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Abstract Tests for error autocorrelation (AC) are derived under the assumption of
independent and identically distributed errors. The tests are not asymptotically valid if
the errors are conditionally heteroskedastic. In this article we propose wild bootstrap
(WB) Lagrange multiplier tests for error AC in vector autoregressive (VAR) models.
We show that the WB tests are asymptotically valid under conditional heteroskedas-
ticity of unknown form. WB tests based on a version of the heteroskedasticity-
consistent covariance matrix estimator are found to have the smallest error in rejection
probability under the null and high power under the alternative. We apply the tests
to VAR models for credit default swap prices and Euribor interest rates. An impor-
tant result that we find is that the WB tests lead to parsimonious models while the
asymptotic tests suggest that a long lag length is required to get white noise residuals.

Keywords Autocorrelation · Conditional heteroskedasticity · Heteroskedasticity-
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1 Introduction

It is good practice to check the adequacy of an estimated time series model by testing
for error autocorrelation (AC), heteroskedastic errors and autoregressive conditional
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heteroskedasticity (ARCH) errors, among others. Tests are commonly performed inde-
pendent of each other. Thus, in testing for errorACone assumes that heteroskedasticity
and ARCH are not present. Similarly, in testing for ARCH errors one assumes that
error AC is not present.

Standard tests for error AC are derived under the assumption of independent and
identically distributed (IID) errors. Well-known examples of such tests are portman-
teau tests and Lagrange multiplier (LM) tests (Breusch 1978; Godfrey 1978, 1991).
The tests are not asymptotically valid if the errors are conditionally heteroskedastic.
Diebold (1986) shows that in the presence of ARCH errors, portmanteau tests for error
ACdo not have standard asymptotic distributions. Furthermore, as shown byBera et al.
(1992), the expression for the information matrix in LM tests for error AC depends
on the ARCH parameters. Consequently, standard LM tests will be misleading if the
presence of ARCH is neglected. Bera et al. (1992) derive LM tests for error AC based
on transformed residuals obtained by dividing the residuals by an estimate of the con-
ditional standard deviation. This requires the form of conditional heteroskedasticity
to be known. Typically, a GARCH process is assumed, but there is no guarantee that
it provides an adequate description of the conditional heteroskedasticity. Moreover,
implementation of their tests requires reliable estimates of the GARCH parameters,
whichmay be difficult to obtain (Gonçalves and Kilian 2004). Further difficulties arise
in the multivariate case. Estimating the parameters of multivariate GARCH models is
substantially more complicated than estimating the parameters of univariate GARCH
models (see e.g. Engle and Kroner 1995).

There is a lot of empirical evidence against the assumption of IID errors in time
series models of economic and financial variables. The results of Hafner and Herwartz
(2000) indicate conditional heteroskedasticity in stock returns. Gonçalves and Kilian
(2004) summarise the evidence against IID errors in univariate autoregressive models.
In the context of vector autoregressive (VAR) models, Hafner and Herwartz (2009)
present evidence of conditional heteroskedasticity in systems of inflation expectations.
Ahlgren and Catani (2014a) document evidence of strong persistence in volatility in
VARmodels for credit default swap (CDS) prices and credit spreads in the form of con-
stant conditional correlation generalised autoregressive conditional heteroskedasticity
(CCC-GARCH) errors.

Tests for error AC which are robust to heteroskedasticity of unknown form exist
(Kyriazidou 1998;Whang 1998). The tests are quite cumbersome to perform and have
not been much used. In contrast to these tests, heteroskedasticity-consistent covari-
ance matrix estimators (HCCMEs) (Eicker 1963; White 1980) while retaining the
convenience of least squares (LS)-based tests lead to LM tests for error AC which
are asymptotically valid under conditional heteroskedasticity. However, as shown by
MacKinnon and White (1985), and Davidson and Flachaire (2008) in the context
of regression models with heteroskedastic errors, HCCME-based tests can be seri-
ously size-distorted in finite samples. Hafner andHerwartz (2009) suggestmultivariate
HCCME-based tests for parameter restrictions in VARmodels with conditionally het-
eroskedastic errors.

VARmodels have become standard tools for studyingmacroeconomic and financial
time series (see e.g. Breitung et al. 2010; Lütkepohl 2006, 2010). Multivariate LM
tests for error AC are frequently used in such models (see e.g.Lütkepohl 2006). The
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likelihood ratio (LR) test for cointegration rank was derived by Johansen (1996) in the
VARmodel with IID errors. Brüggemann et al. (2006) show that LM tests for error AC
are valid in integrated and cointegrated VARmodels with IID errors. The LM statistic
has the same asymptotic distribution as in stationary VAR models. To the best of our
knowledge, multivariate LM tests for error AC in VAR models which are valid when
the errors are conditionally heteroskedastic are not available.

Bootstrap methods for inference in VAR models have been developed, see e.g.
Kilian (1998a, b), Kilian (1999), Lütkepohl (2000, 2013), Benkwitz et al. (2001),
Lütkepohl et al. (2015) for impulse response analysis, and for cointegration rank
determination, van Giersbergen (1996), Swensen (2006, 2009), Ahlgren and Antell
(2008), Cavaliere et al. (2012). Inference based on the conventional IID bootstrap may
be misleading in the presence of (conditional) heteroskedasticity.

To overcome the problem with (conditional) heteroskedasticity, Wu (1986) and
Mammen (1993) proposed the wild bootstrap (WB). Hafner and Herwartz (2000)
investigate WB procedures for autoregressions under heteroskedasticity. WB proce-
dures for stationary autoregressions with conditional heteroskedasticity are proposed
by Gonçalves and Kilian (2004, 2007). Godfrey and Tremayne (2005) report sim-
ulation results on WB tests for error AC in dynamic regression models. Horowitz
et al. (2006) propose a block bootstrap procedure for estimating the distribution of
the Box-Pierce statistic when the errors are uncorrelated but not independent. David-
son and Flachaire (2008) show that the WB improves the finite-sample properties
of HCCME-based tests in regression models. Xu (2008) considers WB inference in
autoregressions with non-stationary volatility. In a multivariate context, Hafner and
Herwartz (2009) propose a fixed-designWBprocedure to test parameter restrictions in
VARmodels that is robust under conditional heteroskedasticity of unknown form.Cav-
aliere et al. (2010a, b, 2014) considerWBprocedures for determining the cointegration
rank in heteroskedastic VAR models. Jouini (2010) finds that WB tests for structural
change have good size properties under conditional heteroskedasticity. Baltagi et al.
(2013) propose a WB F-test for cross-sectional dependence in panel factor models,
where large dimensions and heteroskedasticity cause asymptotic tests to be unreliable.
Finally, Brüggemann et al. (2014) extend theWB procedures of Gonçalves and Kilian
(2004) to the case of stationary VARmodels. Brüggemann et al. (2014, 2015) consider
a residual-based moving block bootstrap procedure for impulse response analysis in
VAR models with conditional heteroskedasticity of unknown form.

In this articlewe proposeWBLagrangemultiplier tests for errorAC inVARmodels.
We show that theWB tests are asymptotically valid under conditional heteroskedastic-
ity of unknown form.We consider a number of possible forms of theHCCMEproposed
in MacKinnon and White (1985), and investigate the finite-sample properties of the
tests by Monte Carlo simulations. The simulation experiments provide evidence that
the asymptotic tests for error AC are severely oversized, whereas HCCME-based tests
are undersized and have low power in the presence of strong persistence in volatility
in the form of ARCH errors. The WB tests perform well when the errors are condi-
tionally heteroskedastic. TheWB tests based on a version of the HCCME proposed by
MacKinnon and White (1985) have the smallest error in rejection probability under
the null and high power under the alternative.
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In two empirical applications, we consider asymptotic and WB tests for error AC
in VAR models for credit default swap (CDS) prices and Euribor interest rates. Tests
for error AC are frequently used as a criterion for lag length determination in VAR
models (see e.g. Lütkepohl 2006). We therefore apply the tests to determine the lag
length in the VAR models. An important result that we find is that the WB tests lead
to parsimonious models while the asymptotic tests suggest that a long lag length is
required to get white noise residuals.

