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Abstract In this article, a dynamic reliability measure based on ranked set sampling
is introduced, and its properties are investigated in theory and simulation. The results
support the preference of the suggested index over the analogous one in simple random
sampling. A data set from an agricultural experiment is analyzed for illustration.

Keywords Judgment ranking · Life testing · Stress-strength model

Mathematics Subject Classification 62G30 · 62N05

1 Introduction

Ranked set sampling (RSS) is a sampling design that often leads to improved statistical
inference as compared with simple random sampling (SRS). It is appropriate when
the sampling units are expensive and/or difficult to measure but are reasonably simple
and cheap to order according to the variable of interest. Ranking can be based on
concomitant variables, expert judgment or any mean that does not involve actual
measurement.

A basic description of the RSS procedure is as follows: n2 units are collected
as iid draws from the population. These units are randomly partitioned into n sets,
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each of size n. In the first set, the response judged to be smallest is taken for full
quantification; In the second set, the response judged to be second smallest is taken;
and so on, until in the last set, the response judged to be largest is taken. The full
measurement, along with the associated ranks form a ranked set sample of size n. Let
X[i] be the i th judgement order statistic from the i th set. (The i th true order statistics
is represented by X(i) for clarity.) Then, the resulting ranked set sample is denoted
by X[1], . . . , X[n]. A ranked set sample, consisting of independent order statistics, is
more informative than a simple random sample of the same size. The results in the
literature have shown that statistical procedures based on RSS tend to be superior to
their SRS analogues. For a book-length treatment of RSS and its applications, see
Chen et al. (2004).

The RSS was first introduced by McIntyre (1952) in an agricultural experiment for
estimating the mean pasture yield. Since then, it has been well adopted to environmen-
tal, ecological and health studies. Kvam and Samaniego (1994) provided an example in
reliability context. Consider the lifetime of a k-out-of-n system in which components
have independent and identically distributed lifetimes is equal to the (n−k+1)th order
statistic from a sample of size n. When independent lifetimes of several k-out-of-n
systems with varying k and n are observed, the experimental data constitute a ranked
set sample. In addition, when observations consist of lifetimes of coherent systems
together with the number of failed components, the data are stochastically equivalent
to a collection of independently observed order statistics. Thus RSS arise naturally
in life testing experiments in which one observes the system lifetime rather than the
lifetimes of the individual components.

The estimation of system reliability has drawn much attention in the statistical
literature. The most widely used approach for this purpose is the well-known stress-
strength model. It employs R = P(X > Y ) as an index to quantify reliability of
a component with strength X which is subjected to stress Y . The estimation of R
has been extensively investigated in the literature when X and Y are independent
variables, and belong to the same family of distributions. A comprehensive account
of this topic appear in Kotz et al. (2003). For example, Díaz-Francés and Montoya
(2013) discuss the profile likelihood method in statistical inference for R when X and
Y are independent exponential random variables.

Given the fact ranked set sample data could represent lifetime, it is relevant to
research on reliability measures in RSS scheme. Interpretation of such indices in
other disciplines (as exemplified in Sect. 6) would be an additional support. Sengupta
and Mukhuti (2008) studied unbiased estimation of R based on RSS in nonparamet-
ric setting. They showed that the proposed estimator is more efficient than its SRS
rival, even in the presence of ranking errors. We intend to introduce a time-dependent
reliability measure, and to investigate its theoretical properties.

Section 2 presents the new measure along with some notions and results which
will be used in the sequel. Some theoretical results are established in Sect. 3. Perfect
ranking setup is discussed in Sect. 4. Results of Monte Carlo experiment conducted
to get insight of the behavior of the proposed index appear in Sect. 5. An application
is discussed in Sect. 6. A summary and direction for future research are given in Sect.
7. Figures are postponed to an appendix.
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2 Preliminaries

In reliability theory, there are several approaches to compare lifetimes of two com-
ponents. Among the most popular methods are to compare the survival functions, the
failure rates and the mean residual lifetime functions. Let the random variables X and
Y be the lifetimes of two systems. The density, distribution and survival function of
X (Y ) are denoted by f (g), F(G) and F̄ = 1− F(Ḡ = 1−G), respectively. Assume
that both systems are operating at time t > 0. Then the residual lifetimes of them are
Xt = (X − t |X > t) and Yt = (Y − t |Y > t), respectively. Taking into account the
age of systems, Zardasht and Asadi (2010) introduced a time-dependent criterion to
compare the two residual lifetimes. They considered function R(t) = P(Xt > Yt ).
Note that R(t) can be written as

R(t) = R1(t)

R2(t)
,

where R1(t) = P(X > Y > t) and R2(t) = P(X > t,Y > t). Using simple random
samples X1, . . . , Xm and Y1, . . . ,Yn from F and G, an estimate of R(t) can be made
as

R̂(t) = R̂1(t)

R̂2(t)
,

where

R̂1(t) = 1

mn

m∑

i=1

n∑

j=1

I
(
Xi > Y j > t

)

and

R̂2(t) = 1

mn

m∑

i=1

n∑

j=1

I
(
Xi > t,Y j > t

)
.

Although R̂1(t) and R̂2(t) are respectively unbiased estimators of R1(t) and R2(t),
R̂(t) is only asymptotically unbiased.

Let X[1], . . . , X[m] and Y[1], . . . ,Y[n] be two ranked set samples from F and G,
respectively. The estimator of R(t) in RSS is given by

R̂∗(t) = R̂∗
1(t)

R̂∗
2(t)

,

where

R̂∗
1(t) = 1

mn

m∑

i=1

n∑

j=1

I
(
X[i] > Y[ j] > t

)
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and

R̂∗
2(t) = 1

mn

m∑

i=1

n∑

j=1

I
(
X[i] > t,Y[ j] > t

)
.

When t = −∞, the above estimator reduces to that proposed bySengupta andMukhuti
(2008). In the next section, we study properties of R̂∗(t). It is to be noted that R̂(t)
and R̂∗(t) are defined for t ∈ (−∞, t∗), where t∗ = min{tX , tY } with tX and tY being
the supremum of the set of values in the support of X and Y , respectively. However,
in practice, there may be situations that all sample units of X and/or Y are less than
the value of t . In such cases, the numerator and denominator of the corresponding
estimator are zero, and we define it to be zero at t .

As the ranking process in RSS is done either by expert judgment or using an
easily available covariate, it need not match the true ranking according to the variable
of interest. This situation is called imperfect ranking. It is unavoidable because true
orders are unknownunless all units are actuallymeasured.There are certainmodels that
allow for considering such cases. We build on an imperfect ranking model introduced
by Bohn and Wolfe (1994). It is now briefly described for the two-sample problem
mentioned above.

