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Abstract Semiparameric linear regression models are extensions of linear models to
include a nonparametric function of some covariate. They have been found to be useful
in data modelling. This paper provides local influence analysis to the Liu penalized
least squares estimators that uses a smoothing spline as a solution to its nonparametric
component. The diagnostics under the perturbations of constant variance, individual
explanatory variables and assessing the influence on the selection of the Liu penalized
least squares estimators parameter are derived. The diagnostics are applied to a real
data set with informative results.
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1 Introduction

Diagnostic techniques for the parametric regression model have received a great deal
of attention in statistical literature since the seminal work of Cook (1977) and others
including Cook and Weisberg (1982), Belsley et al. (1989) and Walker and Brich
(1988). In semiparametric regression models (SPRMs), diagnostic results are quite
rare; among themEubank (1985),Thomas andCook (1989) andKim(1996) studied the
basic diagnostic buildingblocks such as residuals and leverages.Kimet al. (2001,2002)
and Fung et al. (2002) proposed some type of Cook’s distances in SPRMs.
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530 H. Emami

The existence of collinearity in the linear regression model can lead to a very
sensitive least squares estimate, therefore mixed estimation and ridge regression are
suggested to mitigate the effect of collinearity. However, as many authors noted, the
influence of the observations on ridge regression is different from the corresponding
least squares estimate, and collinearity can even disguise anomalous data (Belsley
et al. 1989). Using case deletion method Walker and Brich (1988) and Jahufer and
Chen (2009) studied the influence of observations in ordinary ridge regression (ORR)
and modified ridge regression (MRR) respectively. They derived the dependence of
several influence measures from case deletion on the estimates of ORR and MRR
parameters. In SPRMs, Emami (2015) extended results fromWalker and Brich (1988)
and derived influence measures of ridge estimates using case deletion.

Instead of deleting cases one-by-one, the local influence approach considered in
Cook (1986) assessed the influence by simultaneous perturbation of the assumed
model, and the influence was measured by normal curvature of an influence graph
based on likelihood displacement. This approach has received a lot of attention in
the past. The local influence analysis does not involve recomputing the parameter
estimates for every case deletion, so it is often computationally simpler. Furthermore,
it permits perturbation of various aspects of the model to tell us more than what the
case deletion approach is designed for. For example, it can help measure leverage
of a design point and evaluate the impact of a small measurement error of x on our
estimates. This approach has been extended to generalized models by Thomas and
Cook (1989), to linear mixed models by Lesaffre and Verbeke (1998), to partial linear
models by Zhu et al. (2003) and to linear measurement errors by Rasekh (2006). In
multicollinearity problems, Shi andWang (1999) and Jahufer and Chen (2012) studied
the local influenceofminor perturbations on the ridge estimate andLiu estimators in the
ordinary regression, respectively. They derived the diagnostics under the perturbation
of variance and explanatory variables.

In this paper we generalize the Shi and Wang (1999) results to the SPRMs and we
assess the local influence of observations on the Liu estimates. We demonstrate that
the local influence analysis of Cook (1986) can be extended to the Liu penalized least
squares estimators (LPLSEs ) in SPRMs and provide some insight into the interplay
between the linear and the nonparametric components in the context of influence
diagnostics.

The paper is organized as follows. In the next section, SPRMs are introduced, the
relevant notations and some inferential results are also given. Section 3 derives the
local influence diagnostics of LPLSEs under the perturbation of constant variance and
explanatory variables. Section 4 provides a diagnostic for detecting the local influential
observations of selecting the LPLSEs parameter. In Sect. 5 the proposed methods are
illustrated through a simulation study and a real data set. A discussion is given in the
last section.