The remainder of the paper is organised as follows. LM tests for error AC in VAR
models are presented in Sect. 2. The implementation of WB tests for error AC is
considered in Sect. 3. The results of a Monte Carlo study on the size and power of
the tests are presented in Sect. 4. Empirical applications to CDS prices and Euribor
interest rates follow in Sect. 5. Conclusions are given in Sect. 6. Proofs are presented
in the Appendix.

2 Tests for error autocorrelation

We consider LM tests for error AC in VAR models for stationary time series variables
and vector error correction models (VECMs) for integrated and cointegrated time
series variables.

2.1 Tests in stationary VAR models

The K -dimensional vector of I (0) time series variables yt is assumed to be generated
by a vector autoregressive (VAR) model of order p:

yt = A1yt−1 + · · · + Apyt−p + ut , t = 1, . . . , T . (1)

Here A1, . . . ,Ap are (K × K ) parameter matrices.
The VAR(p) model can be written compactly as

Y = BZ + U, (2)

where Y = (y1, . . . , yT ) and U = (u1, . . . ,uT ) are (K × T ) matrices, Z =
(Z0, . . . ,ZT−1) is a (Kp × T ) matrix, where Zt = (y′

t , . . . , y
′
t−p+1)

′ and B =
(A1, . . . ,Ap) is a (K × Kp) matrix. The least squares (LS) estimator of B is
̂B = YZ′(ZZ′)−1 and the residuals are ̂U = Y − ̂BZ.

For deriving the asymptotic distribution of the LS estimator ̂B and LS-based sta-
tistics, it is often assumed that the error process {ut } is IID with mean zero, and
nonsingular and positive definite covariance matrix �u. In the following, we assume
that the errors {ut } are conditionally heteroskedastic of unknown form. More specifi-
cally, the following assumption from Brüggemann et al. (2014) is made [Assumption
2.1 in Brüggemann et al. (2014)]. The assumption is the multivariate analogue of
Assumption A in Gonçalves and Kilian (2004).

Assumption 1 (i) E(ut |Ft−1) = 0 almost surely, where Ft−1 = σ(ut−1,ut−2, . . .)

is the σ -field generated by {ut−1,ut−2, . . .}.
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(ii) E(utu′
t ) = �u exists and is positive definite.

(iii) limT→∞ T−1 ∑T
t=1 E(utu′

t |Ft−1) = �u in probability.
(iv) Define the matrices

τ 0,a,b,c = E(vec(utu′
t−a)vec(ut−bu′

t−c)
′) (3)

and assume that the elements of τ 0,r,0,s are uniformly bounded for all r, s ≥
1. The matrix LK τ 0,r,0,rL′

K for all r ≥ 1 is positive definite, where LK is a
( 12K (K + 1) × K 2) elimination matrix.

(v) limT→∞ T−1 ∑T
t=1 E(vec(utu′

t−r )vec(utu
′
t−s)

′|Ft−1) = τ 0,r,0,s in probability
for all r, s ≥ 1.

(vi) E|ut |4r is uniformly bounded for some r ≥ 2.

Assumptions (i) and (ii) replace the IID assumption on the errors {ut } by themartin-
gale difference (MD) sequence assumption. Assumption (iii) requires convergence of
conditional moments. Assumptions (iv) and (v) restrict the fourth-order cumulants of
ut . Assumption (vi) requires the existence of at least 8th moments of theMD sequence
{ut }.

The alternative is a VAR(h) model for the errors:

ut = D1ut−1 + · · · + Dhut−h + et . (4)

The hypothesis being tested is

H0 : D1 = · · · = Dh = 0 against H1 : D j �= 0 for at least one j ∈ {1, . . . , h}.

The test statistic is computed from an auxiliary model

ût = A1yt−1 + · · · + Apyt−p + D1ût−1 + · · · + Dh ût−h + et

= (Z′
t−1 ⊗ IK )φ + (̂U′

t−1 ⊗ IK )ψ + et , (5)

where Zt−1 = (y′
t−1, . . . , y

′
t−p)

′, φ = vec(A1, . . . ,Ap)
′, ̂Ut−1 = (̂u′

t−1, . . . , û
′
t−h)

′
and ψ = vec(D1, . . . ,Dh)

′. The symbol ⊗ denotes the Kronecker product and the
symbol vec denotes the column vectorisation operator. The first h values of the resid-
uals ût are set to zero in the auxiliary model, so that the series length is equal to the
series length in the original VAR model.

The LM statistic is given by

QLM(h) = T̂ψ
′
(̂�

ψψ
)−1

̂ψ, (6)

where ̂ψ is the LS estimate of ψ and ̂�
ψψ

is the block of

(

T−1
T

∑

t=1

[

Zt−1 ⊗ IK
̂Ut−1 ⊗ IK

]

̂�
−1
u

[

Z′
t−1 ⊗ IK ̂U′

t−1 ⊗ IK
]

)−1
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corresponding toψ . Herê�u = T−1 ∑T
t=1 ût û

′
t is the estimator of the error covariance

matrix from the VAR model. The test reduces to the single equation LM test when
K = 1.

The auxiliary model can be written compactly as

̂U = BZ + D̂U + E, (7)

whereD = (D1, . . . ,Dh) is a (K ×Kh)matrix,E = (e1, . . . , eT ) is a (K ×T )matrix
and ̂U = (Ih ⊗ ̂U)F′ with F = (F1, . . . ,Fh) a (T × hT ) matrix such that

̂UF ĵU′ =
T

∑

t= j+1

ût û′
t− j .

The precise form of F j , j = 1, . . . , h, is given in Lütkepohl (2006, p. 158) .
The QLM(h) statistic can be expressed in terms of the residual autocovariances

QLM(h) = T ĉ′
h
̂�c(h)−1̂ch, (8)

where

̂C j = 1

T

T
∑

t= j+1

ût û′
t− j , j = 1, . . . , h,

̂C = (̂C1, . . . ,̂Ch), ĉh = vec(̂C) and the scaling matrix is given by

̂�c(h) = 1

T
[̂ÛU ′ − ̂UZ′(ZZ′)−1ẐU ′] ⊗ ̂�u. (9)

The asymptotic distribution of QLM(h) is obtained from the representation (Lütkepohl
2006, Lemma 4.2)

√
T ĉh = √

T ch − √
TG vec(̂B − B) + Op(T

−1/2),

where G = ˜G′ ⊗ IK with

˜G =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 · · · 0

�u �1�u · · · �h−1�u

0 �u · · · �h−2�u
...

...
...

0 0 · · · �h−p�u

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= plim
1

T
ZF(Ih ⊗ U′), (10)

a ((Kp + 1) × Kh) matrix. The � j are the MA coefficient matrices from the moving
average (MA) representation of the VAR(p) process. The foregoing form of the LM
statistic and derivations are based on results of Lütkepohl (2006). Lütkepohl proves
Lemma 4.2 under the stronger assumption of IID errors. Because conditional het-
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eroskedasticity does not alter the order in probability of terms and the probability limit
(10), Lemma 4.2 remains valid when the errors {ut } are conditionally heteroskedastic.

If {ut } is IID, the asymptotic distribution of
√
T ch is multivariate normal with

covariance matrix Ih ⊗�u ⊗�u and the asymptotic distribution of
√
T vec(̂B−B) is

multivariate normal with covariance matrix �−1 ⊗�u, where � = plim 1
T

∑T
t=1 Zt−1

Z′
t−1. It follows from these results and Lemma 4.3 of Lütkepohl (2006) that the

asymptotic distribution of
√
T ĉh is multivariate normal with covariance matrix�c(h).

