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Abstract Linearmixedmodeling (LMM) is a comprehensive technique used for clus-
tered, panel and longitudinal data. The main assumption of classical LMM is having
normally distributed random effects and error terms. However, there are several situ-
ations for that we need to use heavier tails distributions than the (multivariate) normal
to handle outliers and/or heavy tailness in data. In this study, we focus on LMM using
the multivariate Laplace distribution which is known as the heavy tailed alternative
to the normal distribution. The parameter estimators of interest are generated with
EM algorithm for the proposed model. A simulation study is provided to illustrate the
performance of the Laplace distribution over the normal distribution for LMM. Also,
a real data example is used to explore the behavior of the proposed estimators over
the counterparts.

Keywords Laplace · Mixed models · Robust distributions · EM · Orthodont

1 Introduction

Linear mixed models (LMMs) are regression-type models with an extra random term
which represents the individual/subject effects on repeated measures. LMMs include
both fixed and random effects; fixed-effect parameters represent the relations of the
covariates to the dependent variable for the population; while random-effect parame-
ters represent the clusters or individuals within a population (West et al. 2007), named
individual (subject) specific parameters.
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272 F. Gokalp Yavuz, O. Arslan

Linearmixedmodelswere first used for animal breeding studies byEisenhart (1947)
and by Henderson (1950). As a theoretical point of view, Harville (1977) reviewed
the maximum likelihood (ML) approach to variance component estimation related
to LMMs. Based on Harville’s work (1977), Laird and Ware (1982) introduced a
two-staged model for repeated measurements and Lindstrom and Bates (1988) further
studied on the same issue includes both Newton-Raphson and EM-algorithms. Laird
and Ware (1982) introduced population parameters, individual effects and within-
person variation at the first stage, and between-person variation at the second stage in
theirmodel. Theirwork includedEMalgorithm forMLestimates, following parameter
estimations.

LMMs include more parameters, such as random effect coefficients to be estimated
than classical regression-based models. Depending on that fact, integrating process
includes more computational burden and the parameter estimations includes other
unknown-parameters in the final equations. Therefore, some iterative algorithms such
as EM-type (Dempster et al. 1977) are used in LMM to findML estimators. EM is used
for a wide variety of situations such as random effects, mixtures, log linear models,
latent class and latent variable situations (Healy and Westmacott 1956; Kleinbaum
1973; McLachlan and Krishnan 1997) in addition to incomplete data structures.

Classical LMMs include the normality assumption for both random and error terms,
but it may be too restrictive especially for repeated measures and clustered data. The
existence of missing data or e- and b-outliers makes normality assumption being
doubtful for the model. Even normality assumption allows applying the model easily,
it is too restrictive for the data with heavy tails and/or skewed. So, it is critical for
LMMs to choose a robust distribution for randomeffects/error terms rather than normal
distribution.

There has beenwide ranges of studies robustfying linearmixedmodels (Lin andLee
2008; Lin 2008; Pinheiro et al. 2001; Verbeke and Lesaffre 1996) following studies
robustfying linear regression models (Hampel et al. 1986; Huber 1973; Huber 1981;
Lange et al. 1989; Zellner 1976). Verbeke and Lesaffre (1996) used finite mixtures
of normal distribution for random effects to detect the subgroups in the population.
Pinheiro et al. (2001) proposed a linear mixed model with both random effects and
residuals which were assumed to be multivariate t-distributed with the same degrees
of freedom and they used an EM-type algorithm for the estimation of parameters.
Lin (2008) proposed a t-linear mixed effects model with AR(p) dependence structure
for repeated measures with thick tails and serial correlations. Likelihood inference is
then required degrees-of-freedom parameter which is not required for classical LMM
and the proposed model of us. In the study of Osorio et al. (2007), both light and
heavy-tailed distributions were covered for elliptical linear models under different
perturbation schemes. They conducted the study for the different types of elliptical
distributions with error terms, not for the random terms.

