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Abstract In treatment effect analysis, often the treatment takes a particular structure:
‘on’ if an underlying continuous variable crosses a threshold, and ‘off’ otherwise.
Such a treatment occurs in various institutional settings such as a test score crossing
a threshold to graduate, or income falling below a threshold to qualify for an aid. In
this kind of cases, the study design is called ‘regression discontinuity (RD)’, which
is popular in analyzing observational data, as long as the treatment takes the required
form. This paper reviews RD to convey its essentials, and provides some extensions.
First, the main RD idea based on local randomization due to an institutional/legal
break is introduced. Second, treatment effects identified by RD are explored. Third,
popular RD estimators are reviewed. Fourth, main specification tests are examined.
Fifth, special RD topics are reviewed. Also, an empirical illustration is provided.
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1 Introduction

Randomization has been the golden rule of inference in statistics. In an experiment
with a treatment group (D = 1) and a control group (D = 0), randomization of D
assures that the two groups are different only in the treatment status and balanced in
all covariates, observed or not. For instance, persons with different levels of ability
or different types of genes are assigned to different groups, but the distribution of
ability levels or gene types becomes almost the same across the two groups. Hence
E(Y |D = 1) − E(Y |D = 0) for a response variable Y reveals the mean effect of D
on Y .

But randomization cannot be done if the treatment is possibly harmful as in smoking
or radiation. Also, randomization is unthinkable in most observational studies, which
has been accepted as a fact for a long time. Recently, it has been realized that regression
discontinuity (RD), started long ago by Thistlethwaite and Campbell (1960), offers
‘local randomization’ using an institutional or legal break around a cutoff: D = 1
if an underlying continuous variable crosses a cutoff, and D = 0 otherwise. Many
policy/program/treatment variables take this form; e.g., a test score crossing a cutoff to
graduate from a school, a vote proportion crossing 0.5 to win an election, age crossing
a cutoff to retire, etc.

RD has been steadily rising as a main vehicle of inference for observational data in
social sciences as long as D takes the aforementioned form. The goal of this paper is
to convey the essentials of RD in a nontechnical and concise fashion. Earlier reviews
on RD can be seen in Van der Klaauw (2008), Imbens and Lemieux (2008) and
Lee and Lemieux (2010), and this paper updates the reviews with emphasis on recent
developments since the existing reviews. Although purported to be a review, this paper
provides some extensions as well.

Despite the popularity of RD in social sciences, the RD literature in statistics has
been nearly nonexistent as pointed out byCook (2008),with exceptions beingBerk and
Rauma (1983), Berk and de Leeuw (1999) and Battistin and Rettore (2002). Robbins
and Zhang (1991) examined the RD form of D, calling it a “ biased allocation” of
treatment, although theydidnot implementRD,whereasHansen (2008) justmentioned
RD in passing. Nevertheless, RD studies have been appearing slowly in statistics
journals in recent years: Cattaneo et al. (2015) for randomized inference when large
sample inference is inappropriate, Calonico et al. (2015) for an optimal way to draw
RD data plots, and Angrist and Rokkanen (2015) for RD identification away from
the cutoff. In addition to these theoretical contributions, several mostly applied works
are available as well: Mealli and Rampichini (2012), Crawford et al. (2014), Dickens
et al. (2014), Keele et al. (2015), and MacDonald et al. (2016). Undoubtedly, many
more will come in future both on the theoretical and applied fronts in statistics, which
makes the review in this paper timely for the statistics community.

Before proceeding further, some words on notation are needed. In RD, although
there are exceptions, both identification and estimation are done only locally around
a known cutoff c of a ‘running/forcing/assignment variable’ S. As S can be re-
centered as S − c always, we set c = 0 unless otherwise necessary, and denote a local
neighborhood of 0 as (−h, h) for a small positive bandwidth h; everything will be
local in RD unless otherwise mentioned. Various functions of S will appear and their
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(dis-) continuity matters only at S = 0, and we will thus often omit the qualifier ‘at
S = 0’. Although the name running/forcing/assignment variable is well established
in the RD literature, since it will appear very often in the remainder of this paper, we
will call it just ‘score’ (S for score). Throughout the paper, 1[A] = 1 if A holds and
0 otherwise. A realized value of S will be denoted as s, and E(·|S = s) will be often
written just as E(·|s).

The rest of this paper is organized as follows. Section 2 introduces RD main ideas
and features, the details of which will be seen in the remaining sections. Section 3
discusses RD identification. Section 4 examines RD estimators, and Sect. 5 reviews
specification tests. Section 6 collects RD topics; many recent theoretical developments
can be found here. Section 7 provides an empirical illustration applying some of the
introduced methods. Finally, Sect. 8 concludes.

2 RD main ideas and features

In RD, the main variables are (D, Y, S), and

Z ≡ 1[0 ≤ S].

The following examples will help understanding what these variables are.

Example 1 Effect of entering a college on income,with the entrance determined solely
by a normalized test score equal to or greater than 0; S is the test score, D = Z , and
Y is income.

Example 2 Effect of schooling on health, where an educational law dictates that only
persons with birth date ≥c are subject to extra years of education in principle, but not
everybody obeys the law; S is birth date minus c, D ( �= Z ) is schooling years, and Y
is health level.

To understand RD local randomization in Example 1, consider using E(Y |D =
1) − E(Y |D = 0) to find the effect of D on Y . The problem is that the treatment
group has higher test score (thus higher ability) individuals than the control group, so
that E(Y |D = 1) �= E(Y |D = 0) may happen even if D has no true effect; D is not
randomized and the two groups are systematically different (in ability). But the local
treatment group with S at or just above 0 (i.e., S ∈ [0, h)) and the local control group
with S just below 0 (S ∈ (−h, 0)) should have almost the same ability levels. For
instance, with SAT score, c = 1200 (S is SAT score minus c) and h = 1, imagine the
local treatment group with S = 1 and control group with S = −1. Since two point
SAT difference is almost no difference (i.e., getting two points more/less is almost
a pure luck), the two local groups would be different only in D and balanced in all
covariates, which is a local randomization.

Example 1 has Z = 1[0 ≤ S], but depending on each RD case, Z may take the
opposite form 1[S ≤ 0]; e.g., S is family income, and ‘S ≤ 0’ is the eligibility
condition for an income aid program D. Also, as Example 2 shows, D may not be
binary.
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1220 J. Choi, M. Lee

Although D = Z in Example 1, college admission in reality would depend, not just
on S, but also on other variables, say ε, so that D �= Z . RD with D determined only
by S (thus E(D|S) = D) is ‘ sharp RD (SRD)’ where D = Z is a prime example;
D �= Z is still possible in SRD as in D = Z S. RD with D determined by (S, ε) (thus
E(D|S) �= D) is ‘fuzzy RD (FRD)’; we may write D = D(S, ε). In FRD, D is a “
fuzzy version” of Z . Although there are FRD’s with a non-binary D as in Example
2, there is little loss of generality in considering only binary D because there are
essentially only two levels of S around 0: the treatment group with S = h and the
control group with S = −h.

In RD, D matters for Y through the ‘degree of sharpness’

E(D|0+) − E(D|0−) where E(D|0+) ≡ lim
s↓0 E(D|s)& E(D|0−) ≡ lim

s↑0 E(D|s).

For FRD with a binary D, the degree of sharpness is less than one, whereas it is one in
its SRD version. So far, we explained what RD looks like, and how fuzzy RD differs
from sharp RD. In the rest of this section, we present the main features of RD.

RD local randomization requires a break of E(D|S) at S = 0, differently from
the usual randomization (e.g., flipping a coin) without S. In Example 1, test score S
may affect income Y directly as well as indirectly through D because S has an ability
component. Suppose

E(Y |S) = βd E(D|S) + m(S) (2.1)

where βd is the college entry effect and m(S) is the direct impact of S on Y . But m(S)

can be ignored because m(S) should be continuous at S = 0 (to change little as S
crosses 0) whereas E(D|S) is not: there is no reason for the direct impact of ability on
Y to be discontinuous at S = 0. It is this contrast between the break (i.e., discontinuity)
of E(D|S) and no break (i.e., continuity) of m(S) at S = 0 that identifies βd in (2.1).

For covariates W , a parameter βw, an error U , and i indexing individuals, suppose

Yi = βd Di + W ′
i βw + Ui , i = 1, . . . , N . (2.2)

(2.1) holdswithm(S) = E(W ′|S)βw+E(U |S) if E(W ′|S)βw+E(U |S) is continuous
at S = 0. Since E(U |S) in m(S) is allowed to be a non-trivial continuous function of
S, RD is robust to the “ smooth” endogeneity of D through S, and all smooth effects
of covariates (observed or not) on Y can be ignored in RD as they can be buried in
m(S). Hence, it is enough in RD to consider only (S, Z , D, Y ) with no concern for
the functional form issue on how covariates such as W enter the Y equation.