Furthermore, ̂�c(h) in (9) is a consistent estimator of �c(h). The QLM(h) statistic is
asymptotically distributed as χ2 with hK 2 degrees of freedom under the null hypoth-
esis.

The asymptotic distribution of the LM statistic is non-standard under conditional
heteroskedasticity. By Lemma A.1 of Brüggemann et al. (2014) , the asymptotic dis-
tribution of

√
T ch is multivariate normal with covariance matrix �h , where �h =

(τ0,i,0, j ), a (K 2h × K 2h) block matrix, where τ0,i,0, j is defined in (3). By Theorem 3
of the same source, the asymptotic distributionof

√
T vec(̂B−B) ismultivariate normal

with covariance matrix (�−1 ⊗ IK )
(

∑∞
p,q=1(Cp ⊗ IK )τ0,p,0,q(Cq ⊗ IK )′

)

(�−1 ⊗
IK )′, where C j = (�′

j−1, . . . ,�
′
j−p)

′ and � = ∑∞
j=1C j�uC′

j . Because �c(h)

is not the covariance matrix of the asymptotic distribution of
√
T ĉh , the asymptotic

distribution of the LM statistic is non-pivotal when the errors {ut } are conditionally
heteroskedastic. This shows that standard LM tests for error AC are not asymptotically
valid under conditional heteroskedasticity.

There are asymptotically equivalent likelihood ratio (LR) and Wald versions of
the LM statistic (see e.g. Edgerton and Shukur 1999). Doornik (1996) proposes an
F-statistic based on the F-approximation to the LR test of Rao (1973).

2.2 Heteroskedasticity-consistent tests

In the univariate case, Godfrey and Tremayne (2005) employ heteroskedasticity-
consistent versions of the LM statistic using White’s (1980) general formula for
heteroskedasticity-consistent covariance matrix estimators (HCCMEs). We employ
themultivariate HCCME as in Hafner andHerwartz (2009). Themultivariate HCCME
for the auxiliary model in (5) is given by

V−1
T WTV

−1
T = (�T ⊗ IK )−1WT (�T ⊗ IK )−1, (11)

where

VT = �T ⊗ IK ,

�T = 1

T

T
∑

t=1

(

Zt−1

̂Ut−1

)

(

Z′
t−1

̂U′
t−1

)

,

WT = 1

T

T
∑

t=1

(

Zt−1

̂Ut−1

)

(

Z′
t−1

̂U′
t−1

) ⊗ (̂ut û′
t ).

123



1196 N. Ahlgren, P. Catani

MacKinnon and White (1985), and Davidson and Flachaire (2008) refer to the basic
version (11) of the HCCME as HC0 and consider three modified versions of HC0,
which they denote by HC1, HC2 and HC3. Rescaling ût by

√
T/(T − Kp), which

amounts to multiplying the elements of ût û′
t by T/(T −Kp), leads to the multivariate

analogue of the form HC1 of the HCCME. In the case of no heteroskedasticity, the
variance of ûi t , i = 1, . . . , K , is proportional to 1 − ht , where ht = Zt (Z′Z)−1Z′

t is
the t th diagonal element of Z(Z′Z)−1Z′. Replacing ût by ût/(1 − ht )1/2, we obtain
the multivariate analogue of the form HC2 of the HCCME. The final form of the
HCCME that we consider is HC3, based on arguments from the jackknife, in which
ût is replaced by ût/(1− ht ). The form HC3 of the HCCME was originally proposed
by MacKinnon and White (1985). See their paper for details of HC1, HC2 and HC3.

The HCCME-based LM statistics for error AC are obtained from (6) by replacing
̂�

ψψ
by the block of V−1

T WTV
−1
T = (�T ⊗ IK )−1WT (�T ⊗ IK )−1 in (11) corre-

sponding to ψ and with ût defined by HC0, HC1, HC2 and HC3, respectively. We
denote the HCCME-based LM tests by QLM, HC0 , QLM, HC1 , QLM, HC2 and QLM, HC3 ,
respectively.

2.3 Tests in vector error correction models

We now turn to the case where yt is I (1) and cointegrated. Following Brüggemann
et al. (2006), we consider the cointegrated VAR model with r < K cointegrating
relations. The model can be written in VECM form as

�yt = αβ ′yt−1 + �1�yt−1 + · · · + � p−1�yt−p+1 + ut , (12)

where α and β are (K × r) matrices with rank r , and �1, . . . ,� p−1 are (K × K )

parameter matrices such that yt is I (1). A formal treatment of the cointegrated VAR
model, including conditions for the process to be I (1), is provided in Johansen (1996).
The error process {ut } is assumed to be as before. Brüggemann et al. (2006) show that
the LM statistic may be computed from the auxiliary model

ût = α̂β
′
yt−1 + �1�yt−1 + · · · + � p−1�yt−p+1

+ (y′
t−1

̂β⊥ ⊗ α̂)φ1 + D1ût−1 + · · · + Dh ût−h + et . (13)

Here β⊥ denotes the orthogonal complement of β such that β ′β⊥ = 0, and ̂β⊥ is an
estimator of β⊥. The term y′

t−1
̂β⊥ ⊗ α̂, which is related to the Gaussian scores of

β, is used as an additional regressor in the auxiliary model, but may be deleted from
the auxiliary model because the estimator of β is asymptotically independent of the
estimators of φ and ψ (Brüggemann et al. 2006). The asymptotic distribution of the
LM statistic under the null hypothesis is the same as in stationary VAR models.

The tests for error AC in the VECM require the cointegration rank to be known. The
value of r is usually not known. In this case it is customary to estimate an unrestricted
VAR model and test for error AC before determining the cointegrating rank. The LM
statistic in the unrestricted VAR model may be computed from an auxiliary model

123



Wild bootstrap tests for autocorrelation… 1197

that has the same form as the auxiliary model (5) for the stationary VAR model
(Brüggemann et al. 2006).

3 Wild bootstrap tests for error autocorrelation

We use the recursive-design and fixed-design WB procedures for autoregressions
of Gonçalves and Kilian (2004). They establish the asymptotic validity of the WB
in stationary autoregressions under conditional heteroskedasticity of unknown form.
Hafner and Herwartz (2009) show the asymptotic validity of the fixed-design WB in
VAR models. Brüggemann et al. (2014) extend the results for the recursive-design
WB to VAR models.

The WB errors are generated as u∗
t = wt ût , where ût are the LS residuals from the

VAR model and {wt } is an IID sequence with mean zero, variance one and such that
E∗|wt |4 ≤ c < ∞ (Gonçalves and Kilian 2004). Several auxiliary distributions may
be considered (see e.g. Davidson and Flachaire 2008; Davidson et al. 2007). We use
the Rademacher distribution, which is given by the two-point distribution

wt =
{

1, with probability 1
2

−1, with probability 1
2

. (14)

It is one of themost commonly used auxiliary distributions and is the one recommended
by Davidson and Flachaire (2008).

For the asymptotic validity of the WB procedures in VAR models, Assumption 1
is made throughout.

3.1 Recursive-design wild bootstrap tests for error AC

The recursive-design WB LM test for error AC is detailed in Algorithm 1.

Algorithm 1 Recursive-design WB LM test for error AC.

1. Compute the LM statistic QLM from the data. Obtain the parameter estimates and
the residuals ût from the VAR model.

2. Draw wt , t = 1, . . . , T , independently from a Rademacher distribution and con-
struct the WB errors as u∗

t = wt ût .
3. Generate a bootstrap sample {y∗

t } recursively from

y∗
t = ̂A1y∗

t−1 + · · · + ̂Apy∗
t−p + u∗

t ,

initialised at y∗
t = yt , t = 1, . . . , p.