In this study,we usemultivariate Laplace distributionwhich is a special case ofmul-
tivariate exponential power (EP) distribution (Arslan 2010; Gómez-Sánchez-Manzano
et al. 2006; Gómez-Sánchez-Manzano et al. 2008) to handle with the situations being
doubtful to assume a normal distribution. It has heavier tails than normal distribution
and the number of parameters of Laplace distribution is less than t-distribution that
makes the estimation procedures simpler than the estimations based on t-distribution.
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Linear mixed model with Laplace distribution (LLMM) 273

Additionally, EM algorithm can be implemented easily to estimate the parameters of
interest, since Laplace distribution is written as a scale mixture of normal distribution.

The paper is structured as follows: Sect. 2 describes LMMs briefly. Section 3
includes multivariate EP distribution, the mixture form of it, and also the integra-
tion of this distribution into LMMs. Section 4 includes the general scheme of EM
algorithm, and EM for Laplace LMM. The application part of the study is composed
of a simulation study and a real life data example at the 5th and the 6th sections,
respectively. Our conclusions are presented in Sect. 7. The originality of this study
comes from using Laplace distribution with LMMs and also describes ECM with this
new form.

2 Linear mixed models

The LMM has the following form (Laird and Ware 1982)

yi = Xiβ + Zi ui + ei , i = 1, 2 . . . n, (1)

where,

ei ∼ Nni (0, Ri ),

ui ∼ Nr (0, D),

yi denotes a (ni × 1) vector of continuous responses for the i-th subject, β denotes
a (px1) vector of unknown population parameters, Xi is a known (ni × p) design
matrix, ui denotes a (r × 1) vector of unknown individual effects, Zi is a known
(ni × r) design matrix, and ei denotes a (ni × 1) vector of residual errors assumed to
be independent of ui . The marginal distribution of yi can be obtained as normal with
mean Xiβ and the covariance Zi DZ′

i + Ri ( yi ∼ N (Xiβ, Zi DZ′
i + Ri )).

The general form of the LMM is defined as in model (1) for a given subject i . This
model definition is not the only way to define the model, there is an alternative speci-
fication of the LMMwhich is “stacking” the vectors of the model such as yi or ui for
all subjects vertically. This specification is used in SAS, R, SPSS, S documentations;
while HLM uses the hierarchical approach of Raudenbush and Bryk (2002) (West
et al. 2007).

Comprehensivework onLMMs is found in Searle et al. (1992), Verbeke andMolen-
berghs (2000), McCulloch and Searle (2001) and Demidenko (2004), among others.
Parameter estimations are described in these studies under the assumptions above.

3 Linear mixed models with multivariate Laplace distribution

3.1 Multivariate exponential power distribution to Laplace distribution and the
mixture form

The exponential power family was introduced by Box and Tiao (1973) and it has been
found a place in the Bayesian modelling for robustness context. The normal scale
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mixture property of EP distributions and its relationship with the class of stable dis-
tributions were discussed by West (1987). The multivariate EP distribution is defined
as the generalization of multivariate normal distribution with an extra parameter K
which governs the kurtosis, and this parameter indicates the difference between EP
distribution and the normal distribution (Gómez-Villegas et al. 2011).

Ann-dimensional randomvector X = (X1, . . . , Xn)
′ is said to haveEPdistribution

(EPn(μ,�,K)) with parameters, μ ∈ R,� is a positive definite symmetric matrix
and K ∈ (0,∞), if its density function is as follow

f (x;μ,Σ,K) = d |Σ |− 1
2 exp

(
−1

2

(
(x − μ)′�−1(x − μ)

)K)
, (2)

d = n�( n2 )

π
n
2 �
(
1 + n

2K

)
21+ n

2K
,

K is the kurtosis parameter [i.e., see (Arslan 2010; Fang et al. 1990; Gómez-Sánchez-
Manzano et al. 2008; Gómez et al. 1998)]. It is obvious that if K=1, it turns into the
normal distribution.