In FRD with D = D(S, ε), if we try to estimate βd by the least squares estimator
(LSE) ofY on (D, W ) using (2.2), then D may be endogenous due toC O R(ε, U ) �= 0;
this endogeneity of D through ε is different from that through S. But there is an “
automatic instrument” Z for D in FRD, with which instrumental variable estimator
(IVE) can be applied. If (2.1) instead of (2.2) is used for βd estimation, however, then
the endogeneity issue of D due to C O R(ε, U ) �= 0 is mute because E(D|S), not D
itself, appears in (2.1).
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3 Identification

This section addresses RD identification issues. But, before discussing identification,
we have to make sure that D represents a treatment of interest. Whereas there is no
problem in general to call D a treatment of interest in FRD, multiple treatments can
occur together when D = Z in SRD. For instance, if S is age and c = 65, then one
may become eligible for several public assistance programs by turning 65. In this case,
unless there is an extra variable such as ε to characterize D as in FRD, we are bound
to find the effect of the combined treatment defined as the interaction of those multiple
programs at S = 65. We will thus proceed from the premise that D represents a single
treatment of interest.

3.1 Ratio identification

In an “ abstract” formation, RD refers to D and Y related through (2.1). For SRD,
(2.1) becomes E(Y |S) = βd D + m(S) which is a semi-linear model because m(S) is
an unknown (i.e., nonparametric) function. Take lims↓0 and lims↑0 on (2.1):

E(Y |0+) = βd E(D|0+) + m(0+) and E(Y |0−) = βd E(D|0−) + m(0−).

Subtract the latter from the former, and then solve the difference for βd :

βd = E(Y |0+) − E(Y |0−)

E(D|0+) − E(D|0−)
; (3.1)

the unknown m(·) drops out due to m(0+) = m(0−). The break of E(D|S) at S = 0
ensures a non-zero denominator.

The RD ratio identification of βd in (3.1) avoids the unknown m(S) by invoking
the continuity of m(S) at S = 0. This identification result thus applies only to S = 0,
and the identification of single-point effect is thought as a serious limitation of RD.
But, if a model such as (2.2) holds, then βd found at a single point is enough. We
will examine this single-point identification issue further below. A big question for
(3.1) is what happens if the continuity assumption of m(S) is violated, which is to be
discussed in the next subsection.

A better understanding of the ratio (3.1) would come from the following structural
forms (SF): for an error term U ′, a parameter αz and an unknown function μ(S)

continuous at S = 0 , suppose

Y = βd D + m(S) + U ′ and D = αz Z + μ(S) + ε with E(ε|S) continuous at 0.
(3.2)

Substituting the D SF into the Y SF gives the Y reduced form (RF):

Y = βd{αz Z + μ(S) + ε} + m(S) + U ′ = βdαz Z + {βdμ(S) + m(S)} + (βdε + U ′).
(3.3)
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The D SF in (3.2) gives E(D|0+) − E(D|0−) = αz , and the Y RF (3.3) gives
E(Y |0+) − E(Y |0−) = βdαz . Therefore (3.1) states nothing but βd = βdαz/αz , with
αz playing the role of a scaling factor in case E(D|0+) − E(D|0−) �= 1. This shows
that the ratio identification can be viewed as an indirect identification; in contrast, if
βd is identified in the Y SF as in (3.2), it would be a direct identification.

3.2 Identified effects when continuity fails

Onemightwonderwhat happens ifm(S)has abreak at S = 0, contrary to the continuity
assumption. In this case, βd has to be redefined as β̊d to restore the continuity of m(S):

β̊d ≡ βd + m(0+) − m(0−)

E(D|0+) − E(D|0−)
{= βd + m(0+) − m(0−)whenD = Z}; (3.4)

β̊d absorbs them(S) breakmagnitude. Callβd the ‘net effect’, and β̊d the ‘gross effect’.
The proof for (3.4) in the appendix and much of this subsection are new in the RD
literature.

Identifying the gross effect β̊d would be fine if β̊d per se is of interest; otherwise,
it is a failure of identification. To see this point, consider SRD with D = Z , and
imagine a covariate A lurking in m(S) with E(A|S) discontinuous at S = 0. In this
case, β̊d = βd + E(A|0+) − E(A|0−). If A is a post-treatment variable, then β̊d may
be viewed as the total effect consisting of the ‘direct effect’ βd and the ‘indirect effect’
E(A|0+) − E(A|0−) of D through A; e.g., A may be an interaction with Z , say,
A = Z A′ for a variable A′ so that E(A|0+) − E(A|0−) = E(A′|0+). If A is a pre-
treatment variable, however, then the indirect effect interpretation is inappropriate and
the RD identification fails. In this case, we should separate βd from β̊d by explicitly
using A as a regressor as in Y = βd Z + β ′

a A + error .
For a covariate W not causing a break in m(S) because E(W |S) is continuous at

0, there is a trade-off in accounting for W or burying W in m(S). Accounting for
W has the advantage of reducing the model error term variance, but if the W part
is misspecified, then the model error term variance may not go down because the
misspecification error is added, although such a misspecification does not make the
RD estimator inconsistent.

Differently from an observed covariate, an unobserved covariate (i.e., an error term)
is allowed to influence Y only smoothly through E(U |S) in m(S). This may sound
restrictive, but RD’s ability to allow E(U |S) to be a non-trivial function of S is a big
advantage over other study designs that require E(U |S) to be a constant. Not just this,
RD allows D to be endogenous through ε in FRD; in (3.2), D = D(S, ε) is allowed
to be endogenous through C O R(ε, U ′) �= 0 as well as through C O R(S, U ′) �= 0
because Z can instrument for D.

4 Estimators

Rewrite (2.1) as

Y = βd D+m(S)+e, e ≡ Y −E(Y |S)−βd
{

D−E(D|S)
} [ 
⇒ E(e|S) = 0

]
(4.1)
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where m(S) is to be replaced by a (piecewise) polynomial function continuous at
S = 0. Since E(e|S) = 0, LSE can be applied for SRD to (4.1). For FRD with D =
D(S, ε), if D is endogenous through ε, then IVE can be applied with Z instrumenting
for D. Hence, there are LSE and IVE for RD estimation, and both LSE and IVE are
equivalent to sample versions of (3.1), as will be seen shortly.

4.1 LSE for exogenous treatment

Since E(e|S) = 0 in (4.1), S and SZ are exogenous regressors in (4.1). Suppose D is
exogenous, which holds always for SRD, and holds for FRD under C O R(ε, e|S) = 0.
Let m(S) = β0 + β1S + β1z SZ so that

Y = βd D + β0 + β1S + β1z SZ + e;

having β1S + β1z SZ in m(S) is equivalent to having β−S(1 − Z) + β+SZ to allow
different slopes around S = 0. With the LSE of Y on (D, 1, S, SZ), we can estimate
(βd , β0, β1, β1z).

In practice, it is better to use a piecewise cubic (or quartic) m(S) continuous at
S = 0 because, with m(S) better approximated, the local identification at S = 0 can
be expanded for a higher ‘external validity’ of RD. For instance, with m′(S) being the
derivative of m(S),

Y = βd D + β0 + β1S + β2S2 + β3S3 + β1z SZ + β2z S2Z + β3z S3Z + e


⇒ m′(S) = β1 + 2β2S + 3β3S2 + β1z Z + 2β2z SZ + 3β3z S2Z


⇒ m′(0−) = β1 �= m′(0+) = β1 + β1z whereas m(0−) = β0 = m(0+).

(4.2)

In practice, LSE is done typically only for SRD, not for FRD. But, in FRD with
D = D(S, ε), so long as C O R(ε, e|S) = 0, LSE can be applied; there is no reason to
apply IVE in this case, because IVE is inefficient compared with LSE. The efficiency
of the LSE can be much greater, because ε provides an extra variation to D beyond
the “ default” variation due to S. Hence it is recommended to do a (‘Hausman’) test of
equality of the LSE and IVE; if not rejected, use the LSE. The test was also considered
in Bertanha and Imbens (2014).

4.2 IVE for endogenous treatment

Suppose D is endogenous. To be an instrument for D in (4.1), Z should meet three
conditions: (i) excluded from the Y equation, (ii) C O R(Z , e) = 0, and (iii) included
in the D equation. Condition (i) cannot be tested, but it is plausible because Z (i.e.,
the cutoff) should have no direct bearing on Y . Condition (ii) holds automatically
due to E(e|S) = 0. Condition (iii) can be verified by the LSE of D on (1, Z) (or on
(1, W, Z) if W is also used as a regressor): a significant slope of Z indicates (iii).
Note that, differently from C O R(Z , e) = 0 holding by construction in RD, for IVE
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in general, zero correlation between the instrument and the model error term is not
verifiable (and thus only can be argued for).