2 Model and inference

Consider the semiparametric regression model

yi = x ′
iβ + g(ti ) + εi 1 ≤ i ≤ n, (1)
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where yi is the scalar response, β is a p-vector of regression coefficients, xi is a p-
vector of explanatory variables, ti is a scalar (a ≤ ti , . . . tn ≤ b), and t ′i s are not all
identical, g is a twice differentiable unknown smooth function on some finite interval
and the errors εi are uncorrelated with zero mean and unknown constant variance σ 2.
This model is also called a partially linear model or a partial spline model. Model
(1) has been used in discussion of many methods, e.g., penalized least square (see
Fung et al. 2002; Chen and You 2005), smoothing spline (see Speckman 1988; Green
and Silverman 1994). In this study we will focus our attentions on the local influence
diagnostics for the penalized least square estimators as it is a well-studied method of
estimation for such models.

2.1 Penalized least square estimators (PLSEs)

Let the ordered distinct values among t1, . . . , tn be denoted by s1, . . . , sq . The con-
nection between t1, . . . , tn and s1, . . . , sq is captured by means of n × q incidence
matrix N, with entries Ni j = 1 if ti = s j and 0 otherwise. Let g be the vector of value
ai = g(si ). For model (1) the penalized sum of squares is

‖y − Xβ − Ng‖2 + λ

∫
g′′(t)2dt, (2)

where y is the vector of n response values and X is n × p design matrix. Minimizing
(2) with respect to β and g, the PLSEs of β and g are

β̂ = {X′(I − S)X}−1X′(I − S)y, (3)

and
ĝ = (N′N + λK)−1N′(y − Xβ̂), (4)

respectively, where I is the identity matrix of size n, S = N(N′N + λK)−1N′ is a
smoothing matrix, λ is a nonnegative tuning parameter andK is a q ×q matrix whose
entries only depend on the knots {s j } (see Speckman 1988).

2.2 Liu penalized least squares estimators (LPLSEs)

The multicollinearity is a problem when the primary interest is in the estimation of
the parameters in a regression model. In the case of multicollinearity we know that
when the correlation matrix has one or more small eigenvalues, the estimates of the
regression coefficients can be large in absolute value. The least squares estimator
performs poorly in the presence of multicollinearity. Some biased estimators have
been suggested as a means to improve the accuracy of the parameter estimate in the
model whenmulticollinearity exists. There are a few studies that looked at overcoming
the rank-deficient and ill-conditioned or multicollinearity problems in SPRMs (see Hu
2005; Tabakan and Akdeniz 2010; Roozbeh 2015; Roozbeh and Arashi 2015; Amini
and Roozbeh 2015; Arashi and Valizadeh 2015). To overcome near multicollinearity,
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Liu (1993) combined the Stein (1956) estimator with ordinary ridge estimator to
obtain the Liu estimator. This approach extended in semiparametric linear regression
models (see Akdeniz and Akdeniz Duran (2010); Akdeniz et al. (2015)). Here, we use
Liu estimators which can be obtained by minimizing the term

‖y − Xβ − Ng‖2 + λ

∫
g′′(t)2dt + ‖dβ̂ − β‖2 (5)

Following Green and Silverman (1994), minimization of (5) can be done in a two
steps estimation process: first we minimize it subject to g(s j ) = a j , j = 1, . . . , q and
in the second step we minimize the result over the choice of g and β. The problem of
minimizing

∫
g′′(t)2dt subject to g interpolating given points g(s j ) = a j is given by

Green and Silverman (1994), and minimizing function g provides a cubic spline with
knots {s j }. There exists a matrix K only depending on the knots {s j }, such that the
minimized value of

∫
g′′(t)2dt is g′Kg. The equation in (5) is therefore of the form

‖y − Xβ − Ng‖2 + λg′Kg + ‖dβ̂ − β‖2. (6)

Minimizing (6) subject to β and g, the LPLSEs, say, β̂d and ĝd , solve

(
X′X + Ip X′N
N′X N′N + λK

) (
β

g

)
=

(
X′y + dβ̂

N′y

)
, (7)

where Ip is the p× p identity matrix. From (7) by simple calculation the LPLSEs are
defined as