EP distribution is written as a scale mixture of normal distributions if and only if
K ∈ (0, 1], and it is denoted as X ∼ SMNn(μ,�, hK) where the mixing distribution
function hK is the absolutely continuous distribution function with (Gómez-Sánchez-
Manzano et al. 2008)

hK (υ) = 21+ n
2− n

2K Γ
(
1 + n

2

)
Γ
(
1 + n

2K

) υn−3SK
(
υ−2; 21− 1

K

)
, υ > 0.

SK is referred to stable distributionwhich has the characteristic function for K ∈ (0, 1)
as (Samorodnitsky and Taqqu 1994)

ϕ(t) = exp
{
−σ K |t |K e−i π

2 Ksign(t)
}

.

Gómez-Sánchez-Manzano et al. (2008) use σ = 2− 1
K and the Laplace transform of

its distribution function becomes LF (t) = exp
{− 1

2 t
K
} = gK (t).

As a special case of multivariate EP distribution; if K = 1
2 , it is considered as the

multivariate Laplace distribution (double exponential distribution) and the mixture
form is denoted as SMNn(μ,�, h1/2) with the following density of mixing function

h1/2(υ) = �( n2 )

2
n
2 �(n)

υn−3S 1
2

(
υ−2; 1

2

)
,

for y>0, S 1
2
(y; σ) = 1

2π
− 1

2 σ
1
2 y− 3

2 exp(− 1
4σ y

−1) is an inverted-gamma distribution

IG( 12 ,
σ
4 ); so the mixing distribution becomes as (Gómez-Sánchez-Manzano et al.

2008)

h1/2(υ) = 1

2
3n+1
2 �( n+1

2 )
υn exp

(−1

8
υ2)I(0,∞)(υ). (3)
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Linear mixed model with Laplace distribution (LLMM) 275

Further, if X is a random vector with Laplacen(μ,�), the expectation and the
variance of X are E(X) = μ and Var(X) = 4�(n+2)

n�(n)
�. Scale mixture of normal

distribution property of Laplace distribution provides more modeling alternatives,
since it creates longer tails than normal distribution (Arslan 2010).

3.2 Linear mixed models with multivariate Laplace distribution

The joint distribution of yi and ui in classical LMM is defined as follow

[
yi
ui

]
∼ Nni+r

([
Xiβ

0

]
,

[
Zi DZ′

i + Ri Zi D
DZ′

i D

])
, i = 1, . . . , n. (4)

We replace multivariate normal distribution in model (4) with multivariate Laplace
distribution for both random effects and subject-specific errors (LLMM or l-LMM) by
proceeding as in Lange et al. (1989) and Pinheiro et al. (2001) as follow

[
yi
ui

]
∼ Laplaceni+r

([
Xiβ

0

]
,

[
Zi DZ′

i + Ri Zi D
DZ′

i D

])
, i = 1, . . . , n. (5)

From this distribution, the marginal distribution of yi is obtained as

yi ∼ Laplaceni (Xiβ, Zi DZ′
i + Ri ),

(Arslan 2010; Gómez et al. 1998). According to the scale mixture property of Laplace
distribution and Theorem 3.1 in Gómez-Sánchez-Manzano et al. (2008), the corre-
sponding conditional distributions of

[
y′
i , u

′
i

]′ are as follow (V i = Zi DZ′
i + Ri )

[
yi
ui

]∣∣∣∣ τi ∼ Nni+r

([
Xiβ

0

]
, τ 2i

[
V i Zi D
DZ′

i D

])
,

τi ∼ h1/2(τi ). (6)

It follows from (6) that the hierarchical representations of the conditional distributions
of yi and ui vectors are as follow

yi |ui , τi ∼ N (Xiβ + Zi ui , τ
2
i Ri ), i = 1, . . . , n,

ui |τi ∼ N (0, τ 2i D),

τi ∼ h1/2(τi ). (7)

The maximum likelihood estimation of unknown parameters in this hierarchical rep-
resentation of Laplace LMM leads to EM implementations. Different than classical
LMM, there is an extra unknown term, τi needs to be estimated from the data. The
next section includes both parameter estimations and EM algorithm of (7).
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276 F. Gokalp Yavuz, O. Arslan