Before discussing IVE, we start with a more intuitive ‘nonparametric ratio esti-
mator’ for βd in (3.1) that replaces the one-sided limits with local sample averages.
Define N+ ≡ ∑

i 1[Si ∈ (0, h)] and N− ≡ ∑
i 1[Si ∈ (−h, 0)], and

Ê(Y |0+) ≡ 1

N+
∑

i

Yi1
[
Si ∈ (0, h)

]
& Ê(Y |0−) ≡ 1

N−
∑

i

Yi1
[
Si ∈ (−h, 0)

]
.

Define Ê(D|0+) and Ê(D|0−) analogously with Y replaced by D. The ratio estimator
is

β̂d ≡ Ê(Y |0+) − Ê(Y |0−)

Ê(D|0+) − Ê(D|0−)
.

Call β̂d ‘local-constant regression (LCR) estimator’ for a reason to become clear
shortly.

The ratio estimator equals the slope IVE applied to the “ artificial” linear model

Y = βd D + β0 + error (4.3)

with Z instrumenting for D. The equality follows from the ‘Wald estimator form’ of
IVE (e.g., Lee 2005, p.137), as was noted in (Hahn et al. 2001, p. 206). In this sense,
the IVE is a sample version of (3.1). If we apply LSE to (4.3), then the slope LSE
equals Ê(Y |0+) − Ê(Y |0−); in this sense, the LSE is also a sample version of (3.1)
when the denominator of (3.1) is one.

Unfortunately, LCR’s finite-sample bias is large. To see this, suppose βd = 0 and
Y is generated by

Y = β0 + β1S + U with β1 > 0.

Since Y is linearly increasing at S = 0, the ‘left average’ of Y ’s over S ∈ (−h, 0) is
smaller than the ‘right average’ of Y ’s over S ∈ (0, h), resulting in β̂d > 0 = βd . To
overcome this problem, ‘ local linear regression (LLR)’ was proposed by Hahn et al.
(2001): fit a linear line over each local region (−h, 0) and (0, h) to obtain the two
lines’ heights at S = 0; the difference of the two heights is the estimated effect. To
see the LLR idea better, consider

Y = βd D + β0 + β1S + U with β1 > 0


⇒ Y = β0 + β1S + U for S ∈ (−h, 0) & Y = βd + β0 + β1S + U for S ∈ (0, h).

The height at S = 0 from the left model is β0 and that from the right model is βd +β0;
the difference is thus βd .

Although this may look complicated, there exists a simple IVE that gives the same
numerical result, as was noted in Imbens and Lemieux (2008), p. 627: apply IVE to

Y = βd D + β0 + β−S(1 − Z) + β+SZ + error (4.4)
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where D is instrumented by Z . The usual IVE standard errors can be used for inference.
The artificial linear model (4.4) for LLR is a refined version of (4.3) for LCR: m(S)

is “ linear-splinely” approximated in the former while all but ignored with m(S) � β0
in the latter. If cubic terms are used in (4.4), then we get a ‘local cubic regression’ that
is the same as the IVE for (4.2) with Z as an instrument for D. But local polynomial
regressions other than LLR tend to be too variable. Hence, there are essentially two
practical RD estimators: LSE to (4.2) (or its lower/higher order version), and IVE to
(4.4).

4.3 Relationship between LLR and IVE and remarks

For a bandwidth h and a kernel K (e.g., K (·) is the N (0, 1) density), minimize

N∑

i=1

(Di − τ0 − τ1Si )
2K

( Si

h

)
1[0 < Si ] &

N∑

i=1

(Yi − ρ0 − ρ1Si )
2K

( Si

h

)
1[0 < Si ]

for (τ0, τ1) and (ρ0, ρ1). Let the minimizers for the intercepts τ0 and ρ0 be τ̂+
0 and

ρ̂+
0 . Define τ̂−

0 and ρ̂−
0 analogously with 1[0 < Si ] replaced by 1[Si < 0]. Then LLR

is

β̂d,L L R ≡ ρ̂+
0 − ρ̂−

0

τ̂+
0 − τ̂−

0

.

If the uniform kernel K (t) = 1[|t | < 1]/2 is used, then β̂d,L L R is the same as
the IVE for (4.4). Otherwise (i.e., if another kernel is used), β̂d,L L R differs from the
IVE for (4.4). The asymptotic variance of β̂d,L L R with a general kernel K is involved,
as can be seen in Hahn et al. (2001) and Imbens and Lemieux (2008). To avoid
this problem, Otsu et al. (2015) proposed empirical-likelihood-based RD estimators,
where confidence intervals for βd are drawn using pivotal asymptotic χ2 distributions
of likelihood ratios.

While practitioners use almost exclusively the above LSE and IVE/LLR estimators
for RD, there are other estimators as well in the literature (Porter 2003; Calonico et al.
2014; Yu 2015). Also, Calonico et al. (2014) and Feir et al. (2015) addressed better RD
estimator inference using bias correction and weak instrument approach, respectively.

If observed covariates W are to be controlled, β ′
wW or γ ′−W (1−Z)+γ ′+W Z can be

added to (4.2) and (4.4), respectively, where βw and γ ’s are parameters. Alternatively,
residuals such as Y − β̂ ′

W W may be used instead of Y , which essentially nullifies
the presence of W . Using the residuals keeps the data dimension low so that we can
focus on (residual, Z , D, S). Graphical tools to be explained below can be then easily
applied, as W no more appears explicitly.

In nonparametrics, series approximation as in (4.2) is dubbed a ‘global approach’
where the smoothing degree depends on the order of the approximating function. In
contrast, a kernel estimator with a smoothing parameter h is dubbed ‘local’. Such a
distinction, however, becomes blurry in RD, because RD estimation is done using
only local observations around the cutoff. The equivalence of the IVE for (4.4) using
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a series approximation (of the first order) to the LLR when the uniform kernel is used
corroborates this point.

4.4 Bandwidth choice and summary

So far, we have not discussed how to choose the bandwidth h. For this, note that a
local-constant nonparametric kernel estimator for E(Y |S = Si ) without using Yi is

Ê−i (Y |Si , h) ≡
∑

j �=i K
(
(S j − Si )/h

)
Y j

∑
j �=i K

(
(S j − Si )/h

)

where
∑

j �=i is the sum over j = 1, . . . , N except the i th observation. There is no

single best way to choose h, but a good rule of thumb in practice is h = SD(S)N−1/5,
and a more systematic way is to use ‘cross-validation (CV)’ as follows.

The usual CV chooses h by minimizing

∑

i

{
Yi − Ê−i (Y |Si , h)

}2
.

Yi can be used to estimate E(Y |Si ), but CV is based on the idea of predicting Yi with
an estimator as this minimand shows, and it would be “ silly” to use Yi in predicting
Yi ; this is why Ê−i (Y |Si , h) is used in CV. When there might be a break in E(Y |S) at
S = 0, Ê−i (Y |Si , h) can be replaced by

∑
j �=i K

(
(S j − Si )/h

)
1[S j < Si < 0]Y j

∑
j �=i K

(
(S j − Si )/h

)
1[S j < Si < 0] or

∑
j �=i K

(
(S j − Si )/h

)
1[0 < Si < S j ]Y j

∑
j �=i K

(
(S j − Si )/h

)
1[0 < Si < S j ]

(4.5)

depending on whether Si < 0 or 0 < Si . The idea is simple: if Si < 0 , then only the
left observations with S j < Si are used; if 0 < Si , only the right observations with
Si < S j .

In (4.5), a local-constant version is used, and the LLR version for the first term of
(4.5) is the intercept estimator in minimizing with respect to (ρ0, ρ1)

∑

j �=i

{
Y j − ρ0 − ρ1(S j − Si )

}2 · K
( S j − Si

h

)
1[S j < Si < 0].

This CV scheme was used by Ludwig and Miller (2007). Imbens and Kalyanaraman
(2012) considered a variation of the CV scheme (p. 944), and more importantly, they
suggested a theoretically optimal choice of h as reviewed in the appendix. Calonico
et al. (2014) proposed a bias-correction approach for RD inference, where the extra
variability induced by the bias-correcting term is taken into account; they also dis-
cussed choosing optimal bandwidths.
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In summary, for SRD, do LSE to (4.2) or its lower/higher order version; use the
LSE standard errors for inference. For FRD, do LSE to (4.2) or its lower/higher order
version if ε in D is unlikely to make D endogenous, and otherwise do LLR with the
uniform kernel that equals the IVE to (4.4); for inference, use the LSE/IVE standard
errors. For bandwidth, use h = SD(S)N−1/5, or the h chosen by the above CV method;
do all estimation locally using only the observations with S ∈ (−h, h), although we
write “

∑N
i=1” for simplicity.