The density, distribution and survival function of the i th true (judgement) order
statistic of a random sample of sizem from F are denoted by f(i)( f[i]), F(i)(F[i]), and
F̄(i)(F̄[i]), respectively. Similar notations are used for a random sample of size n from
G. We postulate an imperfect ranking model MX under which X[i]’s are assumed to
be independently distributed as

P
(
X[i] = X(r)

) = p ir , (r = 1, . . . ,m),

where p ir is the probability that the r th order statistic is judged to have rank i , and
thus

∑m
r=1 p ir = 1. It is further assumed that

∑m
i=1 p ir = 1. Obviously, this is true

in the perfect ranking scenario, i.e. when p ii = 1 and p ir = 0 (r �= i). Similarly,
we postulate an imperfect ranking model MY under which Y[ j]’s are assumed to be
independently distributed as

P
(
Y[ j] = Y(s)

) = q js, (s = 1, . . . , n),

where q js is the probability that the sth order statistic is judged to have rank j , and
therefore

∑n
s=1 q js = 1. Moreover, it is assumed that

∑n
j=1 q js = 1. The model

considering MX and MY together is referred to as M .
We close this section by pointing out some results which are repeatedly used in this

work. According to a basic identity in RSS,

1

m

m∑

i=1

F(i)(x) = F(x),
1

n

n∑

j=1

G( j)(y) = G(y). (1)
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It is easy to verify that these equations hold under the model M , i.e.

1

m

m∑

i=1

F[i](x) = F(x),
1

n

n∑

j=1

G[ j](y) = G(y). (2)

All identities in (1) and (2) can be expressed in terms of density functions.

3 Main results

First we show that R̂∗
1(t) and R̂∗

2(t) are unbiased estimators. Next, it is proved that
they are more precise than their SRS analogs.

Proposition 1 The estimatorsR̂∗
1(t) and R̂∗

2(t) are unbiased.

Proof Using equations in (2) we have

E

{ m∑

i=1

n∑

j=1

I
(
X[i] > Y[ j] > t

) }
=

m∑

i=1

n∑

j=1

P
(
X[i] > Y[ j] > t

)

=
m∑

i=1

n∑

j=1

∫
P

(
X[i] > y > t

)
g[ j](y) dy

= n
m∑

i=1

∫
P

(
X[i] > y > t

)
g(y) dy

= n
m∑

i=1

P
(
X[i] > Y > t

)

= n
m∑

i=1

∫
P (x > Y > t) f[i](x) dx

= mn
∫

P (x > Y > t) f (x) dx

= mnP (X > Y > t) = mnR1(t).

Similarly,

E

{ m∑

i=1

n∑

j=1

I
(
X[i] > t,Y[ j] > t

) }
=

m∑

i=1

n∑

j=1

P
(
X[i] > t,Y[ j] > t

)

=
m∑

i=1

P
(
X[i] > t

) n∑

j=1

P
(
Y[ j] > t

)

123



866 M. Mahdizadeh, E. Zamanzade

=
m∑

i=1

F̄[i](t)
n∑

j=1

Ḡ[ j](t)

= mnF̄(t)Ḡ(t) = mnR2(t).

��
Proposition 2 The variances of R̂1(t) and R̂∗

1(t) (under model M) are given by

m2n2Var
(
R̂1(t)

)
= m(m − 1)n(n − 1)R2

1(t) + nm(m − 1)E

{
F̄(Y )I (Y > t)

}2

+ mn(n − 1)E

{
G(X) − G(t)

}2

+ mnR1(t) − m2n2R2
1(t) (3)

and

m2n2Var
(
R̂∗
1(t)

)
= E

{
m2

[ n∑

j=1

F̄
(
Y[ j]

)
I
(
Y[ j] > t

) ]2

−
m∑

i=1

[ n∑

j=1

F̄[i]
(
Y[ j]

)
I
(
Y[ j] > t

) ]2}

+mE

{
n2

[
G(X) − G(t)

]2 −
n∑

j=1

[
G[ j](X) − G[ j](t)

]2}

+mnR1(t) − m2n2R2
1(t). (4)

Proof It is easy to show that

m2n2E
(
R̂2
1(t)

)
= E (A1 + A2 + A3 + A4) , (5)

where

E(A1) = E

{ m∑

i �=i ′=1

n∑

j �= j ′=1

I
(
Xi > Y j > t

)
I
(
Xi ′ > Y j ′ > t

) }

= m(m − 1)n(n − 1)R2
1(t), (6)

E(A2) = E

{ n∑

j=1

m∑

i �=i ′=1

I
(
Xi > Y j > t

)
I
(
Xi ′ > Y j > t

) }

=
n∑

j=1

m∑

i �=i ′=1

EE

{
I
(
Xi > Y j > t

)
I
(
Xi ′ > Y j > t

) ∣∣∣Y j

}

123



A new reliability measure in ranked set sampling 867

=
n∑

j=1

m∑

i �=i ′=1

E

{
F̄(Y )I (Y > t)

}2

= nm(m − 1)E

{
F̄(Y )I (Y > t)

}2

, (7)

E(A3) = E

{ m∑

i=1

n∑

j �= j ′=1

I
(
Xi > Y j > t

)
I
(
Xi > Y j ′ > t

) }

=
m∑

i=1

n∑

j �= j ′=1

EE

{
I
(
Xi > Y j > t

)
I
(
Xi > Y j ′ > t

) ∣∣∣Xi

}

=
m∑

i=1

n∑

j �= j ′=1

E

{
G(X) − G(t)

}2

= mn(n − 1)E

{
G(X) − G(t)

}2

(8)

and

E(A4) = E

{ m∑

i=1

n∑

j=1

I
(
Xi > Y j > t

) }
= mnR1(t). (9)

From (5)–(9) and unbiasedness of R̂1(t), the proof of the first part is complete. Simi-
larly,

m2n2E
(
R̂∗
1
2(t)

)
= E(B1 + B2 + B3), (10)

where

E(B1) = E

{ m∑

i �=i ′=1

n∑

j �= j ′=1

I
(
X[i] > Y[ j] > t

)
I
(
X[i ′] > Y[ j ′] > t

)

+
n∑

j=1

m∑

i �=i ′=1

I
(
X[i] > Y[ j] > t

)
I
(
X[i ′] > Y[ j] > t

) }

=
m∑

i �=i ′=1

n∑

j �= j ′=1

EE

{
I
(
X[i] > Y[ j] > t

) ∣∣∣Y[ j]
}
EE

{
I
(
X[i ′] > Y[ j ′] > t

) ∣∣∣Y[ j ′]
}

+
n∑

j=1

m∑

i �=i ′=1

EE

{
I
(
X[i] > Y[ j] > t

)
I
(
X[i ′] > Y[ j] > t

) ∣∣∣Y[ j]
}

= E

{ m∑

i �=i ′=1

n∑

j �= j ′=1

[
F̄[i]