4 EM algorithm

EM algorithm takes its name from the study of Dempster et al. (1977) and it is com-
posed of two steps; the expectation step (E-step) and the maximization step (M-step).
The conditional expectation of the complete data log likelihood is calculated for given
parameter estimates and observed data is computed in E-step. M-step updates the
parameter estimates by maximizing conditional expectation in the E-step. These two
steps are iterated until the convergence and the final parameter is taken as MLE or a
local maximizer. EM is used for a wide variety of situations such as incomplete data,
random effects, mixtures, log linear models, latent class and latent variable situations
(McLachlan and Krishnan 1997).

We illustrate a general scheme for EM for classical/Gaussian LMM and it has
similar approach for Laplace LMMwith extra CM-steps explained in the next section.

Consider model (7) and take ui as “missing data” and the complete data
is
{
( yi , ui ), i = 1, . . . , n

}
, where

{
yi , i = 1, . . . , n

}
is observed data. Let θ =

(β, R, D) denote all parameters. The complete data likelihood for subject i is given
by

li
(c)(θ | yi , ui ) = ln f ( yi |ui ,β, R) + ln f (ui |D).

Begin with a starting value θ0. At the k-th iteration, the conditional expectation is
computed as following:

E-Step : Q(θ |θk) = E

[
n∑

i=1

l(c)i (θ | yi , ui )| yi , θ (k)

]

= E

[
n∑

i=1

ln f ( yi |ui ,β, R) + ln f (ui |D)| yi , θ (k)

]
.

M-Step requires to maximizeQ(θ |θ k)with respect to θ to acquire an updated estimate
θ (k+1). At the k-th iteration of the EM algorithm, since θ (k+1) maximizes Q(θ |θ k):

Q(θ (k+1)|θ k) ≥ Q(θ |θ k), k = 0, 1, 2, . . .

This property shows that EM is guaranteed to converge to a maximum (Wu 1983).

4.1 EM for Laplace LMM

This section includes the maximum likelihood estimation of unknown parameters of
Laplace linear mixed model (5) with EM-type algorithm. The maximization process
for log-likelihood of LMMleads to some non-linear equations; consequently, solutions
could be too complex to be solved. Solving these equations are not solely enough for
implementations; since we need to count for acquiring our parameters to be in para-
meters space (Searle et al. 1992). For the maximum likelihood estimations (MLE) of
the parameters, we utilize the EM algorithm by using hierarchical model with both τi
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Linear mixed model with Laplace distribution (LLMM) 277

and ui are threated as missing. Since maximization (M) step of EM is computation-
ally unattractive for LMM, expectation-conditional maximization (ECM) (Meng and
Rubin 1993) is used in this study.The ECM algorithm, which is the extension of EM
algorithm, implemented by conditioning on some function of the parameters under
estimation and replaced M-steps with computationally easier CM-step. ECM has the
same stable monotone convergence property of EM (McLachlan and Krishnan 1997).

Let θ = [
β ′, D′, R′]′ denotes all parameters, y = [

y′
1, . . . , y

′
n

]′ is observed data

u = [
u′
1, . . . , u

′
n

]′ and τ = [τ1, . . . , τn] are treated as “missingdata”, so the “complete
data” are { y, u, τ }. Because of the conditional structure of model (7), the joint density
of complete data can be factored into the product of the conditional densities, so the
complete data likelihood based on model (7) is given by

lnL(β, D, R| y, u, τ ) = lnL1(β, R| y, u, τ ) + lnL2(D|u, τ ) + constant.