5 Specification tests

There are various specification tests for RD, but the most important ones are those for
breaks of E(Y |S) and E(D|S), and those for the continuity of m(S).

5.1 Conditional mean breaks

Most RD studies present a graph plotting E(Y |S) vs. S to demonstrate the break of
E(Y |S); no break means βd = 0, or Z having no explanatory power for D (αz = 0 in
(3.2)). For FRD, E(D|S) versus S is also shown because E(D|0+) − E(D|0−) �= 0
is necessary. Informal graphical presentations can be formalized into the following
LSE-based tests.

Consider an artificial linear model analogous to (4.4):

D = ζz Z + ζ0 + ζ−S(1 − Z) + ζ+SZ + error (5.1)

where ζ ’s are parameters. Applying LSE to this, a non-zero slope of Z indicates a
break of E(D|S) at S = 0 , for which the LSE standard errors can be used. The logic
is that ζz equals the intercept break E(D|0+) − E(D|0−) due to Z , whereas the base
intercept is picked up by 1 and the slopes are accounted for by the last two regressors.

As for a break in E(Y |S) at S = 0, consider an artificial linear model analogous to
(5.1):

Y = ξz Z + ξ0 + ξ−S(1 − Z) + ξ+SZ + error (5.2)

where ξ ’s are parameters. A non-zero slope LSE of Z indicates a break of E(Y |S)

at S = 0. The LSE-based tests with (5.1) and (5.2) seem unknown in the literature
despite their simplicity.

Although LSE to (5.1) and (5.2) can be used to test for a break at the known point
0, it is possible that a break may occur somewhere else. Seeing a break where it is not
supposed to be suggests a misspecification, and checking out breaks over a range for
S around 0 can be done with the difference of one-sided kernel regression estimators.
For E(Y |s), plot

L̃Y (s) ≡
∑

i K
(
(Si − s)/h

)
1[s < Si ]Yi

∑
i K

(
(Si − s)/h

)
1[s < Si ] −

∑
i K

(
(Si − s)/h

)
1[Si < s]Yi

∑
i K

(
(Si − s)/h

)
1[Si < s] (5.3)
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versus s. L̃Y (s) has been used to find structural breaks in statistics [e.g., Qiu (2005)],
but hardly so in the RD literature; for structural breaks in general, see, e.g., Breitung
and Kruse (2013), Ciuperca (2014), and the references therein.

Porter and Yu (2015) estimated the unknown cutoff by maximizing L̃Y (s)2 with
respect to s for SRD where the local-constant estimators are replaced by local poly-
nomial estimators; for FRD, L̃Y (s)2 plus the analogous expression with Y replaced
by D is used. They found that the cutoff estimator is super-consistent, converging at
the rate N instead of the usual

√
N . Hence the estimated cutoff is as good as the true

cutoff, and the estimation does not affect the asymptotic distribution of the treatment
effect estimator.

Since L̃Y (s) is for different values of s, the appropriate bandwidth may differ from
the h chosen for s = 0 only. The most practical way to choose h for L̃Y (s) is “
eye-balling” : choose h so that the L̃Y (s) graph is not too smooth nor too jagged. As
for inference, the asymptotic distribution may be derived for L̃Y (s), but confidence
bands based on nonparametric bootstrap resampling from the original sample with
replacement would be adequate in practice. To detect breaks in E(D|s), replace Y in
L̃Y (s) with D.

Turning to the continuity of m(S), since m(S) comes from the conditional means
of the ignored covariates W and U—we will use only U to denote errors in the rest
of this paper—the continuity of E(W |S) and E(U |S) should be checked out. We can
test for breaks in E(W |S) by the LSE to (5.1) with D replaced by W ; Urquiola and
Verhoogen (2009) showed an example where E(W |S) is not continuous at S = 0. As
for the continuity of E(U |S), it is discussed next.

5.2 Score-density continuity at cutoff

Since U is not observed, the continuity of E(U |s) cannot be seen. Instead, necessary
conditions can be tested. Observe

E(U |s) =
∫

u fU |S(u|s)du =
∫

u
fS|U (s|u)

fS(s)
fU (u)du

where fU |S denotes U |S density and fS denotes S density; fS|U and fU are defined
analogously. This shows that the continuity of fS|U (s|u)/ fS(s) at s = 0 is necessary
for the continuity of E(U |s). Since the continuity of fS|U (s|U ) at s = 0 cannot be
tested, only the continuity of fS(s) is to be checked out.

To enhance understanding, recall Example 1 with a discrete U taking on −1 and 1.
Suppose that U stands for ‘socializing well’ and persons with U = −1 try extra hard
to get D = 1 to make up for their lower income due to U = −1; let π ≡ P(U = −1).
Also suppose

fS|U (s| − 1) = 1[0 ≤ s < 1], fS|U (s|1) = φ(s) and φ is a density continuous at 0 :

those with U = −1 attain the scores in [0, 1] whereas those with U = 1 have scores
well spread around 0 with φ. Then
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fS(s) = fS|U (s| − 1)π + fS|U (s|1)(1 − π) = π1[0 ≤ s < 1] + (1 − π)φ(s)


⇒ fS(0−)=(1 − π)φ(0), fS(0+)=π+(1 − π)φ(0)
⇒ fS(0
+) − fS(0−)=π.

Thebreakof fS occurs because thosewithU = −1manipulated their S to “ perfection”
. Now suppose that fS|U (s| − 1) is continuous at 0 but tilted heavily to the right of
0: those with U = −1 could not perfectly manipulate S although they could to a
large extent. Then, fS(0+) − fS(0−) = 0. In principle, RD does not require fS to be
continuous at 0, but it is this concern for manipulating S that prompts testing for the
continuity.

The above example, that is a generalized version of an example in Kim and Lee
(2016), shows that we can identifyπ with fS(0+)− fS(0−). Gerard et al. (2015) called
the individuals withU = −1 “manipulators’, and assuming that all manipulators have
S ≥ 0, they indeed identified π using fS(0+) and fS(0−). Declaring ‘the treatment
effect on the non-manipulators’ as the main parameter of interest, they went on to
bound the effect, and proposed how to estimate the bound and conduct inference.

The easiest way to see the break of fS at 0 is constructing a histogram for fS such
that 0 becomes a boundary point. A smoothed version of the histogram is

f̃S(s) ≡ 1

Nh

∑

i

2K
( Si − s

h

){
1[Si < s < 0] + 1[0 < s < Si ]

};

the part {·} is to use only the left observations (Si < s) when s < 0, and only the
right observations (s < Si ) when 0 < s. With the uniform kernel K ((Si − s)/h) =
1[|Si − s| < h]/2, f̃S(s) becomes

f̂ S(s) ≡ 1

Nh

∑

i

1[s−h < Si < s] if s < 0 &
1

Nh

∑

i

1[s < Si < s+h] if 0 < s.

whereas f̃S(s) and f̂S(s) are constructed with a break at 0 in mind, we may want to
explore unknown break locations. This can be done by plotting

J̃ (s) ≡ 1

Nh

∑

i

2K
( Si − s

h

){
1[s < Si ] − 1[Si < s]} (5.4)

versus s, which is a “ density analog” of L̃Y (s); J̃ (s) is little known in the literature as
L̃Y (s) is. Choosing h and doing inference can be done analogously to what was done
for L̃Y (s).

Whereas the testwith f̃S(s) is a “ local-constant” variety,McCrary (2008) suggested
a two-stage LLR-type test for the break of fS at 0, as reviewed in the appendix. In
the first stage, estimate fS around s = 0 over n intervals using f̂S ; let s1, . . . , sn

be the centers of the histogram intervals. In the second-stage, taking {s j , f̂S(s j )},
j = 1, . . . , n as data (analogous to (X j , Y j ), j = 1, . . . , n), do LLR on the negative
and positive sides separately to see if the two estimated lines meet at s = 0 or not.
Despite the popularity, however, the test requires two bandwidths (one for f̂ S and the
other for LLR), which is a disadvantage. Also the asymptotic distribution was derived
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only for the ‘triangular kernel’ K (t) = (1 − |t |)1[|t | < 1], although it would be
certainly possible to use other kernels for the test.

Otsu et al. (2013) proposed empirical-likelihood-based methods to construct confi-
dence intervals (CI) for fS(0+)− fS(0−). Themethods allowpopular kernels including
the triangular kernel, and by constructing CI’s using the likelihood ratio that follows a
χ2 distribution asymptotically, themethods obviate the need to estimate the asymptotic
variance.