(
Y[ j]

)
I
(
Y[ j] > t

) ][
F̄[i ′]

(
Y[ j ′]

)
I
(
Y[ j ′] > t

) ]

+
n∑

j=1

m∑

i �=i ′=1

[
F̄[i](Y[ j])I

(
Y[ j] > t

) ][
F̄[i ′]

(
Y[ j]

)
I
(
Y[ j] > t

) ]}
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= E

{[ m∑

i=1

n∑

j=1

F̄[i]
(
Y[ j]

)
I
(
Y[ j] > t

) ]2 −
m∑

i=1

n∑

j=1

[
F̄[i]

(
Y[ j]

)
I
(
Y[ j] > t

) ]2

−
m∑

i=1

n∑

j �= j ′=1

[
F̄[i]

(
Y[ j]

)
I
(
Y[ j] > t

) ][
F̄[i]

(
Y[ j ′]

)
I
(
Y[ j ′] > t

) ]}

= E

{
m2

[ n∑

j=1

F̄
(
Y[ j]

)
I
(
Y[ j] > t

) ]2 −
m∑

i=1

[ n∑

j=1

F̄[i]
(
Y[ j]

)
I
(
Y[ j] > t

) ]2}
,

(11)

E(B2) = E

{ m∑

i=1

n∑

j �= j ′=1

I
(
X[i] > Y[ j] > t

)
I
(
X[i] > Y[ j ′] > t

) }

= m
n∑

j �= j ′=1

E

{
I
(
X > Y[ j] > t

)
I
(
X > Y[ j ′] > t

) }

= m
n∑

j �= j ′=1

EE

{
I
(
X > Y[ j] > t

)
I
(
X > Y[ j ′] > t

) ∣∣∣X
}

= m
n∑

j �= j ′=1

E

{[
G[ j](X) − G[ j](t)

][
G[ j ′](X) − G[ j ′](t)

]}

= mE

{
n2

[
G(X) − G(t)

]2 −
n∑

j=1

[
G[ j](X) − G[ j](t)

]2}
(12)

and

E(B3) = E

{ m∑

i=1

n∑

j=1

I
(
X[i] > Y[ j] > t

) }
= mnR1(t). (13)

Now the second part follows from (10)–(13) and unbiasedness of R̂∗
1(t). ��

The variances of R̂1(t) and R̂∗
1(t) are compared in the next proposition.

Proposition 3 Under modelM, Var
(
R̂∗
1(t)

)
≤ Var

(
R̂1(t)

)
, and the equality holds

if and only if F[i] = F (i = 1, . . . ,m) and G[ j] = G ( j = 1, . . . , n). The latter
happens when either m = n = 1, or pir = 1/m (i, r = 1, . . . ,m) and q js =
1/n ( j, s = 1, . . . , n).

Proof Using equations (3) and (4), it can be shown

m2n2
[
Var

(
R̂1(t)

)
− Var

(
R̂∗
1(t)

) ]
= �1 + �2 + �3, (14)
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where

�1 = E

{ m∑

i=1

[ n∑

j=1

F̄[i]
(
Y[ j]

)
I
(
Y[ j] > t

) ]2 − m
[ n∑

j=1

F̄
(
Y[ j]

)
I
(
Y[ j] > t

) ]2}

= E

{ m∑

i=1

( n∑

j=1

[
F̄[i]

(
Y[ j]

)
I
(
Y[ j] > t

) − F̄
(
Y[ j]

)
I
(
Y[ j] > t

) ])2}
, (15)

�2 = mn(n − 1)E

{
G(X) − G(t)

}2

−mE

{
n2

[
G(X) − G(t)

]2 −
n∑

j=1

[
G[ j](X) − G[ j](t)

]2}

= mE

{ n∑

j=1

[
G[ j](X) − G[ j](t)

]2 − n
[
G(X) − G(t)

]2}

= mE

{ n∑

j=1

[
(G[ j](X) − G[ j](t)) − (G(X) − G(t))

]2}
(16)

and

�3 = m(m − 1)n(n − 1)R2
1(t) + nm(m − 1)E

{
F̄(Y )I (Y > t)

}2

−m(m − 1)E

{[ n∑

j=1

F̄
(
Y[ j]

)
I
(
Y[ j] > t

) ]2}

= m(m − 1)

[ (
1 − 1

n

)( n∑

j=1

E

{
F̄

(
Y[ j]

)
I
(
Y[ j] > t

) })2

−
n∑

j �= j ′=1

E

{
F̄

(
Y[ j]

)
I
(
Y[ j] > t

) }
E

{
F̄

(
Y[ j ′]

)
I
(
Y[ j ′] > t

) }]

= m(m − 1)

[ n∑

j=1

E2
{
F̄

(
Y[ j]

)
I
(
Y[ j] > t

) }

− 1

n

( n∑

j=1

E

{
F̄

(
Y[ j]

)
I
(
Y[ j] > t

) })2]

= m(m − 1)
n∑

j=1

E2
{
F̄

(
Y[ j]

)
I
(
Y[ j] > t

) − F̄(Y )I (Y > t)

}
. (17)

Clearly, �i ≥ 0 (i = 1, 2, 3), and hence Var
(
R̂∗
1(t)

)
≤ Var

(
R̂1(t)

)
.
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If F[i] = F (i = 1, . . . ,m) andG[ j] = G ( j = 1, . . . , n), then�1 = �2 = �3 = 0.
Conversely, if�1 = �2 = �3 = 0, we have the following conclusions. Having�3 = 0
implies that for j = 1, . . . , n,

F̄
(
Y[ j]

)
I
(
Y[ j] > t

) = F̄(Y )I (Y > t), a.s.,

and thus

P
(
F̄

(
Y[ j]

)
I
(
Y[ j] > t

) = 0
) = P

(
F̄(Y )I (Y > t) = 0

)
.

By continuity of F and G, the above result is equivalent to

P
(
I (Y[ j] > t) = 0

) = P (I (Y > t) = 0) ,

or G[ j] = G. Putting this and �1 = 0 together, it follows that for i = 1, . . . ,m,

F̄[i](Y )I (Y > t) = F̄(Y )I (Y > t), a.s.,

or F[i] = F . ��
We now present counterparts of propositions 2 and 3 in estimating R2(t).