‘Constant’ represents the terms without any parameters to be estimated. E-step of
EM algorithm requires conditional expectations of log-likelihood function acquired
as below

E
[
lnL(β, D, R| y, u, τ )| y, θ̂] =

E
[
lnL1(β, R| y, u, τ )| y, θ̂]+ E

[
lnL2(D|u, τ )| y, θ̂]+ constant

= − 1
2

n∑
i=1

{
( yi − Xiβ − Zi ûi )

′(τ̂ 2i Ri )
−1( yi − Xiβ − Zi ûi ) + ln |Ri |

}

− 1
2

{
nln |D| +

n∑
i=1

τ−2
i u′

i D
−1ui

}
+ constant.

Letting

ûi = E(ui |θ = θ̂, y),

�̂i = cov(ui |θ = θ̂ , y),

τ̂ 2i = E(τ 2i |θ = θ̂ , y),

τ̂−2
i = E(τ−2

i |θ = θ̂, y),

E(uiu′
i ) = cov(ui u′

i ) + E(ui )E(u′
i ) = �̂i + ûi û

′
i ,

we find following estimations

ûi = D̂Z′
i V̂

−1
( yi − Xi β̂) = D̂Z′

i (Zi D̂Z′
i + R̂i )

−1( yi − Xi β̂)

= ( D̂
−1 + Z′

i R̂
−1
I Zi )

−1Z′
i R̂

−1
i ( yi − Xi β̂),

�̂i = τ̂ 2i D̂ − τ̂ 2i D̂Z′
i (τ̂

2
i V̂ i )

−1Zi D̂τ̂
2
i = τ̂

2
i ( D̂ − D̂Z′

i V̂
−1
i Zi D̂)

= τ̂ 2i ( D̂ − D̂Z′
i (Zi D̂Z′

i + R̂i )
−1Zi D̂) = τ̂ 2i ( D̂

−1 + Z′
i R̂

−1
i Zi )

−1.

β̂, D̂ and R̂i are found by differentiating expected values of conditional log-
likelihood functions with respect to parameters. Different from the Gaussian LMM
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(1), the Laplace LMM (7) requires τi that is unobserved but imputed from the data
for each subject. To find τ̂ 2i and τ̂−2

i , the conditional distribution of τi is required. We

find it with the Bayesian approach, f (τi | yi ) = f ( yi |τ i ) f (τ i )

f ( yi )
. After some algebra, the

final equation is found as below

f (τi | yi ) = �(n + 1)2
n
2+1

n�( n2 )
τ−1
i exp

{
−1

2
( yi − Xiβ)′(τ 2i V i )

−1( yi − Xiβ)

+1

2

(
( yi − Xiβ)′(V i )

−1( yi − Xiβ)
) 1
2

}
× h1/2(τi ),

where h1/2(τi ) is described in (3). Adapting this mixing function into the conditional
distribution above leads to

f (τi | yi )=
�(n)

�( n2 )�( n+1
2 )

2
1
2−n exp

(1
2
C

1
2
i

)
τ n−1
i exp

{
−1

2

(
τ−2
i Ci + 1

4
τ 2i
)}

I(0,∞)(υ),

where,

Ci = ( yi − Xiβ)′(V i )
−1( yi − Xiβ),

f (τi | yi ) ∝ τ n−1
i exp

[
−1

2

(
τ−2
i Ci + 1

4
τ 2i
)]

.

Redefining the function by letting ξi = τ 2i , τi = ξ
1/2
i , ∂τi

∂ξi
= 1

2ξ1/2i

gives

f (ξi | yi ) ∝ ξ
n−1
2

i exp

[
−1

2

(
ξ−1
i Ci + 1

4
ξi
)] 1

2ξ
1
2
i

= 1

2
ξ

n
2−1
i exp

[
−1

2

(
ξ−1
i Ci + 1

4
ξi
)]

.