6 RD topics

So far, we examined RD essentials. In practice, there also arise other issues going
beyond the “ basic” RD. This section reviews those RD topics.

6.1 Multiple scores

In a typical RD, a single score crossing a cutoff affects D non-trivially. There are,
however, many RD cases where multiple scores are involved to determine a single
treatment. For instance, multiple test scores crossing cutoffs may be required for
school graduation, and age and pension-contribution-years should cross cutoffs to
receive pension.

‘Multiple-scoreRD for a single treatment’ that is examined in this subsection differs
from ‘single-score RDwith multiple cutoffs’ as in Van der Klaauw (2002) and Angrist
and Lavy (1999), which is easily handled by looking at each cutoff one at a time. The
treatments at the multiple cutoffs may be ordered, and as such, they fall in the domain
of ‘multi-valued (or multiple) treatments’ (see Imbens (2000), Lechner (2001), Uysal
(2015), and the references therein), and are either to be taken as such, or weight-
averaged to come up with a single representative effect (Bertanha 2015). Multiple-
score RD for a single treatment differs also from ‘multiple-score RD for multiple
treatments’ (Leuven et al. 2007; Papay et al. 2011) where each score dictates one
treatment.

When there are two scores S1 and S2—the dominating case in mulitple-score RD—
two cases arise: ‘OR case’ where any score can cross a cutoff to get treated (Jacob
and Lefgren 2004; Matsudaira 2008), and ‘AND case’ where both scores should cross
cutoffs to get treated (Schmieder et al. 2012; Caliendo et al. 2013). But an OR case can
be converted to the AND case simply by “ flipping” the treatment, i.e., by relabeling
the treatment and control groups. Hence, dealing with AND case is enough in two-
score RD. For more than two scores, mixed cases can arise; e.g., given three, only two
may cross the cutoffs to get treated.

There appeared three ways to reduce multiple-score RD to single-score RD. First,
multiple scores are combined to form a single score/index as inVan derKlaauw (2002).
Second, when D = 1[0 ≤ S1, 0 ≤ S2], D becomes 1[0 ≤ S1] on the subpopulation
with 0 ≤ S2, in which case the familiar toolkit for single-score RD can be used; this
has been the dominant approach (Jacob and Lefgren 2004; Lalive 2008; Schmieder
et al. 2012; Caliendo et al. 2013, etc.). This dimension-reduction strategy also works
analogously for more than two scores. Third, defining Sm ≡ min(S1/σ1, S2/σ2) for
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some scale-normalizing constants σ1 and σ2 (Battistin et al. 2009; Clark andMartorell
2014), D becomes 1[0 ≤ Sm] or a fuzzy version of 1[0 ≤ Sm], and we can set up the
following to apply LSE or IVE:

E(Y |Sm) = βm D + β0 + β−Sm(1 − Z) + β+Sm Z .

This can be easily generalized to J scores with Sm = min(S j/σ j , j = 1, . . . , J ).
Instead of these, Imbens and Zajonc (2009) dealt with both multiple-score SRD

and FRD head-on: they discussed identification and estimation with multidimensional
LLR. The main complication with multiple scores is the appearance of a boundary
instead of a cutoff. For instance, with B denoting the treatment and control boundary,
the treatment effect at s ∈ B for FRD is

βd(s) ≡ limν→0 E{Y |S ∈ N+
ν (s)} − limν→0 E{Y |S ∈ N−

ν (s)}
limν→0 E{D|S ∈ N+

ν (s)} − limν→0 E{D|S ∈ N−
ν (s)}

where N+
ν (s) denotes the ‘ν-treated-neighborhood’ of s and N−

ν (s) denotes the ν-
control-neighborhood of s. Imbens and Zajonc proposed also an integrated version of
βd(s):

βd ≡
∫

s∈B

βd(s) fS(s|S ∈ B)∂s =
∫

s∈B βd(s) fS(s)∂s
∫

s∈B fS(s)∂s
.

Tests for the effect heterogeneity along B, the asymptotic distribution of the LLR, and
the optimal bandwidth choice are also shown in Imbens and Zajonc (2009).

Wong et al. (2013) examined two-score OR-case SRD, and Keele and Titiunik
(2015) two-score AND-case SRD where the two scores are latitude and longitude.
These studies were done independently of Imbens and Zajonc (2009), but essentially,
they are special cases of Imbens andZajonc (2009).Choi andLee (2015) also examined
two-score SRD, but their study differs from the other studies because they allowed
‘partial effects’ as follows that were ruled out by Imbens and Zajonc (2009), Wong
et al. (2013) and Keele and Titiunik (2015).

Suppose that a student has to pass both math exam (Z1 = 1) and English exams
(Z2 = 1) to graduate high school (D = Z1Z2 = 1), then it is possible that Z1 and Z2
may affect Y (say, lifetime income) separately from D. In a case like this, one may
postulate

Y = β0 + β1Z1 + β2Z2 + βd D + m(S1, S2) + U

and estimate the partial effects β1 and β2 along with βd . A simple estimator is obtained
by approximating m(S1, S2) polynomially (or with splines). Choi and Lee (2015)
also proposed a nonparametric estimators that takes a form of local ‘difference in
differences’, which is natural because D is the interaction of Z1 and Z2.

6.2 Incompletely observed or discrete score

Sometimes we observe only an error-ridden score S, instead of the genuine score G
determining D; e.g., S = G + V for an error V , where S is a reported income in a
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survey and G is the true income. This is a measurement error (or errors in variable)
problem inRD score. In terms of (3.1), we have the desired ratio (DR) and the available
ratio (AR):

DR ≡ E(Y |G = 0+) − E(Y |G = 0−)

E(D|G = 0+) − E(D|G = 0−)
& AR ≡ E(Y |S = 0+) − E(Y |S = 0−)

E(D|S = 0+) − E(D|S = 0−)
.

Bear inmind that only observingG is problematicwhile D andY are fully observed,
and that D is determined by G, not by S ; if S itself determines D, then there is
no identification problem—a point misunderstood in the literature for a while (see
Cappelleri et al. (1991) and the references therein). Yu (2012) examined identification
and local polynomial estimation for various measurement-error SRD and FRD cases
depending on D determined by G or S, and the measurement error V shrinking toward
zero or not.

First, for a continuously distributed error V , suppose (‘�’ stands for independence)

S = G + V where V � G. (6.1)

This is a classical “ full errors-in-variable ” , as S is a smooth-error-ridden version of
G and ‘V � G’ holds. Lee (2016) showed that E(D|S) has no break at S = 0 under
(6.1) as V smooths G out, and thus (3.1) fails. This is a “ hopeless” case, unless one
is willing to impose strong assumptions as in Hullegie and Klein (2010) where D is
private health insurance,Y is health care utilization,G is the true income and S is a self-
reported income. In contrast to (6.1) with continuous G and V , Pei (2011) assumed
that G and V are discrete with bounded supports to nonparametrically identify the
distribution of G and the treatment effect.

Yanagi (2014) consideredSRDafter rewriting (6.1) as S = G+σ V ′ with SD(V ′) =
1. Yanagi (2014) (as well as Yu 2012) considered

τDS ≡ E(Y |D = 1, S = 0+) − E(Y |D = 0, S = 0−)

that is more informative than E(Y |S = 0+) − E(Y |S = 0−) because G is used
(although not localized) through D. Yanagi (2014) found, with τG ≡ E(Y |G =
0+) − E(Y |G = 0−),

τDS = τG + σ 2 × (entity depending on S, D, Y )

which characterizes the identification error τDS −τG . It is possible to fully identify τG

if auxiliary data are available for σ . For example, a survey on income gives S whereas
σ is announced by the government based on a census.

Second, for an unobserved binary variable R, suppose

S = RG + (1 − R)(G + V ) : (6.2)

G is observed when R = 1, and an error-ridden score G + V is observed otherwise;
“ part errors-in-variable ” (6.2) occurred in Battistin et al. (2009) and Schanzenbach
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(2009). Differently from (6.1), G is observed when R = 1: there are “ truth-tellers
(G = S)” .

Lee (2016) showed

AR = E(Y |G = S = 0+) − E(Y |G = S = 0−)

E(D|G = S = 0+) − E(D|G = S = 0−)
:

although DR is not identified, the effect on the “ truthful margin” G = S = 0 is
identified. The condition ‘G = S’ is reminiscent of ‘compliers’ in Imbens and Angrist
(1994). If (D, Y )� (R, V )|G holds additionally as assumed by Battistin et al. (2009),
then (D, Y )� S|G holds and S thus drops out of the last display to render AR = DR.