4. Compute the bootstrap LM statistic Q∗r
LM from the bootstrap sample {y∗

t }. Define
the bootstrap p value as p∗r = 1−G∗(Q∗r

LM), whereG∗(·) denotes the conditional
(on the original data) cumulative distribution function (CDF) of Q∗r

LM.
5. The bootstrap test of H0 : D1 = · · · = Dh = 0 against H1 : D j �= 0 for at least

one j ∈ {1, . . . , h} at the level α rejects H0 if p∗r ≤ α.
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The asymptotic validity of Q∗r
LM depends on the ability of the WB to mimic the

asymptotic distribution of QLM under conditional heteroskedasticity. Proposition 1
states the asymptotic validity of the Q∗r

LM test.

Proposition 1 Under Assumption 1 and under H0, as T → ∞,

sup
0<c<∞

∣

∣P∗(Q∗r
LM ≤ c) − P(QLM ≤ c)

∣

∣ → 0,

where P∗ denotes the bootstrap probability measure.

3.2 Fixed-design wild bootstrap tests for error AC

The fixed-design WB LM test for error AC is detailed in Algorithm 2.

Algorithm 2 Fixed-design WB LM test for error AC.

1. Compute the LM statistic QLM from the data. Obtain the parameter estimates and
the residuals ût from the VAR model.

2. Draw wt , t = 1, ..., T , independently from a Rademacher distribution and con-
struct the WB errors as u∗

t = wt ût .
3. Generate a bootstrap sample {y∗

t } from

y∗
t = ̂A1yt−1 + · · · + ̂Apyt−p + u∗

t ,

initialised at y∗
t = yt , t = 1, . . . , p.

4. Compute the bootstrap LM statistic Q∗f
LM from the bootstrap sample {y∗

t }. Define
the bootstrap p value as p∗f = 1−G∗(Q∗f

LM), whereG∗(·) denotes the conditional
(on the original data) cumulative distribution function (CDF) of Q∗f

LM.
5. The bootstrap test of H0 : D1 = · · · = Dh = 0 against H1 : D j �= 0 for at least

one j ∈ {1, . . . , h} at the level α rejects H0 if p∗f ≤ α.

Proposition 2 states the asymptotic validity of the Q∗f
LM test.

Proposition 2 Under Assumption 1 and under H0, as T → ∞,

sup
0<c<∞

∣

∣

∣P∗(Q∗f
LM ≤ c) − P(QLM ≤ c)

∣

∣

∣ → 0,

where P∗ denotes the bootstrap probability measure.

4 Simulations

This section contains a Monte Carlo study on the size and power of the WB tests for
error AC proposed in the previous section.
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4.1 Monte Carlo design

We consider two data-generating processes (DGPs) for the conditional mean. The
dimensions of the systems are K = 2 and 5. DGP 1 is a stationary VAR(2) model

yt = μ + A1yt−1 + A2yt−2 + ut .

DGP 2 is a VECM of the form used by Brüggemann et al. (2006):

�yt = μ + α(β ′yt−1 − τ(t − 1)) + �1�yt−1 + ut .

The cointegration rank is r = 1 when K = 2 and r = 2 when K = 5. The parameter
values are contained in Table 1.

For the errors we consider a constant conditional correlation generalised autore-
gressive conditional heteroskedasticity (CCC-GARCH) model (Bollerslev 1990):

ut = Htzt ,

where Ht = diag
(

h1/21t , . . . , h1/2Kt

)

is a diagonal matrix of conditional standard devi-

ations of ut , zt ∼ N I D(0,P) and P = (ρi j ) is a positive definite covariance matrix
with ones on the main diagonal. We focus on the CCC-GARCH(1, 1) model with

ht = a0 + A1u
(2)
t−1 + B1ht−1,

where u(2)
t = (u21t ,…, u2Kt )

′ is a (K × 1) vector, ht = (h1t , . . . , hKt )
′ is a (K × 1)

vector of conditional variances of ut , a0 is a (K × 1) vector of positive constants, and
A1 = (aii ) and B1 = (bii ) are (K × K ) parameter matrices which are diagonal with
positive diagonal elements. Jeantheau (1998) proposes an extended CCC-GARCH
model where some of the off-diagonal elements have non-zero values, but this exten-
sion is not considered here (see e.g. He and Teräsvirta 2004; Nakatani and Teräsvirta
2009). We consider two DGPs for the errors. The parameter values are contained in
Table 1. DGP 1 is characterised by very high persistence in volatility (aii +bii = 0.98).
DGP 2 is characterised by very high persistence in volatility in the first equation
(a11 + b11 = 0.999), moderate persistence in volatility in the second equation
(a22 + b22 = 0.85) and large ARCH parameters (a11 = 0.175 and a22 = 0.35).
The parameter ρ is the conditional correlation coefficient. Finally, when K = 5 the
parameterρ is the canonical correlation between the first component and the remaining
K − 1 components.

The CCC-GARCH processes in DGPs 1 and 2 satisfy the conditions for weak and
strict stationarity (He and Teräsvirta 2004; Nakatani and Teräsvirta 2009). Recall that
the validity of the WB procedures requires the existence of at least 8th moments. He
and Teräsvirta (2004, p. 908) give a result concerning the existence of the 4th moment
matrix of ut . The condition is that the largest eigenvalue of a certain matrix is less
than 1. DGP 1 satisfies the condition (the largest eigenvalue is 0.973). The condition is
violated byDGP 2 (the largest eigenvalue is 1.059). The conditions for the existence of
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the 8thmomentmatrix of ut are not known.We therefore only know that the conditions
are not satisfied by DGP 2.

In the simulations for power the errors ut have an autoregressive structure:

ut = �1ut−1 + εt ,

where �1 = ψ1IK , ψ1 = 0, 0.04, . . . , 0.96, 0.99, and εt is a (K × 1) vector of errors
following DGPs 1 and 2 listed in Table 1.

The series lengths are T = 100, 200, 500 and 1000. The number of replications
is 20000 in the simulations for size and 10000 in the simulations for power. The
computations and simulations are performed in R, version 2.13.2 (R Development
Core Team 2011). We use the ccgarch package version 0.2.0 of Nakatani (2010) for
simulating the CCC-GARCH(1, 1) models and checking the 4th moment condition.
The size and power of the WB tests are simulated using the fast bootstrap method of
Davidson and MacKinnon (2006).

4.2 Monte Carlo results

Table 2 shows the simulated rejection probabilities of the LM tests for error AC of
orders h = 1, 4 and 12 in the stationary VAR(2) model with K = 2 and 5, and
T = 100, 200, 500 and 1000. We have set ρ = 0, since we found that the correlation
coefficient has little effect on the size and power of the tests. No results are reported
for K = 5 and h = 12 because the number of parameters in the auxiliary regression
is too large relative to the number of observations, in particular when T = 100. The
asymptotic QLM test is not valid when the errors are conditionally heteroskedastic.
Not surprisingly, QLM is severely oversized, and the size distortions increase with the
series length. The size of QLM in DGP 2 with very high persistence in volatility and
large ARCH parameters is at least 27.9% for h = 1, 46.2% for h = 4 and 59.3%
for h = 12 (these are the rejection probabilities when T = 1000 in Table 2). The
HCCME-based tests, which are asymptotically valid when the errors are conditionally
heteroskedastic, are severely undersized in small samples, when the dimensions are
large and the order of error AC tested is large. TheWB tests without the HCCME have
size closer to the nominal level than the HCCME-based WB tests in small samples,
when the dimensions are large and the order of error AC tested is large. For the
HCCME-based WB tests, we only show the results for the HC3 variant, which has
the smallest size distortion. It is also the variant of the HCCME recommended by
Davidson and Flachaire (2008) to use with the WB. In large samples the HCCME-
basedWB tests have better size properties than theWB tests without the HCCME. The
size distortions of Q∗r

LM and Q∗r
LM,HC3

disappear when T = 1000, whereas Q∗f
LM and

Q∗f
LM,HC3

are slightly undersized for h = 12 in large samples. Finally, the simulation
results show that failure of the sufficient condition for the existence of the 4th moment
to hold in DGP 2 has little effect on the performance of the WB tests for error AC in
finite samples.