Proposition 4 The variances of R̂2(t) and R̂∗
2(t) (under model M) are given by

m2n2Var
(
R̂2(t)

)
=

[
m(m − 1)F̄2(t)

][
n(n − 1)Ḡ2(t)

]
+ mF̄(t)

[
n(n − 1)Ḡ2(t)

]

+nḠ(t)
[
m(m − 1)F̄2(t)

]
+ mnR2(t) − m2n2R2

2(t) (18)

and

m2n2Var
(
R̂∗
2(t)

)
=

[
m2 F̄2(t) −

m∑

i=1

F̄2[i](t)
][
n2Ḡ2(t) −

n∑

j=1

Ḡ2[ j](t)
]

+mF̄(t)
[
n2Ḡ2(t) −

n∑

j=1

Ḡ2[ j](t)
]

+ nḠ(t)
[
m2 F̄2(t) −

m∑

i=1

F̄2[i](t)
]

+ mnR2(t) − m2n2R2
2(t).

(19)

Proof It is readily seen that

m2n2E
(
R̂2
2(t)

)
= E(C1 + C2 + C3 + C4), (20)
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where

E(C1) = E

{ m∑

i �=i ′=1

n∑

j �= j ′=1

I
(
Xi > t,Y j > t

)
I
(
Xi ′ > t,Y j ′ > t

) }

=
[
m(m − 1)F̄2(t)

][
n(n − 1)Ḡ2(t)

]
, (21)

E(C2) = E

{ m∑

i=1

n∑

j �= j ′=1

I
(
Xi > t,Y j > t

)
I
(
Xi > t,Y j ′ > t

) }

= mF̄(t)
[
n(n − 1)Ḡ2(t)

]
, (22)

E(C3) = E

{ n∑

j=1

m∑

i �=i ′=1

I
(
Xi > t,Y j > t

)
I
(
Xi ′ > t,Y j > t

) }

= nḠ(t)
[
m(m − 1)F̄2(t)

]
(23)

and

E(C4) = E

{ m∑

i=1

n∑

j=1

I
(
Xi > t,Y j > t

) }
= mnR2(t). (24)

Thefirst part follows from (20)–(24) andunbiasedness of R̂2(t). By a similar argument,

m2n2E
(
R̂∗
2
2(t)

)
= E(D1 + D2 + D3 + D4), (25)

where

E(D1) = E

{ m∑

i �=i ′=1

n∑

j �= j ′=1

I
(
X[i] > t,Y[ j] > t

)
I
(
X[i ′] > t,Y[ j ′] > t

) }

=
[ m∑

i �=i ′=1

F̄[i](t)F̄[i ′](t)
][ n∑

j �= j ′=1

Ḡ[ j](t)Ḡ[ j ′](t)
]

=
[( m∑

i=1

F̄[i](t)
)2 −

m∑

i=1

F̄2[i](t)
][( n∑

j=1

Ḡ[ j](t)
)2 −

n∑

j=1

Ḡ2[ j](t)
]

=
[
m2 F̄2(t) −

m∑

i=1

F̄2[i](t)
][
n2Ḡ2(t) −

n∑

j=1

Ḡ2[ j](t)
]
, (26)
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E(D2) = E

{ m∑

i=1

n∑

j �= j ′=1

I
(
X[i] > t,Y[ j] > t

)
I
(
X[i] > t,Y[ j ′] > t

) }

=
m∑

i=1

F̄[i](t)
n∑

j �= j ′=1

Ḡ[ j](t)Ḡ[ j ′](t)

= mF̄(t)
[( n∑

j=1

Ḡ[ j](t)
)2 −

n∑

j=1

Ḡ2[ j](t)
]

= mF̄(t)
[
n2Ḡ2(t) −

n∑

j=1

Ḡ2[ j](t)
]
, (27)

E(D3) = E

{ n∑

j=1

m∑

i �=i ′=1

I
(
X[i] > t,Y[ j] > t

)
I
(
X[i ′] > t,Y[ j] > t

) }

=
n∑

j=1

Ḡ[ j](t)
m∑

i �=i ′=1

F̄[i](t)F̄[i ′](t)

= nḠ(t)
[( m∑

i=1

F̄[i](t)
)2 −

m∑

i=1

F̄2[i](t)
]

= nḠ(t)
[
m2 F̄2(t) −

m∑

i=1

F̄2[i](t)
]

(28)

and

E(D4) = E

{ m∑

i=1

n∑

j=1

I
(
X[i] > t,Y[ j] > t

) }
=

m∑

i=1

n∑

j=1

P
(
X[i] > t,Y[ j] > t

)

= mnR2(t). (29)

From (25)–(29) and unbiasedness of R̂∗
2(t), the second part is concluded. ��

The variances of R̂2(t) and R̂∗
2(t) are compared in the next proposition.

Proposition 5 Under modelM, Var
(
R̂∗
2(t)

)
≤ Var

(
R̂2(t)

)
, and the equality holds

if and only if F[i] = F (i = 1, . . . ,m) and G[ j] = G ( j = 1, . . . , n). The latter
happens when either m = n = 1, or pir = 1/m (i, r = 1, . . . ,m) and q js =
1/n ( j, s = 1, . . . , n).

Proof Using equations (18) and (19), it is straightforward to see that

m2n2
[
Var

(
R̂2(t)

)
− Var

(
R̂∗
2(t)

)]
= �1 + �2 + �3,
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where

�1 = mF̄(t)
[ n∑

j=1

Ḡ2[ j](t) − nḠ2(t)
]

+ nḠ(t)
[ m∑

i=1

F̄2[i](t) − mF̄2(t)
]
,

�2 = m2 F̄2(t)
[ n∑

j=1

Ḡ2[ j](t) − nḠ2(t)
]

+ n2Ḡ2(t)
[ m∑

i=1

F̄2[i](t) − mF̄2(t)
]

and

�3 = mnF̄2(t)Ḡ2(t) −
[ m∑

i=1

F̄2[i](t)
][ n∑

j=1

Ḡ2[ j](t)
]
.

Let ui = F̄[i] (i = 1, . . . ,m) and v j = Ḡ[ j] ( j = 1, . . . , n) with the corresponding
means ū = ∑m

i=1 ui/m and v̄ = ∑n
j=1 v j/n, and variances S2u = ∑m

i=1(ui − ū)2/m

and S2v = ∑n
j=1(v j − v̄)2/n. Also, assume u2 = ∑m

i=1 u
2
i /m and v2 = ∑n

j=1 v2j/n.
Then, we have

�1 = mn
[
ūS2v + v̄S2u

]
,

�2 = mn
[
m(ū)2S2v + n(v̄)2S2u

]

and

�3 = −mn
[
(ū)2S2v + (v̄)2S2u + S2u S

2
v

]
.