Third, suppose S = 0, 1, 2, . . . is a grouped transformation of G:

S =
∑

j

1[G ≥ γ j ] ⇐⇒ S = j iff G ∈ [γ j , γ j+1) for some known γ j ’s. (6.3)

This occurs to yearly rounded-down age (S = ∑
j=1 1[G ≥ j]), or income recorded in

groups due to confidentiality. Dong (2015) listed many applied papers for (6.3) while
proposing a LSE-based estimator under the uniform distribution for the rounding error.

Related to (6.3), Lee and Card (2008) addressed the pure discrete score case S =
G with no measurement error. For this, unless one “ settles” with nearby support
points of the cutoff, extension/interpolation toward the cutoff from those points is
inevitable, which requires a parametric assumption on m(·) in (2.1). Lee and Card
(2008) suggested to test for the parametric model specifications against the saturated
nonparametric model, and use a cluster variance estimator for inference because the
observations at each support point would share the same specification error.

Fourth, a general score model for both continuous and discrete components is

S = RG + (1 − R)
∑

j

1[G ≥ γ j ]. (6.4)

‘Heaping’ (i.e., probability masses despite that the score is supposed to be continuous)
in Almond et al. (2010), Almond (2011) and Barreca et al. (2011, 2016) is an example.
Heaping can occur for many reasons so that the part next to 1 − R can take a form
other than

∑
j 1[G ≥ γ j ] ; e.g., a matter of practice (retiring at 60, working 40h per

week, …), limited precision in measurement, top coding, etc.
One identification strategy facing (6.4) is conditioning on R = 1; this works under

no ‘selection-problem’ R�(G, D, Y ). The opposite strategy is conditioning on R = 0
to turn to (6.3), and then the estimates obtained under R = 1 and R = 0may beweight-
averaged to come up with a single effect. Barreca et al. (2016) recommended plotting
disaggregated data not to miss heaping features and estimating a model for a covariate
W such as

W = α0 + α11[S = γ ] + α2(S − γ ) + error where γ is a heaping point
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to see α1 = 0; if α1 �= 0, then W differs systematically at the heaping point γ .
For instance, with S being birth weight and W income, poor district hospitals may
use scales of poor precision to result in heaping, in which case α1 < 0. A system-
atic difference in W may suggest the same for unobserved variables to result in the
aforementioned selection problem.

6.3 Regression kink (RK)

Recalling (2.1), in ‘regression kink (RK)’ design, ∇E(D|S) is assumed to be discon-
tinuous at 0 whereas ∇m(S) is continuous. For instance, Kim and Lee (2016) made
use of the fact that marginal income tax rate has breaks/jumps at income (S) cutoffs in
income tax schedule, which implies the average tax rate having slope breaks at those
cutoffs because it is based on the integral of the marginal tax rate. Using this, Kim and
Lee (2016) estimated labor supply elasticity with respect to after-tax income.

Simonsen et al. (2015) estimated the price elasticity of prescription drug demand
using RK, where the price that each individual faces differs depending on the accu-
mulated prescription drug purchase amount S: if S + P̄ crosses a threshold c where
P̄ is the shelf price for the current purchase, then the out-of-pocket price D changes
from P̄ to a subsidized price (e.g., to 0.5P̄). This results in D decreasing linearly as
a function of S over the range c − P̄ ≤ S < c, and slope breaks occur, going in and
out of this range.

Define the right and left derivative at 0:

∇E(Y |0+) ≡ lim
ν→0+

E(Y |S = ν) − E(Y |S = 0)

ν
,

∇E(Y |0−) ≡ lim
ν→0+

E(Y |S = 0) − E(Y |S = −ν)

ν
.

The difference of the two one-sided derivatives of (2.1) at 0 is, as∇m(0+) = ∇m(0−),

∇E(Y |0+) − ∇E(Y |0−) = βd · {∇E(D|0+) − ∇E(D|0−)
}


⇒ βd = ∇E(Y |0+) − ∇E(Y |0−)

∇E(D|0+) − ∇E(D|0−)
. (6.5)

As in RD, sharp RK (SRK) refers to D determined only by S, and fuzzy RK (FRK)
refers to D = D(S, ε). The derivation leading to (6.5) for SRK was shown in Nielsen
et al. (2010), p. 214, where the denominator in (6.5) becomes a known constant.
For instance, D = αs Z S for a parameter αs �= 0 makes the denominator of (6.5)
αs − 0 = αs , although E(D|S) is continuous at 0.

For estimation of FRK, Card et al. (2012) showed that βd can be estimated by the
slope η̂�

1 of D in the IVE applied to (η’s are parameters)

Y = η0 + η1S + η�
1 D + error (6.6)
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with D instrumented by Z S (not by Z ); the published version (Card et al. 2015) of
Card et al. (2012) discussed only local polynomial estimators. For sharp RK, apply
LSE to (6.6).

In RK, βd represents the effect of D on Y , not the derivative of the effect; it is just
that we identify βd using the derivatives in RK. For instance, Y = βd D + m(S) + U
may hold where E(D|S) and m(S) are subject to the above RK conditions. In contrast,
letting the cutoff be c and writing the RD effect at c as βd(c) , Dong and Lewbel (2015)
looked at the derivative β ′

d(c) for a number of reasons. First, we may be interested in
the effect constancy to test H0 : β ′

d(c) = 0. Second, the sign of β ′
d(c)will tell whether

the effect will become smaller or larger for those with S a little smaller or larger than
c. Third, β ′

d(c) shows the effect of changing the cutoff c. Fourth, knowing derivatives
expands the RD external validity by extrapolating the estimated effect away from the
cutoff.

An estimator for βd(c) in SRK can be an estimator for β ′
d(c) in SRD, because

both are sample versions of ∇E(Y |c+)−∇E(Y |c−). An estimator for βd(c) in FRK,
however, cannot be an estimator for β ′

d(c) in FRD in general, because the former is a
sample version of (6.5) whereas the latter is a sample version of the derivative of (3.1)
with cutoff c. A better understanding on this can be gained by the following.

The equation (6.5) and the ensuing estimation in (6.6) are based on the premise that
there is no break in E(D|S) at c. What if there is a break in E(D|S) at c and yet we
use (6.5)? This question is addressed for binary D by Dong (2014) who showed

∇E(Y |c+) − ∇E(Y |c−)

∇E(D|c+) − ∇E(D|c−)
= βd(c) + β ′

d(c)
E(D|c+) − E(D|c−)

∇E(D|c+) − ∇E(D|c−)
.

This reveals how the RK estimand (6.5) with cutoff c is related to βd(c) and β ′
d(c). If

β ′
d(c) = 0, then both (6.5) and RD estimate the same parameter βd(c). This opens up

the possibility to use both RD and RK in estimating βd(c). Since RD estimators are
more efficient than the RK estimators, asymptotically, there will be no gain in using
both and combining them, although there would be some gain in finite samples. Dong
(2014) suggested IVE with all of S, Z and SZ as instruments for D under β ′

d(c) = 0.
The resulting IVE works if there is a break in either E(D|S) or ∇E(D|S) .

6.4 Quantile RD and external validity

So far we examined mean-based RD, and one may wonder if there exists a quantile-
based RD. Indeed, Frandsen et al. (2012) proposed a quantile RD. Although we have
not used ‘potential treatments/responses’ up to now because RD can be explained
without them, we now introduce them to explicate Frandsen et al. (2012). Consider
a fuzzy D, and imagine potential treatments (D0, D1) corresponding to Z = (0, 1)
and potential responses (Y 0, Y 1) corresponding to D = 0, 1; the relationship between
(D0, D1) and Z is analogous to that between (Y 0, Y 1) and D . Given these, Frandsen
et al. (2012) proposed ‘complier quantile effects’ as follows.

Observe

E(Y 1|complier) = E(Y D|Z = 1) − E(Y D|Z = 0)

E(D|Z = 1) − E(D|Z = 0)
(6.7)
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which was proven by Abadie (2002), where ‘compliers’ are those with (D0 =
0, D1 = 1). Replacing Y in (6.7) with 1[Y ≤ y] and then localizing at S = 0
gives FY 1|Complier,S=0(y) where FY 1|Complier,S=0(·) denotes the distribution function
of Y 1 given (complier, S = 0), from which quantiles can be found. Replacing D with
1 − D in (6.7) and proceeding analogously gives FY 0|Complier,S=0(y), from which
quantiles can be found. Then the corresponding quantile differences give complier
quantile effects.