The final distribution takes the form of generalized inverse Gaussian distribution. The
moment of this distribution is as follow (Barndorff-Nielsen 1978; Barndorff-Nielsen
and Halgreen 1977)

E(ξα
i ) =

( Ci

1/4

)α/2 Mn
2+α

(√
Ci

1
4

)

Mn
2

(√
Ci

1
4

) ,

M(.) is modified Bessel function of the third kind (Jorgensen 1982; Watson 1966). By
using this property, the moments are as followings for α = 1andα = −1, respectively

E(ξi ) =
( Ci

1/4

)1/2 Mn
2+1

(√
Ci

1
4

)

Mn
2

(√
Ci

1
4

) , E(ξ−1
i ) =

( Ci

1/4

)−1/2 Mn
2−1

(√
Ci

1
4

)

Mn
2

(√
Ci

1
4

) .
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Having starting values of the parameters θ0 = (β0, D0, R0); an iterative algorithm in
which current values of the unknown parameters are updated in the following steps:

E-Step For a given = θ̂ , calculate ûi , τ̂
−2
i , τ̂ 2i , and �̂i i = 1, . . . , n.

û(m)
i =

(
D̂

−1(m) + Z′
i R̂

−1
İ (m)Zi

)−1
Z′
i R̂

−1
i (m)

(
yi − Xi β̂

(m)
)
,

�̂
(m)

i = τ̂
2(m)
i

(
D̂

−1(m) + Z′
i R̂

(−1m)

i Zi

)−1
,

τ̂
2(m)
i =

( Ĉi

1/4

)1/2 Mn
2+1

(√
Ĉ i

1
4

)

Mn
2

(√
Ĉi

1
4

) ,

τ̂
−2(m)
i =

( Ĉ i

1/4

)−1/2 Mn
2−1

(√
Ĉ i

1
4

)

Mn
2

(√
Ĉ i

1
4

) .

CM-Step 1 Fix Ri = R̂i and update β̂ for i = 1, . . . , n by maximizing

E
[
L1(β, R̂| y, u, τ )| y, θ̂

]
over β.

β̂
(m+1) =

(
n∑

i=1

τ̂
−2(m)
i X ′

i R̂
−1(m)

i X i

)−1 n∑
i=1

τ̂
−2(m)
i X ′

i R̂
−1(m)

i ( yi − Zi û
(m)
i ).

CM-Step 2 Fix β = β̂ and update R̂i for i = 1, . . . , n by maximizing

E
[
L1(R, β̂| y, u, τ )| y, θ̂

]
over Ri .

R̂
(m+1)
i = 1

n

n∑
i=1

τ̂
−2(m)
i

[(
yi − Zi û

(m)
i

)(
yi − Zi û

(m)
i

)′ + Zi �̂
(m)

i Z′
i

+Xi β̂
(m)

β̂
′(m)

X ′
i − Xi β̂

(m)(
yi − Zi û

(m)
i

)′]
.

CM-Step 3 Update D̂ by maximizing E
[
L2(D|u, τ )| y, û] over D.

D̂
(m+1) = 1

n

n∑
i=1

τ̂
−2(m)
i

(
�̂

(m)

i + û(m)
i û

′(m)
i

)
.

Repeating the cycles creates sequences of related parameters.

5 Simulation studies

We conducted a simulation study similar to Pinheiro et al. (2001) and generated the
data from the mixture of normals. The “rmnorm” function in mvtnorm library in R
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is used to generate the data after the model definition. In addition to their study, we
added an extra scenario (2nd one) with Laplace distribution (8).

Let us define a model as below:

yi = X(β + ui ) + ei j , i = 1, . . . , 27, j = 1, . . . , 4, X =

⎡
⎢⎢⎣
1 8
1 10
1 12
1 14

⎤
⎥⎥⎦ .

First scenario

ui ∼ ind(1 − pb)N2(0, D) + pb fN2(0, D),

ei j ∼ ind(1 − pe)N4(0, R) + pe fN4(0, R), i = 1, . . . , 27, j =1, . . . , 4.