We also compared the QLM test with the asymptotically equivalent QLR, QW and
QF tests. The size differences between the asymptotically equivalent tests disappear

123



Wild bootstrap tests for autocorrelation… 1201

Ta
bl
e
1

Pa
ra
m
et
er

va
lu
es

of
th
e
D
G
Ps

C
on

di
ti
on

al
m
ea
n

D
G
P
1.

St
at
io
na
ry

V
A
R

(2
):
y t

=
μ

+
A
1
y t

−1
+

A
2
y t

−2
+

u t
K

=
2,

5
A
i
=

φ
iI
K
,i

=
1,
2,

φ
1

=
0.
5
an
d

φ
2

=
0.
3

μ
=

0

D
G
P
2.

V
E
C
M
:�

y t
=

μ
+

α
(β

′ y
t−

1
−

τ
(t

−
1)

)
+

�
1
�
y t

−1
+

u t

K
=

2,
r

=
1

α
=

(

−0
.2 0

)

β
=

(

1 −1
)

μ
=

0
τ

=
0.
01

�
1

=
(

0.
5

0
−0

.2
0.
5

)

K
=

5,
r

=
2

α
=

⎛ ⎜ ⎜ ⎜ ⎝

−0
.2

0
0

−0
.2

0
0

0
0

0
0

⎞ ⎟ ⎟ ⎟ ⎠

β
=

⎛ ⎜ ⎜ ⎜ ⎝

1
0

−1
1

0
−1

0
0

0
0

⎞ ⎟ ⎟ ⎟ ⎠

μ
=

0
τ

=
0.
01

�
1

=

⎛ ⎜ ⎜ ⎜ ⎝

0.
5

0
0

0
−0

.2
−0

.2
0.
5

0
0

0
0

−0
.2

0.
5

0
0

0
0

−0
.2

0.
5

0
0

0
0

−0
.2

0.
5

⎞ ⎟ ⎟ ⎟ ⎠

E
rr
or
s

K
=

2
C
C
C
-G

A
R
C
H

(1
,
1)

D
G
P
1

a 0
=

(

0.
15

0.
15

)

A
1

=
(

0.
08

0
0

0.
08

)

B
1

=
(

0.
9

0
0

0.
9

)

P
=

(

1
ρ

ρ
1

)

,ρ
=

0,
0.
5

D
G
P
2

a 0
=

(

0.
15

0.
15

)

A
1

=
(

0.
17

5
0

0
0.
35

)

B
1

=
(

0.
82

4
0

0
0.
5

)

P
=

(

1
ρ

ρ
1

)

,ρ
=

0,
0.
5

K
=

5
a 0

ha
s
sa
m
e
el
em

en
ts
,A

1
an
d
B
1
ar
e
di
ag
on
al
w
ith

sa
m
e
di
ag
on
al
el
em

en
ts
as

K
=

2,
P

=
(ρ

),
w
he
re

ρ
th
e
ca
no
ni
ca
lc
or
re
la
tio

n
be
tw
ee
n
th
e

fir
st
co
m
po

ne
nt

an
d
th
e
re
m
ai
ni
ng

K
−

1
co
m
po

ne
nt
s.

123



1202 N. Ahlgren, P. Catani

Table 2 Simulated size of asymptotic and WB tests for error AC in the stationary VAR(2) model

K 2 5

T 100 200 500 1000 100 500

DGP 1 2 1 2 1 2 1 2 1 2 1 2

h = 1

QLM 0.076 0.121 0.079 0.152 0.094 0.212 0.099 0.279 0.161 0.222 0.102 0.265

QLM, HC0 0.044 0.043 0.047 0.045 0.051 0.045 0.047 0.045 0.032 0.029 0.051 0.043

QLM, HC1 0.037 0.034 0.043 0.041 0.050 0.043 0.046 0.044 0.006 0.006 0.043 0.035

QLM, HC2 0.035 0.030 0.042 0.038 0.050 0.041 0.046 0.043 0.004 0.004 0.041 0.032

QLM, HC3 0.026 0.021 0.036 0.032 0.047 0.038 0.045 0.041 0.000 0.000 0.033 0.025

Q∗r
LM 0.047 0.046 0.048 0.051 0.049 0.054 0.051 0.056 0.040 0.042 0.055 0.060

Q∗r
LM, HC3

0.059 0.052 0.052 0.053 0.050 0.048 0.049 0.046 0.052 0.049 0.053 0.051

Q∗f
LM 0.054 0.049 0.051 0.045 0.053 0.043 0.051 0.045 0.069 0.077 0.060 0.051

Q∗f
LM, HC3

0.046 0.048 0.048 0.047 0.055 0.046 0.049 0.047 0.046 0.040 0.055 0.048

h = 4

QLM 0.093 0.162 0.104 0.210 0.124 0.336 0.147 0.462 0.329 0.427 0.157 0.453

QLM, HC0 0.022 0.020 0.032 0.023 0.038 0.033 0.043 0.036 0.000 0.000 0.026 0.012

QLM, HC1 0.014 0.012 0.025 0.019 0.035 0.031 0.042 0.035 0.000 0.000 0.017 0.007

QLM, HC2 0.012 0.010 0.024 0.016 0.034 0.029 0.041 0.033 0.000 0.000 0.015 0.006

QLM, HC3 0.006 0.004 0.018 0.011 0.031 0.026 0.039 0.030 0.000 0.000 0.007 0.003

Q∗r
LM 0.044 0.052 0.048 0.055 0.053 0.058 0.051 0.055 0.050 0.057 0.055 0.062

Q∗r
LM, HC3

0.055 0.051 0.055 0.049 0.049 0.050 0.053 0.052 0.040 0.022 0.058 0.061

Q∗f
LM 0.052 0.055 0.049 0.043 0.050 0.040 0.046 0.039 0.051 0.069 0.052 0.052

Q∗f
LM, HC3

0.036 0.036 0.040 0.033 0.043 0.044 0.046 0.043 0.009 0.001 0.037 0.020

h = 12

QLM 0.081 0.137 0.109 0.221 0.165 0.417 0.209 0.593

QLM, HC0 0.002 0.002 0.014 0.011 0.024 0.020 0.031 0.026

QLM, HC1 0.001 0.000 0.010 0.007 0.022 0.018 0.030 0.024

QLM, HC2 0.000 0.000 0.008 0.006 0.021 0.015 0.029 0.022

QLM, HC3 0.000 0.000 0.005 0.003 0.017 0.012 0.026 0.018

Q∗r
LM 0.049 0.056 0.048 0.057 0.049 0.058 0.049 0.054

Q∗r
LM, HC3

0.049 0.052 0.051 0.048 0.049 0.049 0.047 0.049

Q∗f
LM 0.051 0.056 0.052 0.053 0.044 0.043 0.045 0.040

Q∗f
LM, HC3

0.039 0.043 0.037 0.038 0.037 0.038 0.038 0.040

The dimensions are K = 2 and 5. The nominal significance level is 5%

in finite samples when they are bootstrapped. This is what we would expect because
the bootstrap provides a size-correction of the asymptotic tests (see Davidson and
MacKinnon 2006).