For SRD with D = Z , under the continuity of E(Y 0|S) at 0, (3.1) becomes ‘the
effect on the just treated’:

βd = E(Y |0+) − E(Y |0−) = E(Y 1|0+) − E(Y 0|0−) = E(Y 1 − Y 0|0+). (6.8)

Denote a quantile of Y |S as q(Y |S). In quantile RD, what can be identified is not
q(Y 1−Y 0|0+) as in (6.8), but onlyq(Y 1|0+)−q(Y 0|0+) at best. This restriction should
be borne in mind; see Lee (2000), however, for a limited scope to find q(Y 1 −Y 0|0+).

In contrast to (6.8), due to Imbens and Angrist (1994), (3.1) for FRD becomes the
effect on ‘the just treated compliers’:

βd = E(Y 1 − Y 0|0+, complier) (6.9)

Hence, the RD identification only on the cutoff/margin 0 in (6.8) becomes further
restricted to the “ marginal compliers” .

In an effort to increase the external validity of RD, Bertanha and Imbens (2014)
explored if the identified RD effect is independent of the individual type such as
complier, ‘always taker’ (D0 = D1 = 1) and ‘never taker’ (D0 = D1 = 0). They
recommended plotting E(Y |D = 0, S) around S = 0 to see if the untreated compliers
(D = 0, S = 0−) differ from the never takers (D = 0, S = 0+); also, an analogous
plot of E(Y |D = 1, S) will reveal the difference between the always takers (D =
1, S = 0−) and the treated compliers (D = 1, S = 0+) around S = 0. If no difference,
then the qualifier ‘complier’ may be dropped from (6.9) for the external validity across
the individual types.

Angrist and Rokkanen (2015) found another way to enhance the external validity
of RD. To see the idea, consider SRD with D = Z . They assumed the existence
of covariates X such that (we use � for simplicity, although Angrist and Rokkanen
(2015) used mean independence)

Y d �S|X ⇐⇒ Y d �η|X, wi th S (hence D) determined by (X, η) for an error η:

the potential responses are independent of the unobserved part of S given X , which
implies Y d � D|X . Then

E(Y |S, X, D = d) = E(Y |X, D = d), d = 0, 1.

This implication can be tested, e.g., by parametrizing E(Y |S, X, D = d) = βds S +
β ′

dx X and checking if βds = 0. More important is that
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E
{

E(Y |X, D = 1) − E(Y |X, D = 0) |S = s
}

(under 0 < E(D|X) < 1)

= E
{

E(Y 1|X) − E(Y 0|X) |S = s
}

(due to Y d � D|X )

= E
{

E(Y 1|S, X) − E(Y 0|S, X) |S = s
} = E(Y 1 − Y 0|S = s). (6.10)

Hence E(Y 1 − Y 0|S = s), not just the effect at the cutoff, is identified by (6.10).
Angrist and Rokkanen (2015) also considered FRD after strengthening Y d � S|X to
(Y 0, Y 1, D0, D1) � S|X ; for FRD, in essence, ‘complier with S = s’ replaces S = s
in the conditioning set.

7 Empirical illustration

In this section, we apply some of the RD estimators and tests introduced so far to
a data set used in Angrist and Lavy (1999) to find effects of class size on students’
achievement; S is the number of the enrolled students. This example may not be ideal
as S is discrete (integer-valued), but it also reveals problems in RD, which is not
necessarily a bad thing.

The ‘Maimonides rule’ in Israel public schools limits class size to 40; if 41 students,
then there should be two classes; if 81, then there should be three classes, and so on.
Hence 40 or 41, 80 or 81, 120 or 121,... are break points. But the actual class sizes
did not exactly follow the rule. Figure 1 shows the actual and predicted class sizes by
the Maimonides rule around the cutoff 40/41. The actual class size tends to be smaller
than the predicted size (thus FRD), as some schools could afford to add classes before
reaching the limit.

Fig. 1 Class size versus enrolment
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Table 1 Data description
Variable Mean (SD) Min, max

Math score (math) Y 65.5 (10.0) 27.7, 93.7

Reading score (read) Y 73.2 (8.45) 34.8, 91.6

Class size D 27.3 (6.47) 5, 47

Enrolment S 51.2 (17.7) 5, 79

Proportion disadvantaged W 0.18 (0.16) 0.00, 0.76

Table 2 Class size effect

Without W With W

S LSE (SE) IVE (SE) LSE (SE) IVE (SE)

Math

39 0.89(0.18)∗∗ −0.30(0.32) 0.49(0.16)∗∗ −0.21(0.21)

40 0.88(0.18)∗∗ −0.51(0.28)+ 0.48(0.16)∗∗ −0.32(0.18)+
41 0.84(0.18)∗∗ −0.68(0.46) 0.49(0.16)∗∗ −0.28(0.24)

42 0.78(0.19)∗∗ −2.45(1.11)∗ 0.49(0.16)∗∗ −0.64(0.37)+
Read

39 0.71(0.19)∗∗ −0.45(0.33) 0.30(0.14)∗ −0.40(0.17)∗
40 0.68(0.18)∗∗ −0.62(0.29)∗ 0.25(0.14)+ −0.49(0.16)∗∗
41 0.61(0.18)∗∗ −0.62(0.46) 0.26(0.14)+ −0.45(0.21)∗
42 0.50(0.18)∗∗ −2.50(1.14)∗ 0.15(0.14) −0.69(0.29)∗

∗, ∗∗, + Significance at 99, 95, 90%

The data were collected in June 1991 on enrolment S, class size D , proportion
of disadvantaged students W and average test score Y for mathematics and reading.
Angrist and Lavy (1999) used third to fifth grade samples and several cutoffs, but we
will focus only on c = 40/41 for fifth grade. The unit of observations is a class, and
N = 1127; the descriptive statistics are in Table 1. The single covariate ‘proportion
disadvantaged’W reflects family income level. SeeAngrist andLavy (1999) for details
on the data.

The effects of class size on test scores are in Table 2. The left half is for LSE to (4.2)
and IVE to (4.4),whereas the right half addsβwW to (4.2) andγw−W (1−Z)+γw+W Z
to (4.4) to explicitly account for W ; this is done because E(W |S) has a break at 42 as
will be seen shortly. We evaluate the effects over S ∈ [39, 42] because many breaks
occur over these points, which can be either due to the discrete nature of S or E(·|S)

having genuine breaks. The bandwidth was chosen by CV using (4.5).
In Table 2, LSE is significantly positive for all S with the effect ranging over

0.50–0.89 before W is used; once W is used, however, the effect drops to 0.15–
0.49. These positive effects that are likely due to the D endogeneity through ε are,
however, counter-intuitive. IVE is immune to this endogeneity problem, and it gives
negative effects ranging over −0.30 to −2.5 before W is used; about a half of them
are significant. But once W is used, IVE drops to −0.21 to −0.69, and the effects on
reading are significant for all S. These changes due to W have two reasons: omitted
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Table 3 LSE-based break tests at known points: estimate (SE)

S E(D|S) E(Math|S) E(Read|S) E(W |S)

37 −3.44(1.10)∗∗ −3.00(2.01) −0.62(1.48) 0.06(0.03)∗∗
38 −6.74(0.95)∗∗ −0.26(1.89) 1.40(1.39) 0.03(0.03)

39 −7.76(1.04)∗∗ 2.32(1.60) 3.36(1.32)∗∗ 0.05(0.03)∗
40 −8.52(1.13)∗∗ 4.36(1.47)∗∗ 5.21(1.28)∗∗ 0.02(0.02)

41 −4.62(1.10)∗∗ 3.15(1.26)∗ 2.88(1.10)∗∗ 0.01(0.02)

42 −2.78(1.09)∗∗ 6.81(1.81)∗∗ 6.58(1.31)∗∗ −0.08(0.02)∗∗
43 −0.73(1.03) 6.96(1.19)∗∗ 3.48(1.14)∗ −0.06(0.02)∗∗
44 −0.15(1.03) 5.02(1.08)∗∗ 2.42(0.99) −0.05(0.02)∗∗
45 0.85(1.02) 3.03(1.01)∗∗ −0.25(0.91) −0.003(0.02)

W may make D endogenous (this affects only LSE), and W has a break near c (this
affects both LSE and IVE). Notice that the SE of IVE is 2–4 times greater than the SE
of LSE, and that the SE’s of LSE and IVE drop by controlling W .

To test breaks of E(·|S), we apply LSE to (5.2) and (5.1) for Y and D to estimate the
slope of Z with the samebandwidth as used forTable 2;we also test breaks for E(W |S).
Due to the problem of the S discreteness and the fuzziness in D as Fig. 1 shows, the
LSE-based tests indicate many breaks, for which the test results over S ∈ [37, 45] are
presented in Table 3. There, E(D|S) have breaks in many points with the largest at
40; E(Math|S) also have many breaks with the largest at 42 and 43; E(Read|S) have
a couple of breaks with the largest break at 40 and 42; finally, E(W |S) have breaks at
42, 43 and 44, which may make both LSE and IVE inconsistent if W is unaccounted
for. It is not clear yet how this multiple break problem should be handled; at least,
breaks at nearby points around c should be checked out.