β̂d = (
X′ [I − S]X + Ip

)−1
(
X′ [I − S] y + dβ̂

)
, (8)

and
ĝd = (N′N + λK)−1N′(y − Xβ̂d). (9)

Using (8) and (9), the vector of fitted values is

ŷ = Xβ̂d + Nĝd = (Hβ + Hg)y

= Hd y,

where Hβ = X
(
X′ [I − S]X + Ip

)−1
(X′ [I − S]X + dIp)

(
X′ [I − S]X

)
X̃

′
, X̃ =

(I − S)X, Hg = S(I − Hβ) and Hd is the hat matrix which in the expanded form is

Hd = S + X̃
(
X′ [I − S]X + Ip

)−1
(X′ [I − S]X + dIp)

(
X′ [I − S]X

)
X̃

′
.

The first part, S is due to the nonparametric component of the model and the second
part is due to the linear component of the model after adjusting for the former. The
LPLSEs residual vector is evaluated as

ed = y − ŷd = (I − Hd)y.
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The small value d is called the Liu estimator biasing parameter or the shrinkage
parameter. A prediction criteria suggested by Liu (1993), to choose biasing parameter
d by minimizing Mallows (1973) statistic and it is can be generalized for PLSEs by

Cd = SSRd/s
2 + 2tr(Hd) − (n − 2). (10)

where SSRd is the sum of squares residuals, s2 = e′
ded/(n − p) is the estimator of σ 2

from LPLSEs in SPRM.

3 Local influence of LPLSEs

It is necessary to start by giving a brief sketch of the local influence approach suggested
byShi (1997) andShi andWang (1999) inwhich the generalized influence function and
generalized Cook statistic are defined to assess the local change of small perturbation
on somekey issues. The generalized influence function of a concerned quantityT ∈ R

n

is given by

GIF(T, l) = lim
a→0

T(ω0 + l) − T(ω0)

a
,

where ω = ω0 + al ∈ R
n represents a perturbation, ω0 is an null perturbation which

satisfies T(ω0) = T denotes an unit length vector. To assess the influence of the
perturbations on T , the generalized Cook’s statistic is defined as

GC(T, l) = [GIF(T, l)]′M[GIF(T, l)]
c

,

where M is a p × p positive definite matrix, and c is a scalar. By maximizing the
absolute value of GC(T; l) with respect to l, a direction lmax (T) is obtained. This
direction shows how to perturb the data to obtain the greatest local change in T , and
thus can be used as a main diagnostic. Maximum value GCmax (T) = GC(T; lmax))

indicates the serious local influence. This method removes the need of likelihood. For
a discussion on this method and its relationship with Cook (1986) approach, see Shi
(1997).

3.1 Perturbing the variance

Wefirst perturb the data bymodifying theweight given to each case in theLiu penalized
least squares criterion. This is equivalent to perturbing the variance of εi in the model.
Using the perturbation of constant error variance the term in (6) becomes

‖y − X′βω − gω(ti ))‖2W + λgωKg′
ω + ‖dβ̂ − β‖2, (11)

whereW = diag(ω) is a diagonalmatrixwith diagonal elements ofω = (ω1, . . . , ωn)

and ‖.‖2W is weighted l2-norm. Let ω = ω0 + al, where ω0 = 1, the n vector of ones
and l = (l1, . . . , ln).
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Theorem 1 Under the perturbation of variance the influence function of β̂d and ĝd
are:

GIF(β̂d , l) = (
X′ [I − S]X + Ip

)−1 X̃
′
D(l)ẽd = (

X′ [I − S]X + Ip
)−1 X̃

′
D(ẽd)l,

GIF(ĝd , l) = [
N′N + λK

]−1N′ (I − X
(
X′ [I − S]X + Ip

)−1 X̃
′)
D(ẽd)l,

where ẽd = ỹ − X̃β̂d and ỹ = (I − S)y.