Comparing the results for the stationary VAR(2) model with the results for the
unrestricted VAR model in levels when the DGP is a VECM in Table 3, which shows
the results for the three tests (Q LM,HC0 , Q∗r

LM,HC3
and Q∗f

LM,HC3
) that perform best
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Table 3 Simulated size of asymptotic and WB tests for error AC in the unrestricted VAR model in levels
and cointegrated VAR model when the DGP is a VECM

K 2 5

T 100 200 500 1000 100 500

DGP 1 2 1 2 1 2 1 2 1 2 1 2

Unrestricted VAR model

h = 1

QLM, HC0 0.054 0.049 0.049 0.052 0.051 0.048 0.048 0.049 0.061 0.056 0.057 0.052

Q∗r
LM, HC3

0.054 0.049 0.047 0.052 0.047 0.048 0.052 0.051 0.072 0.076 0.052 0.049

Q∗f
LM, HC3

0.044 0.041 0.051 0.049 0.046 0.046 0.047 0.051 0.035 0.039 0.048 0.053

h = 4

QLM, HC0 0.032 0.029 0.037 0.028 0.040 0.032 0.044 0.036 0.000 0.000 0.029 0.022

Q∗r
LM, HC3

0.052 0.051 0.050 0.046 0.048 0.048 0.048 0.046 0.000 0.000 0.044 0.046

Q∗f
LM, HC3

0.034 0.035 0.033 0.036 0.040 0.039 0.045 0.040 0.031 0.010 0.032 0.032

h = 12

QLM, HC0 0.004 0.002 0.019 0.014 0.033 0.026 0.036 0.030

Q∗r
LM, HC3

0.049 0.049 0.047 0.049 0.052 0.052 0.051 0.046

Q∗f
LM, HC3

0.049 0.045 0.047 0.042 0.044 0.045 0.042 0.042

Cointegrated VAR model

h = 1

QLM, HC0 0.045 0.045 0.050 0.044 0.051 0.047 0.049 0.045 0.031 0.028 0.046 0.044

Q∗r
LM, HC3

0.045 0.049 0.049 0.044 0.053 0.052 0.050 0.046 0.040 0.044 0.047 0.049

Q∗f
LM, HC3

0.042 0.041 0.046 0.045 0.050 0.049 0.048 0.044 0.028 0.029 0.043 0.046

h = 4

QLM, HC0 0.025 0.018 0.032 0.028 0.035 0.035 0.048 0.034 0.000 0.000 0.024 0.022

Q∗r
LM, HC3

0.046 0.045 0.043 0.045 0.042 0.048 0.047 0.046 0.100 0.179 0.038 0.051

Q∗f
LM, HC3

0.033 0.030 0.038 0.037 0.040 0.045 0.046 0.042 0.031 0.013 0.034 0.037

h = 12

QLM, HC0 0.002 0.002 0.013 0.012 0.028 0.023 0.035 0.029

Q∗r
LM, HC3

0.048 0.049 0.046 0.049 0.050 0.047 0.052 0.046

Q∗f
LM, HC3

0.042 0.043 0.039 0.041 0.043 0.043 0.045 0.043

The dimensions are K = 2 and 5. The nominal significance level is 5%

in the case of the stationary VAR model, reveals small differences only. Following
Brüggemann et al. (2006), we have repeated the simulations with the correct cointe-
gration rank imposed. This case is mainly included in order to compare our results
with conditionally heteroskedastic errors with the results reported in Brüggemann
et al. (2006) for IID errors. Size distortions are larger in the unrestricted VAR model
than in the VECM. A similar result was found by Brüggemann et al. (2006).

For the power analysis, we show the level-adjusted powers of the asymptotic
QLM test, recursive-design WB Q∗r

LM test and fixed-design WB Q∗f
LM test without the

HCCME, and the corresponding HCCME-based QLM,HC3 , Q∗r
LM,HC3

and Q∗f
LM,HC3
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Fig. 1 Simulated power functions of the asymptotic and WB tests for error AC in DGP 1 for the errors
with K = 2 and T = 100

tests in the stationary VAR(2)model and DGP 1 for the errors as a representative case.
There is a slight decrease in power in DGP 2 compared to DGP 1, but otherwise the
results are similar, and are therefore not shown. Only small differences are found in
the powers of the tests in the unrestricted VAR model and cointegrated VAR model
with the correct cointegration rank imposed when the DGP is a VECM. The results are
therefore not shown. Figure 1 presents the simulated power functions of the asymptotic
QLM test, recursive-design WB Q∗r

LM test and fixed-design WB Q∗f
LM test in the left

panels, and the HCCME-based QLM,HC3 , Q∗r
LM,HC3

and Q∗f
LM,HC3

tests in the right
panels for h = 1, 4 and 12 with K = 2 and when T = 100. We only show the powers
of the HC3 variant because the powers are level-adjusted. The recursive-design WB
Q∗r

LM test has low power for h = 1 and no power at all for h = 4 and 12, while the
fixed-designWB Q∗f

LM has low power. The differences in power between theWB tests
disappear when the HCCME is used. Figure 2 show the simulated power functions
when T = 500. The Q∗r

LM test has lower power than the Q∗f
LM test. For h = 1, the

HCCME-based tests have higher power than the tests without the HCCME; for h = 4
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Fig. 2 Simulated power functions of the asymptotic and WB tests for error AC in DGP 1 for the errors
with K = 2 and T = 500

and 12 the HCCME-based recursive-design WB Q∗r
LM,HC3

test has higher power than
the Q∗r

LM test without the HCCME. Figures 3 and 4 show the simulated power func-
tions with K = 5 and when T = 100 and 500. The results for h = 1 when T = 100
are similar to the case with K = 2; the recursive-design WB Q∗r

LM test has lower
power than the fixed-design WB Q∗f

LM test but the differences in power between the
WB tests diminish when the HCCME is used. The tests have low power for h = 4, and
the power of the HCCME-based tests are close to zero. When T = 500 the HCCME-
based recursive-design WB Q∗r

LM,HC3
test has higher power than the HCCME-based

fixed-design WB Q∗f
LM,HC3

test.
The simulation results suggest the following guidelines for the use of the tests

for error AC with real data. The asymptotic QLM test is not valid under conditional
heteroskedasticity, and is severely oversized. The HCCME-based QLM,HC tests are
severely undersized in small samples, when the dimensions are large and the order of
AC tested is large. The WB Q∗

LM tests outperform the HCCME-based Q LM,HC tests
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Fig. 3 Simulated power functions of the asymptotic and WB tests for error AC in DGP 1 for the errors
with K = 5 and T = 100
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Fig. 4 Simulated power functions of the asymptotic and WB tests for error AC in DGP 1 for the errors
with K = 5 and T = 500

in terms of power. The fixed-designWB Q∗f
LM test has the best performance among all

tests when the number of observations is small, the dimensions are large and the order
of error AC tested is large. We therefore recommend the use of the Q∗f

LM test without
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the HCCME in small samples, when the dimensions are large and the order of error
AC tested is large. If the number of observations is large relative to the dimensions
and the order of error AC tested, the HCCME-based recursive-design WB Q∗r

LM,HC3
test has the best performance of all tests. In large samples we recommend the use of
the Q∗r

LM,HC3
test.

5 Empirical examples

We illustrate the use of the WB LM tests for error AC with real data in empirical
applications to credit default swap (CDS) prices and Euribor interest rates. In the first
empirical application the sample size is large. The second empirical application is an
example of a small sample size where the dimensions are large.

5.1 Credit default swap prices

Our first empirical example deals with CDS prices. A CDS is a credit derivative which
provides a bondholder with protection against the risk of default by the company. If
a default occurs, the holder is compensated for the loss by an amount which equals
the difference between the par value of the bond and its market value after the default.
The CDS price is the annualised fee (expressed as a percentage of the principal) paid
by the protection buyer. We denote by pCDSt the CDS price and pCSt the credit spread
on a risky bond over the risk-free rate. The basis is the difference between the CDS
price and the bond spread:

st = pCDSt − pCSt .