The first part of the proposition holds owing to the following inequality

�1 + �2 + �3

mn
= ūS2v + v̄S2u + m(ū)2S2v + n(v̄)2S2u − (ū)2S2v − (v̄)2S2u − S2u S

2
v

≥ u2S2v + v2S2u + m(ū)2S2v + n(v̄)2S2u − (ū)2S2v − (v̄)2S2u − S2u S
2
v

= (u2 − ū2)S2v + (v2 − v̄2)S2u + m(ū)2S2v + n(v̄)2S2u − S2u S
2
v

= m(ū)2S2v + n(v̄)2S2u + S2u S
2
v ≥ 0, (30)

where the first inequality follows from the fact that ū ≥ u2 and v̄ ≥ v2.
If F[i] = F (i = 1, . . . ,m) and G[ j] = G ( j = 1, . . . , n), then �1 = �2 = �3 =

0. Conversely, if �1 = �2 = �3 = 0, then from (30) we get S2u = S2v = 0. That is to
say F[i] = F (i = 1, . . . ,m) and G[ j] = G ( j = 1, . . . , n). ��

The following proposition provides components needed to approximate Var(R̂(t))
and Var(R̂∗(t)).
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Proposition 6 The covariances between R̂1(t) and R̂2(t), and R̂∗
1(t) and R̂

∗
2(t) (under

model M) are given by

m2n2Cov
(
R̂1(t), R̂2(t)

)
= m(m − 1)n(n − 1)R1(t)R2(t) + nm(m − 1)R1(t)F̄(t)

+mn(n − 1)R1(t)Ḡ(t) + mnR1(t) − m2n2R1(t)R2(t)

(31)

and

m2n2Cov
(
R̂∗
1(t), R̂

∗
2(t)

)
= F̄[i ′](t)Ḡ[ j ′](t)P

(
X[i] > Y[ j] > t

)

+ n

[
m2R1(t)F̄(t) −

m∑

i=1

P(X[i] > Y > t)F̄[i](t)
]

+m

[
n2R1(t)Ḡ(t) −

n∑

j=1

P(X > Y[ j] > t)Ḡ[ j](t)
]

+mnR1(t) − m2n2R1(t)R2(t). (32)

Proof It can be shown that

m2n2E
(
R̂1(t)R̂2(t)

)
= E (I1 + I2 + I3 + I4) , (33)

where

E(I1) = E

{ m∑

i �=i ′=1

n∑

j �= j ′=1

I
(
Xi > Y j > t

)
I
(
Xi ′ > t,Y j ′ > t

) }

= m(m − 1)n(n − 1)R1(t)R2(t), (34)

E(I2) = E

{ n∑

j=1

m∑

i �=i ′=1

I
(
Xi > Y j > t

)
I
(
Xi ′ > t,Y j > t

) }

= nm(m − 1)R1(t)F̄(t), (35)

E(I3) = E

{ m∑

i=1

n∑

j �= j ′=1

I
(
Xi > Y j > t

)
I
(
Xi > t,Y j ′ > t

) }

= mn(n − 1)R1(t)Ḡ(t) (36)

and

E(I4) = E

{ m∑

i=1

n∑

j=1

I
(
Xi > Y j > t

)
I
(
Xi > t,Y j > t

) }
= mnR1(t). (37)
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From (33)–(37) and unbiasedness of R̂1(t) and R̂2(t), we get (31). Similarly,

m2n2E
(
R̂∗
1(t)R̂

∗
2(t)

)
= E (J1 + J2 + J3 + J4) , (38)

where

E(J1) = E

{ m∑

i �=i ′=1

n∑

j �= j ′=1

I
(
X[i] > Y[ j] > t

)
I
(
X[i ′] > t,Y[ j ′] > t

) }

= F̄[i ′](t)Ḡ[ j ′](t)P
(
X[i] > Y[ j] > t

)
, (39)

E(J2) = E

{ n∑

j=1

m∑

i �=i ′=1

I
(
X[i] > Y[ j] > t

)
I
(
X[i ′] > t,Y[ j] > t

) }

=
n∑

j=1

m∑

i �=i ′=1

P
(
X[i] > Y[ j] > t

)
F̄[i ′](t) = n

m∑

i �=i ′=1

P(X[i] > Y > t)F̄[i ′](t)

= n

[ m∑

i=1

m∑

i ′=1

P
(
X[i] > Y > t

)
F̄[i ′](t) −

m∑

i=1

P
(
X[i] > Y > t

)
F̄[i](t)

]

= n

[
m2R1(t)F̄(t) −

m∑

i=1

P
(
X[i] > Y > t

)
F̄[i](t)

]
, (40)

E(J3) = E

{ m∑

i=1

n∑

j �= j ′=1

I
(
X[i] > Y[ j] > t

)
I
(
X[i] > t,Y[ j ′] > t

) }

=
m∑

i=1

n∑

j �= j ′=1

P
(
X[i] >Y[ j] > t

)
Ḡ[ j ′](t)=m

n∑

j �= j ′=1

P
(
X > Y[ j] > t

)
Ḡ[ j ′](t)

= m

[ n∑

j=1

n∑

j ′=1

P
(
X > Y[ j] > t

)
Ḡ[ j ′](t) −

n∑

j=1

P
(
X > Y[ j] > t

)
Ḡ[ j](t)

]

= m

[
n2R1(t)Ḡ(t) −

n∑

j=1

P
(
X > Y[ j] > t

)
Ḡ[ j](t)

]
(41)

and

E(J4) = E

{ m∑

i=1

n∑

j=1

I
(
X[i] > Y[ j] > t

)
I
(
X[i] > t,Y[ j] > t

) }

= mnR1(t). (42)

Now, (32) is immediate from (38)–(42) and unbiasedness of R̂∗
1(t) and R̂∗

2(t). ��
The next result shows asymptotic unbiasedness of R̂(t) and R̂∗(t), and provides

approximations of their variances.
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Proposition 7 The estimators R̂(t) and R̂∗(t) are asymptotically unbiased with
approximate variances

Var
(
R̂(t)

)
≈ 1

R2
2(t)

Var
(
R̂1(t)

)
+ R2

1(t)

R4
2(t)

Var
(
R̂2(t)

)

−2
R1(t)

R3
2(t)

Cov
(
R̂1(t), R̂2(t)

)
(43)

and

Var
(
R̂∗(t)

)
≈ 1

R2
2(t)

Var
(
R̂∗
1(t)

)
+ R2

1(t)

R4
2(t)

Var
(
R̂∗
2(t)

)

−2
R1(t)

R3
2(t)

Cov
(
R̂∗
1(t), R̂

∗
2(t)

)
. (44)

Proof Using continuous map proposition (Shao 2003, p. 59, theorem 1.10(i)) it can
be concluded that R̂(t) and R̂∗(t) are strongly consistent. This and the dominated
convergence theorem imply asymptotic unbiasedness of the two estimators.