Second scenario

ui ∼ ind(1 − pb)Laplace2(0, D) + pb f Laplace2(0, D),

ei j ∼ ind(1 − pe)Laplace4(0, R) + pe f Laplace4(0, R),

i = 1, . . . , 27, j = 1, . . . , 4. (8)

pb and pe denotes the expected percentage of b- and e-outliers. f denotes contami-
nation factor. pb and pe are taken 0, 0.05, 0.10 values and f is taken 0, 1, 2 values for
each replicates. Var(ui ) and Var(ei j ) is the natural extension of (8)

E( yi ) = Xβ,

Var( yi ) = XVar(ui )X ′ + Var(ei j ),

Var(ui ) = (1 − pb)D + pb f
2D =

[
1 + ( f 2 − 1)pb

]
D,

Var(ei j ) = (1 − pe)R + pe f
2R =

[
1 + ( f 2 − 1)pe

]
R.

As a first step, we generated yi s depending on the parameters above. Four replicates
for 27 subjects with 100 Monte Carlo replicates for each scenario are generated.
Then, we obtain parameter estimations of our proposed model (7) and also parameter
estimations of classical LMM (1). The proposed model is implemented by generating
new functions in R. For classical LMM, the lmer function in ‘nlme’ package is used
in R. See the target values (starting values) below

[
β0
β1

]
=
[
17
0.8

]
, D =

[
4 0
0 0.0225

]
, R =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

The parameter comparisons are directly implemented for β0 and β1. On the other hand,
we need to do the transformation for D comparisons defined as

DLaplace = 22�(4)

2�(2)
Σ = (12)D.
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Linear mixed model with Laplace distribution (LLMM) 281

The graphs below (Table 1) show the distributions of
∣∣∣θ̂ − θ0

∣∣∣ for each parameter.

Black lines show the differences between our proposed model estimations and starting
values, purple dashed lines show the differences between lmer function estimations
and starting values in all graphs.

Because of the space limitations, we preferred to display two extreme combinations
of f , pb and pe. The first one is for f = pb = pe = 0 which indicates the non-
contamination factor without b- and e-outliers. The second one is f = 2, pb =
0.10, pe = 0.10 located on the second part of the Table 1. We acquired similar results
for Laplace LMMand classical LMMapproaches, especially for the first scenario, as it
is seen on the left side of the Table 1. The differences of parameter estimations from the
target values (starting values) are getting higher for the second scenario which are seen
on the right side of the Table 1.We observe more gaps in the differences for the second
combination with 10% expected b- and e-outliers and also contamination factor, than
the first one, especially for variance components of D and R. For the data sampled
from a distribution shaped more like Laplace distribution, our model outperforms the
classical LMM. AIC values comparisons of two models for both scenarios are located
at the final section.

6 Orthodont data

Orthodont data is firstly reported by Potthoff and Roy (1964) and named as Orthodont
Study/Data found in nlme library in R. The data represents the distance (inmillimeters)
between the pituitary and the pterygomaxillary (we call it ‘distance’ for the rest of the
study) measured at 8, 10, 12 and 14 years of each girl and boy. The graph below shows
age versus distance for each subject. We mainly observe a linear trend over time in
addition to some within and between variations (Fig. 1).

To better understand these variations, we conduct a single linear regression for each
subject and acquire intercept and slope with centered age variable versus distance with
lmList function in R. The following graphs (Fig. 2) are related to these regression
models.

The figure on the left depicts the confidence intervals of intercepts and slopes with
standardized data obtained with a single regression for each subject (Fig. 2). The
regressions lines for each subject with age versus distance values are located on the
right figure (Fig. 2). Both graphs give us a clue to fit the model on behalf of the one
with random effects. The variations among confidence intervals and also regression
lines are observed in both graphs. They also reveal the potential outliers of the data.
For example, the slope for M13 is larger than others which may be indicator of being a
b-outlier. Two observations of M09may be an e-outlier because of the more variations
around the regression line. We observe the linear trend on the distance with different
ratios. It is also obvious that the first measurements for distances are different for each
subject. These findings indicate random intercept and potentially random slope for the
data. Using random terms in addition to fixed parameters most probably makes the
model more consistent and persistent. Detailed investigations and related R codes for
Orthodont data can be found in Pinheiro and Bates (2000).
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Table 1 The figures of first scenario (on the left) and second scenario (on the right) simulations
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Table 1 continued
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Table 1 continued