If the two markets price credit risk equally in the long run, then the prices should be
equal, so that the basis st = 0.Because p CDS

t and pCSt are I (1) series, the non-arbitrage
relation is tested as an equilibrium relation in the cointegrated VARmodel (see Blanco
et al. 2005). The vector yt with the value 1 appended is yt = (pCDSt , pCSt , 1)′. The
financial theory posits that yt is cointegratedwith cointegrating vectorβ = (1,−1, c)′,
so that β ′yt = pCDSt − pCSt + c is a cointegrating relation. In theory c = 0, but in
practice it may be different from zero (see Blanco et al. 2005, for details). Many
researchers have tested the equivalence of CDS prices and credit spreads for US and
European investment-grade companies and found that a parity relation holds for most
companies, i.e. the bond and CDS markets price credit risk equally.

We take a subsample of the companies in Table 1 of Blanco et al. (2005). The com-
panies in our subsample are Bank of America, Citigroup, Goldman Sachs, Barclays
Bank and Vodafone, the first three of which are US and the remaining two European
companies. We use 5-year maturity CDS prices and credit spreads from Datastream.
Blanco et al. (2005) contains a discussion of issues related to the construction of the
series. The data are daily observations from 1 January 2009 to 31 January 2012, and
the number of daily observations is T = 804. The sample size is therefore large and
the dimensions (K = 2) are small.
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Fig. 5 The residuals from the VAR model for the CDS price and bond spread for Barclays Bank

Information criteria are used to determining the lag length in the VAR models for
pCDSt and pCSt . Because the sample size is large, we rely on the Schwarz (SC) and
Hannan–Quinn (HQ) information criteria, and select lag length p = 2 for Bank of
America, p = 3 for Citigroup, Goldman Sachs and Vodafone, and p = 4 for Barclays
Bank. The residuals from the VAR model for Barclays Bank are shown in Figure
5 as a representative case. Notice the volatility clustering in the residuals. This is
confirmed by asymptotic and bootstrap LM tests for ARCH up to order 2 (see Table
4). The bootstrap Q∗

LM test for ARCH is described in Ahlgren and Catani (2014b).
The univariate tests find strong ARCH effects in the residuals for all companies. The
multivariate tests are significant at the 5% level for all companies, with the exception
of the bootstrap Q∗

LM test for Vodafone. Because there is strong evidence of ARCH
in the errors, HCCME-based and WB tests for error AC should be used in place of
asymptotic tests which assume IID errors.

Table 4 shows the p values of the LM tests for error AC of orders h = 1, 4 and 12
in the unrestricted VAR model and cointegrated VAR model with cointegration rank
r = 1.The outcomes of the tests in the unrestricted VARmodel and cointegrated VAR
model are, with only a few exceptions, identical.Wefirst discuss the overall picture and
then the results for Barclays Bank in detail. The asymptotic QLM test for error AC of
order h = 1 in the unrestricted VAR model is significant at the 5% level for Goldman
Sachs, Barcalys Bank and Vodafone. The test of order h = 4 is significant for Bank
of America, Barclays Bank and Vodafone, and of order h = 12 is significant for all
companies. In contrast, the HCCME-based QLM, HC0 tests are all insignificant, with
the exception of h = 1 and 12 for Vodafone. The WB tests are all insignificant, with
the exception of the recursive-design WB Q∗r

LM test of h = 12 for Vodafone, which
is significant at the 5% level, and the fixed-design WB Q∗f

LM test of h = 4 and 12 for
Vodafone, which are significant at the 1% level. The HCCME-based recursive-design
WB Q∗r

LM, HC3
test of h = 1 and 12 are significant for Vodafone at the 5 and 1% levels,

respectively. The HCCME-based fixed-design WB Q∗f
LM, HC3

test of order h = 1 is
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Table 5 Simulated size of
asymptotic and WB tests for
error AC in the unrestricted VAR
model in levels and cointegrated
VAR model for the CDS price
and credit spread for Barclays
Bank

The nominal significance level is
5%

h Unrestricted VAR(4) Cointegrated VAR(4)

1 4 12 1 4 12

QLM 0.135 0.225 0.307 0.137 0.219 0.298

QLM, HC0 0.049 0.042 0.016 0.048 0.040 0.015

Q∗r
LM 0.030 0.025 0.035 0.028 0.025 0.035

Q∗r
LM, HC3

0.054 0.057 0.055 0.055 0.051 0.051

Q∗f
LM 0.051 0.050 0.055 0.053 0.057 0.050

Q∗f
LM, HC3

0.048 0.042 0.022 0.049 0.045 0.020

significant for Vodafone at the 5% level, and of order h = 12 is significant for Bank
of America at the 5% level and Vodafone at the 1% level. Because the sample size
is large and the dimensions are small, we rely on the HCCME-based recursive-design
WB Q∗r

LM, HC3
test. We then conclude that the VAR models provide good descriptions

of the data, perhaps with the exception of some error AC of order h = 12 remaining
in the VAR(3) model for Vodafone.

We now turn to a detailed analysis of the results for Barclays Bank. The asymptotic
QLM test rejects the null hypothesis of no error AC of orders h = 1, 4 and 12 at the
5% level. The p value for h = 1 is 2.5%, the p value for h = 4 is 0.1% and the p
value for h = 12 is 0.0%. The HCCME-based tests and the WB tests do not reject for
h = 1, 4 and 12. The p value of the HCCME-based recursive-design WB Q∗r

LM, HC3
test for h = 1 is 21.6%, the p value for h = 4 is 9.9% and the p value for h = 12 is
74.0%.

The simulation results in the previous section and the empirical example in this
section strongly suggest that the asymptotic QLM test may falsely reject the null
hypothesis of no error AC if the errors are conditionally heteroskedastic. This suggests
that a long lag length may be required to get residuals which pass the asymptotic test
for error AC. In fact, we find that for the companies in Table 4, all VAR models with
lag lengths up to p = 25 are rejected by the asymptotic QLM test.

In order to investigate the size and power of the tests for error AC with real
data, we simulate the CDS prices data for Barclays Bank. In each simulation we
use the estimated parameters from the unrestricted VAR(4) model and cointegrated
VAR(4) model with cointegration rank r = 1 to define the DGP. The model
for the errors is a CCC-GARCH(1, 1) model. We take the parameter estimates
(̂a01, â11,̂b11, â02, â22,̂b22, ρ̂) from Ahlgren and Catani (2014a). The sum of the esti-
mated parameters in the equation for pCDSt is â11 + ̂b11 = 0.995 and in the equation
for pCSt is â22 +̂b22 = 0.986. The stationarity condition is satisfied (the largest eigen-
value is 0.995). The 4th moment condition is not satisfied (the largest eigenvalue is
1.017). The estimate of the conditional correlation coefficient is ρ̂ = 0.035. We sim-
ulate 20000 time series of length T = 804. The simulated size of the LM tests for
error AC of orders h = 1, 4 and 12 is reported in Table 5. The simulated size of the
asymptotic QLM test in the unrestricted VAR model is 13.5% for h = 1, 22.5% for
h = 4 and 30.7% for h = 12. The HCCME-based QLM,HC0 test and the recursive-
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Fig. 6 Simulated power functions of the asymptotic and WB tests for error AC for the CDS price and
credit spread for Barclays Bank

design WB Q∗r
LM test are undersized. The simulated size of Q∗r

LM is 3.0% for h = 1,
2.5% for h = 4 and 3.5% for h = 12. The simulated size of the HCCME-based
recursive-design WB Q∗r

LM, HC3 test is 5.4% for h = 1, 5.7% for h = 4 and 5.5%
for h = 12. Only small differences are observed in the simulated sizes of the tests
in the unrestricted and cointegrated VAR models. This result is a consequence of the
large number of observations. Figure 6 presents the simulated power functions of the
asymptotic QLM test, recursive-design WB Q∗r