Let T1, . . . , Tk be random variables with means θ1, . . . , θk , and define T =
(T1, . . . , Tk) and θ = (θ1, . . . , θk). Suppose there is a differentiable function g(T)

(an estimator of some parameter) for which we want an approximate estimate of vari-
ance. Using the first-order Taylor series expansion of g about θ , we get

Var (g(T)) ≈
k∑

i=1

[
g′
i (θ)

]2
Var(Ti ) + 2

∑

i< j

g′
i (θ)g′

j (θ)Cov(Ti , Tj ),

where

g′
i (θ) = ∂

∂ti
g(t)|t1=θ1,...,tk=θk .

Now, (43) and (44) are concluded by takeing g(T) = T1/T2, where T1 and T2 are
the numerator and the denominator of each estimator, respectively. The components
needed for the two approximations are given in propositions 2, 4 and 6. ��

In view of propositions 1, 2 and 4, it is expected that R̂∗(t) will be more efficient
than R̂(t). It may be difficult to show this using the above proposition as we only have

approximations for Var
(
R̂(t)

)
and Var

(
R̂∗(t)

)
.

4 Perfect ranking setup

The judgment ranking process is of high importance in drawing a representative sample
by RSS. In extreme cases, ranking may be so poor to yield a simple random sample.
Hence, RSS is at least as efficient as SRS, intuitively. In the case of estimating R1(t)
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and R2(t), this was formally shown in propositions 3 and 5. The maximum efficiency
is expected to arise in the absence of ranking errors, i.e. the perfect ranking scenario.
This section aims to establish some properties in this respect. To this end, we need a
few notions and results from matrix algebra, and a lemma which are set out here.

The L1, L∞ and L2 norms for an r × c matrix A = [a i j ] are defined as

‖A‖1 = max
j=1,...,c

r∑

i=1

a i j ,

‖A‖∞ = max
i=1,...,r

c∑

j=1

a i j

and

‖A‖2 = √
λmax(A′A),

where λmax(A′A) is the largest eigenvalue of A′A matrix. If the product of matrices
A and B is defined, then

‖AB‖2 ≤ ‖A‖2‖B‖2 (45)

and
‖A‖2 ≤ ‖A‖1‖A‖∞. (46)

See Datta (2010) for more details.

Lemma 1 If h = ∑n
j=1 F̄

(
Y( j)

)
I
(
Y( j) > t

)
and H = ∑n

j=1 F̄
(
Y[ j]

)
I
(
Y[ j] > t

)
,

then Var(h) ≤ Var(H).

Proof Using conditional variance formula, we have

Var(H) =
n∑

j=1

Var
(
F̄(Y[ j]

)
I
(
Y[ j] > t)

)

≥
n∑

j=1

[ n∑

k=1

Var(F̄(Y(k))I
(
Y(k) > t)

)
q jk

]

=
n∑

k=1

Var
(
F̄(Y(k)

)
I
(
Y(k) > t)

) = Var(h),

as was asserted. ��
Let R̃∗

1(t) and R̃∗
2(t) denote the estimators R̂∗

1(t) and R̂∗
2(t) under perfect ranking

assumption, respectively. Then we have the following two propositions. It should be
mentioned that the approach adopted in proofs is distinctly different from that of
similar result in Sengupta and Mukhuti (2008).
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Proposition 8 Under model M, Var
(
R̃∗
1(t)

)
≤ Var

(
R̂∗
1(t)

)

Proof In view of (4), it is sufficient to show that

E

{
m2

[ n∑

j=1

F̄
(
Y( j)

)
I
(
Y( j) > t

) ]2 −
m∑

i=1

[ n∑

j=1

F̄(i)
(
Y( j)

)
I
(
Y( j) > t

) ]2}

≤ E

{
m2

[ n∑

j=1

F̄
(
Y[ j]

)
I
(
Y[ j] > t

) ]2 −
m∑

i=1

[ n∑

j=1

F̄[i]
(
Y[ j]

)
I
(
Y[ j] > t

) ]2}
(47)

and

E

{ n∑

j=1

[
G[ j](X) − G[ j](t)

]2} ≤ E

{ n∑

j=1

[
G( j)(X) − G( j)(t)

]2}
. (48)

We proceed with proving the first inequality. Assume that Z(i) = ∑n
j=1 F̄(i)

(
Y[ j]

)

I
(
Y[ j] > t

)
and Z[i] = ∑n

j=1 F̄[i]
(
Y[ j]

)
I
(
Y[ j] > t

)
. Then

Z[i] =
n∑

j=1

F̄[i]
(
Y[ j]

)
I
(
Y[ j] > t

)=
n∑

j=1

m∑

k=1

p ik F̄(k)
(
Y[ j]

)
I
(
Y[ j] > t

)=
m∑

k=1

p ik Z(k).

(49)

Let �Y be the sample space on which Y is defined. If P = [p ir ] and Z′ =
(Z(1)(ϑ), . . . , Z(m)(ϑ)) given a fixed ϑ ∈ �Y , then using (45), (46) and (49) it follows
that

m∑

i=1

Z2[i](ϑ) =
m∑

i=1

(
m∑

k=1

p ik Z(k)(ϑ)

)2

= ‖PZ‖22 ≤ ‖P‖22 ‖Z‖22

≤ ‖P‖1 ‖P‖∞
m∑

i=1

Z2
(i)(ϑ)

=
m∑

i=1

Z2
(i)(ϑ).

The last equality holds because
∑m

i=1 p ik = ∑m
k=1 p ik = 1. Accordingly,

E

{
m2

[ n∑

j=1

F̄
(
Y[ j]

)
I
(
Y[ j] > t

) ]2 −
m∑

i=1

[ n∑

j=1

F̄(i)
(
Y[ j]

)
I
(
Y[ j] > t

) ]2}

≤ E

{
m2

[ n∑

j=1

F̄
(
Y[ j]

)
I
(
Y[ j] > t

) ]2 −
m∑

i=1

[ n∑

j=1

F̄[i]
(
Y[ j]

)
I
(
Y[ j] > t

) ]2}
.
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Now, (47) is concluded if

E

{
m2

[ n∑

j=1

F̄
(
Y( j)

)
I
(
Y( j) > t

) ]2 −
m∑

i=1

[ n∑

j=1

F̄(i)
(
Y( j)

)
I
(
Y( j) > t

) ]2}

≤ E

{
m2

[ n∑

j=1

F̄
(
Y[ j]

)
I
(
Y[ j] > t

) ]2 −
m∑

i=1

[ n∑

j=1

F̄(i)
(
Y[ j]

)
I
(
Y[ j] > t

) ]2}
.