Proof Minimizing (11), the perturbed version of the LPLSEs β̂d and ĝd are

β̂d,ω = (
X′ [W − WSωW]X + Ip

)−1
(X′ [W − WSωW] y + dβ̂), (12)

and
ĝd,ω = (N′WN + λK)−1N′W(y − Xβ̂d,ω), (13)

respectively.
Now, by differentiating and equating to the null matrix we obtain

∂
(
X ′ [W − WSωW]X + Ip

)−1

∂ω
|a=0= − (

X′ [I − S]X + Ip
)−1

×X̃
′
D(l) X̃

(
X′ [I − S]X + Ip

)−1
, (14)

and
∂

(
X′ [W − WSωW] y

)
∂ω

|a=0= X̃
′
D(l)ỹ, (15)

Then using(12), (14) and (15) we have

∂β̂ω,d

∂ω
|a=0 = − (

X′ [I − S]X + Ip
)−1 X̃

′
D(l)X̃

(
X′ [I − S]X + Ip

)−1

×(X′ [I − S] y + dβ̂) + (
X′ [I − S]X + Ip

)−1 X̃
′
D(l)ỹ

= (
X′ [I − S]X + Ip

)−1 X̃
′
D(l)(ỹ − X̃β̂d)

= (
X′ [I − S]X + Ip

)−1 X̃
′
D(l)ẽd , (16)

Similary, from (13) and (16) we get

∂ ĝω,d

∂ω
|a=0= − [

N′N + λK
]−1N′ D(l)Sed + [

N′N + λK
]−1 N′D(l)ed

− [
N′N + λK

]−1 N′X
(
X′ [I − S]X + Ip

)−1 X̃
′
D(l)ẽd

= [
N′N + λK

]−1 N′ (I − X
(
X′ [I − S]X + Ip

)−1 X̃
′)
D(l)ẽd . (17)
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Therefore from (16) and (17) the proof is complete. Analogous to case deletion, two
versions of the generalized Cook’s statistic of β can be constructed as

GC1(β̂d , l) = l ′D(ẽd)X̃
(
X′ [I − S]X + Ip

)−1
(
X̃

′
X̃

)

× (
X′ [I − S]X + Ip

)−1 X̃
′
D(ẽd)l/s

2tr(Hβ)

= l ′Aβl/s
2tr(Hβ), (18)

and

GC2(β̂d , l) = l ′D(ẽd)X̃
(
X′ [I − S]X + dIp

)−1
(X′ [I − S]X)(X̃

′
X̃)−1

×(X′ [I − S]X)
(
X′ [I − S]X + dIp

)−1 X̃
′
D(ẽd)l/s

2tr(Hβ)

= l ′Bβl/s
2tr(Hβ), (19)

In (18) generalized Cook’s statistic is scaled by M in the LS regression framework
and in (19) generalized Cook’s statistic is scaled by M in the Liu version of SPRM
framework using the fact that

cov(β̂d) = σ 2 (
X′ [I − S]X + Ip

)−1 (
X′ [I − S]X + dIp

)
(X′ [I − S]X)−1X̃

′
X̃

(X′ [I − S]X)−1 (
X′ [I − S]X + dIp

) (
X′ [I − S]X + Ip

)−1
.

The generalized Cooks statistic of ĝd will be

GCg(ĝd , l) = l ′D(ẽd)(I − X
(
X′ [I − S]X + Ip

)−1 X̃
′
)N

[
N′N + λK

]−1

(N′N)
[
N′N + λK

]−1 N
(
I − X

(
X′ [I − S]X + Ip

)−1 X̃
′)
D(ẽd)l/s

2tr(Hg)

= l ′D(ẽd)‖(I − X
(
X′ [I − S]X + Ip

)−1 X̃
′
)S‖2D(ẽd)l/s

2tr(Hg)

= l ′Agl/s
2tr(Hg). (20)

