of the mean vector and variance–covariance
matrix. Compute x1(t), . . . , xpm (t) and w1(t), . . . , wpv (t) for each value of t in the
training-data set and the grid. Compose X and Z from these. The next step is the
computation of maximum likelihood estimates and approximate p values for the coef-
ficients δ01, . . . , δ0g of the dummy variables corresponding to the grid on t0.

By far the best way to accomplish the computations is to use a tested, stable, de-
bugged program like PROC MIXED in SAS, which implements the Kenward–Roger
approximation to variance and degrees of freedom, or corresponding programs in
other packages. To use such programs requires specifying the particular model with
the syntax of the program.

Commonly, programs communicate in terms of fixed effects, random effects,
repeated measures, and factor and interaction effects. While the mathematical models,
as described above, are clear, still they must be translated carefully in the program’s
syntax in order to specify exactly the desired model. In most applications, some data
handling is necessary to compose X and Z , including the polynomial splines and
extra rows and columns for the dummy variables. In order to get the desired model
for the variance–covariance matrix, columns of Z are composed as square roots of the
B-spline variables, z j (t) = √

w j (t), and declared to represent random-coefficient
effects. For a q-component response vector, the model must provide for different
sets of coefficients in β and different random coefficients for each component of the
response, and the forms of variance–covariance matrices for the response and for the
random coefficients must be specified. The details will differ from package to package.

4 Illustration

Following is an illustration. The response y is bivariate. Data were simulated from a
‘true’model inwhich the two components of themean vector and the three components
of the variance–covariance matrix changed smoothly with t going from 0 to 10.

The mathematical model from which the observations were generated was config-
ured to resemble characteristics of sizemeasurements (length andweight, for example)
found in fly larvae. They start small, with small variances, go through a period of rapid
growth in both dimensions during which variances increase and correlations shift; and
as they approach pupation, they cease feeding and their growth slows, and their size
may even decrease. The time scale has been shifted and scaled in this simulation to
range betwen 0 and 10; in growth experiments, the first measurements would typically
be taken soon after egg-hatch, but not at t = 0.

The model for the mean vectors is in terms of cubic B-splines in t with a single
interior knot at t = 5. This generates qpm = 2 × 5 columns in x . The matrix Z has
q × pv = 2 × 5 columns, in five pairs, each with a pair of random coefficients in
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Table 1 P values (Pr > F) for
tests of y∗ as an outlier at each
t0 = 0, . . . , 10. Results from
PROC MIXED using
Kenward-Roger approximation
and degrees of freedom

Type 3 tests of fixed effects
Num Den

Effect DF DF F Value Pr > F

d00*comp 2 3.02 193.21 0.0007

d01*comp 2 3.26 181.83 0.0005

d02*comp 2 4.73 6.10 0.0490

d03*comp 2 6.02 0.33 0.7341

d04*comp 2 8.11 3.48 0.0810

d05*comp 2 9.1 7.29 0.0129

d06*comp 2 8.65 11.91 0.0033

d07*comp 2 6.45 17.51 0.0025

d08*comp 2 4.13 22.42 0.0060

d09*comp 2 3.96 26.04 0.0053

d10*comp 2 3.01 17.34 0.0224

Fig. 1 Training data comprise 5
observations on bivariate y at
each of t = 0, 1, 2, 5, 8, 10,
indicated by plotted numerals.
The curved line is the locus of
the estimated means. Hash
marks indicate t between 0 and
10 in increments of 0.25.
Ellipses depict 95% prediction
regions at t = 0, 2.25, 4.5, and
10, centered at the small circles.
The MS is indicated by the large
⊕. The 95% confidence set on
its t∗ extends from about t = 2
to about t = 4.25

the model. Entries in Z are square roots of cubic B-splines with a single interior knot
at t = 5. The training data set comprised 5 observations each at values 0, 1, 2, 5, 8,
and 10 of t . Dummy variables d01I2, . . . , d10I2 and corresponding artificial cases were
created for t0 in increments of 0.25 between 0 and 10. In Table 1, the two components
of y are indexed by comp, which takes values 1 and 2 for components 1 and 2. The
response y∗ for the MS was generated from the population at t∗ = 3.

Table 1 shows only the tests of the coefficients of the dummy variables from SAS
PROC MIXED. Based on the p values in the right-most column, at the 5% level of
significance, only t0 = 3 and 4 are tenable values of t∗.

Figure 1 shows the data used in this example, and it illustrates estimates of means
and variance–covariance matrices (corresponding to the ellipses). It illustrates the p
values by showing nominal 95% prediction ellipsoids at selected values of t .
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