(50)

For i = 1, . . . ,m, suppose h(i) = ∑n
j=1 F̄(i)

(
Y( j)

)
I
(
Y( j) > t

)
and h be as in

Lemma 1. We note that

F̄(i)(t) =
i−1∑

k=0

(
m

k

)
[F(t)]k

[
F̄(t)

]m−k
.

So, F̄(i)(t) is an increasing function in i , and thereby h(1) < · · · < h(m) are order
statistics. Therefore,

m∑

i=1

E
(
h2(i)

)
=

m∑

i=1

∫
t2 fh(i) (t) dt = m

∫
t2 fh(t) dt = mE(h2), (51)

where fh(i) and fh denote the density function of h(i) and h, respectively. Similarly,
one can define H(i) = ∑n

j=1 F̄(i)(Y[ j])I (Y[ j] > t) and H as in Lemma1, and conclude
that

m∑

i=1

E
(
H2

(i)

)
= mE(H2). (52)

From (51) and (52), (50) reduces to E(h2) ≤ E(H2). It is equivalent to Var(h) ≤
Var(H) as E(h) = E(H). This holds by virtue of Lemma 1.

Let �X be the sample space on which X is defined. If Q = [q js] and G′ =
(G(1)(X (η)) − G(1)(t), . . . ,G(n)(X (η)) − G(n)(t)) for each fixed η ∈ �X , then (48)
follows by applying (45) and (46) using Q and G. ��
Proposition 9 Under model M, Var(R̃∗

2(t)) ≤ Var(R̂∗
2(t)).

Proof According to (19) it is sufficient to show that

m∑

i=1

F̄2[i](t) ≤
m∑

i=1

F̄2
(i)(t)

and

n∑

j=1

Ḡ2[ j](t) ≤
n∑

j=1

Ḡ2
( j)(t).
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Let P and Q be as in the the previous proposition, F̄′ = (
F̄(1)(t), . . . , F̄(m)(t)

)
and

Ḡ′ = (
Ḡ(1)(t), . . . , Ḡ(n)(t)

)
. Then using (45) and (46)

m∑

i=1

F̄2[i](t) =
m∑

i=1

(
m∑

k=1

p ik F̄(k)(t)

)2

= ‖PF̄‖22 ≤ ‖P‖22 ‖F̄‖22

≤ ‖P‖1 ‖P‖∞
m∑

i=1

F̄2
(i)(t)

=
m∑

i=1

F̄2
(i)(t).

Proceeding as in the above with Q and Ḡ, it is proved that
∑n

j=1 Ḡ
2[ j](t) ≤

∑n
j=1 Ḡ

2
( j)(t) ��

5 Simulation study

We used Monte Carlo simulation to assess the performance of the proposed estimator.
In doing so, it was assumed that both populations follow Weibull, normal or uniform
distribution. Let X be distributed as Weibull with distribution function

F(x) = 1 − exp

{
−

(
x

β

)α}
, x > 0; α > 0, β > 0,

which is denoted by X ∼ W (α, β). If X ∼ W (α1, β1) and Y ∼ W (α2, β2) are
independent random variables, then it can be shown that

R(t) = α2

β2
2 exp

{(
t

β1

)α1

+
(

t

β2

)α2
}∫ ∞

t
xα2−1

× exp

{
−

(
x

β1

)α1

−
(

x

β2

)α2
}
dx, t > 0.

Similarly, if X has a normal distribution with mean zero and variance σ 2, X ∼
N (0, σ 2), and Y is a standard normal random variable, Y ∼ N (0, 1), then

R(t) =
[∫ ∞

t

(x)

1√
2πσ

exp

{
− x2

2σ 2

}
dx − 
(t)

(
1 − 


(
t

σ

))]

×
[(

1 − 


(
t

σ

))
(1 − 
(t))

]−1

, t ∈ R,

123



A new reliability measure in ranked set sampling 881

where 
(.) is the distribution function of Y . Finally, suppose X and Y are uniformly
distributed on intervals (0, a) and (0, b), respectively, where a < b. Then

R(t) = a − t

2(b − t)
, 0 < t < a.

We considered the following pairs of distributions:

• X ∼ W (2, 1) versus Y ∼ W (2, 2),
• X ∼ W (2, 1) versus Y ∼ W (1, 1),
• X ∼ W (1, 1) versus Y ∼ W (0.5, 3),
• X ∼ N (0, (1.25)2) versus Y ∼ N (0, 1),
• X ∼ U (0, 1.5) versus Y ∼ U (0, 2).

Also, the selected two groups of sample sizes are m, n = 2, 5, 10 and m, n =
20, 50, 100.

Given a fixed t , the efficiency of R̃∗(t) = R̃∗
1(t)/R̃

∗
2(t) relative to R̂(t) is estimated

as follows. For each combination of distributions and sample sizes, 10,000 pairs of
samples were generated in SRS and RSS schemes. The two estimators were com-
puted from each pair of samples in the corresponding designs, and their mean squared
errors (MSEs) were determined. The relative efficiency (RE) is defined as the ratio
of M̂SE(R̂(t)) to M̂SE(R̃∗(t)). The RE values larger than one indicate that R̃∗(t) is
more efficient than R̂(t). Figures 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 in the appendix display
the results.

It is observed that that RSS based estimator is more efficient that its SRS competitor
as was shown in theory. Also for each pair of distributions and fixedm, the larger n, the
higher RE, generally. This trend is sometimes violated, e.g. see Fig. 4, when m = 50
and t is small. The interesting thing to note is that how RE is affected by the time.
Although RE (as a function of t) may show fluctuations at the beginning, it becomes
monotone decreasing as time goes on. The point that RE is maximized depends on the
choice of parent distributions. For example, when X ∼ W (2, 1) and Y ∼ W (1, 1), the
maximum RE is nearly obtained at t = 0, while this is not the case with X ∼ W (2, 1)
and Y ∼ W (2, 2).

To have better understanding of the estimators’ behavior, we provide graphs for
MSEs of the estimators as a function of t . To save space, three of the above mentioned
pairs of distributions were only considered. Moreover, the sample sizes were limited
to (m, n) = (5, 5), (10, 10), (20, 20). The results are given in Figs. 11 and 12. It is
seen that under both SRS and RSS designs, MSEs are decreasing in sample sizes,
given a fixed t . Finally, Table 1 contains estimated biases of the estimators at some
points, where the entries given in parenthesis are based on RSS. Analogs of Figs. 11
and 12 for bias (not provided here) suggest that biases in the two schemes are bounded
above as a function of t .