Therefore associated diagnostics, denoted by l1max (β̂d), l2max (β̂d) and lmax (ĝd) are the
eigenvectors corresponding to the largest absolute eigenvalues of matricesAβ ,Bβ and
Ag respectively. ��

3.2 Perturbing the explanatory variables

It is known that the minor perturbation of the explanatory variables can seriously
influence the least squares results when collinearity is present (Cook 1986, p. 147).
This section considers the influence that perturbation of explanatory variables has on
the LPLSEs.We define the matrixX = [x1, . . . , xp] in which xi , i = 1, . . . , p vectors
of explanatory variables and we refer to Xω as the matrix X after the perturbation of
i th column. Therefore,

Xω = X + asi lξ
′
i
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where ξi is a p× 1 vector with a 1 in the i th position and zeroes elsewhere. si denotes
the scale factor and accounts for the different measurement units associated with the
columns of X.

Theorem 2 Under the perturbation of explanatory variables the influence function
of β̂d and ĝd are:

GIF(β̂d , l) = si
(
X ′ [I − S]X + Ip

)−1
(
ξi ẽ

′
d − β̂d,i X̃

′)
l,

GIF(ĝd , l)=−si (N′N+λK)−1N′ [β̂d,i I+X(X′ [I−S]X + Ip)−1(ξi ẽ
′
d − β̂d,i X̃

′
)
]
l.

Proof Under the perturbation of i th column in (6) the LPLSEs will be

β̂ω,d = (
X′

ω [I − S]Xω + Ip
)−1

(
X′

ω [I − S] y + dβ̂
)

, (21)

and
ĝd,ω = (

N′N + λK
)−1 N′ (y − Xωβ̂w,d

)
. (22)

Since

X′
ω [I − S]Xω =

(
X′ [I − S]X + asi lξ

′
i [I − S]X + X′ [I − S] asiξi l ′

+ asi lξ
′
iX

′ [I − S] asiξi l ′
)

and X′
ω [I − S] y = X′ [I − S] y + asi lξ ′

i [I − S] y, then it is easy to obtain that

(
X′

ω [I − S]Xω + Ip
)−1 = (X′ [I − S]X + Ip)−1

− asi

(
(X′ [I − S]X + Ip)−1X̃

′
lξ ′

i (X
′ [I − S]X + Ip)−1

+(X′ [I − S]X + Ip)−1ξi l
′X̃(X′ [I − S]X + Ip)−1

)
+ o(a2). (23)

Hence, from (23) the (21) becomes

β̂ω,d = β̂d + asi (X′ [I − S]X + Ip)−1(ξi ẽ
′ − β̂d,i X̃

′
)l + o(a2). (24)

From (24) by similar calculations for (22) we have

ĝω,d = ĝd − (N′N + λK)−1N′asi
×

[
β̂d,i I + X(X′ [I − S]X + Ip)−1(ξi ẽ

′
d − β̂d,i X̃

′
)
]
l − o(a2) .(25)
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Differentiating (24) and (25) with respect to a at a = 0 the proof will be complete.
Analogous to the Sect. 3.1, the generalized Cook statistics can be written

GCβω,d = s2i l
′(ẽdξ ′

i − β̂d,i X̃)(X′ [I − S] X + Ip)−1X′X(X′ [I − S]X + Ip)−1

×(ξi ẽ
′
d − β̂d,i X̃

′
)l/s2tr(Hβ), (26)

and

GCgω,d = s2i l
′(ẽdξ ′

i − β̂d,i X̃)(β̂d,i I + (X′ [I − S]X + Ip)−1X′)

×S
[
β̂d,i I + X(X′ [I − S]X + Ip)−1(ξi ẽ

′
d − β̂d,i X̃

′
)
]
l/s2tr(Hg).