LM test and fixed-design WB Q∗f
LM test

in the left panels, and the HCCME-based QLM,HC3 , Q∗r
LM,HC3

and Q∗f
LM,HC3

tests in

the right panels for h = 1, 4 and 12. The fixed design WB Q∗f
LM test is more powerful

than the recursive-design WB Q∗r
LM test. The HCCME-based tests are more power-

ful than the tests without the HCCME. The Q∗r
LM, HC3

test is more powerful than the

Q∗f
LM, HC3

test; the maximal difference in power is 0.5% for h = 1, 6.2% for h = 4
and 2.4% for h = 12.
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Table 6 Tests for ARCH and error AC in the VAR(3) model and cointegrated VAR(3) model with coin-
tegration rank r = 1 for the Euribor interest rates

Tests for ARCH

1 month 3 month 6 month 9 month 12 month System

QLM 0.000 0.002 0.000 0.028 0.757 0.000

Q∗
LM 0.000 0.006 0.000 0.029 0.756 0.000

Tests for Error AC

Unrestricted VAR(3) Cointegrated VAR(3)

h 1 4 12 1 4 12

QLM 0.000 0.000 0.000 0.000 0.000 0.000

QLM, HC0 0.022 0.854 1.000 0.016 0.711 1.000

Q∗r
LM 0.124 0.518 0.003 0.145 0.263 0.001

Q∗r
LM, HC3

0.030 0.205 0.508 0.016 0.173 0.797

Q∗f
LM 0.108 0.328 0.000 0.105 0.095 0.000

Q∗f
LM, HC3

0.037 0.982 1.000 0.013 0.898 1.000

The table reports the p values of the tests

5.2 Euribor interest rates

In the second empirical example we consider the problem of testing the expectations
hypothesis of the term structure of interest rates. The theory makes two predictions,
which can be tested in the cointegrated VARmodel (Hall et al. 1992). First, if there are
K interest rate series in the system, then the cointegration rank is r = K − 1. Second,
the spreads between the interest rates at different maturities span the cointegration
space.

We use monthly data from December 1998 to March 2013 on the 1, 3, 6, 9 and
12 month Euribor interest rates. All interest rates are nominal and annualised. The
data were retrieved from www.euribor.org. The number of monthly observations is
T = 172. The sample size is therefore small and the dimensions (K = 5) are large.
The SC and HQ information criteria select the lag length p = 3. Table 6 reports
asymptotic and bootstrap LM tests for ARCH up to order 2. The univariate tests find
a strong ARCH effect in the residuals from the equations for the 1, 3 and 6 month
interest rates. The multivariate ARCH tests are significant at the 1% level. Because
there is strong evidence of ARCH in the errors, HCCME-based andWB tests for error
AC should be used in place of asymptotic tests which assume IID errors.

Table 6 shows the p values of the LM tests for error AC of orders h = 1, 4 and
12 in the unrestricted VAR model and cointegrated VAR model with cointegration
rank r = 1. The asymptotic QLM tests for error AC of orders h = 1, 4 and 12
are all significant with p values 0.0%. In contrast, the HCCME-based tests are all
insignificant, with the exception of the QLM, HC0 test of h = 1. Because the sample
size is small and the dimensions are large, we rely on the fixed-design WB Q∗f

LM test
without the HCCME. The Q∗f

LM tests of h = 1 and 4 are insignificant with p values
10.8 and 32.8%, whereas the test of h = 12 rejects with p value 0.0%. The recursive-
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design WB Q∗r
LM test without the HCCME leads to similar inferences. The Q∗r

LM tests
of h = 1 and 4 are insignificant with p values 12.4 and 51.8%, whereas the test of
h = 12 rejects with p value 0.3%. In no case do the tests in the unrestricted and
cointegrated VAR models lead to conflicting outcomes. We therefore conclude that
the VAR(3) model provides a good description of the data, perhaps with the exception
of some remaining error AC of order h = 12.

We do not simulate the Euribor interest rates data because the small sample size
and large dimensions make it difficult to obtain reliable estimates of the parameters in
the CCC-GARCH(1, 1) model for the errors.

6 Conclusions

In this article we proposeWBLM tests for error AC in VARmodels with conditionally
heteroskedastic errors. We show that the WB tests are asymptotically valid under
conditional heteroskedasticity of unknown form. Simulation experiments indicate that
asymptotic tests for error AC are severely oversized when the errors are conditionally
heteroskedastic. Besides, HCCME-based tests which are asymptotically valid under
(conditional) heteroskedasticity are severely undersized in small samples.WB tests for
error AC perform well when the errors are conditionally heteroskedastic. The fixed-
design WB test without the HCCME has the best performance among all tests when
the sample size is small, the dimensions are large and the order of AC tested is large.
We therefore recommend that this version of the WB tests should be used in small
samples. In large samples the HCCME-based recursive-designWB test has better size
and power properties than other versions of the test. In large samples we recommend
the use of the HCCME-based recursive-design WB test.

In an empirical example of CDS prices where the sample size is large, we find that
the asymptotic test may falsely reject the null hypothesis of no error AC if the errors are
conditionally heteroskedastic, whereas based on WB tests the VAR models selected
by information criteria provide good descriptions of the data. In another empirical
example of Euribor interest rates the sample size is small and the dimensions are
large. It is found that the fixed-designWB test without the HCCME is the test for error
AC which is most useful.

Acknowledgements The authors want to thank the Editor-in-Chief, Professor Christine H. Müller, two
anonymous referees, and Pentti Saikkonen and Timo Teräsvirta.

Appendix

Proof of Proposition 1 To prove the asymptotic validity of the recursive-design WB
Q∗

LM test, we need to show that
√
T vec(̂B − B) and

√
T vec(̂B∗ − ̂B) have the same

asymptotic multivariate normal distribution,
√
T ch and

√
T c∗

h have the same asymp-
totic multivariate normal distribution, and

plim
1

T
ZF(Ih ⊗ U′) = plim

1

T
Z∗F(Ih ⊗ U∗′) = ˜G, (15)
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where ˜G is defined in (10).
To show that

√
T vec(̂B − B) and

√
T vec(̂B∗ − ̂B) have the same asymptotic

multivariate normal distribution, we use Theorem 5.1 of Brüggemann et al. (2014).
Brüggemann et al. prove consistency of the moving block bootstrap in vector autore-
gressive models with conditionally heteroscedastric errors. Their result also holds for
theWB estimates of themean parametersB (see Brüggemann et al. 2014, p. 8). Hence,
we can conclude that

sup
z

∣

∣

∣P
(√

T vec(̂B − B) ≤ z
)

− P∗ (√
T vec(̂B∗ − ̂B) ≤ z

)∣

∣

∣ → 0

in probability.
The asymptotic multivariate normal distribution of

√
T ch is obtained from Lemma

A.1 of Brüggemann et al. (2014):

√
T ch

D→ N(0,�h),

where �h = (τ0,i,0, j ) is a (K 2h × K 2h) block matrix and τ0,i,0, j is defined in (3).
The proof that

√
T c∗

h has the same asymptotic multivariate normal distribution is
entirely analogous to that in the proof of Lemma A.3 of Goncalves and Kilian. Define
St = λ′c∗

h for arbitrary λ ∈ Rm , m = K 2h, λ′λ = 1, and apply Theorem A.1 and the
techniques of the proof of Lemma A.3 of Gonçalves and Kilian (2004) to St .

The result (15) follows from the multivariate analogue of Lemma A.2 of Gonçalves
and Kilian (2004).

Proof of Proposition 2The proof of Proposition 2 is similar to the proof of Proposition
1, and is omitted. The required convergence results for the fixed-design WB were
proved by Hafner and Herwartz (2009).
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