6 Application

Although the use of stress-strength models was originally motivated by problems in
physics and engineering, it is not limited to these contexts. It is worth mentioning

123



882 M. Mahdizadeh, E. Zamanzade

Table 1 Estimated biases under SRS and RSS when m = n = 5, 10, 20 for (a) X ∼ W (2, 1) and
Y ∼ W (2, 2), (b) X ∼ N (0, (1.25)2) and Y ∼ N (0, 1) and (c) X ∼ U (0, 1.5) and Y ∼ U (0, 2)

(a) t

(m, n) 0.1 0.5 1 1.5 2

(5,5) −0.0009 0.0832 0.4684 0.7389 0.7688

(0.0011) (0.0232) (0.4219) (0.7335) (0.7657)

(10,10) −0.0001 0.0078 0.2664 0.6700 0.7129

(−0.0016) (0.0014) (0.1684) (0.6560) (0.7023)

(20,20) −0.0015 −0.0003 0.0880 0.5533 0.5931

(0.0001) (0.0006) (0.0230) (0.5232) (0.5726)

(b) t

(m, n) −2 −1 0 1 1.5

(5,5) 0.0147 0.0435 0.2924 0.4095 0.4348

(0.0169) (0.0190) (0.2347) (0.4051) (0.4357)

(10,10) 0.0139 0.0118 0.1315 0.3160 0.3663

(0.0142) (0.0126) (0.0485) (0.2705) (0.3532)

(20,20) 0.0141 0.0146 0.0308 0.1751 0.2160

(0.0138) (0.0145) (0.0107) (0.0762) (0.1270)

(c) t

(m, n) 0.1 0.3 0.5 0.7 1

(5,5) −0.0162 −0.0186 −0.0065 0.0599 0.1625

(−0.0214) (−0.0254) (−0.0324) (−0.0311) (0.0513)

(10,10) −0.0166 −0.0189 −0.0266 −0.0467 0.0120

(−0.0171) (−0.0222) (−0.0286) (−0.0599) (−0.0131)

(20,20) −0.0173 −0.0219 −0.0273 −0.0584 −0.0055

(−0.0168) (−0.0204) (−0.0262) (−0.0595) (−0.0065)

that R provides a general measure of the difference between two populations, and has
found applications in different fields such as economics, quality control, psychology,
medicine and clinical trials. For instance, if Y is the response of a control group, and
X is that of a treatment group, then R is a measure of the treatment effect.

We now illustrate the proposed procedure using a data set collected byMurray et al.
(2000). They conducted an experiment in which apple trees are sprayed with chemical
containing fluorescent tracer, Tinopal CBS-X, at 2% concentration level in water. Two
nine-tree plots were chosen for spraying. One plot was sprayed at high volume, using
coarse nozzles on the sprayer to give a large average droplet size. The other plot was
sprayed at low volume, using fine nozzles to give a small average droplet size. Fifty
sets of five leaves were identified from the central five trees of each plot, and used to
draw 10 copies a ranked set sample of size five, from each plot. The variable of interest
is the percentage of area covered by the spray on the surface of the leaves. The formal
measurement entails chemical analysis of the solution collected from the surface of
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Table 2 Ranked set sample data for the percentage area covered on the surface of the leaves of apple trees

Group Copy Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Control 1 0.003 0.028 0.244 0.057 0.143

2 0.039 0.119 0.126 0.105 0.565

3 0.034 0.118 0.130 0.218 0.296

4 0.051 0.104 0.193 0.210 0.150

5 0.032 0.141 0.130 0.250 0.229

6 0.069 0.070 0.260 0.225 0.285

7 0.100 0.091 0.244 0.130 0.347

8 0.012 0.096 0.069 0.373 0.133

9 0.046 0.117 0.126 0.223 0.273

10 0.028 0.083 0.108 0.212 0.261

Treatment 1 0.036 0.137 0.183 0.270 0.487

2 0.250 0.181 0.290 0.328 0.715

3 0.089 0.032 0.269 0.419 0.315

4 0.180 0.111 0.130 0.194 0.742

5 0.100 0.009 0.184 0.277 0.122

6 0.042 0.089 0.199 0.269 0.395

7 0.044 0.083 0.227 0.177 0.742

8 0.044 0.171 0.067 0.192 0.336

9 0.009 0.017 0.217 0.438 0.544

10 0.071 0.132 0.310 0.343 0.379

the leaves, and thereby is a time-consuming and expensive process. The judgment
ranking within each set is based on the visual appearance of the spray deposits on the
leaf surfaces when viewed under ultraviolet light. Clearly, the latter method is cheap,
and fairly accurate if implemented by an expert observer.

The data are given in Table 2, where measurements obtained from the plot sprayed
at high (low) volume constitute the control (treatment) group. Suppose the interest is in
knowing whether the sprayer settings affect the percentage area coverage. Then, R̂∗(t)
can serve as a measure of the treatment effect. Finally, threshold t in our proposed
estimator may be interpreted as a lower bound on the response values which is easily
available from previous studies or experts’ opinions. Figure 13 shows R̂∗(t) as a
function of t for the apple trees data. The horizontal line indicates the estimated value
of the usual stress-strength reliability, R = P(X > Y ), which is equal to 0.6184.
It is to be noted that how information about t could update the basic estimate of the
treatment effect.

7 Conclusion

The challenge we have set ourselves in this work is estimation of a time-dependent
reliability measure using RSS. Under an imperfect ranking model, components of the
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suggested estimator are shown to be more efficient than their competitors in SRS. It is
further established that their variances are minimized in the absence of ranking errors.
The findings are supported by results of Monte Carlo experiment conducted to get
insight of the behavior of the new measure.

The proposed estimator is the ratio of two estimators based on empirical distribu-
tions. A deficiency shared by such estimators is that they fail to capture smoothness of
the corresponding attributes being estimated. Moreover, the empirical estimators may
reveal large bias close to the boundaries which stems from the fact that they are unable
to estimate beyond the largest observation. Thus, it would be interesting to overcome
these shortcomings by adopting a proper approach. This can be done using kernel
density estimation in line with Zardasht et al. (2012). The method merits investigation
in the context of estimating the usual stress-strength reliability based on RSS, as well.
These will be studied in subsequent works.

Acknowledgements The authors are indebted to the reviewer and the Associate Editor for helpful com-
ments on the paper.

Appendix

See Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13.
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Fig. 1 Estimated REs for X ∼ W (2, 1) and Y ∼ W (2, 2) when m, n = 2, 5, 10
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Fig. 9 Estimated REs for X ∼ U (0, 1.5) and Y ∼ U (0, 2) when m, n = 2, 5, 10
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Fig. 10 Estimated REs for X ∼ U (0, 1.5) and Y ∼ U (0, 2) when m, n = 20, 50, 100
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Fig. 11 Estimated MSEs under SRS when m = n = 5, 10, 20 for (a) X ∼ W (2, 1) and Y ∼ W (2, 2), (b)
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Fig. 13 Estimated R(t) as a function of t for the apple trees data
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