(27)

The diagnostic direction lmax can be obtained byfinding the eigenvector corresponding
to the largest absolute eigenvalue of matrices in (26) and (27) respectively. ��

4 Assessing influence on the selection of Liu parameter d

In this section, using local influence analysis, a method is given to study the detection
of the possible influential observations in the data which may have a serious influence
on the estimation of d. The selection criterion we used is given in (10), and the
perturbation scheme is (11). Let Cd,ω, SSRω,d and Hω denote the perturbed versions
of Cd , SSRd and Hd respectively. Let dω denote the estimator of d by minimizing

Cd,ω = SSRω/s2 + 2tr(Hd,ω) − (n − 2).

Then the lmax (d̂) which is the main diagnostic direction of local influence for d̂ has
the form

lmax (d̂) ∝ ∂ d̂ω

∂ω
|ω=ω0 .

Since Cd,ω achieves a local minimum at d̂ω, we have

∂Cd,ω

∂d
|d̂=d̂ω

= 0. (28)

Differentiating both sides of (28) with respect to ω and evaluating at ω0, we obtain

∂2Cd,ω

∂d2
∂ d̂ω

∂ω
|
ω=ω0,d=d̂ +∂2Cd,ω

∂ω∂d
|
ω=ω0,d=d̂= 0.

We can get the following relation

∂ d̂ω

∂ω
|ω=ω0= −	/C̈d ,
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where 	 = ∂2Cω,d/∂d∂ω |
ω=ω0,d=d̂ and C̈d = ∂2Cω,d/∂d2 |

ω=ω0,d=d̂ . Under
perturbation of variance, the sum of the squares of the residual SSRd,ω and the hat
matrix Hd,ω in LPLSEs become SSRd,ω = (y − Xβ̂ω − Nĝω)′W(y − Xβ̂ω − Nĝω)

and

Hd,ω = SωW + (I − SωW)X(X′ [W − WSωW]X + Ip)−1

×(X′ [W − WSωW] + d(X′ [I − S]X)−1X′ [I − S]) .

By the known matrix theory, we get

∂SSRd,ω

∂ω
|ω=ω0≈ e2i,d ,

and

∂ed,ω

∂d
= −X̃(X′ [I − S]X + Ip)−1(X′ [I − S]X)−1X′ [I − S] y

= −X̃(X′ [I − S]X + I )−1β̂,

where β̂ is PLSE of β.

∂2SSRd,ω

∂ω∂d
|
ω=ω0,d=d̂= −2ei,d x̃

′
i (X

′ [I − S]X + Ip)−1β̂.

A similar matrix partial differentiation for tr(Hd,ω) gives that

∂2tr(Hd,ω)

∂ω∂d
|
ω=ω0,d=d̂=−

(
S′
i + x̃ ′

i (X
′ [I−S]X + Ip)−1X̃

′)
X̃(X′ [I − S]X + Ip)−1

×(X′ [I − S]X)−1 x̃i ,

where S′
i is i th row of S. Therefore, the i th element of lmax (d̂) is given by

l(i)max (d̂) ∝ 	 = −ei,d x̃
′
i (X

′ [I − S]X + Ip)−1β̂/s2

−(S′
i + x̃ ′

i (X
′ [I − S]X + Ip)−1X̃

′
)X̃(X′ [I − S]X + I)−1

×(X′ [I − S]X)−1 x̃i . (29)

5 Numerical illustration

5.1 Simulation study

A simulation study has been carried out in order to evaluate the performances of the
proposed method in different situation. To achieve different degrees of collinearity,
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following McDonald and Galarneau (1975), the explanatory were generated using the
following device:

xi j = (1 − γ )1/2zi j + γ zi3 i = 1, . . . , n j = 1, . . . , 3

where zi j are independent standard normal pseudo-random numbers, and is specified
so that the correlation between any two explanatory variables is given by γ 2. Three
different sets of correlations corresponding to γ = 0.80, 0.90, and 0.99 are considered.
Then, n observations for the dependent variable are determined by

yi = β1xi1 + β2xi2 + β3xi3 + g(ti ) + εi i = 1, . . . , n.