All graphs shows
∣∣∣θ̂ − θ0

∣∣∣ for LMM (with purple-dashed line) and for Laplace LMM (black-straight

line)

Both classical LMM and our proposed model with Laplace distributed error and
random terms are applied for this data. The related parameter estimations are located
at Table 2 (the gender effect is omitted for the ease of the computation):

We observe similar behavior from both models. This is actually expected since the
behavior of ‘Orthodont’ data is close to normality. However, we observe the superi-
ority of Laplace LMM over the normal LMM when we have atypical observations
in the data in simulation study. Additionally, there is a gap between σ 2 obtained
from lmer and our base-code. It is because of the fact that lmer function takes R
matrix as σ 2 Ini , as a consequence, the output includes single value. Our base code
gives an estimated R matrix, which has the same dimensional with target value.
We use the mode of the single value decomposition of R matrix as σ 2. The figure
below shows the fitted values from our model versus classical LMM for each subject
(Fig. 3).
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Fig. 1 Age versus distance for each subject

Fig. 2 Fitted parameters with confidence intervals for each subject on the left. Fitted regression lines for
each subject with age versus distance on the right

7 Conclusion and discussion

In this study, we aimed to enhance LMMs with different distributions than normal
distribution. As a first step, we used Laplace-normal hierarchical structure and imple-
mented corresponding mathematical inferences. To the extend of our knowledge, it is
the first attempt in literature using Laplace distribution in LMMs with both random
effects and error terms are assumed to follow Laplace distributions. It gives us the
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Table 2 Parameter estimation
results from LMM versus
Laplace LMM

Parameters Gauss Laplace

β0 16.761 16.529

β1 0.660 0.674

D11 1.825 2.739

D22 0.021 0.030

σ 2 1.859 2.192

Fig. 3 Fitted values from proposed method versus classical LMM

opportunity to use a robust distribution with less parameter than t-distribution (e.g.,
Pinheiro et al. 2001; Lin 2008) as an alternative to normal distribution.

Laplace LMM allows to use hierarchical structure and to define the conditional
distributions of response and error/random terms. After defining these conditional
distributions given the scalarwith amixing distribution (7), the conditional distribution
of that scalar is found for estimation process of parameters. The originality of this
paper also comes from the definition of this conditional distribution of the scalar (τi ),
since we come up with the generalized inverse Gaussian (GIG) distribution after some
algebra and defined the conditional distribution of this scalar. Estimation process and
EM algorithm is finalized using the properties of GIG distribution.

Simulation studies are implemented with two different scenarios; the first one is
generated from mixtures of normal distributions, while the second scenario is gen-
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Fig. 4 AIC values for LMM (purple-dashed line) and for Laplace LMM (black straight line)

erated from mixtures of Laplace distributions with/without contamination factor. We
apply these inferences with orthodont data and acquired similar predictions with clas-
sical LMM.The parameter estimations from the proposedmethod are close to classical
LMM estimations, since the behavior of this data is very likely normal.

See the AIC values of LMM (purple-dashed line) and Laplace LMM (black straight
line) for the second scenario (samples are generated from mixtures of Laplace distri-
bution) at Fig. 4. The one on the left is for f = 0, pb = 0, pe = 0; while the one
on the right is for f = 2, pb = 0.10, pe = 0.10.For each model, AICs for Laplace
LMM is smaller than AICs for LMM. And also, the gap between AIC values is getting
bigger for the case with contamination factor and higher expected values for b- and e-
outliers (Fig. 4).

For the futurework,we plan to use skewLaplace distribution for LMMas an alterna-
tive to skew-normal (Arellano-Valle et al. 2005) and skew-t distributions (Choudhary
et al. 2014; Lachos et al. 2009). We also, want to enhance and redefine our base R-
code in R-package format and add additional properties such as hypothesis tests for
parameters.

Acknowledgements The authors thank the Editor and two anonymous referees for valuable suggestions
that greatly improved the paper.
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