Figure 2 presents L̃Math(s), L̃Read (s), L̃ D(s) and L̃W (s) in (5.3), where the N (0, 1)
density kernel is used and h = SD(S)N−1/5 is used as a rule of thumb; in each
graph, the two dashed lines form (point-wise) 95% confidence intervals obtained
by nonparametric bootstrap. Although the nonparametric bootstrap may look ad-hoc,
judging by s at which the confidence intervals exclude 0, Fig. 2 agrees well with Table
3 in terms of the break locations.

For the continuity of fS , we obtained J̃ (s) in (5.4). Since the observation unit
is a class, not a school, the schools with enrollment larger than 40 appear multiple
times in the data, which could generate an artificial break in fS . Hence we picked
only one observation randomly from each school for J̃ (s). Figure 3 shows that fS has
multiple breaks around 40, which may be viewed as breaks of E(U |S) to violate the
RD premise.

8 Conclusions

We reviewed regression discontinuity (RD) to show its essentials. We did the review
following the logical order: identification, estimation, and specification tests; also
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Fig. 3 Density break versus enrolment

some RD topics were examined and an empirical illustration was provided. Since RD
provides local randomization which is not easily available in other study designs, the
applicability of RD is high for observational data so long as the treatment of interest
meets (part of) the RD requirement: an underlying continuous variable crosses an
institutional/legal cutoff to get treated. This bodes well for RD, as there are many such
examples in laws, policies and programs in the world.
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Appendix

Identified RD effect when continuity fails

Rewrite (2.1) as

E(Y |S) = β̊d E(D|S)+ m̊(S)where m̊(S) ≡ m(S)− m(0+) − m(0−)

E(D|0+) − E(D|0−)
E(D|S).

It holds that

E{m̊(S)|0+} = m(0+) − m(0+) − m(0−)

E(D|0+) − E(D|0−)
E(D|0+),

E{m̊(S)|0−} = m(0−) − m(0+) − m(0−)

E(D|0+) − E(D|0−)
E(D|0−).
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Then E{m̊(S)|S} is continuous at S = 0 because

E{m̊(S)|0+} − E{m̊(S)|0−} = m(0+) − m(0−) − {m(0+) − m(0−)} = 0.

Optimal plug-in bandwidth

The optimal bandwidth hopt proposed by Imbens and Kalyanaraman (2012) for SRD
is

hopt = Ck

[
σ̂ 2(0−) + σ̂ 2(0+)

f̂S(0)[{m̂(2)(0+) − m̂(2)(0−)}2 + r̂− + r̂+]

]1/5

N−1/5

where Ck is a kernel-dependent constant (5.40 for the uniform kernel and 3.44 for the
triangular kernel K (t) = max(0, 1− |t |) = (1− |t |)1[|t | < 1]), f̂S(0) is an estimator
for fS(0), σ̂ 2(s) is an estimator for V (Y |s), m̂(2)(s) is an estimator for the second
derivative of E(Y |s), and r̂− and r̂+ are functions of σ̂ 2(0−) and σ̂ 2(0+). Obtain hopt

with the following three steps.
First, using a pilot rule-of-thumb bandwidth h1 = 1.84 · SD(S) · N−1/5 for the

uniform kernel, let Q−
1i ≡ 1[−h1 < Si < 0] and Q+

1i ≡ 1[0 < Si < h1] and

σ̂ 2(0−) ≡ 1

N1− − 1

∑

i

Q−
1i (Yi − Y

−
1 )2 where N1− ≡

∑
Q−

1i and Y
−
1 ≡ 1

N1−

∑

i

Q−
1i Yi ,

σ̂ 2(0+) ≡ 1

N1+ − 1

∑

i

Q+
1i (Yi − Y

+
1 )2 where N1+ ≡

∑
Q+

1i and Y
+
1 ≡ 1

N1+

∑

i

Q+
1i Yi ,

f̂S(0) = N1− + N1+
2Nh1

.

Second, set the second pilot bandwidths:

h+
2 =3.56

[
σ̂ 2(0+)

f̂ S(0){m̂(3)(0)}2
]1/7

N−1/7
1+ and h−

2 =3.56

[
σ̂ 2(0−)

f̂ S(0){m̂(3)(0)}2
]1/7

N−1/7
1−

where m̂(3)(0) for the third derivative of E(Y |0) is to be obtained as 6γ̂4 from the LSE
to

Y = γ0 + γ1Z + γ2S + γ3S2 + γ4S3 + error.

Let Q−
2i ≡ 1[−h−

2 < Si < 0] and Q+
2i ≡ 1[0 < Si < h+

2 ]. Apply LSE to

Q−
2 Y = Q−

2 (λ−
0 + λ−

1 S + λ−
2 S2 + U−) and Q+

2 Y = Q+
2 (λ+

0 + λ+
1 S + λ+

2 S2 + U+)

to obtain m̂(2)(0−) = 2λ̂−
2 and m̂(2)(0+) = 2λ̂+

2 .
Finally, obtain

r̂− = 2160 · σ̂ 2(0−)

N2−(h−
2 )4

& r̂+ = 2160 · σ̂ 2(0+)

N2+(h+
2 )4

where N2− ≡
∑

i

Q−
2i & N2+ ≡

∑

i

Q+
2i
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and then hopt . Imbens and Kalyanaraman (2012) proposed an optimal bandwidth for
FRD in their Eq. (2.4), but then noted that the above hopt for SRD would be adequate
even for FRD, as it is based on the numerator estimation in FRD.

LLR-type score-density continuity test

Let h1 be the interval size for the first-stage histogram of the McCrary (2008) test,
and for an even number n, there are n/2 intervals to be constructed on either side of
0. Consider left and right intervals of width h1 around 0:

[− jh1, −( j −1)h1), j = n

2
,

n

2
−1, . . . , 1 & [( j −1)h1, jh1), j = 1, 2, . . . ,

n

2
.

The midpoints of these intervals are

G j ≡ −( j − 0.5)h1, j = n

2
,

n

2
− 1, . . . , 1 & ( j − 0.5)h1, j = 1, 2, . . . ,

n

2
;

‘G’ stands for grid points and there are n midpoints. Let R j denote the histogram
height at G j ; (R j , G j ), j = 1, . . . , n are to be taken as “ observations” in the second
stage.

The test is based on ln ϕ̂0 − ln ψ̂0 that come from the LLR intercept estimates in
(h2 is a second-stage bandwidth)

min
ϕ0,ϕ1

n∑

j=1

(R j − ϕ0 − ϕ1G j )
2K (

G j

h2
)1[0 < G j ],

min
ψ0,ψ1

n∑

j=1

(R j − ψ0 − ψ1G j )
2K (

G j

h2
)1[G j < 0].

Specifically, the test statistic is

θ̂ ≡ ln f̂ + − ln f̂ − where f̂ + ≡
∑

j

K
(G j

h2

)
1[0 < G j ] H+

2 − H+
1 G j

H+
2 H+

0 − (H+
1 )2

R j ,

f̂ − ≡
∑

j

K
(G j

h2

)
1[G j < 0] H−

2 − H−
1 G j

H−
2 H−

0 − (H−
1 )2

R j ,

H+
k ≡

∑

j

K
(G j

h2

)
1[0 < G j ]G j

k and H−
k ≡

∑

j

K
(G j

h2

)
1[G j < 0]G j

k .

As for the asymptotic distribution, the proposition inMcCrary (2008), p.702) is that,
for the triangular kernel, under h2 → 0, Nh2 → ∞, h1/h2 → 0, and h2

2

√
Nh2 →
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B ∈ [0,∞),

√
Nh2(θ̂ − θ) � N

{
B

20

(
− f +′′

f + − − f −′′

f −

)

,
24

5

(
1

f + + 1

f −

)}

where f + ≡ fS(0+), f − ≡ fS(0−), θ ≡ ln f + − ln f − and ‘′′’ denotes the second
derivative. With under-smoothing h2

2

√
Nh2 → 0, the asymptotic bias can be ignored.

In practice, adopt the under-smoothing to ignore the asymptotic bias. Choosing two
bandwidths h1 and h2 is a problem. McCrary (2008) stated that the choice of h1
does not matter much whereas the choice of h2 does, which is questionable though;
(McCrary 2008, p. 705) suggested h1 = 2SD(S)N−1/2 (then h2 may be chosen by
visual inspection).
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