with g(ti ) = cos(2π ti ), ti ∼ U (0, 1) in which U (0, 1) denotes the uniform distribu-
tion in interval (0, 1). We vary the sample size with n = 15, 30 and n = 50. In ridge
regression Newhouse and Oman (1971) stated that if the mean squared error is a func-
tion of β, σ , and ridge parameter and, if the explanatory variables are fixed, then the
mean squared error is minimized when β is the normalized eigenvector corresponding
to the largest eigenvalue ofX′Xmatrix subject to constraint that β ′β = 1. Here we can
selected the coefficients β1, β2 and β3 as normalized eigenvectors corresponding to
the largest eigenvalues of X′(I− S)X matrix so that β ′β = 1. An outlier is created by
adding ν to the response y10, i.e., y10 = y10 + ν, where ν corresponds to the standard
deviation of response y. We calculate the diagnostic measures of l1max (β̂d), l2max (β̂d)

and lmax (ĝd) in different datasets. The results are shown in Table 1. It is easily seen
from Table 1 that case 10 is the most influential observation. For example for n = 15
with γ = 0.8, the l1max (β̂d), l2max (β̂d) and lmax (ĝd) have maximum values for case
10 compared to any other observation (which have values less than 0.104, 0.153 and
0.096 respectively). These results imply that our proposed diagnostic measures can
identify the potential outlier.

5.2 Real data

TheLongley (1967) data consisting of 7 economical variables, x1 =GNP implicit price
deflator, x2 =Gross National Product, x3 =number of people in the armed forces,
x4 =number of unemployed, x5 =Population, x6 =Year and y =number of people
employed. This data has been used to explain the effect of extreme multicollinearity
on the ordinary least squares estimators. The scaled condition number (see Walker
and Brich 1988) of this data set is 43,275. This large value suggests the presence
of an unusually high level of collinearity. Cook (1977) applied Cook’s distance to
this data and found that cases 5, 16, 4, 10, and 15 (in this order) were the most
influential observations in OLS. Walker and Brich (1988) analysed the same data to
find anomalous observations in ORR using the method of case deletion influential
measures. They found that cases 16, 10, 4, 15 and 5 (in this order) were the most
influential observations in Cook’s and DFFITS measures. In local influence approach
Shi andWang (1999) find the cases 10, 4, 5 and 15were themost influential observation
for ridge estimation and Jahufer and Chen (2012) find the cases 4, 10, 1, 5 and 6 in
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Table 1 Influential analysis of simulated data

n γ β observation l1max (β̂d ) l2max (β̂d ) lmax (ĝd )

15 0.8 (.816, .419, .398)′ 10 .834 .819 .659

Other ≤ .104 ≤ .153 ≤ .096

0.9 (.511, .699, .508)′ 10 .817 .847 0.701

Other ≤ .192 ≤ .080 ≤ .150

0.99 (.301, .892, .338)′ 10 .884 .750 .865

Other ≤ .058 ≤ .166 ≤ .160

30 0.8 (.916, .325, .236)′ 10 .814 .790 .758

Other ≤ .111 ≤ .099 ≤ .063

0.9 (.727, .428, .536)′ 10 .890 .721 .629

Other ≤ .101 ≤ .164 ≤ .051

0.99 (.688, .611, .398)′ 10 .791 .801 .606

Other ≤ .097 ≤ .131 ≤ .091

50 0.8 (.303, .861, .410)′ 10 .981 .881 .792

Other ≤ .083 ≤ .100 ≤ .045

0.9 (.399, .169, .902)′ 10 .916 .841 .761

Other ≤ .103 ≤ .095 ≤ .083

0.99 (.526, .571, .631)′ 10 .971 .931 .806

Other ≤ .099 ≤ .110 ≤ .094

this order were the five most influential observations for Liu estimator in ordinary
regression. Recently, Emami (2015) used the same data to identify influential cases in
ridge semiparametric regression model. By case deletion method he identified 12, 16,
2 and 5 were the most influential cases.

In this section, we use this data set to illustrate the method suggested in this article.
The influence of observations on the LPLSEs of SPRM are studied based on small
perturbations. Therefore, the influence of the different aspects of the model can be
well approached. Here, we fit model (1) to the data, which X = [x1, x2, x4, x5, x6]′
and g(ti ) = g(x3). The parameter λ in this model is 0.007, which is obtained by
minimizing GCV criterion. Estimate of nonparametric function for Longley data for
d = 0.985 is shown in Fig. 1. First, we consider, the variance perturbation. The
index plots of l1max (β̂d) and lmax (ĝd) are shown in Fig. 2, respectively (index plot
of l2max (β̂d) for d = 0.985 has a similar structure as l1max (β̂d). In Fig. 2a, cases 16,
10, 15 and 5 are four most influential cases in β̂d . However, the largest absolute
component of lmax (ĝd) in Fig. 2b directs attention to cases 10, 16, 2, and 12 in order
for ĝd . Therefore, local influential observations are slightly different from those in
case deletion. This is partly due to the fact that local influence considers the joint
influence instead of individual cases influence. Second, we considered the perturbation
of individual explanatory variables. The maximum values of l1max (β̂d) for separately
perturbing explanatory variables x j , ( j = 1, 2, 4, 5 and 6 ) are 10.28, 0.761 ,5.43 ,2.11
and 1.21 respectively, and also the maximum values of lmax (ĝd) are 8.91, 0.44, 3.28,
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Fig. 1 Estimate of nonparametric function for Longley data with d = 0.985
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Fig. 2 a (left panel) Index plot of l1max (β̂d ) with d = 0.985. b (right panel) Index plot of lmax (ĝd ) with
d = 0.985

0.87 and 0.96 respectively. Hence local change caused by perturbing x1 is the largest
among the others and local changes by perturbing the other explanatory variables are
almost the same. The index plots of l1max (β̂d) and lmax (ĝd) based on perturbation of
x j , j = 1, 4, 5 and 6 are listed in Figs. 3 and 4 respectively. Note that in these figures
vertical scales have been chosen identically (except for the sign). From Fig. 3 it is
obvious that the LPLSE β̂d is sensitive for the values of x1, x4 and x5 at cases 1 and
11 and 16 and values of x5 at cases 5, 10 and 14. Also, from Fig. 4 LPLSE ĝd is
sensitive for the values of x1, x4, x5 and x6 at cases 2, 6 and 12. Finally we estimated
the lmax (d̂) values using (29). It is observed from the index plot of lmax (d̂) shown in
Fig. 5, cases 2, 10, 5, 15 and 16 in this order are the five most influential observations
on LPLSEs parameter.
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Fig. 3 Index plot of lmax (β̂d ) for separately perturbing x1, x4, x5 and x6
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Fig. 4 Index plot of lmax (ĝd ) for separately perturbing x1, x4, x5 and x6
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Fig. 5 Index plot of lmax (d̂) with d = 0.985

6 Conclusion

Local influence diagnostics consider the joint influence of the data set, therefore it
is useful to identify some influential patterns appearing in the data set. In this paper,
we have studied several local influence diagnostic measures that seem practical and
can play a considerable part in LPLSEs of SPRMs. Instead of using case deletion,
we use the local influence method to study the detection of influential observations.
By perturbing different aspects of the model, the influence compact of the data on the
LPLSEs of SPRMs can be studied. The proposed techniques provide to the practitioner
numerical and pictorial results that complement the analysis. We believe that the local
influence diagnostics we derive here can be useful as part of any serious data analysis.
All the proposed measures are the function of residuals, leverage points and LPLSEs.
Furthermore, we study the influence of observations on selection of d, which is also
important in Liu type regression models. Although no conventional cutoff points are
introduced or developed for the Liu estimator local influence diagnostic quantities, it
seems that index plot is an optimistic and conventional procedure to disclose influential
cases.
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